1
|
Pooranachandran V. How to undertake and record a 12-lead electrocardiogram. Nurs Stand 2025; 40:62-67. [PMID: 39676435 DOI: 10.7748/ns.2024.e12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 12/17/2024]
Abstract
RATIONALE AND KEY POINTS A 12-lead electrocardiogram (ECG) is a painless procedure commonly undertaken in healthcare practice. An ECG machine uses cables or 'leads' attached with stick-on electrodes to specific parts of the body to create a series of ECG traces, which are then printed onto graph paper. This provides a recording of the cardiac electrical activity measured from different angles or perspectives. • A 12-lead ECG is a valuable diagnostic tool that has proven effective in detecting various cardiac abnormalities or enabling healthcare professionals to rule them out. • It is a cost-effective investigation that can be performed by any appropriately trained healthcare professional. • Careful preparation and correct electrode and lead placement are crucial to ensure accuracy when recording a 12-lead ECG. REFLECTIVE ACTIVITY How to' articles can help to update your practice and ensure it remains evidence-based. Apply this article to your practice. Reflect on and write a short account of: • How this article might improve your practice when recording a 12-lead ECG. • How you could use this information to educate students or colleagues about the preparation and recording of a 12-lead ECG.
Collapse
Affiliation(s)
- Vivetha Pooranachandran
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University London, London, England
| |
Collapse
|
2
|
Kumar G, Duggal B, Singh JP, Shrivastava Y. Efficacy of Various Dry Electrode-Based ECG Sensors: A Review. J Biomed Mater Res A 2025; 113:e37845. [PMID: 39726375 DOI: 10.1002/jbm.a.37845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Long-term electrocardiogram (ECG) monitoring is crucial for detecting and diagnosing cardiovascular diseases (CVDs). Monitoring cardiac health and activities using efficient, noninvasive, and cost-effective techniques such as ECG can be vital for the early detection of different CVDs. Wet electrode-based traditional ECG techniques come with unavoidable limitations of the altered quality of ECG signals caused by gel volatilization and unwanted noise followed by dermatitis. The limitation related to the wet electrodes for long-term ECG monitoring in static and dynamic postures reminds us of the urgency of a suitable substitute. Dry electrodes promise long-term ECG monitoring with the potential for significant noise reduction. This review discusses traditional and alternative techniques to record ECG in terms of meeting the efficient detection of CVDs by conducting a detailed analysis of different types of dry electrodes along with materials (substrate, support, matrix, and conductive part) used for fabrication, followed by the number of human subjects they have been used for validation. The degradation of these electrodes has also been discussed briefly. This review finds a need for more validation on a sufficient number of subjects and the issue of cost and noise hindering the commercialization of these dry electrodes.
Collapse
Affiliation(s)
- Ghanshyam Kumar
- Department of Cardiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| | - Bhanu Duggal
- Department of Cardiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| | - J P Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Yash Shrivastava
- Department of Pediatrics, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| |
Collapse
|
3
|
Jalajamony HM, Aliyana AK, De S, Diallo F, Stylios G, Fernandez RE. Plasma-aided direct printing of silver nanoparticle conductive structures on polydimethylsiloxane (PDMS) surfaces. Sci Rep 2024; 14:31154. [PMID: 39730889 DOI: 10.1038/s41598-024-82439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability. Our findings indicate that atmospheric plasma-aided printing not only avoids the need for high-temperature sintering but also significantly enhances the electrical and mechanical properties of the conductive structures, advancing the production of robust and adaptable electronic devices for wearable technology.
Collapse
Affiliation(s)
| | | | - Soumadeep De
- Department of Engineering, Norfolk State University, Norfolk, USA
| | - Fatima Diallo
- Department of Engineering, Norfolk State University, Norfolk, USA
| | - George Stylios
- Research Institute for Flexible Materials, Heriot Watt University, Galashiels, UK
| | | |
Collapse
|
4
|
Kwon Y, Kim J, Kim H, Kang TW, Lee J, Jang SS, Lee Y, Yeo WH. Printed Nanomaterials for All-in-One Integrated Flexible Wearables and Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68016-68026. [PMID: 39586587 DOI: 10.1021/acsami.4c17939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recent advancements in printing technologies allow for fabricating various wearable sensors, circuits, and integrated electronics. However, most printing tools have limited ranges of handling ink viscosity, a short working distance, and a limited feature size for developing sophisticated electronics. Here, this paper introduces an all-in-one integrated wearable electronic system via multilayer, multinanomaterial printing. Versatile, high-resolution aerosol-jet printing could successfully print Cu nanoparticles, Ag nanoparticles, PEDOT:PSS, and polyimide (PI) to manufacture nanomembrane composite structures, including skin-contact electrodes and wireless circuits. The printed polymer, PEDOT:PSS deposited on the Cu, ensures biocompatibility when making direct skin contact while enhancing electrical conductivity for electrodes. A self-assembled monolayer facilitates better adhesion of Cu nanoparticles on the PI. Also, using intensive pulsed light, a photonic sintering method minimizes Cu-oxidation while avoiding thermal damage. The combined experimental and computational study shows the mechanical flexibility and reliability of the printed integrated device. With human subjects, the flexible wireless bioelectronic system demonstrates superior performance in detecting high-fidelity physiological signals on the skin, including electromyograms, electrooculograms, electrocardiograms, and motions, proving its potential applications in portable human healthcare and persistent human-machine interfaces.
Collapse
Affiliation(s)
- Youngjin Kwon
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jongsu Kim
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Korea KIAT-Georgia Tech Semiconductor Electronics Center (K-GTSEC), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tae Woog Kang
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jimin Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Seung Soon Jang
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongkuk Lee
- Department of Biomedical Engineering, Wichita State University, Wichita, Kansas 67260, United States
| | - Woon-Hong Yeo
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Korea KIAT-Georgia Tech Semiconductor Electronics Center (K-GTSEC), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Houghton R, Martinetti A, Majumdar A. A Framework for Selecting and Assessing Wearable Sensors Deployed in Safety Critical Scenarios. SENSORS (BASEL, SWITZERLAND) 2024; 24:4589. [PMID: 39065986 PMCID: PMC11280513 DOI: 10.3390/s24144589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Wearable sensors for psychophysiological monitoring are becoming increasingly mainstream in safety critical contexts. They offer a novel solution to capturing sub-optimal states and can help identify when workers in safety critical environments are suffering from states such as fatigue and stress. However, sensors can differ widely in their application, design, usability, and measurement and there is a lack of guidance on what should be prioritized or considered when selecting a sensor. The paper aims to highlight which concepts are important when creating or selecting a device regarding the optimization of both measurement and usability. Additionally, the paper discusses how design choices can enhance both the usability and measurement capabilities of wearable sensors. The hopes are that this paper will provide researchers and practitioners in human factors and related fields with a framework to help guide them in building and selecting wearable sensors that are well suited for deployment in safety critical contexts.
Collapse
Affiliation(s)
- Robert Houghton
- Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
| | - Alberto Martinetti
- Design, Production and Management Department, University of Twente, 7522 NB Enschede, The Netherlands
| | - Arnab Majumdar
- Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Hong S, Coté G. Minimization of Parasitic Capacitance between Skin and Ag/AgCl Dry Electrodes. MICROMACHINES 2024; 15:907. [PMID: 39064418 PMCID: PMC11278634 DOI: 10.3390/mi15070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Conventional dry electrodes often yield unstable results due to the presence of parasitic capacitance between the flat electrode surface and the non-uniform skin interface. To address this issue, a gel is typically placed between the electrodes to minimize parasitic capacitance. However, this approach has the drawbacks of being unsuitable for repeated use, limited lifetime due to gel evaporation, and the possibility of developing skin irritation. This is particularly problematic in underserved areas since, due to the cost of disposable wet electrodes, they often sterilize and reuse dry electrodes. In this study, we propose a method to neutralize the effects of parasitic capacitance by attaching high-value capacitors to the electrodes in parallel, specifically when applied to pulse wave monitoring through bioimpedance. Skin capacitance can also be mitigated due to the serial connection, enabling stable reception of arterial pulse signals through bioimpedance circuits. A high-frequency structure simulator (HFSS) was first used to simulate the capacitance when injection currents flow into the arteries through the bioimpedance circuits. We also used the simulation to investigate the effects of add-on capacitors. Lastly, we conducted preliminary comparative analyses between wet electrodes and dry electrodes in vivo with added capacitance values ranging from 100 pF to 1 μF, altering capacitance magnitudes by factors of 100. As a result, we obtained a signal-to-noise ratio (SNR) that was 8.2 dB higher than that of dry electrodes. Performance was also shown to be comparable to wet electrodes, with a reduction of only 0.4 dB using 1 μF. The comparative results demonstrate that the addition of capacitors to the electrodes has the potential to allow for performance similar to that of wet electrodes for bioimpedance pulse rate monitoring and could potentially be used for other applications of dry electrodes.
Collapse
Affiliation(s)
- Sungcheol Hong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Owen EJ, Heylen RA, Stewart K, Winyard PG, Jenkins ATA. Detecting and monitoring incontinence associated dermatitis: Does impedance spectroscopy have a part to play? Proc Inst Mech Eng H 2024; 238:655-666. [PMID: 36882988 PMCID: PMC11318234 DOI: 10.1177/09544119231159178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
In this review, current understanding of the prevention and treatment of Incontinence Associated Dermatitis (IAD) is discussed. The need for preventative measures which target specific faecal/urinary irritants is highlighted, including the role of urease inhibitors. There is no existing internationally and clinically accepted method to diagnose and categorise the severity of IAD. Diagnosis currently relies on visual inspection; non-invasive techniques to assess skin barrier function could remove subjectiveness, particularly in darker skin tones. Impedance spectroscopy is a non-invasive technique which can be used to monitor skin barrier function, supporting visual assessments. Six studies (2003-2021) which used impedance to assess dermatitis were reviewed; inflamed skin was distinguishable from healthy skin in each case. This suggests that impedance spectroscopy could be useful in diagnosis early-stage IAD, potentially enabling earlier intervention. Finally, the authors present their initial findings on the role of urease in skin breakdown in an in vivo IAD model, using impedance spectroscopy.
Collapse
Affiliation(s)
- Emily J Owen
- Department of Chemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
8
|
Gao Y, Li B, Zhang L, Zhang X, Xin X, Xie S, Lee RA, Li K, Zhao W, Cheng H. Ultraconformal Skin-Interfaced Sensing Platform for Motion Artifact-Free Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27952-27960. [PMID: 38808703 DOI: 10.1021/acsami.4c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Capable of directly capturing various physiological signals from human skin, skin-interfaced bioelectronics has emerged as a promising option for human health monitoring. However, the accuracy and reliability of the measured signals can be greatly affected by body movements or skin deformations (e.g., stretching, wrinkling, and compression). This study presents an ultraconformal, motion artifact-free, and multifunctional skin bioelectronic sensing platform fabricated by a simple and user-friendly laser patterning approach for sensing high-quality human physiological data. The highly conductive membrane based on the room-temperature coalesced Ag/Cu@Cu core-shell nanoparticles in a mixed solution of polymers can partially dissolve and locally deform in the presence of water to form conformal contact with the skin. The resulting sensors to capture improved electrophysiological signals upon various skin deformations and other biophysical signals provide an effective means to monitor health conditions and create human-machine interfaces. The highly conductive and stretchable membrane can also be used as interconnects to connect commercial off-the-shelf chips to allow extended functionalities, and the proof-of-concept demonstration is highlighted in an integrated pulse oximeter. The easy-to-remove feature of the resulting device with water further allows the device to be applied on delicate skin, such as the infant and elderly.
Collapse
Affiliation(s)
- Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ling Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xin Xin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Senpei Xie
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Ryan Allen Lee
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kang Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Weiwei Zhao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Kolodziej L, Iwasińska-Kowalska O, Wróblewski G, Giżewski T, Jakubowska M, Lekawa-Raus A. Hydrogels and Carbon Nanotubes: Composite Electrode Materials for Long-Term Electrocardiography Monitoring. J Funct Biomater 2024; 15:113. [PMID: 38786625 PMCID: PMC11122422 DOI: 10.3390/jfb15050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This paper presents methods for developing high-performance interface electrode materials designed to enhance signal collection efficacy during long-term (over 24 h) electrocardiography (ECG) monitoring. The electrode materials are fabricated by integrating commercial ECG liquid hydrogels with carbon nanotubes (CNTs), which are widely utilized in dry-electrode technologies and extensively discussed in the current scientific literature. The composite materials are either prepared by dispersing CNTs within the commercial liquid hydrogel matrix or by encasing the hydrogels in macroscopic CNT films. Both approaches ensure the optimal wetting of the epidermis via the hydrogels, while the CNTs reduce material impedance and stabilize the drying process. The resulting electrode materials maintain their softness, allowing for micro-conformal skin attachment, and are biocompatible. Empirical testing confirms that the ECG electrodes employing these hybrid hydrogels adhere to relevant standards for durations exceeding 24 h. These innovative hybrid solutions merge the benefits of both wet and dry ECG electrode technologies, potentially facilitating the extended monitoring of ECG signals and thus advancing the diagnosis and treatment of various cardiac conditions.
Collapse
Affiliation(s)
- Leszek Kolodziej
- Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland (G.W.)
| | | | - Grzegorz Wróblewski
- Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland (G.W.)
| | - Tomasz Giżewski
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland
| | - Małgorzata Jakubowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland;
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Agnieszka Lekawa-Raus
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
10
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
11
|
Fruytier LA, Janssen DM, Campero Jurado I, van de Sande DA, Lorato I, Stuart S, Panditha P, de Kok M, Kemps HM. The Utility of a Novel Electrocardiogram Patch Using Dry Electrodes Technology for Arrhythmia Detection During Exercise and Prolonged Monitoring: Proof-of-Concept Study. JMIR Form Res 2023; 7:e49346. [PMID: 38032699 PMCID: PMC10722364 DOI: 10.2196/49346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Accurate detection of myocardial ischemia and arrhythmias during free-living exercise could play a pivotal role in screening and monitoring for the prevention of exercise-related cardiovascular events in high-risk populations. Although remote electrocardiogram (ECG) solutions are emerging rapidly, existing technology is neither designed nor validated for continuous use during vigorous exercise. OBJECTIVE In this proof-of-concept study, we evaluated the usability, signal quality, and accuracy for arrhythmia detection of a single-lead ECG patch platform featuring self-adhesive dry electrode technology in individuals with chronic coronary syndrome. This sensor was evaluated during exercise and for prolonged, continuous monitoring. METHODS We recruited a total of 6 consecutive patients with chronic coronary syndrome scheduled for an exercise stress test (EST) as part of routine cardiac follow-up. Traditional 12-lead ECG recording was combined with monitoring with the ECG patch. Following the EST, the participants continuously wore the sensor for 5 days. Intraclass correlation coefficients (ICC) and Wilcoxon signed rank tests were used to assess the utility of detecting arrhythmias with the patch by comparing the evaluations of 2 blinded assessors. Signal quality during EST and prolonged monitoring was evaluated by using a signal quality indicator. Additionally, connection time was calculated for prolonged ECG monitoring. The comfort and usability of the patch were evaluated by a web-based self-assessment questionnaire. RESULTS A total of 6 male patients with chronic coronary syndrome (mean age 69.8, SD 6.2 years) completed the study protocol. The patch was worn for a mean of 118.3 (SD 5.6) hours. The level of agreement between the patch and 12-lead ECG was excellent for the detection of premature atrial contractions and premature ventricular contractions during the whole test (ICC=0.998, ICC=1.000). No significant differences in the total number of premature atrial contractions and premature ventricular contractions were detected neither during the entire exercise test (P=.79 and P=.18, respectively) nor during the exercise and recovery stages separately (P=.41, P=.66, P=.18, and P=.66). A total of 1 episode of atrial fibrillation was detected by both methods. Total connection time during recording was between 88% and 100% for all participants. There were no reports of skin irritation, erythema, or pain while wearing the patch. CONCLUSIONS This proof-of-concept study showed that this innovative ECG patch based on self-adhesive dry electrode technology can potentially be used for arrhythmia detection during vigorous exercise. The results suggest that the wearable patch is also usable for prolonged continuous ECG monitoring in free-living conditions and can therefore be of potential use in cardiac rehabilitation and tele-monitoring for the prevention of exercise-related cardiovascular events. Future efforts will focus on optimizing signal quality over time and conducting a larger-scale validation study focusing on both arrhythmia and ischemia detection.
Collapse
Affiliation(s)
- Lonneke A Fruytier
- Department of Cardiology, Máxima MC Eindhoven/Veldhoven, Veldhoven, Netherlands
| | - Daan M Janssen
- Department of Cardiology, Máxima MC Eindhoven/Veldhoven, Veldhoven, Netherlands
| | - Israel Campero Jurado
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Danny Ajp van de Sande
- Department of Cardiology, Máxima MC Eindhoven/Veldhoven, Veldhoven, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilde Lorato
- Stichting imec Nederland, Eindhoven, Netherlands
| | | | | | | | - Hareld Mc Kemps
- Department of Cardiology, Máxima MC Eindhoven/Veldhoven, Veldhoven, Netherlands
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
12
|
Jin JE, Kim S, Yu H, Lee KN, Do YR, Lee SM. Soft, adhesive and conductive composite for electroencephalogram signal quality improvement. Biomed Eng Lett 2023; 13:495-504. [PMID: 37519875 PMCID: PMC10382389 DOI: 10.1007/s13534-023-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 08/01/2023] Open
Abstract
Since electroencephalogram (EEG) is a very small electrical signal from the brain, it is very vulnerable to external noise or motion artifact, making it difficult to measure. Therefore, despite the excellent convenience of dry electrodes, wet electrodes have been used. To solve this problem, self-adhesive and conductive composites using carbon nanotubes (CNTs) in adhesive polydimethylsiloxane (aPDMS), which can have the advantages of both dry and wet electrodes, have been developed by mixing them uniformly with methyl group-terminated PDMS. The CNT/aPDMS composite has a low Young's modulus, penetrates the skin well, has a high contact area, and excellent adhesion and conductivity, so the signal quality is enhanced. As a result of the EEG measurement test, although it was a dry electrode, results comparable to those of a wet electrode were obtained in terms of impedance and motion noise. It also shows excellent biocompatibility in a human fibroblast cell test and a week-long skin reaction test, so it can measure EEG with high signal quality for a long period of time.
Collapse
Affiliation(s)
- Jeong E Jin
- School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea
| | - Seohyeon Kim
- School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea
| | - Hyeji Yu
- School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea
| | - Keyong Nam Lee
- Department of Chemistry, Kookmin University, Seoul, 02707 South Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University, Seoul, 02707 South Korea
| | - Seung Min Lee
- School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea
| |
Collapse
|
13
|
Campero Jurado I, Lorato I, Morales J, Fruytier L, Stuart S, Panditha P, Janssen DM, Rossetti N, Uzunbajakava N, Serban IB, Rikken L, de Kok M, Vanschoren J, Brombacher A. Signal Quality Analysis for Long-Term ECG Monitoring Using a Health Patch in Cardiac Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:2130. [PMID: 36850728 PMCID: PMC9965306 DOI: 10.3390/s23042130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD is essential for successful treatment. When implemented in the healthcare system this can ease the existing socio-economic burden on health institutions and government. Therefore, developing technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic. ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel technology, while we witness a significant proliferation of ECG monitoring patches on the market and in the research labs, their performance over a long period of time is not fully characterized. This paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we provide insights into signal quality degradation over time, while changes in the average ECG quality per day were present, these changes were not statistically significant. It was observed that the quality was higher during the nights, confirming the link with motion artifacts. These results can improve CVD diagnosis and AF detection in real-world scenarios.
Collapse
Affiliation(s)
- Israel Campero Jurado
- Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Ilde Lorato
- Stichting IMEC Nederland, 5656 AE Eindhoven, The Netherlands
| | - John Morales
- Stichting IMEC Nederland, 5656 AE Eindhoven, The Netherlands
| | - Lonneke Fruytier
- Department of Cardiology, Máxima Medical Center, De Run 4600, 5504 DB Veldhoven, The Netherlands
| | - Shavini Stuart
- Holst Centre, TNO, Biomedical R&D, 5656 AE Eindhoven, The Netherlands
| | - Pradeep Panditha
- Holst Centre, TNO, Biomedical R&D, 5656 AE Eindhoven, The Netherlands
| | - Daan M. Janssen
- Department of Cardiology, Máxima Medical Center, De Run 4600, 5504 DB Veldhoven, The Netherlands
| | - Nicolò Rossetti
- Stichting IMEC Nederland, 5656 AE Eindhoven, The Netherlands
| | | | - Irina Bianca Serban
- Department of Industrial Design, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Lars Rikken
- Holst Centre, TNO, Biomedical R&D, 5656 AE Eindhoven, The Netherlands
| | - Margreet de Kok
- Holst Centre, TNO, Biomedical R&D, 5656 AE Eindhoven, The Netherlands
| | - Joaquin Vanschoren
- Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Aarnout Brombacher
- Department of Industrial Design, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
14
|
Nunes T, da Silva HP. Characterization and Validation of Flexible Dry Electrodes for Wearable Integration. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031468. [PMID: 36772507 PMCID: PMC9921656 DOI: 10.3390/s23031468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/27/2023]
Abstract
When long-term biosignal monitoring is required via surface electrodes, the use of conventional silver/silver chloride (Ag/AgCl) gelled electrodes may not be the best solution, as the gel in the electrodes tends to dry out over time. In this work, the electrical behaviour and performance of dry electrodes for biopotential monitoring was assessed. Three materials were investigated and compared against the gold-standard Ag/AgCl gelled electrodes. To characterize their electrical behaviour, the impedance response over the frequency was evaluated, as well as its signal to noise ratio. The electrodes' performance was evaluated by integrating them in a proven electrocardiogram (ECG) acquisition setup where an ECG signal was acquired simultaneously with a set of dry electrodes and a set of standard Ag/AgCl gelled electrodes as reference. The obtained results were morphologically compared using the Normalised Root Mean Squared Error (nRMSE) and the Cosine Similarity (CS). The findings of this work suggest that the use of dry electrodes for biopotential monitoring is a suitable replacement for the conventional Ag/AgCl gelled electrodes. The signal obtained with dry electrodes is comparable to the one obtained with the gold standard, with the advantage that these do not require the use of gel and can be easily integrated into fabric to facilitate their use in long-term monitoring scenarios.
Collapse
Affiliation(s)
- Tiago Nunes
- PLUX Wireless Biosignals, 1050-059 Lisbon, Portugal
- NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Hugo Plácido da Silva
- PLUX Wireless Biosignals, 1050-059 Lisbon, Portugal
- Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
| |
Collapse
|
15
|
Huang Y, Chen Y, Deng F, Wang X. Design of CB-PDMS Flexible Sensing for Monitoring of Bridge Cracks. SENSORS (BASEL, SWITZERLAND) 2022; 22:9817. [PMID: 36560182 PMCID: PMC9783857 DOI: 10.3390/s22249817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a flexible sensor for detecting cracks on bridges. Strain and deflection sensing modules are integrated on the film that is made of composite conductive materials. By optimizing the preparation ratio and internal structure, the strain detection accuracy and sensitivity of the sensor have been improved. The bridge crack detection accuracy reached 91%, which is higher than current sensors. Experimental results show that the composite material containing 2.23 wt% carbon black (CB) mixed hybrid filler has good linearity, higher accuracy than sensors in use, excellent stretchability (>155%), high gauge factor (GF ~ 43.3), and excellent durability over 2000 stretching-releasing cycles under 10 N. The designed flexible sensor demonstrates the practicality and effectiveness of bridge crack detection and provides a feasible solution for accurate bridge health monitoring in the future.
Collapse
Affiliation(s)
- Yifeng Huang
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
| | - Yugen Chen
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Fangming Deng
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoming Wang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
16
|
Goyal K, Borkholder DA, Day SW. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration. SENSORS (BASEL, SWITZERLAND) 2022; 22:8510. [PMID: 36366209 PMCID: PMC9656728 DOI: 10.3390/s22218510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin hydration. Herein, we investigate these dependencies using a circuit skin-electrode interface model, varying material and hydration in controlled benchtop experiments on a biomimetic skin phantom simulating dry and hydrated skin. Results of the model demonstrate the contribution of the individual components in the circuit to total impedance and assist in understanding the role of electrode material in the mechanistic principle of dry electrodes. Validation was performed by conducting in vivo skin-electrode contact impedance measurements across ten normative human subjects. Further, the impact of the electrode on biopotential signal quality was evaluated by demonstrating an ability to capture clinically relevant electrocardiogram signals by using dry electrodes integrated into a toilet seat cardiovascular monitoring system. Titanium electrodes resulted in better signal quality than stainless steel electrodes. Results suggest that relative permittivity of native oxide of electrode material come into contact with the skin contributes to the interface impedance, and can lead to enhancement in the capacitive coupling of biopotential signals, especially in dry skin individuals.
Collapse
Affiliation(s)
- Krittika Goyal
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - David A. Borkholder
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Steven W. Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
17
|
Pîslaru-Dănescu L, Zărnescu GC, Telipan G, Stoica V. Design and Manufacturing of Equipment for Investigation of Low Frequency Bioimpedance. MICROMACHINES 2022; 13:1858. [PMID: 36363879 PMCID: PMC9698562 DOI: 10.3390/mi13111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection electrodes, and the biological signal is taken from the electrodes of electric potential charged with the biopotentials generated by the human body. The resulting voltage, ΔU is processed by the electronic conditioning system. The mathematical model of the four-electrode system in contact with the skin, and considering a target organ, was simplified to a single equivalent impedance. The capacitive filter low passes down from the differential input of the first instrumentation amplifier together with the isolated capacitive barrier integrated in the precision isolated secondary amplifier and maintains the biological signal taken from the electrodes charged with the undistorted biopotentials generated by the human body. Mass loops are avoided, and any electric shocks or electrostatic discharges are prevented. In addition, for small amplitudes of the biological signal, electromagnetic interferences of below 100 Hz of the power supply network were eliminated by using an active fourth-order Bessel filtering module. The measurements performed for the low frequency of f = 100 Hz on the volunteers showed for the investigated organs that the bioelectrical resistivities vary from 90 Ωcm up to 450 Ωcm, and that these are in agreement with other published and disseminated results for each body zone.
Collapse
|
18
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
19
|
Zhang M, Guo N, Gao Q, Li H, Wang Z. Design, Characterization, and Performance of Woven Fabric Electrodes for Electrocardiogram Signal Monitoring. SENSORS 2022; 22:s22155472. [PMID: 35897976 PMCID: PMC9331634 DOI: 10.3390/s22155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Conductive gel needs to be applied between the skin and standard medical electrodes when monitoring electrocardiogram (ECG) signals, but this can cause skin irritation, particularly during long-term monitoring. Fabric electrodes are flexible, breathable, and capable of sensing ECG signals without conductive gel. The objective of this study was to design and fabricate a circular fabric electrode using weaving technology. To optimize the woven fabric electrode, electrodes of different diameter, fabric weave, and weft density were devised, and the AC impedance, open-circuit voltage, and static ECG signal were measured and comprehensively evaluated. Diameter of 4 cm, 12/5 sateen, and weft density of 46 picks/cm were concluded as the appropriate parameters of the fabric electrode. ECG signals in swinging, squatting, and rotating states were compared between the woven fabric electrode and the standard medical electrode. The results showed that the characteristic waveform of the woven fabric electrode with 86.7% improved data was more obvious than that of the standard medical electrode. This work provides reference data that will be helpful for commercializing the integration of fabric electrodes into smart textiles.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Ningting Guo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Qian Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Hongqiang Li
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China;
| | - Zhangang Wang
- School of Software, Tiangong University, Tianjin 300387, China
- Correspondence:
| |
Collapse
|
20
|
Wearable Sensors for Healthcare: Fabrication to Application. SENSORS 2022; 22:s22145137. [PMID: 35890817 PMCID: PMC9323732 DOI: 10.3390/s22145137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.
Collapse
|
21
|
Lee DH, Lee EK, Kim CH, Yun HJ, Kim YJ, Yoo H. Blended Polymer Dry Electrodes for Reliable Electrocardiogram and Electromyogram Measurements and Their Eco-Friendly Disposal Led by Degradability in Hot Water. Polymers (Basel) 2022; 14:polym14132586. [PMID: 35808632 PMCID: PMC9269162 DOI: 10.3390/polym14132586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University (PKNU), Busan 48513, Korea;
| | - Chae Hyun Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Hyung Joong Yun
- Advance Nano Research Group, Korea Basic Science Institute (KBSI), Daejeon 34126, Korea;
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| |
Collapse
|
22
|
Goyal K, Borkholder DA, Day SW. A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime. SENSORS AND ACTUATORS. A, PHYSICAL 2022; 340:113513. [PMID: 35493959 PMCID: PMC9053740 DOI: 10.1016/j.sna.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in the integration of wearable devices in our daily life have led to the development of new electrode designs for biopotential monitoring. Historically, the development and testing of wearable electrodes for the acquisition of biopotential signals has been empirical, relying on experiments on human volunteers. However, the lack of explicit control on human variables, the intra-, and inter-subject variability complicates the understanding of the performance of these wearable electrodes. Herein, phantom mimicking the electrical properties of the skin in the low-frequency range (1 Hz-1000 Hz), which has the potential to be used as a platform for controlled benchtop experiments for testing electrode functionality, is demonstrated. The fabricated phantom comprises two layers representing the deeper tissues and stratum corneum. The lower layer of the phantom mimicking deeper tissues was realized using polyvinyl alcohol cryogel (PVA-c) prepared with 0.9% W/W saline solution by a freeze-thaw technique. The properties of the upper layer representing the stratum corneum were simulated using a 100μm thick layer fabricated by spin-coating a mixture of polydimethylsiloxane (PDMS), 2.5% W/W carbon black (CB) for conductance, and 40% W/W barium titanate (BaTiO3) as a dielectric. The hydration of the stratum corneum was modeled in a controlled way by varying porosity of the phantom's upper layer. Impedance spectroscopy measurements were carried out to investigate the electrical performance of the fabricated phantom and validated against the impedance response obtained across a physiological skin impedance range of five human subjects. The results indicated that the Bode plot depicting the impedance response obtained on the phantom was found to lie in the human skin range. Moreover, it was observed that the change of porosity provides control over the hydration and the phantom can be tuned as per the skin ranges among different individuals. Also, the phantom was able to mimic the impact of dry and hydrated skin on a simulated ECG signal in the time domain. The developed skin phantom is affordable, fairly easy to manufacture, stable over time, and can be used as a platform for benchtop testing of new electrode designs.
Collapse
Affiliation(s)
- Krittika Goyal
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A. Borkholder
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Steven W. Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
23
|
Galli A, Montree RJH, Que S, Peri E, Vullings R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4035. [PMID: 35684656 PMCID: PMC9185322 DOI: 10.3390/s22114035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Information Engineering, University of Padova, I-35131 Padova, Italy;
| | - Roel J. H. Montree
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Shuhao Que
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Elisabetta Peri
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| |
Collapse
|
24
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
25
|
Islam MR, Afroj S, Beach C, Islam MH, Parraman C, Abdelkader A, Casson AJ, Novoselov KS, Karim N. Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience 2022; 25:103945. [PMID: 35281734 PMCID: PMC8914337 DOI: 10.1016/j.isci.2022.103945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Wearable e-textiles have gained huge tractions due to their potential for non-invasive health monitoring. However, manufacturing of multifunctional wearable e-textiles remains challenging, due to poor performance, comfortability, scalability, and cost. Here, we report a fully printed, highly conductive, flexible, and machine-washable e-textiles platform that stores energy and monitor physiological conditions including bio-signals. The approach includes highly scalable printing of graphene-based inks on a rough and flexible textile substrate, followed by a fine encapsulation to produce highly conductive machine-washable e-textiles platform. The produced e-textiles are extremely flexible, conformal, and can detect activities of various body parts. The printed in-plane supercapacitor provides an aerial capacitance of ∼3.2 mFcm-2 (stability ∼10,000 cycles). We demonstrate such e-textiles to record brain activity (an electroencephalogram, EEG) and find comparable to conventional rigid electrodes. This could potentially lead to a multifunctional garment of graphene-based e-textiles that can act as flexible and wearable sensors powered by the energy stored in graphene-based textile supercapacitors.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Shaila Afroj
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Christopher Beach
- Department of EEE, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mohammad Hamidul Islam
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Carinna Parraman
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Amr Abdelkader
- Department of Design and Engineering, Bournemouth University, Dorset, BH12 5BB UK
| | - Alexander J. Casson
- Department of EEE, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kostya S. Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714 China
| | - Nazmul Karim
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
26
|
Ferri J, Llinares R, Segarra I, Cebrián A, Garcia-Breijo E, Millet J. A new method for manufacturing dry electrodes on textiles. Validation for wearable ECG monitoring. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Guess M, Zavanelli N, Yeo WH. Recent Advances in Materials and Flexible Sensors for Arrhythmia Detection. MATERIALS 2022; 15:ma15030724. [PMID: 35160670 PMCID: PMC8836661 DOI: 10.3390/ma15030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Arrhythmias are one of the leading causes of death in the United States, and their early detection is essential for patient wellness. However, traditional arrhythmia diagnosis by expert evaluation from intermittent clinical examinations is time-consuming and often lacks quantitative data. Modern wearable sensors and machine learning algorithms have attempted to alleviate this problem by providing continuous monitoring and real-time arrhythmia detection. However, current devices are still largely limited by the fundamental mismatch between skin and sensor, giving way to motion artifacts. Additionally, the desirable qualities of flexibility, robustness, breathability, adhesiveness, stretchability, and durability cannot all be met at once. Flexible sensors have improved upon the current clinical arrhythmia detection methods by following the topography of skin and reducing the natural interface mismatch between cardiac monitoring sensors and human skin. Flexible bioelectric, optoelectronic, ultrasonic, and mechanoelectrical sensors have been demonstrated to provide essential information about heart-rate variability, which is crucial in detecting and classifying arrhythmias. In this review, we analyze the current trends in flexible wearable sensors for cardiac monitoring and the efficacy of these devices for arrhythmia detection.
Collapse
Affiliation(s)
- Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.G.); (N.Z.)
- Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.G.); (N.Z.)
- Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.G.); (N.Z.)
- Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710
| |
Collapse
|
28
|
Vasconcelos B, Fiedler P, Machts R, Haueisen J, Fonseca C. The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort. Front Neurosci 2021; 15:748100. [PMID: 34733134 PMCID: PMC8558300 DOI: 10.3389/fnins.2021.748100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Electroencephalography (EEG) is increasingly used for repetitive and prolonged applications like neurofeedback, brain computer interfacing, and long-term intermittent monitoring. Dry-contact electrodes enable rapid self-application. A common drawback of existing dry electrodes is the limited wearing comfort during prolonged application. We propose a novel dry Arch electrode. Five semi-circular arches are arranged parallelly on a common baseplate. The electrode substrate material is a flexible thermoplastic polyurethane (TPU) produced by additive manufacturing. A chemical coating of Silver/Silver-Chloride (Ag/AgCl) is applied by electroless plating using a novel surface functionalization method. Arch electrodes were manufactured and validated in terms of mechanical durability, electrochemical stability, in vivo applicability, and signal characteristics. We compare the results of the dry arch electrodes with dry pin-shaped and conventional gel-based electrodes. 21-channel EEG recordings were acquired on 10 male and 5 female volunteers. The tests included resting state EEG, alpha activity, and a visual evoked potential. Wearing comfort was rated by the subjects directly after application, as well as at 30 min and 60 min of wearing. Our results show that the novel plating technique provides a well-adhering electrically conductive and electrochemically stable coating, withstanding repetitive strain and bending tests. The signal quality of the Arch electrodes is comparable to pin-shaped dry electrodes. The average channel reliability of the Arch electrode setup was 91.9 ± 9.5%. No considerable differences in signal characteristics have been observed for the gel-based, dry pin-shaped, and arch-shaped electrodes after the identification and exclusion of bad channels. The comfort was improved in comparison to pin-shaped electrodes and enabled applications of over 60 min duration. Arch electrodes required individual adaptation of the electrodes to the orientation and hairstyle of the volunteers. This initial preparation time of the 21-channel cap increased from an average of 5 min for pin-like electrodes to 15 min for Arch electrodes and 22 min for gel-based electrodes. However, when re-applying the arch electrode cap on the same volunteer, preparation times of pin-shaped and arch-shaped electrodes were comparable. In summary, our results indicate the applicability of the novel Arch electrode and coating for EEG acquisition. The novel electrode enables increased comfort for prolonged dry-contact measurement.
Collapse
Affiliation(s)
- Beatriz Vasconcelos
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,CEMUC - Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - René Machts
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany.,Department of Neurology, Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carlos Fonseca
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,LAETA/INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| |
Collapse
|
29
|
Abdou A, Krishnan S. ECG Dry-electrode 3D Printing and Signal Quality Considerations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6855-6858. [PMID: 34892681 DOI: 10.1109/embc46164.2021.9630599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A single-lead electrocardiographic (ECG) sensor with 3D printed dry electrodes is developed and tested for short-term wireless ECG monitoring. In a first of its kind approach, a 3D printer and available cost-effective conductive plastics are used to manufacture dry electrodes that can detect an ECG when placed on the chest. The electrodes could be produced in less than 10 minutes and with minimal material resources. To demonstrate the utility of the newly developed sensor, 30-second, 1 and 5-minute recordings are captured and statistically analyzed using established Signal Quality Indices (SQIs) for consumer and medical-grade ECG applications. Heart rate (HR) algorithmic considerations for dry electrode ECG is also explored. The performance of the proposed dry electrode ECG is reliable for HR estimations similar to wet-electrode ECG measurements. The obtained ECG signals demonstrated acceptable quality with Signal to Noise Ratios (SNRs) ranging around 13 dB and Kurtosis Signal Quality Index (kSQI) from approximately 18 to 21. Also, visually, the QRS complexes and T-wave features of an ECG were easily identifiable. These dry electrodes are feasible low-cost rapid manufacturing solutions for single-lead ECG monitoring that takes into consideration the added benefit of better patient comfortability, good quality ECG content and minimum cost for electrode development.
Collapse
|
30
|
Halvaei H, Sörnmo L, Stridh M. Signal Quality Assessment of a Novel ECG Electrode for Motion Artifact Reduction. SENSORS (BASEL, SWITZERLAND) 2021; 21:5548. [PMID: 34450990 PMCID: PMC8402297 DOI: 10.3390/s21165548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The presence of noise is problematic in the analysis and interpretation of the ECG, especially in ambulatory monitoring. Restricting the analysis to high-quality signal segments only comes with the risk of excluding significant arrhythmia episodes. Therefore, the development of novel electrode technology, robust to noise, continues to be warranted. METHODS The signal quality of a novel wet ECG electrode (Piotrode) is assessed and compared to a commercially available, commonly used electrode (Ambu). The assessment involves indices of QRS detection and atrial fibrillation detection performance, as well as signal quality indices (ensemble standard deviation and time-frequency repeatability), computed from ECGs recorded simultaneously from 20 healthy subjects performing everyday activities. RESULTS The QRS detection performance using the Piotrode was considerably better than when using the Ambu, especially for running but also for lighter activities. The two signal quality indices demonstrated similar trends: the gap in quality became increasingly larger as the subjects became increasingly more active. CONCLUSIONS The novel wet ECG electrode produces signals with less motion artifacts, thereby offering the potential to reduce the review burden, and accordingly the cost, associated with ambulatory monitoring.
Collapse
Affiliation(s)
- Hesam Halvaei
- Department of Biomedical Engineering, Lund University, SE-22100 Lund, Sweden;
| | - Leif Sörnmo
- Department of Biomedical Engineering, Lund University, SE-22100 Lund, Sweden;
| | | |
Collapse
|
31
|
Yeon SH, Shu T, Song H, Hsieh TH, Qiao J, Rogers EA, Gutierrez-Arango S, Israel E, Freed LE, Herr HM. Acquisition of Surface EMG Using Flexible and Low-Profile Electrodes for Lower Extremity Neuroprosthetic Control. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2021; 3:563-572. [PMID: 34738079 PMCID: PMC8562690 DOI: 10.1109/tmrb.2021.3098952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For persons with lower extremity (LE) amputation, acquisition of surface electromyography (sEMG) from within the prosthetic socket remains a significant challenge due to the dynamic loads experienced during the gait cycle. However, these signals are critical for both understanding the clinical effects of LE amputation and determining the desired control trajectories of active LE prostheses. Current solutions for collecting within-socket sEMG are generally (i) incompatible with a subject's prescribed prosthetic socket and liners, (ii) uncomfortable, and (iii) expensive. This study presents an alternative within-socket sEMG acquisition paradigm using a novel flexible and low-profile electrode. First, the practical performance of this Sub-Liner Interface for Prosthetics (SLIP) electrode is compared to that of commercial Ag/AgCl electrodes within a cohort of subjects without amputation. Then, the corresponding SLIP electrode sEMG acquisition paradigm is implemented in a single subject with unilateral transtibial amputation performing unconstrained movements and walking on level ground. Finally, a quantitative questionnaire characterizes subjective comfort for SLIP electrode and commercial Ag/AgCl electrode instrumentation setups. Quantitative analyses suggest comparable signal qualities between SLIP and Ag/AgCl electrodes while qualitative analyses suggest the feasibility of using the SLIP electrode for real-time sEMG data collection from load-bearing, ambulatory subjects with LE amputation.
Collapse
Affiliation(s)
- Seong Ho Yeon
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tony Shu
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hyungeun Song
- MIT Health Sciences and Technology Program, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tsung-Han Hsieh
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Junqing Qiao
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Emily A Rogers
- MIT Department of Mechanical Engineering, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Samantha Gutierrez-Arango
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Erica Israel
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Lisa E Freed
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hugh M Herr
- MIT Program in Media Arts and Sciences, and the MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
32
|
Thiyagarajan K, Rajini GK, Maji D. Flexible, Highly Sensitive Paper-Based Screen Printed MWCNT/PDMS Composite Breath Sensor for Human Respiration Monitoring. IEEE SENSORS JOURNAL 2021; 21:13985-13995. [PMID: 35789076 PMCID: PMC8768993 DOI: 10.1109/jsen.2020.3040995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/14/2023]
Abstract
Accurate measurement and monitoring of respiration is vital in patients affected by severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2). Patients with severe chronic diseases and pneumonia need continuous respiration monitoring and oxygenation support. Existing respiratory sensing techniques require direct contact with the human body along with expensive and heavy Holter monitors for continuous real-time monitoring. In this work, we propose a low-cost, non-invasive and reliable paper-based wearable screen printed sensor for human respiration monitoring as an effective alternative of existing sensing systems. The proposed sensor was fabricated using traditional screen printing of multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite based interdigitated electrodes on paper substrate. The paper substrate was used as humidity sensing material of the sensor. The hygroscopic nature of paper during inhalation and exhalation causes a change in dielectric constant, which in turn changes the capacitance of the sensor. The composite interdigitated electrode configuration exhibited better response times with a rise time of 1.178s being recorded during exhalation and fall time of 0.88s during inhalation periods. The respiration rate of sensor was successfully examined under various breathing conditions such as normal breathing, deep breathing, workout, oral breathing, nasal breathing, fast breathing and slow breathing by employing it in a wearable mask, a mandatory wearable product during the current COVID-19 pandemic situation.Thus, the above proposed sensor may hold tremendous potential in wearable/flexible healthcare technology with good sensitivity, stability, biodegradability and flexibility at this time of need.
Collapse
Affiliation(s)
- K. Thiyagarajan
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - G. K. Rajini
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - Debashis Maji
- Department of Sensor and Biomedical TechnologySchool of Electronics EngineeringVellore Institute of TechnologyVellore632 014India
| |
Collapse
|
33
|
Lin ZT, Gu J, Wang H, Wu A, Sun J, Chen S, Li Y, Kong Y, Wu MX, Wu T. Thermosensitive and Conductive Hybrid Polymer for Real-Time Monitoring of Spheroid Growth and Drug Responses. ACS Sens 2021; 6:2147-2157. [PMID: 34014658 DOI: 10.1021/acssensors.0c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) cell culture based on polymer scaffold provides a promising tool to mimic a physiological microenvironment for drug testing; however, the next-generation cell activity monitoring technology for 3D cell culture is still challenging. Conventionally, drug efficacy evaluation and cell growth heavily rely on cell staining assays, using optical devices or flow cytometry. Here, we report a dual-function polymer scaffold (DFPS) composed of thermosensitive, silver flake- and gold nanoparticle-decorated polymers, enabling conductance change upon cell proliferation or death for in situ cell activity monitoring and drug screening. The cell activity can be quantitatively monitored via measuring the conductance change induced by polymeric network swelling or shrinkage. This novel dual-function system (1) provides a 3D microenvironment to enable the formation and growth of tumor spheroid in vitro and streamlines the harvesting of tumor spheroids through the thermosensitive scaffold and (2) offers a simple and direct quantitative method to monitor 3D cell culture in situ for drug responses. As a proof of concept, we demonstrated that a breast cancer stem cell line MDA-MB-436 was able to form cell spheroids in the scaffold, and the conductance change of the sensor exhibited a linear relationship with cell concentration. To examine its potential in drug screening, cancer spheroids in the cell sensor were treated with paclitaxel (PTX) and docetaxel (DTX), and predicted quantitative evaluation of the cytotoxic effect of drugs was established. Our results indicated that this cell sensing system may hold promising potential in expanding into an array device for high-throughput drug screening.
Collapse
Affiliation(s)
- Zuan-Tao Lin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jianhua Gu
- Electron Microscopy Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Huie Wang
- Electron Microscopy Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Albon Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jingying Sun
- Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, United States
| | - Shuo Chen
- Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, United States
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Yifei Kong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mei X. Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
34
|
Nigusse AB, Mengistie DA, Malengier B, Tseghai GB, Langenhove LV. Wearable Smart Textiles for Long-Term Electrocardiography Monitoring-A Review. SENSORS 2021; 21:s21124174. [PMID: 34204577 PMCID: PMC8234162 DOI: 10.3390/s21124174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022]
Abstract
The continuous and long-term measurement and monitoring of physiological signals such as electrocardiography (ECG) are very important for the early detection and treatment of heart disorders at an early stage prior to a serious condition occurring. The increasing demand for the continuous monitoring of the ECG signal needs the rapid development of wearable electronic technology. During wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This review assesses the application of textile electrodes for ECG monitoring from the fundamentals to the latest developments and prospects for their future fate. The fabrication techniques of textile electrodes and their performance in terms of skin–electrode contact impedance, motion artifacts and signal quality are also reviewed and discussed. Textile electrodes can be fabricated by integrating thin metal fiber during the manufacturing stage of textile products or by coating textiles with conductive materials like metal inks, carbon materials, or conductive polymers. The review also discusses how textile electrodes for ECG function via direct skin contact or via a non-contact capacitive coupling. Finally, the current intensive and promising research towards finding textile-based ECG electrodes with better comfort and signal quality in the fields of textile, material, medical and electrical engineering are presented as a perspective.
Collapse
Affiliation(s)
- Abreha Bayrau Nigusse
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Correspondence: ; Tel.: +32-465-66-8911
| | - Desalegn Alemu Mengistie
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Materials Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| | - Granch Berhe Tseghai
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| |
Collapse
|
35
|
Zavanelli N, Kim J, Yeo WH. Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2973. [PMID: 34072779 PMCID: PMC8197924 DOI: 10.3390/ma14112973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.
Collapse
Affiliation(s)
- Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Jihoon Kim
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
36
|
Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021; 178:113007. [PMID: 33556807 PMCID: PMC8112193 DOI: 10.1016/j.bios.2021.113007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in biosensors have quantitively expanded current capabilities in exploratory research tools, diagnostics and therapeutics. This rapid pace in sensor development has been accentuated by vast improvements in data analysis methods in the form of machine learning and artificial intelligence that, together, promise fantastic opportunities in chronic sensing of biosignals to enable preventative screening, automated diagnosis, and tools for personalized treatment strategies. At the same time, the importance of widely accessible personal monitoring has become evident by recent events such as the COVID-19 pandemic. Progress in fully integrated and chronic sensing solutions is therefore increasingly important. Chronic operation, however, is not truly possible with tethered approaches or bulky, battery-powered systems that require frequent user interaction. A solution for this integration challenge is offered by wireless and battery-free platforms that enable continuous collection of biosignals. This review summarizes current approaches to realize such device architectures and discusses their building blocks. Specifically, power supplies, wireless communication methods and compatible sensing modalities in the context of most prevalent implementations in target organ systems. Additionally, we highlight examples of current embodiments that quantitively expand sensing capabilities because of their use of wireless and battery-free architectures.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Electrical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Neuroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
37
|
Chandra S, Li J, Afsharipour B, Cardona AF, Suresh NL, Tian L, Deng Y, Zhong Y, Xie Z, Shen H, Huang Y, Rogers JA, Rymer WZ. Performance Evaluation of a Wearable Tattoo Electrode Suitable for High-Resolution Surface Electromyogram Recording. IEEE Trans Biomed Eng 2021; 68:1389-1398. [PMID: 33079653 PMCID: PMC8015348 DOI: 10.1109/tbme.2020.3032354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE High-density surface electromyography (HD-sEMG) has been utilized extensively in neuromuscular research. Despite its potential advantages, limitations in electrode design have largely prevented widespread acceptance of the technology. Commercial electrodes have limited spatial fidelity, because of a lack of sharpness of the signal, and variable signal stability. We demonstrate here a novel tattoo electrode that addresses these issues. Our dry HD electrode grid exhibits remarkable deformability which ensures superior conformity with the skin surface, while faithfully recording signals during different levels of muscle contraction. METHOD We fabricated a 4 cm×3 cm tattoo HD electrode grid on a stretchable electronics membrane for sEMG applications. The grid was placed on the skin overlying the biceps brachii of healthy subjects, and was used to record signals for several hours while tracking different isometric contractions. RESULTS The sEMG signals were recorded successfully from all 64 electrodes across the grid. These electrodes were able to faithfully record sEMG signals during repeated contractions while maintaining a stable baseline at rest. During voluntary contractions, broad EMG frequency content was preserved, with accurate reproduction of the EMG spectrum across the full signal bandwidth. CONCLUSION The tattoo grid electrode can potentially be used for recording high-density sEMG from skin overlying major limb muscles. Layout programmability, good signal quality, excellent baseline stability, and easy wearability make this electrode a potentially valuable component of future HD electrode grid applications. SIGNIFICANCE The tattoo electrode can facilitate high fidelity recording in clinical applications such as tracking the evolution and time-course of challenging neuromuscular degenerative disorders.
Collapse
|
38
|
Altay BN, Turkani VS, Pekarovicova A, Fleming PD, Atashbar MZ, Bolduc M, Cloutier SG. One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics. Sci Rep 2021; 11:3393. [PMID: 33564062 PMCID: PMC7873258 DOI: 10.1038/s41598-021-82961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 11/08/2022] Open
Abstract
Photonic curing has shown great promise in maintaining the integrity of flexible thin polymer substrates without structural degradation due to shrinkage, charring or decomposition during the sintering of printed functional ink films in milliseconds at high temperatures. In this paper, single-step photonic curing of screen-printed nickel (Ni) electrodes is reported for sensor, interconnector and printed electronics applications. Solid bleached sulphate paperboard (SBS) and polyethylene terephthalate polymer (PET) substrates are employed to investigate the electrical performance, ink transfer and ink spreading that directly affect the fabrication of homogeneous ink films. Ni flake ink is selected, particularly since its effects on sintering and rheology have not yet been examined. The viscosity of Ni flake ink yields shear-thinning behavior that is distinct from that of screen printing. The porous SBS substrate is allowed approximately 20% less ink usage. With one-step photonic curing, the electrodes on SBS and PET exhibited electrical performances of a minimum of 4 Ω/sq and 16 Ω/sq, respectively, at a pulse length of 1.6 ms, which is comparable to conventional thermal heating at 130 °C for 5 min. The results emphasize the suitability of Ni flake ink to fabricate electronic devices on flexible substrates by photonic curing.
Collapse
Affiliation(s)
- Bilge Nazli Altay
- Institute of Science and Technology, Marmara University, Istanbul, 34722, Turkey.
- Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA.
- Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montréal, QC, H3C 1K3, Canada.
| | - Vikram S Turkani
- Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Alexandra Pekarovicova
- Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Paul D Fleming
- Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Massood Z Atashbar
- Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Martin Bolduc
- Mechanical Engineering, Université du Québec À Trois-Rivières, 555 University Blvd, Drummondville, QC, J2C 0R5, Canada
| | - Sylvain G Cloutier
- Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montréal, QC, H3C 1K3, Canada
| |
Collapse
|
39
|
Dore H, Aviles-Espinosa R, Luo Z, Anton O, Rabe H, Rendon-Morales E. Characterisation of Textile Embedded Electrodes for Use in a Neonatal Smart Mattress Electrocardiography System. SENSORS 2021; 21:s21030999. [PMID: 33540669 PMCID: PMC7867279 DOI: 10.3390/s21030999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
Heart rate monitoring is the predominant quantitative health indicator of a newborn in the delivery room. A rapid and accurate heart rate measurement is vital during the first minutes after birth. Clinical recommendations suggest that electrocardiogram (ECG) monitoring should be widely adopted in the neonatal intensive care unit to reduce infant mortality and improve long term health outcomes in births that require intervention. Novel non-contact electrocardiogram sensors can reduce the time from birth to heart rate reading as well as providing unobtrusive and continuous monitoring during intervention. In this work we report the design and development of a solution to provide high resolution, real time electrocardiogram data to the clinicians within the delivery room using non-contact electric potential sensors embedded in a neonatal intensive care unit mattress. A real-time high-resolution electrocardiogram acquisition solution based on a low power embedded system was developed and textile embedded electrodes were fabricated and characterised. Proof of concept tests were carried out on simulated and human cardiac signals, producing electrocardiograms suitable for the calculation of heart rate having an accuracy within ±1 beat per minute using a test ECG signal, ECG recordings from a human volunteer with a correlation coefficient of ~ 87% proved accurate beat to beat morphology reproduction of the waveform without morphological alterations and a time from application to heart rate display below 6 s. This provides evidence that flexible non-contact textile-based electrodes can be embedded in wearable devices for assisting births through heart rate monitoring and serves as a proof of concept for a complete neonate electrocardiogram monitoring system.
Collapse
Affiliation(s)
- Henry Dore
- Robotics and Mechatronics Systems Research Group, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK; (H.D.); (R.A.-E.)
| | - Rodrigo Aviles-Espinosa
- Robotics and Mechatronics Systems Research Group, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK; (H.D.); (R.A.-E.)
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK;
| | - Oana Anton
- Academic Department of Paediatrics, Royal Alexandra Children’s Hospital Brighton, Brighton BN2 5BE, UK; (O.A.); (H.R.)
| | - Heike Rabe
- Academic Department of Paediatrics, Royal Alexandra Children’s Hospital Brighton, Brighton BN2 5BE, UK; (O.A.); (H.R.)
| | - Elizabeth Rendon-Morales
- Robotics and Mechatronics Systems Research Group, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK; (H.D.); (R.A.-E.)
- Correspondence:
| |
Collapse
|
40
|
Kolanowska A, Herman AP, Jędrysiak RG, Boncel S. Carbon nanotube materials for electrocardiography. RSC Adv 2021; 11:3020-3042. [PMID: 35424207 PMCID: PMC8693996 DOI: 10.1039/d0ra08679g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Carbon nanotubes (CNTs) as 1D nanomaterials of excellent physicochemical characteristics bring hope to compete and eventually conquer traditional solutions in electrocardiography - one of the most powerful and non-invasive diagnostic tools in cardiac disorders. Our review tracks (from 2008) the development of CNTs as critical components in the systems where CNTs serve mainly as electroconductive fillers hence enable recording electrocardiographs (ECG). The characteristics of the CNT-based ECG systems - mainly to-skin electrodes and in a few cases wiring - covers their electrical and mechanical performance (adhesivity, flexibility, elasticity) and qualitative biocompatibility. By comprehensive analysis of the state-of-art in this field, we intend to indicate the most important challenges for the CNT (and other) materials to be applied in scale-up solution for electrocardiography in the near future.
Collapse
Affiliation(s)
- Anna Kolanowska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| | - Artur P Herman
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał G Jędrysiak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| |
Collapse
|
41
|
Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z, Li Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001938. [PMID: 33511003 PMCID: PMC7816724 DOI: 10.1002/advs.202001938] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/19/2020] [Indexed: 05/05/2023]
Abstract
On-skin electrodes function as an ideal platform for collecting high-quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on-skin electrodes. With continuous development and great promise for practical applications, on-skin electrodes are playing an increasingly important role in EP monitoring and human-machine interfaces (HMI). In this review, the latest progress in the development of on-skin electrodes and their integrated system is summarized. Desirable features of on-skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on-skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on-skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on-skin electrodes and their integrated systems.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Ganguang Yang
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Kanhao Zhu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Shaoyu Liu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Wei Guo
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhuo Jiang
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Zhuo Li
- Department of Materials ScienceFudan UniversityShanghai200433China
| |
Collapse
|
42
|
|
43
|
Silva AF, Tavakoli M. Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6835. [PMID: 33260466 PMCID: PMC7729497 DOI: 10.3390/s20236835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews recent advances and existing challenges for the application of wearable bioelectronics for patient monitoring and domiciliary hospitalization. More specifically, we focus on technical challenges and solutions for the implementation of wearable and conformal bioelectronics for long-term patient biomonitoring and discuss their application on the Internet of medical things (IoMT). We first discuss the general architecture of IoMT systems for domiciliary hospitalization and the three layers of the system, including the sensing, communication, and application layers. In regard to the sensing layer, we focus on current trends, recent advances, and challenges in the implementation of stretchable patches. This includes fabrication strategies and solutions for energy storage and energy harvesting, such as printed batteries and supercapacitors. As a case study, we discuss the application of IoMT for domiciliary hospitalization of COVID 19 patients. This can be used as a strategy to reduce the pressure on the healthcare system, as it allows continuous patient monitoring and reduced physical presence in the hospital, and at the same time enables the collection of large data for posterior analysis. Finally, based on the previous works in the field, we recommend a conceptual IoMT design for wearable monitoring of COVID 19 patients.
Collapse
Affiliation(s)
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal;
| |
Collapse
|
44
|
Development of Washable Silver Printed Textile Electrodes for Long-Term ECG Monitoring. SENSORS 2020; 20:s20216233. [PMID: 33142899 PMCID: PMC7663435 DOI: 10.3390/s20216233] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
Long-term electrocardiography (ECG) monitoring is very essential for the early detection and treatment of cardiovascular disorders. However, commercially used silver/silver chloride (Ag/AgCl) electrodes have drawbacks, and these become more obvious during long-term signal monitoring, making them inconvenient for this use. In this study, we developed silver printed textile electrodes from knitted cotton and polyester fabric for ECG monitoring. The surface resistance of printed electrodes was 1.64 Ω/sq for cotton and 1.78 Ω/sq for polyester electrodes. The ECG detection performance of the electrodes was studied by placing three electrodes around the wrist where the electrodes were embedded on an elastic strap with Velcro. The ECG signals collected using textile electrodes had a comparable waveform to those acquired using standard Ag/AgCl electrodes with a signal to noise ratio (SNR) of 33.10, 30.17, and 33.52 dB for signals collected from cotton, polyester, and Ag/AgCl electrodes, respectively. The signal quality increased as the tightness of the elastic strap increased. Signals acquired at 15 mmHg pressure level with the textile electrodes provided a similar quality to those acquired using standard electrodes. Interestingly, the textile electrodes gave acceptable signal quality even after ten washing cycles.
Collapse
|
45
|
Possanzini L, Decataldo F, Mariani F, Gualandi I, Tessarolo M, Scavetta E, Fraboni B. Textile sensors platform for the selective and simultaneous detection of chloride ion and pH in sweat. Sci Rep 2020; 10:17180. [PMID: 33057081 PMCID: PMC7560666 DOI: 10.1038/s41598-020-74337-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
The development of wearable sensors, in particular fully-textile ones, is one of the most interesting open challenges in bioelectronics. Several and significant steps forward have been taken in the last decade in order to achieve a compact, lightweight, cost-effective, and easy to wear platform for healthcare and sport activities real-time monitoring. We have developed a fully textile, multi-thread biosensing platform that can detect different bioanalytes simultaneously without interference, and, as an example, we propose it for testing chloride ions (Cl-) concentration and pH level. The textile sensors are simple threads, based on natural and synthetic fibers, coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and properly functionalized with either a nano-composite material or a chemical sensitive dye to obtain Cl- and pH selective sensing functionality, respectively. The single-thread sensors show excellent sensitivity, reproducibility, selectivity, long term stability and the ability to work with small volumes of solution. The performance of the developed textile devices is demonstrated both in buffer solution and in artificial human perspiration to perform on-demand and point-of-care epidermal fluids analysis. The possibility to easily knit or sew the thread sensors into fabrics opens up a new vision for a textile wearable multi-sensing platform achievable in the near future.
Collapse
Affiliation(s)
- Luca Possanzini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.
| | - Francesco Decataldo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| |
Collapse
|
46
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
47
|
Murastov G, Bogatova E, Brazovskiy K, Amin I, Lipovka A, Dogadina E, Cherepnyov A, Ananyeva A, Plotnikov E, Ryabov V, Rodriguez RD, Sheremet E. Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosens Bioelectron 2020; 166:112426. [PMID: 32750676 DOI: 10.1016/j.bios.2020.112426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
We present the first demonstration of bioelectrodes made from laser-reduced graphene oxide (rGO) on flexible polyethylene terephthalate (PET) substrates that overcome two main issues: using hydrogel on skin interface with standard Ag/AgCl bioelectrodes vs. low signal to noise ratio with capacitance or dry electrodes. Today we develop a dry rGO bioelectrode technology with long-term stability for 100 h in harsh environments and when in contact with skin. Reliability tests in different buffer solutions with pH from 4.8 to 9.2 tested over 24 h showed the robustness of rGO electrodes. In terms of signal to noise ratio, our bioelectrodes performance is comparable to that of commercial ones. The bioelectrodes demonstrate an excellent signal to noise ratio, with a signal match of over 98% with respect to state-of-the-art electrodes used as a benchmark. We attribute the unique stability of our bioelectrodes to the rGO/PET interface modification and composite formation during laser processing used for GO reduction. The rGO/PET composite formation assertion is confirmed by mechanical stripping experiments and visual examination of re-exposed PET. The method developed here is simple, cost-effective, maskless, and can be scaled-up, allowing sustainable manufacture of arbitrary-shaped flexible electrodes for biomedical sensors and wearables.
Collapse
Affiliation(s)
- G Murastov
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - E Bogatova
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - K Brazovskiy
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - I Amin
- Van't Hoff Institute of Molecular Science, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, Netherlands
| | - A Lipovka
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - E Dogadina
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - A Cherepnyov
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - A Ananyeva
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - E Plotnikov
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia
| | - V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, 111a Kievskaya Street 634012, Tomsk National Research Tomsk State University, 36 Lenina ave 634050, Siberian State Medical University, 2 Moscovskiy trakt, 634050, Tomsk, Russia
| | - R D Rodriguez
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia.
| | - E Sheremet
- Tomsk Polytechnic University, Lenina ave. 30, 634034, Tomsk, Russia.
| |
Collapse
|
48
|
Fu Y, Zhao J, Dong Y, Wang X. Dry Electrodes for Human Bioelectrical Signal Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3651. [PMID: 32610658 PMCID: PMC7374322 DOI: 10.3390/s20133651] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
Collapse
Affiliation(s)
- Yulin Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Jingjing Zhao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| | - Ying Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Xiaohao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| |
Collapse
|
49
|
Eickenscheidt M, Schäfer P, Baslan Y, Schwarz C, Stieglitz T. Highly Porous Platinum Electrodes for Dry Ear-EEG Measurements. SENSORS 2020; 20:s20113176. [PMID: 32503211 PMCID: PMC7309044 DOI: 10.3390/s20113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
The interest in dry electroencephalography (EEG) electrodes has increased in recent years, especially as everyday suitability earplugs for measuring drowsiness or focus of auditory attention. However, the challenge is still the need for a good electrode material, which is reliable and can be easily processed for highly personalized applications. Laser processing, as used here, is a fast and very precise method to produce personalized electrode configurations that meet the high requirements of in-ear EEG electrodes. The arrangement of the electrodes on the flexible and compressible mats allows an exact alignment to the ear mold and contributes to high wearing comfort, as no edges or metal protrusions are present. For better transmission properties, an adapted coating process for surface enlargement of platinum electrodes is used, which can be controlled precisely. The resulting porous platinum-copper alloy is chemically very stable, shows no exposed copper residues, and enlarges the effective surface area by 40. In a proof-of-principle experiment, these porous platinum electrodes could be used to measure the Berger effect in a dry state using just one ear of a test person. Their signal-to-noise ratio and the frequency transfer function is comparable to gel-based silver/silver chloride electrodes.
Collapse
Affiliation(s)
- Max Eickenscheidt
- Laboratory for Biomedical Microtechnology, IMTEK, University of Freiburg, 79110 Freiburg, Germany; (Y.B.); (T.S.)
- Correspondence: ; Tel.: +49-761-20367636
| | - Patrick Schäfer
- Systems Neuroscience & Neurotechnology Unit, Mindscan Lab, Saarland University of Applied Sciences, 66117 Saarbrücken, Germany;
| | - Yara Baslan
- Laboratory for Biomedical Microtechnology, IMTEK, University of Freiburg, 79110 Freiburg, Germany; (Y.B.); (T.S.)
| | | | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, IMTEK, University of Freiburg, 79110 Freiburg, Germany; (Y.B.); (T.S.)
- BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
50
|
He K, Liu Z, Wan C, Jiang Y, Wang T, Wang M, Zhang F, Liu Y, Pan L, Xiao M, Yang H, Chen X. An On-Skin Electrode with Anti-Epidermal-Surface-Lipid Function Based on a Zwitterionic Polymer Brush. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001130. [PMID: 32374473 DOI: 10.1002/adma.202001130] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
On-skin flexible devices provide a noninvasive approach for continuous and real-time acquisition of biological signals from the skin, which is essential for future chronic disease diagnosis and smart health monitoring. Great progress has been achieved in flexible devices to resolve the mechanical mismatching between conventional rigid devices and human skin. However, common materials used for flexible devices including silicon-based elastomers and various metals exhibit no resistance to epidermal surface lipids (skin oil and grease), which restricts the long-term and household usability. Herein, an on-skin electrode with anti-epidermal-surface-lipid function is reported, which is based on the grafting of a zwitterionic poly(2-methacryl-oyloxyethyl, methacryloyl-oxyethyl, or meth-acryloyloxyethyl phosphorylcholine) (PMPC) brush on top of gold-coated poly(dimethylsiloxane) (Au/PDMS). Such an electrode allows the skin-lipids-fouled surface to be cleaned by simple water rinsing owing to the superhydrophilic zwitterionic groups. As a proof-of-concept, the PMPC-Au/PDMS electrodes are employed for both electrocardiography (ECG) and electromyography (EMG) recording. The electrodes are able to maintain stable skin-electrode impedance and good signal-to noise ratio (SNR) by water rinsing alone. This work provides a material-based solution to improve the long-term reusability of on-skin electronics and offers a unique prospective on developing next generation wearable healthcare devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meng Xiao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|