1
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
3
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
4
|
Papageorgiou MP, Filiou MD. Mitochondrial dynamics and psychiatric disorders: The missing link. Neurosci Biobehav Rev 2024; 165:105837. [PMID: 39089419 DOI: 10.1016/j.neubiorev.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Elucidating the molecular mechanisms of psychopathology is crucial for optimized diagnosis and treatment. Accumulating data have underlined how mitochondrial bioenergetics affect major psychiatric disorders. However, how mitochondrial dynamics, a term addressing mitochondria quality control, including mitochondrial fission, fusion, biogenesis and mitophagy, is implicated in psychopathologies remains elusive. In this review, we summarize the existing literature on mitochondrial dynamics perturbations in psychiatric disorders/neuropsychiatric phenotypes. We include preclinical/clinical literature on mitochondrial dynamics recalibrations in anxiety, depression, post-traumatic stress disorder (PTSD), bipolar disorder and schizophrenia. We discuss alterations in mitochondrial network, morphology and shape, molecular markers of the mitochondrial dynamics machinery and mitochondrial DNA copy number (mtDNAcn) in animal models and human cohorts in brain and peripheral material. By looking for common altered mitochondrial dynamics patterns across diagnoses/phenotypes, we highlight mitophagy and biogenesis as regulators of anxiety and depression pathophysiology, respectively, as well as the fusion mediator dynamin-like 120 kDa protein (Opa1) as a molecular hub contributing to psychopathology. Finally, we comment on limitations and future directions in this novel neuropsychiatry field.
Collapse
Affiliation(s)
- Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece.
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece; Institute of Biosciences, University of Ioannina, Greece.
| |
Collapse
|
5
|
O’Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. Elevations in the Mitochondrial Matrix Protein Cyclophilin D Correlate With Reduced Parvalbumin Expression in the Prefrontal Cortex of Patients With Schizophrenia. Schizophr Bull 2024; 50:1197-1207. [PMID: 38412332 PMCID: PMC11349014 DOI: 10.1093/schbul/sbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.
Collapse
Affiliation(s)
- John T O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sophia P Jalilvand
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha A Suji
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Rohan K Jupelly
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Hajira Elahi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
6
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Schneider Gasser EM, Schaer R, Mueller FS, Bernhardt AC, Lin HY, Arias-Reyes C, Weber-Stadlbauer U. Prenatal immune activation in mice induces long-term alterations in brain mitochondrial function. Transl Psychiatry 2024; 14:289. [PMID: 39009558 PMCID: PMC11251165 DOI: 10.1038/s41398-024-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Department of Pediatrics, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland.
| | - Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Alexandra C Bernhardt
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland
| |
Collapse
|
8
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
9
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
10
|
Zhang X, Gong H, Zhao Y, Wu Y, Cheng J, Song Y, Wang B, Qin Y, Sun M. Bisphenol S impairs mitochondrial function by targeting Myo19/oxidative phosphorylation pathway contributing to axonal and dendritic injury. ENVIRONMENT INTERNATIONAL 2024; 186:108643. [PMID: 38615544 DOI: 10.1016/j.envint.2024.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.
Collapse
Affiliation(s)
- Xing Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhao
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yangna Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jihan Cheng
- The First Clinical Medical School, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
- Kuldeep Tripathi
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| |
Collapse
|
13
|
Lee HR, Choi SH, Lee SH. Differential involvement of mitochondria in post-tetanic potentiation at intracortical excitatory synapses of the medial prefrontal cortex. Cereb Cortex 2024; 34:bhad476. [PMID: 38061690 DOI: 10.1093/cercor/bhad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2022] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyoung-Ro Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Choi
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Buchanan E, Mahony C, Bam S, Jaffer M, Macleod S, Mangali A, van der Watt M, de Wet S, Theart R, Jacobs C, Loos B, O'Ryan C. Propionic acid induces alterations in mitochondrial morphology and dynamics in SH-SY5Y cells. Sci Rep 2023; 13:13248. [PMID: 37582965 PMCID: PMC10427685 DOI: 10.1038/s41598-023-40130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Propionic acid (PPA) is used to study the role of mitochondrial dysfunction in neurodevelopmental conditions like autism spectrum disorders. PPA is known to disrupt mitochondrial biogenesis, metabolism, and turnover. However, the effect of PPA on mitochondrial dynamics, fission, and fusion remains challenging to study due to the complex temporal nature of these mechanisms. Here, we use complementary quantitative visualization techniques to examine how PPA influences mitochondrial ultrastructure, morphology, and dynamics in neuronal-like SH-SY5Y cells. PPA (5 mM) induced a significant decrease in mitochondrial area (p < 0.01), Feret's diameter and perimeter (p < 0.05), and in area2 (p < 0.01). Mitochondrial event localiser analysis demonstrated a significant increase in fission and fusion events (p < 0.05) that preserved mitochondrial network integrity under stress. Moreover, mRNA expression of cMYC (p < 0.0001), NRF1 (p < 0.01), TFAM (p < 0.05), STOML2 (p < 0.0001), and OPA1 (p < 0.01) was significantly decreased. This illustrates a remodeling of mitochondrial morphology, biogenesis, and dynamics to preserve function under stress. Our data provide new insights into the influence of PPA on mitochondrial dynamics and highlight the utility of visualization techniques to study the complex regulatory mechanisms involved in the mitochondrial stress response.
Collapse
Affiliation(s)
- Erin Buchanan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Sophia Bam
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Mohamed Jaffer
- Electron Microscope Unit, University of Cape Town, Cape Town, 7700, South Africa
| | - Sarah Macleod
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Asandile Mangali
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Mignon van der Watt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Rensu Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Caron Jacobs
- Department of Pathology, Wellcome Centre for Infectious Diseases Research in Africa and IDM Microscopy Platform, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, 7700, South Africa.
| |
Collapse
|
15
|
Kathuria A, Lopez-Lengowski K, Watmuff B, Karmacharya R. Morphological and transcriptomic analyses of stem cell-derived cortical neurons reveal mechanisms underlying synaptic dysfunction in schizophrenia. Genome Med 2023; 15:58. [PMID: 37507766 PMCID: PMC10375745 DOI: 10.1186/s13073-023-01203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Postmortem studies in schizophrenia consistently show reduced dendritic spines in the cerebral cortex but the mechanistic underpinnings of these deficits remain unknown. Recent genome-wide association studies and exome sequencing investigations implicate synaptic genes and processes in the disease biology of schizophrenia. METHODS We generated human cortical pyramidal neurons by differentiating iPSCs of seven schizophrenia patients and seven healthy subjects, quantified dendritic spines and synapses in different cortical neuron subtypes, and carried out transcriptomic studies to identify differentially regulated genes and aberrant cellular processes in schizophrenia. RESULTS Cortical neurons expressing layer III marker CUX1, but not those expressing layer V marker CTIP2, showed significant reduction in dendritic spine density in schizophrenia, mirroring findings in postmortem studies. Transcriptomic experiments in iPSC-derived cortical neurons showed that differentially expressed genes in schizophrenia were enriched for genes implicated in schizophrenia in genome-wide association and exome sequencing studies. Moreover, most of the differentially expressed genes implicated in schizophrenia genetic studies had lower expression levels in schizophrenia cortical neurons. Network analysis of differentially expressed genes led to identification of NRXN3 as a hub gene, and follow-up experiments showed specific reduction of the NRXN3 204 isoform in schizophrenia neurons. Furthermore, overexpression of the NRXN3 204 isoform in schizophrenia neurons rescued the spine and synapse deficits in the cortical neurons while knockdown of NRXN3 204 in healthy neurons phenocopied spine and synapse deficits seen in schizophrenia cortical neurons. The antipsychotic clozapine increased expression of the NRXN3 204 isoform in schizophrenia cortical neurons and rescued the spine and synapse density deficits. CONCLUSIONS Taken together, our findings in iPSC-derived cortical neurons recapitulate cell type-specific findings in postmortem studies in schizophrenia and have led to the identification of a specific isoform of NRXN3 that modulates synaptic deficits in schizophrenia neurons.
Collapse
Affiliation(s)
- Annie Kathuria
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kara Lopez-Lengowski
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Bradley Watmuff
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rakesh Karmacharya
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA.
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard University, Cambridge, MA, USA.
- Schizophrenia & Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Miyahara K, Hino M, Yu Z, Ono C, Nagaoka A, Hatano M, Shishido R, Yabe H, Tomita H, Kunii Y. The influence of tissue pH and RNA integrity number on gene expression of human postmortem brain. Front Psychiatry 2023; 14:1156524. [PMID: 37520228 PMCID: PMC10379646 DOI: 10.3389/fpsyt.2023.1156524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
17
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
18
|
Fizíková I, Dragašek J, Račay P. Mitochondrial Dysfunction, Altered Mitochondrial Oxygen, and Energy Metabolism Associated with the Pathogenesis of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097991. [PMID: 37175697 PMCID: PMC10178941 DOI: 10.3390/ijms24097991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The significant complexity of the brain can lead to the development of serious neuropsychiatric disorders, including schizophrenia. A number of mechanisms are involved in the etiopathogenesis of schizophrenia, pointing to its complexity and opening a new perspective on studying this disorder. In this review of currently published studies, we focused on the contribution of mitochondria to the process, with an emphasis on oxidative damage, ROS, and energy metabolism. In addition, we point out the influence of redox imbalance, which can lead to the occurrence of oxidative stress with increased lipid peroxidation, linked to the formation of toxic aldehydes such as 4-hydroxynonenal (4-HNE) and HNE protein adducts. We also analysed the role of lactate in the process of energy metabolism and cognitive functions in schizophrenia.
Collapse
Affiliation(s)
- Iveta Fizíková
- Outpatient Psychiatry Clinic, 965 01 Žiar nad Hronom, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia
| | - Peter Račay
- Institute of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
| |
Collapse
|
19
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
20
|
Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: evidence from a schizophrenia rat model. Mol Psychiatry 2023; 28:1170-1181. [PMID: 36380234 PMCID: PMC10005953 DOI: 10.1038/s41380-022-01865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Ample evidence implicate mitochondria in early brain development. However, to the best of our knowledge, there is only circumstantial data for mitochondria involvement in late brain development occurring through adolescence, a critical period in the pathogenesis of various psychiatric disorders, specifically schizophrenia. In schizophrenia, neurodevelopmental abnormalities and mitochondrial dysfunction has been repeatedly reported. Here we show a causal link between mitochondrial transplantation in adolescence and brain functioning in adulthood. We show that transplantation of allogenic healthy mitochondria into the medial prefrontal cortex of adolescent rats was beneficial in a rat model of schizophrenia, while detrimental in healthy control rats. Specifically, disparate initial changes in mitochondrial function and inflammatory response were associated with opposite long-lasting changes in proteome, neurotransmitter turnover, neuronal sprouting and behavior in adulthood. A similar inverse shift in mitochondrial function was also observed in human lymphoblastoid cells deived from schizophrenia patients and healthy subjects due to the interference of the transplanted mitochondria with their intrinsic mitochondrial state. This study provides fundamental insights into the essential role of adolescent mitochondrial homeostasis in the development of normal functioning adult brain. In addition, it supports a therapeutic potential for mitochondria manipulation in adolescence in disorders with neurodevelopmental and bioenergetic deficits, such as schizophrenia, yet emphasizes the need to monitor individuals' state including their mitochondrial function and immune response, prior to intervention.
Collapse
|
21
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
22
|
Meta-analysis of brain samples of individuals with schizophrenia detects down-regulation of multiple ATP synthase encoding genes in both females and males. J Psychiatr Res 2023; 158:350-359. [PMID: 36640659 DOI: 10.1016/j.jpsychires.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/05/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Schizophrenia is a chronic and debilitating mental disorder, with unknown pathophysiology. Converging lines of evidence suggest that mitochondrial functioning may be compromised in schizophrenia. Postmortem brain samples of individuals with schizophrenia showed dysregulated expression levels of genes encoding enzyme complexes comprising the mitochondrial electron transport chain (ETC), including ATP synthase, the fifth ETC complex. However, there are inconsistencies regarding the direction of change, i.e., up- or down-regulation, and differences between female and male patients were hardly examined. We have performed a systematic meta-analysis of the expression of 16 ATP synthase encoding genes in postmortem brain samples of individuals with schizophrenia vs. healthy controls of three regions: Brodmann Area 10 (BA10), BA22/Superior Temporal Gyrus (STG) and the cerebellum. Eight independent datasets were integrated (overall 294brain samples, 145 of individuals with schizophrenia and 149 controls). The meta-analysis was applied to all individuals with schizophrenia vs. the controls, and also to female and male patients vs. age-matched controls, separately. A significant down-regulation of two ATP synthase encoding genes was detected in schizophrenia, ATP5A1 and ATP5H, and a trend towards down-regulation of five further ATP synthase genes. The down-regulation tendency was shown for both females and males with schizophrenia. Our findings support the hypothesis that schizophrenia is associated with reduced ATP synthesis via the oxidative phosphorylation system, which is caused by reduced cellular demand of ATP. Abnormal cellular energy metabolism can lead to alterations in neural function and brain circuitry, and thereby to the cognitive and behavioral aberrations characteristic of schizophrenia.
Collapse
|
23
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
24
|
Kathuria A, Lopez-Lengowski K, McPhie D, Cohen BM, Karmacharya R. Disease-specific differences in gene expression, mitochondrial function and mitochondria-endoplasmic reticulum interactions in iPSC-derived cerebral organoids and cortical neurons in schizophrenia and bipolar disorder. DISCOVER MENTAL HEALTH 2023; 3:8. [PMID: 36915374 PMCID: PMC9998323 DOI: 10.1007/s44192-023-00031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 03/12/2023]
Abstract
We compared transcriptomic profiles of cerebral organoids differentiated from induced pluripotent stem cells of eight schizophrenia and eight bipolar disorder patients to identify genes that were differentially expressed in cerebral organoids between two disorders. Gene ontology analysis showed relative up-regulation in schizophrenia organoids of genes related to response to cytokines, antigen binding and clathrin-coated vesicles, while showing up-regulation in bipolar disorder of genes involved in calcium binding. Gene set enrichment analysis revealed enrichment in schizophrenia of genes involved in mitochondrial and oxidative phosphorylation while showing enrichment in bipolar disorder of genes involved in long term potentiation and neuro-transporters. We compared mitochondrial function in cerebral organoids from schizophrenia and bipolar disorder subjects and found that while schizophrenia organoids showed deficits in basal oxygen consumption rate and ATP production when compared to healthy control organoids, while bipolar disorder organoids did not show these deficits. Gene ontology analyses also revealed enrichment in bipolar disorder of genes in ion binding and regulation of transport. Experiments examining the interaction between mitochondria and endoplasmic reticulum in cortical neurons from bipolar disorder subjects showed a significantly lower number of contact sites between mitochondria and endoplasmic reticulum when compared to cortical neurons from schizophrenia patients. These results point to disease-specific deficits in mitochondrial respiration in schizophrenia and in mitochondrial-endoplasmic reticulum interactions in bipolar disorder. Supplementary Information The online version contains supplementary material available at 10.1007/s44192-023-00031-8.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA USA
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA USA
- Program in Neuroscience, Harvard University, Cambridge, MA USA
- Program in Chemical Biology, Harvard University, Cambridge, MA USA
- Harvard Stem Cell Institute, Cambridge, MA USA
| |
Collapse
|
25
|
Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, Isles AR, Collins MO, Hall J. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022; 31:3095-3106. [PMID: 35531971 PMCID: PMC9476630 DOI: 10.1093/hmg/ddac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.
Collapse
Affiliation(s)
- Nicholas E Clifton
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Matthew L Bosworth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
26
|
Sun J, Zhang X, Cong Q, Chen D, Yi Z, Huang H, Wang C, Li M, Zeng R, Liu Y, Huai C, Chen L, Liu C, Zhang Y, Xu Y, Fan L, Wang G, Song C, Wei M, Du H, Zhu J, He L, Qin S. miR143-3p-Mediated NRG-1-Dependent Mitochondrial Dysfunction Contributes to Olanzapine Resistance in Refractory Schizophrenia. Biol Psychiatry 2022; 92:419-433. [PMID: 35662508 DOI: 10.1016/j.biopsych.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Olanzapine is an effective antipsychotic medication for treatment-resistant schizophrenia (TRS); however, the therapeutic effectiveness of olanzapine has been found to vary in individual patients. It is imperative to unravel its resistance mechanisms and find reliable targets to develop novel precise therapeutic strategies. METHODS Unbiased RNA sequencing analysis was performed using homogeneous populations of neural stem cells derived from induced pluripotent stem cells in 3 olanzapine responder (reduction of Positive and Negative Syndrome Scale score ≥25%) and 4 nonresponder (reduction of Positive and Negative Syndrome Scale score <25%) inpatients with TRS. We also used a genotyping study from patients with TRS to assess the candidate genes associated with the olanzapine response. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated genome editing, neurologic behavioral tests, RNA silencing, and microRNA sequencing were used to investigate the phenotypic mechanisms of an olanzapine resistance gene in patients with TRS. RESULTS Neuregulin-1 (NRG-1) deficiency-induced mitochondrial dysfunction is associated with olanzapine treatment outcomes in TRS. NRG-1 knockout mice showed schizophrenia-relevant behavioral deficits and yielded olanzapine resistance. Notably, miR143-3p is a critical NRG-1 target related to mitochondrial dysfunction, and miR143-3p levels in neural stem cells associate with severity to olanzapine resistance in TRS. Meanwhile, olanzapine resistance in NRG-1 knockout mice could be rescued by treatment with miR143-3p agomir via intracerebral injection. CONCLUSIONS Our findings provide direct evidence of olanzapine resistance resulting from NRG-1 deficiency-induced mitochondrial dysfunction, and they link olanzapine resistance and NRG-1 deficiency-induced mitochondrial dysfunction to an NRG-1/miR143-3p axis, which constitutes a novel biomarker and target for TRS.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China; Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaoya Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qijie Cong
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dong Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Cong Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Rongsen Zeng
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Cong Huai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Luan Chen
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, China
| | - Yong Xu
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lingzi Fan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Guoqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chuanfu Song
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Muyun Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhang Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
28
|
Hu A, Li F, Guo L, Zhao X, Xiang X. Mitochondrial Damage of Lymphocytes in Patients with Acute Relapse of Schizophrenia: A Correlational Study with Efficacy and Clinical Symptoms. Neuropsychiatr Dis Treat 2022; 18:2455-2466. [PMID: 36325435 PMCID: PMC9621005 DOI: 10.2147/ndt.s380353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that schizophrenia is associated with mitochondrial and immune abnormalities. In this pilot case-control study, we investigated the level of mitochondrial impairment in lymphocytes in patients with acute relapse of schizophrenia and explored the correlation between the level of mitochondrial damage and symptoms or treatment response. METHODS Lymphocytic mitochondrial damage was detected using mitochondrial fluorescence staining and flow cytometry in 37 patients (at admission and discharge) and 24 controls. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale (CGI-S). RESULTS The levels of mitochondrial damage in CD3+ T, CD4+ T, and CD8+ T lymphocytes of the patients with schizophrenia at admission were significantly higher than those of the controls (p<0.05) and did not return to normal at discharge (p>0.05). The mitochondrial damage of T cells significantly improved at discharge for responsive patients only, as compared with that at admission (P<0.05). However, no significant difference was found in mitochondrial damage in CD19+ B cells between patients and healthy controls, or between admission and discharge (p>0.05). Furthermore, the reduction in mitochondrial damage of CD3, CD4, and CD8 lymphocytes was positively correlated with the reduction of the score of the PANSS positive scale at discharge (p<0.05), while no significant correlation was found between the level of mitochondrial damage in lymphocytes and the scores of PANSS and CGI-S. CONCLUSION Acute relapse of schizophrenia might be associated with higher levels of mitochondrial damage in peripheral blood T lymphocytes. The degree of recovery of mitochondrial impairment in the T cells may be used as a predictor of treatment response in schizophrenia. As this is a pilot study, the conclusion still needs further verification in large-scale studies.
Collapse
Affiliation(s)
- Aqian Hu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Faping Li
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, 550004, People's Republic of China
| | - Lei Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaoxi Zhao
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaojun Xiang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
29
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
30
|
Potanin SS, Morozova MA. [Oxidative stress in schizophrenia as a promising target for psychopharmacotherapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:131-138. [PMID: 34693701 DOI: 10.17116/jnevro2021121091131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Until now, only dopamine receptor blockers are used for psychopharmacotherapy of schizophrenia, despite the active search for alternative pharmacological agents and a lot of research. However, most of these studies concerned molecules that somehow affect various neurotransmitter receptors. In addition, various anti-inflammatory drugs have been studied quite actively. At the same time, attempts to correct oxidative stress are given significantly less attention, although the emergence of the latter is facilitated by completely different pathophysiological processes and environmental factors associated with the development of schizophrenia. NMDA receptor blockage, vitamin D deficiency, social isolation, chronic stress in adolescence, inflammation, perinatal infection etc. - all this can ultimately lead to the occurrence of oxidative stress. However, there is a significant difference in the severity of this process depending on the stage of the course of schizophrenia, which probably partially explains the heterogeneity of results of the studies on the oxidative stress biomarkers in this disorder. In order to overcome these methodological problems, it seems promising to conduct double-blind studies of the effectiveness of antioxidants in schizophrenia with the selection of groups of patients taking into account the stage of the disorder and the level of certain biomarkers of oxidative stress (F2-isoprostanes, 8-oxodG, 8-oxoGuo). The optimal pharmacological agents for such studies are N-acetylcysteine due to the positive results of previous studies, and melatonin as an antioxidant with a unique activity profile.
Collapse
Affiliation(s)
- S S Potanin
- Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
31
|
Berry T, Abohamza E, Moustafa AA. Treatment-resistant schizophrenia: focus on the transsulfuration pathway. Rev Neurosci 2021; 31:219-232. [PMID: 31714892 DOI: 10.1515/revneuro-2019-0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia.,Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney 2751, New South Wales, Australia
| |
Collapse
|
32
|
No Effect of Coenzyme Q10 on Cognitive Function, Psychological Symptoms, and Health-related Outcomes in Schizophrenia and Schizoaffective Disorder: Results of a Randomized, Placebo-Controlled Trial. J Clin Psychopharmacol 2021; 41:53-57. [PMID: 33347024 DOI: 10.1097/jcp.0000000000001330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cognitive impairments, negative symptoms, affective symptoms, and low energy are highly prevalent features of schizophrenia. Mitochondrial dysfunction has been hypothesized as one of the numerous factors to underlie the manifestation of these symptoms. The objective of this study was to evaluate whether Coenzyme Q10 (CoQ10) has a role in the treatment of schizophrenia and schizoaffective disorder. METHODS A double-blind, randomized, placebo-controlled trial was conducted to assess the effects of CoQ10 supplementation (300 mg/day) on the co-primary outcomes of attention and working memory performance after 3 and 6 months. Secondary outcomes included plasma CoQ10 levels, mitochondrial function, energy, depression, anxiety, negative symptoms, and quality oflife. FINDINGS In total, 72 patients were randomized to intervention groups. Overall, there was no effect of CoQ10 supplementation on the primary outcome measures at 3 or 6 months. Further, with the exception of plasma CoQ10 levels, CoQ10 supplementation also had no effect on the secondary outcomes. At 3 months, CoQ10 concentration was significantly higher in the CoQ10 group (3.85 μg/mL) compared with placebo (1.13 μg/mL); this difference was not present at 6 months. CONCLUSIONS The results of the study suggest that CoQ10 supplementation at 300 mg/day for 6 months is unlikely to be beneficial for cognitive, psychological and health-related outcomes in schizophrenia and schizoaffective disorder. However, a number of limitations including low adherence, modest sample size, and attrition, likely reduce estimates of effects. As such, results should be considered preliminary.
Collapse
|
33
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
34
|
Antioxidant treatment ameliorates prefrontal hypomyelination and cognitive deficits in a rat model of schizophrenia. Neuropsychopharmacology 2021; 46:1161-1171. [PMID: 33564104 PMCID: PMC8115238 DOI: 10.1038/s41386-021-00964-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/31/2023]
Abstract
Cognitive dysfunction in schizophrenia (SZ) is thought to arise from neurodevelopmental abnormalities that include interneuron hypomyelination in the prefrontal cortex (PFC). Here we report that RNA-sequencing of the medial (m)PFC of the APO-SUS rat model with SZ-relevant cognitive inflexibility revealed antioxidant metabolism as the most-enriched differentially expressed pathway. Antioxidant-related gene expression was altered throughout postnatal development and preceded hypomyelination. Furthermore, reduced glutathione levels and increased mitochondria numbers were observed in the mPFC. Strikingly, chronic treatment with the glutathione precursor N-acetylcysteine (NAC) from postnatal days 5-90 restored not only antioxidant-related mRNA expression and mitochondria numbers, but also myelin-related mRNA expression and mPFC-dependent cognitive dysfunction, while blood glutathione levels remained unaffected. The promyelinating effect of NAC was at least partly due to a positive effect on oligodendrocyte lineage progression. Together, our findings highlight that oxidative stress may contribute to cognitive symptoms in the APO-SUS rat model of SZ and encourage antioxidant therapy in early phases of SZ.
Collapse
|
35
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
36
|
Amiri S, Dizaji R, Momeny M, Gauvin E, Hosseini MJ. Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology 2021; 187:108503. [PMID: 33636190 DOI: 10.1016/j.neuropharm.2021.108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Beyond abnormalities in the neurotransmitter hypothesis, recent evidence suggests that mitochondrial dysfunction and immune-inflammatory responses contribute to the pathophysiology of schizophrenia. The prefrontal cortex (PFC) undergoes maturation and development during adolescence, which is a critical time window in life that is vulnerable to environmental adversities and the development of psychiatric disorders such as schizophrenia. Applying eight weeks of post-weaning social isolation stress (PWSI) to rats, as an animal model of schizophrenia, we decided to investigate the effects of PWSI on the mitochondrial function and expression of immune-inflammatory genes in the PFC of normal and stressed rats. To do this, control and PWSI rats were divided into treatment (clozapine; CLZ, 2.5 mg/kg/day for 28 days) and non-treatment sub-groups. Our results showed PWSI caused schizophrenic-like behaviors in rats and induced mitochondrial dysfunction as well as upregulation of genes associated with innate immunity in the PFC. Chronic treatment with CLZ attenuated the effects of PWSI on behavioral abnormalities, mitochondrial dysfunction, and immune-inflammatory responses in the PFC of rats. These results may advance our understanding about the mechanism of action of CLZ that targets mitochondrial dysfunction and immune-inflammatory responses as factors involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Pharmacology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Evan Gauvin
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
37
|
Bortolasci CC, Spolding B, Kidnapillai S, Richardson MF, Vasilijevic N, Martin SD, Gray LJ, McGee SL, Berk M, Walder K. Effects of psychoactive drugs on cellular bioenergetic pathways. World J Biol Psychiatry 2021; 22:79-93. [PMID: 32295468 DOI: 10.1080/15622975.2020.1755450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the actions of lithium, valproate, lamotrigine and quetiapine on bioenergetic pathways in cultured NT2-N neuronal-like cells and C8-B4 microglial cells. METHODS NT2-N and C8-B4 cells were cultured and treated with lithium (2.5 mM), valproate (0.5 mM), quetiapine (0.05 mM) or lamotrigine (0.05 mM) for 24 hours. Gene expression and the mitochondrial bioenergetic profile were measured in both cell lines. RESULTS In NT2-N cells, valproate increased oxidative phosphorylation (OXPHOS) gene expression, mitochondrial uncoupling and maximal respiratory capacity, while quetiapine decreased OXPHOS gene expression and respiration linked to ATP turnover, as well as decreasing the expression of genes in the citric acid cycle. Lamotrigine decreased OXPHOS gene expression but had no effect on respiration, while lithium reduced the expression of genes in the citric acid cycle. In C8-B4 cells, valproate and lithium increased OXPHOS gene expression, and valproate increased basal respiratory rate and maximal and spare respiratory capacities. In contrast, quetiapine significantly reduced basal respiratory rate and maximal and spare respiratory capacities. CONCLUSIONS Overall our data suggest that some drugs used to treat neuropsychiatric and affective disorders have actions on a range of cellular bioenergetic processes, which could impact their effects in patients.
Collapse
Affiliation(s)
- Chiara C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Briana Spolding
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Mark F Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Nina Vasilijevic
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Laura J Gray
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Sean L McGee
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Orygen, the National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| |
Collapse
|
38
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
39
|
Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 2021; 56:91-101. [PMID: 33221354 PMCID: PMC7810242 DOI: 10.1016/j.mito.2020.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Among the many brain abnormalities in schizophrenia are those related to mitochondrial functions such as oxidative stress, energy metabolism and synaptic efficacy. The aim of this paper is to provide a brief review of mitochondrial structure and function and then to present abnormalities in mitochondria in postmortem brain in schizophrenia with a focus on anatomy. Deficits in expression of various mitochondrial genes have been found in multiple schizophrenia cohorts. Decreased activity of complexes I and IV are prominent as well as abnormal levels of individual subunits that comprise the complexes of the electron transport chain. Ultrastructural studies have shown layer, input and cell specific decreases in mitochondria. In cortex, there are fewer mitochondria in axon terminals, neuronal somata of pyramidal neurons and oligodendrocytes in both grey and white matter. In the caudate and putamen mitochondrial number is linked with symptoms and symptom severity. While there is a decrease in the number of mitochondria in astrocytes, mitochondria are smaller in oligodendrocytes. In the nucleus accumbens and substantia nigra, mitochondria are similar in density, size and structural integrity in schizophrenia compared to controls. Mitochondrial production of ATP and calcium buffering are essential in maintaining synaptic strength and abnormalities in these processes could lead to decreased metabolism and defective synaptic activity. Abnormalities in mitochondria in oligodendrocytes might contribute to myelin pathology and underlie dysconnectivity in the brain. In schizophrenia, mitochondria are affected differentially depending on the brain region, cell type in which they reside, subcellular location, treatment status, treatment response and predominant symptoms.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|
40
|
Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgaa073. [PMID: 33554120 PMCID: PMC7848946 DOI: 10.1093/schizbullopen/sgaa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Converging evidence indicates impaired brain energy metabolism in schizophrenia and other psychotic disorders. Creatine kinase (CK) is pivotal in providing adenosine triphosphate in the cell and maintaining its levels when energy demand is increased. However, the activity of CK has not been investigated in patients with first-episode schizophrenia spectrum disorders. METHODS Using in vivo phosphorus magnetization transfer spectroscopy, we measured CK first-order forward rate constant (k f ) in the frontal lobe, in patients with first-episode psychosis (FEP; n = 16) and healthy controls (n = 34), at rest. RESULTS CK k f was significantly reduced in FEP compared to healthy controls. There were no differences in other energy metabolism-related measures, including phosphocreatine (PCr) or ATP, between groups. We also found increase in glycerol-3-phosphorylcholine, a putative membrane breakdown product, in patients. CONCLUSIONS The results of this study indicate that brain bioenergetic abnormalities are already present early in the course of schizophrenia spectrum disorders. Future research is needed to identify the relationship of reduced CK k f with psychotic symptoms and to test treatment alternatives targeting this pathway. Increased glycerol-3-phosphorylcholine is consistent with earlier studies in medication-naïve patients and later studies in first-episode schizophrenia, and suggest enhanced synaptic pruning.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | | | | | | | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Fei Du
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Glausier JR, Enwright JF, Lewis DA. Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. Am J Psychiatry 2020; 177:1140-1150. [PMID: 33115248 PMCID: PMC8195258 DOI: 10.1176/appi.ajp.2020.19111210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The shared risk factors and clinical features in schizophrenia and bipolar disorder may be linked via mitochondrial dysfunction. However, the severity of mitochondrial dysfunction, and/or the specific mitochondrial functional pathways affected, may differ between diagnoses, especially at the level of individual cell types. METHODS Transcriptomic profiling data for a gene set indexing mitochondrial functional pathways were obtained for dorsolateral prefrontal cortex (DLPFC) gray matter and layer 3 and layer 5 pyramidal neurons of subjects with schizophrenia or bipolar disorder. Analyses were conducted using a dual strategy: identification of differentially expressed genes (DEGs) and their functional pathway enrichment, and application of weighted gene coexpression network analysis. These analyses were repeated in monkeys chronically exposed to antipsychotic drugs to determine their effect on mitochondrial-related gene expression. RESULTS In DLPFC gray matter, 41% of mitochondrial-related genes were differentially expressed in the schizophrenia group, whereas 8% were differentially expressed in the bipolar group. In the schizophrenia group, 83% of DEGs showed lower expression, and these were significantly enriched for three functional pathways, each indexing energy production. DEGs in the bipolar disorder group were not enriched for functional pathways. This disease-related pattern of findings was also identified in pyramidal neurons. None of the gene expression alterations disrupted coexpression modules, and DEGs were not attributable to antipsychotic medications. CONCLUSIONS Schizophrenia and bipolar disorder do not appear to share similar mitochondrial alterations in the DLPFC. The selective and coordinated down-regulation of energy production genes in schizophrenia is consistent with the effects of chronic reductions in pyramidal neuron firing, and enhancement of this activity may serve as a therapeutic target.
Collapse
Affiliation(s)
- Jill R Glausier
- Department of Psychiatry, University of Pittsburgh (all authors)
| | - John F Enwright
- Department of Psychiatry, University of Pittsburgh (all authors)
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh (all authors)
| |
Collapse
|
42
|
Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress 2020; 13:100251. [PMID: 33344706 PMCID: PMC7739184 DOI: 10.1016/j.ynstr.2020.100251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Exposure to early-life stress (ELS) increases risk for poor mental and physical health outcomes that emerge at different stages across the lifespan. Yet, how age interacts with ELS to impact the expression of specific phenotypes remains largely unknown. An established limited-bedding paradigm was used to induce ELS in mouse pups over the early postnatal period. Initial analyses focused on the hippocampus, based on documented sensitivity to ELS in humans and various animal models, and the large body of data reporting anatomical and physiological outcomes in this structure using this ELS paradigm. An unbiased discovery proteomics approach revealed distinct adaptations in the non-nuclear hippocampal proteome in male versus female offspring at two distinct developmental stages: juvenile and adult. Gene ontology and KEGG pathway analyses revealed significant enrichment in proteins associated with mitochondria and the oxidative phosphorylation (OXPHOS) pathway in response to ELS in female hippocampus only. To determine whether the protein adaptations to ELS reflected altered function, mitochondrial respiration (driven through complexes II-IV) and complex I activity were measured in isolated hippocampal mitochondria using a Seahorse X96 Flux analyzer and immunocapture ELISA, respectively. ELS had no effect on basal respiration in either sex at either age. In contrast, ELS increased OXPHOS capacity in juvenile males and females, and reduced OXPHOS capacity in adult females but not adult males. A similar pattern of ELS-induced changes was observed for complex I activity. These data suggest that initial adaptations in juvenile hippocampus due to ELS were not sustained in adults. Mitochondrial adaptations to ELS were also exhibited peripherally by liver. Overall, the temporal distinctions in mitochondrial responses to ELS show that ELS-generated adaptations and outcomes are complex over the lifespan. This may contribute to differences in the timing of appearance of mental and physical disturbances, as well as potential sex differences that influence only select outcomes.
Collapse
Key Words
- AA, antimycin A
- ADP, adenosine diphosphate
- CI, confidence interval
- Complex I activity
- ELS, early-life stress
- Early-life stress
- FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- GO, gene ontology
- HCD, high energy C-trap dissociation
- Hippocampus
- Liver
- MS/MS, tandem mass spectrometry
- Mitochondrial respiration
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- P, postnatal day
- Proteomics
- SCX, strong cation exchange
- iTRAQ, isobaric tag for relative and absolute quantitation
- oligo, oligomycin
Collapse
Affiliation(s)
- Kathie L. Eagleson
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Miranda Villaneuva
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebecca M. Southern
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR. Decreased mitochondrial electron transport proteins and increased complement mediators in plasma neural-derived exosomes of early psychosis. Transl Psychiatry 2020; 10:361. [PMID: 33106473 PMCID: PMC7588411 DOI: 10.1038/s41398-020-01046-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Potentially neurotoxic systems involved in traumatic and degenerative diseases of the brain were assessed in acute psychosis. Astrocyte-derived exosomes (ADEs) and neuron-derived exosomes (NDEs) were immunoprecipitated from plasma of ten untreated first-episode psychotics (FPs) and ten matched normal controls (Cs). Neural mitochondrial electron transport and complement proteins were extracted, quantified by ELISAs and normalized with levels of CD81 exosome marker. Levels of subunits 1 and 6 of NADH-ubiquinone oxidoreductase (complex I) and subunit 10 of cytochrome b-c1 oxidase (complex III), but not of subunit 1 of cytochrome C oxidase (complex IV) or superoxide dismutase 1 (SOD1) were significantly lower in ADEs and NDEs of FPs than Cs. This dysregulated pattern of electron transport proteins is associated with increased generation of reactive oxygen species. ADE glial fibrillary acidic protein levels were significantly higher in FPs than Cs, indicating a higher percentage of inflammatory astrocytes in FPs. ADE levels of C3b opsonin were significantly higher and those of C5b-9 attack complex was marginally higher in FPs than Cs. A significantly lower ADE level of the C3 convertase inhibitor CD55 may explain the higher levels of C3 convertase-generated C3b. ADE levels of the neuroprotective protein leukemia inhibitory factor (LIF) were significantly lower in FPs than Cs, whereas levels of IL-6 were no different. Plasma neural exosome levels of electron transport and complement proteins may be useful in predicting FP and guiding therapy. SOD mimetics, C3 convertase inhibitors and LIF receptor agonists also may have therapeutic benefits in FP.
Collapse
Affiliation(s)
- Edward J. Goetzl
- grid.413077.60000 0004 0434 9023Department of Medicine, University of California Medical Center, San Francisco, CA USA
| | - Vinod H. Srihari
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Sinan Guloksuz
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Maria Ferrara
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Cenk Tek
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - George R. Heninger
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| |
Collapse
|
44
|
Jimoh IJ, Sebe B, Balicza P, Fedor M, Pataky I, Rudas G, Gal A, Inczedy-Farkas G, Nemeth G, Molnar MJ. Wernicke-Korsakoff syndrome associated with mtDNA disease. Ther Adv Neurol Disord 2020; 13:1756286420938972. [PMID: 32821290 PMCID: PMC7412926 DOI: 10.1177/1756286420938972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Wernicke encephalopathy (WE) and Wernicke-Korsakoff syndrome (WKS) are well-known disorders caused by thiamine deficiency. In addition to the classical concept of these diseases, some literature data suggest a connection between mitochondrial dysfunction and WE/WKS. Psychotic disorders and WKS seem to run in families, as the deficiency of the oxidative phosphorylation can be a trigger factor in psychotic events and WE/WKS as well. We present a patient harbouring the m.A3243G mtDNA mutation with the clinical and magnetic resonance imaging (MRI) findings of WKS who developed schizophrenia with predominantly negative symptoms some years later. Case presentation A 27-year-old woman was referred to our clinic with severe weight loss after severe vomiting episodes, memory dysfunction and gait ataxia. Family history, as well as clinical, imaging and laboratory findings suggested a mitochondrial aetiology of her symptoms. Brain MRI detected bilateral mild thalamic lesions and loss of corpus mammillae, indicating Wernicke encephalopathy. Genetic testing detected an m.A3243G mtDNA mutation, which has been frequently associated with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes. High-dose vitamin B1 supplementation with supportive antioxidant therapy improved the patient's memory and learning disturbance; however, some months later she developed psychosis with predominantly negative symptoms and her cognitive functions deteriorated again. Both cognitive and negative symptoms responded well to cariprazine monotherapy. Discussion Mitochondrial disease due to mtDNA alteration can be a rare cause of WE. In addition to vitamin B1 supplementation, cariprazine with significant dopamine D3 receptor binding can be useful to treat the predominantly negative symptoms and cognitive dysfunction in patients with mitochondrial dysfunction. Conclusion We assume that patients with a mitochondrial disorder might be prone to develop WE/WKS and therefore need tailored supportive therapy during metabolic crisis as well as symptom-based personalized antipsychotic treatment.
Collapse
Affiliation(s)
| | | | - Peter Balicza
- Semmelweis University of Medicine, Budapest, Hungary
| | - Mariann Fedor
- Semmelweis University of Medicine, Budapest, Hungary
| | - Ilona Pataky
- Peter Pazmany Catholic University, Budapest, Hungary
| | - Gabor Rudas
- Semmelweis University of Medicine, Budapest, Hungary
| | - Aniko Gal
- Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
45
|
Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, Gurman V, Levine J, Bersudsky Y, Agam G, Ben-Shachar D. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep 2020; 10:12258. [PMID: 32703977 PMCID: PMC7378204 DOI: 10.1038/s41598-020-69207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmacological treatment of mental disorders is currently decided based on "trial and error" strategy. Mitochondrial multifaceted dysfunction is assumed to be a major factor in the pathophysiology and treatment of schizophrenia (SZ) and bipolar disorder (BD). This study aimed to explore the feasibility of using a profile of mitochondrial function parameters as a tool to predict the optimal drug for an individual patient (personalized medicine). Healthy controls (n = 40), SZ (n = 48) and BD (n = 27) patients were recruited. Mental and global state of the subjects, six mitochondrial respiration parameters and 14 mitochondrial function-related proteins were assessed in fresh lymphocytes following in-vitro or in-vivo treatment with five antipsychotic drugs and two mood-stabilizers. In healthy controls, hierarchal clustering shows a drug-specific effect profile on the different mitochondrial parameters following in-vitro exposure. Similar changes were observed in untreated SZ and BD patients with psychosis. Following a month of treatment of the latter patients, only responders showed a significant correlation between drug-induced in-vitro effect (prior to in-vivo treatment) and short-term in-vivo treatment effect for 45% of the parameters. Long- but not short-term psychotropic treatment normalized mitochondria-related parameters in patients with psychosis. Taken together, these data substantiate mitochondria as a target for psychotropic drugs and provide a proof of concept for selective mitochondrial function-related parameters as a predictive tool for an optimized psychotropic treatment in a given patient. This, however, needs to be repeated with an expanded sample size and additional mitochondria related parameters.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Wessal Hussein
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | - Ofer Yitzhaki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Limor Givon
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | | | | | - Joseph Levine
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Yuly Bersudsky
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel.
| |
Collapse
|
46
|
Sarnyai Z, Palmer CM. Ketogenic Therapy in Serious Mental Illness: Emerging Evidence. Int J Neuropsychopharmacol 2020; 23:434-439. [PMID: 32573722 PMCID: PMC7387764 DOI: 10.1093/ijnp/pyaa036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/12/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine,College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Queensland, Australia
| | - Christopher M Palmer
- Department of Postgraduate and Continuing Education, McLean Hospital, Harvard Medical School, Belmont, Massachusetts,Correspondence: Christopher M. Palmer, MD, McLean Hospital, 115 Mill Street, Belmont, MA 02478 ()
| |
Collapse
|
47
|
Valiente-Pallejà A, Torrell H, Alonso Y, Vilella E, Muntané G, Martorell L. Increased blood lactate levels during exercise and mitochondrial DNA alterations converge on mitochondrial dysfunction in schizophrenia. Schizophr Res 2020; 220:61-68. [PMID: 32327316 DOI: 10.1016/j.schres.2020.03.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mitochondrial dysfunction and an elevation of lactate are observed in patients with schizophrenia (SZ). However, it is unknown whether mitochondrial dysfunction is associated with the presence of mitochondrial DNA (mtDNA) alterations and comorbid clinical conditions. We aimed to identify systemic mitochondrial abnormalities in blood samples of patients with SZ that may have a high impact on the brain due to its high bioenergetic requirements. METHODS Case/control study between 57 patients with SZ and 33 healthy controls (HCs). We measured lactate levels at baseline, during 15 min of exercise (at 5, 10 and 15 min) and at rest. We also evaluated the presence of clinical conditions associated with mitochondrial disorders (CAMDs), measured the neutrophil to lymphocyte ratio (NLR, a subclinical inflammatory marker), and analyzed mtDNA variation and copy number. RESULTS Linear models adjusting for covariates showed that patients with SZ exhibited higher elevation of lactate than HCs during exercise but not at baseline or at rest. In accordance, patients showed higher number of CAMDs and lower mtDNA copy number. Interestingly, CAMDs correlated with both lactate levels and mtDNA copy number, which in turn correlated with the NLR. Finally, we identified 13 putative pathogenic variants in the mtDNA of 11 participants with SZ not present in HCs, together with a lactate elevation during exercise that was significantly higher in these 11 carriers than in the noncarriers. CONCLUSIONS These results are consistent with systemic mitochondrial malfunctioning in SZ and pinpoint lactate metabolism and mtDNA as targets for potential therapeutic treatments.
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Helena Torrell
- Center for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain, 43204 Reus, Catalonia, Spain
| | - Yolanda Alonso
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain; Institute of Evolutionary Biology (IBE), Spanish National Research Council (CSIC), Universitat Pompeu Fabra (UPF), E08003 Barcelona, Catalonia, Spain.
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain.
| |
Collapse
|
48
|
Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Front Psychiatry 2020; 11:393. [PMID: 32477182 PMCID: PMC7235330 DOI: 10.3389/fpsyt.2020.00393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Obstetric complications (OCs) can induce major adverse conditions for early brain development and predispose to mental disorders, including schizophrenia (SCZ). We previously hypothesized that SCZ candidate genes respond to ischemia-hypoxia as part of OCs which impacts neurodevelopment. We here tested for an overlap between SCZ genes from genome-wide association study (GWAS) (n=458 genes from 145 loci of the most recent GWAS dataset in SCZ) and gene sets for ischemia-hypoxia response. Subsets of SCZ genes were related to (a) mutation-intolerant genes (LoF database), (b) role in monogenic disorders of the nervous system (OMIM, manual annotations), and (c) synaptic function (SynGO). Ischemia-hypoxia response genes of the brain (IHR genes, n=1,629), a gene set from RNAseq in focal brain ischemia (BH, n=2,449) and genes from HypoxiaDB (HDB, n=2,289) were overlapped with the subset of SCZ genes and tested for enrichment with Chi-square tests (p < 0.017). The SCZ GWAS dataset was enriched for LoF (n=112; p=0.0001), and the LoF subset was enriched for IHR genes (n=25; p=0.0002), BH genes (n=35; p=0.0001), and HDB genes (n=23; p=0.0005). N=96 genes of the SCZ GWAS dataset (21%) could be linked to a monogenic disorder of the nervous system whereby IHR genes (n=19, p=0.008) and BH genes (n=23; p=0.002) were found enriched. N=46 synaptic genes were found in the SCZ GWAS gene set (p=0.0095) whereby enrichments for IHR genes (n=20; p=0.0001) and BH genes (n=13; p=0.0064) were found. In parallel, detailed annotations of SCZ genes for a role of the hypoxia-inducible factors (HIFs) identified n=33 genes of high interest. Genes from SCZ GWAS were enriched for mutation-intolerant genes which in turn were strongly enriched for three sets of genes for the ischemia-hypoxia response that may be invoked by OCs. A subset of one fifth of SCZ genes has established roles in monogenic disorders of the nervous system which was enriched for two gene sets related to ischemia-hypoxia. SCZ genes related to synaptic functions were also related to ischemia-hypoxia. Variants of SCZ genes interacting with ischemia-hypoxia provide a specific starting point for functional and genomic studies related to OCs.
Collapse
Affiliation(s)
- Rainald Schmidt-Kastner
- Integrated Medical Science Department, C.E. Schmidt College of Medicine, Florida Atlantic University (FAU), Boca Raton, FL, United States
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, United Kingdom
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
49
|
Suárez-Méndez S, García-de la Cruz DD, Tovilla-Zárate CA, Genis-Mendoza AD, Ramón-Torres RA, González-Castro TB, Juárez-Rojop IE. Diverse roles of mtDNA in schizophrenia: Implications in its pathophysiology and as biomarker for cognitive impairment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 155:36-41. [PMID: 32437701 DOI: 10.1016/j.pbiomolbio.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 04/25/2020] [Indexed: 01/11/2023]
Abstract
Schizophrenia (SZ) is a mental disorder characterized by neurocognitive dysfunctions and a reduction in occupational and social functioning. Several studies have provided evidence for mitochondrial dysfunction in the pathophysiology of SZ. In this sense, it is known that the addition of genetic variations in mitochondrial DNA (mtDNA) impairs oxidative phosphorylation of enzymatic complexes in mitochondria, resulting in ATP depletion and subsequent enhancement of reactive oxygen species; this is associated with cellular degeneration and apoptosis observed in some neuropsychiatric disorders. As a consequence of mitochondrial dysfunction, an increase in circulating cell-free mtDNA fragments can occur, which has been observed in individuals with SZ. Moreover, due to the bacterial origin of mitochondria, these cell-free mtDNA fragments in blood plasma may induce inflammatory and immunogenic responses, especially when their release is enhanced in specific disease conditions. However, the exact mechanism by which mtDNA could be released into blood plasma is not yet clear. Therefore, the aims of this review article were to discuss the participation of mtDNA genetic variations in physiopathologic mechanisms of SZ, and to determine the status of the disease and the possible ensuing changes over time by using circulating cell-free mtDNA fragments as a biomarker.
Collapse
Affiliation(s)
- Samuel Suárez-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Dulce Dajheanne García-de la Cruz
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; Hospital Regional de Alta Especialidad de Salud Mental, Villahermosa, Tabasco, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Alma Delia Genis-Mendoza
- Instituto Nacional de Medicina Genómica, Laboratorio de Enfermedades Psiquiátricas y Neurodegenerativas, Ciudad de México, Mexico; Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Ciudad de México, Mexico
| | - Rosa Angélica Ramón-Torres
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Thelma Beatriz González-Castro
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; División Académica de Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
50
|
Ni P, Chung S. Mitochondrial Dysfunction in Schizophrenia. Bioessays 2020; 42:e1900202. [PMID: 32338416 DOI: 10.1002/bies.201900202] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/29/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a severe neurodevelopmental disorder affecting 1% of populations worldwide with a grave disability and socioeconomic burden. Current antipsychotic medications are effective treatments for positive symptoms, but poorly address negative symptoms and cognitive symptoms, warranting the development of better treatment options. Further understanding of SCZ pathogenesis is critical in these endeavors. Accumulating evidence has pointed to the role of mitochondria and metabolic dysregulation in SCZ pathogenesis. This review critically summarizes recent studies associating a compromised mitochondrial function with people with SCZ, including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cell studies. This review also discusses animal models with mitochondrial dysfunction resulting in SCZ-relevant neurobehavioral abnormalities, as well as restoration of mitochondrial function as potential therapeutic targets. Further understanding of mitochondrial dysfunction in SCZ may open the door to develop novel therapeutic strategies that can address the symptoms that cannot be adequately addressed by current antipsychotics alone.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|