1
|
Kukkola A, Schneidewind U, Haverson L, Kelleher L, Drummond JD, Sambrook Smith G, Lynch I, Krause S. Snapshot Sampling May Not Be Enough to Obtain Robust Estimates for Riverine Microplastic Loads. ACS ES&T WATER 2024; 4:2309-2319. [PMID: 38752202 PMCID: PMC11091885 DOI: 10.1021/acsestwater.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Wastewater treatment plants (WWTPs) have been described as key contributors of microplastics (MPs) to aquatic systems, yet temporal fluctuations in MP concentrations and loads downstream are underexplored. This study investigated how different sampling frequencies (hourly, weekly, and monthly) affect MP estimates in a stream linked to a single WWTP. Utilizing fluorescence microscopy and Raman spectroscopy, considerable hourly variations in MP concentrations were discovered, while the polymer composition remained consistent. This temporal variability in MP loads was influenced by MP concentration, discharge rates, or a mix of both. These results show a high uncertainty, as relying on sparse snapshot samples combined with annual discharge data led to significant uncertainties in MP load estimates (over- and/or underestimation of emissions by 3.8 billion MPs annually at this site). Our findings stress the necessity of higher-frequency sampling for better comprehending the hydrodynamic factors influencing MP transport. This improved understanding enables a more accurate quantification of MP dynamics, crucial for downstream impact assessments. Therefore, preliminary reconnaissance campaigns are essential for designing extended, representative site-monitoring programs and ensuring more precise trend predictions on a larger scale.
Collapse
Affiliation(s)
- Anna Kukkola
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Uwe Schneidewind
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lee Haverson
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Liam Kelleher
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Jennifer D. Drummond
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Gregory Sambrook Smith
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Stefan Krause
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- LEHNA
- Laboratoire d’ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
2
|
Liu SS, Cheng SM, Cai QS, Ying GG, Chen CE. Short-term mass loads of per- and polyfluoroalkyl substances in a wastewater treatment plant from South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17417-17425. [PMID: 38337116 DOI: 10.1007/s11356-024-32204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Wastewater treatment plants (WWTPs) are one of the most important sources and sinks for per- and polyfluoroalkyl substances (PFAS). However, limited studies have evaluated short-term temporal variability of PFAS in WWTPs, particularly for their intra-day variations. For this purpose, a time-composite sampling campaign was carried out at a WWTP influent from South China for 1 week. Five out of ten PFAS were found in the influent, i.e., perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutane sulfonic acid (PFBS), and perfluorooctanesulfonic acid (PFOS). PFOA was the most domain PFAS whereas PFOS was detected occasionally, which might be associated with the prohibition of PFOS use in China. For the first time, we observed significant intra-day fluctuations in mass fluxes for PFOS. Different from a morning peak of pharmaceuticals reported previously, PFOS mass loads fluctuated sharply at noon and night on the weekdays. Furthermore, the mass fluxes of PFOA on the weekend were significantly elevated. For the other PFAS detected, no significant diurnal variations in mass loads were identified. Correlation analysis indicated that domestic activities (e.g., home cleaning) are likely to be the major source of these perfluorocarboxylic acids especially PFOA. In addition, flow fluxes had little effects on these PFAS mass load. These results can aid in future sampling campaigns and optimizing removal strategies for PFAS in wastewater.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Ming Cheng
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qi-Si Cai
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guang-Guo Ying
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chang-Er Chen
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
4
|
Mahlangu OT, Motsa MM, Hai FI, Mamba BB. Role of Membrane-Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes. MEMBRANES 2023; 13:744. [PMID: 37623805 PMCID: PMC10456577 DOI: 10.3390/membranes13080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
In this study, polyethersulfone (PES) ultrafiltration (UF) membranes were modified with GO, Ag, ZnO, Ag-GO and ZnO-GO nanoparticles to improve carbamazepine removal and fouling prevention by making membrane surfaces more hydrophilic. The fabricated membranes were characterized for surface and cross-sectional morphology, surface roughness and zeta potential, as well as hydrophilicity, functional groups, surface tension parameters and water permeability Thereafter, the membranes were evaluated for their efficiency in removing MgSO4 and carbamazepine as well as antifouling properties. To understand the role of affinity interactions in rejection and fouling, membrane-solute adhesion energies (∆Gslm) were quantified based on the Lifshitz-van der Waals/acid-base method. Unlike previous studies, which have generalized fouling prevention to be due to improvements in hydrophilicity upon adding nanoparticles, this work further explored the role of surface tension components on rejection and fouling prevention. The addition of nanoparticles improved membrane hydrophilicity (77-62°), water permeability (11.9-17.7 Lm-2 h-1 bar-1), mechanical strength (3.46-4.11 N/mm2), carbamazepine rejection (30-85%) and fouling prevention (60-23% flux decline). Rejection and antifouling properties increased as ∆Gslm became more repulsive (i.e., less negative). Membrane modification reduced irreversible fouling, and the fouled membranes were cleaned by flushing with water. Fouling related more to membrane electron donor components (γ-), while the roles of electron acceptor (γ+) and Lifshitz-van der Waals components (γLW) were less important. This work provides more insights into the role of affinity interactions in rejection and fouling and how rejection and fouling mechanisms change with nanoparticle addition.
Collapse
Affiliation(s)
- Oranso Themba Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa; (M.M.M.); (B.B.M.)
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Mxolisi Machawe Motsa
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa; (M.M.M.); (B.B.M.)
| | - Faisal Ibney Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa; (M.M.M.); (B.B.M.)
| |
Collapse
|
5
|
Clokey JE, Hawker DW, Verhagen R, Ghorbani Gorji S, Knight ER, Thomas KV, Kaserzon SL. Calibration of a microporous polyethylene tube passive sampler for polar organic compounds in wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162497. [PMID: 36863593 DOI: 10.1016/j.scitotenv.2023.162497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Water resources are vulnerable to contamination from polar organic compounds (POCs) originating from sources such as wastewater effluent. Two configurations of a microporous polyethylene tube (MPT) passive sampler were investigated for the time-integrative detection and quantification of POCs in effluent. One configuration contained the polymeric reversed phase sorbent Strata-X (SX) and the other Strata-X suspended in agarose gel (SX-Gel). These were deployed for up to 29 days and analysed for forty-nine POCs including pesticides, pharmaceuticals and personal care products (PPCPs) together with illicit drugs. Complementary composite samples were collected on days 6, 12, 20 and 26 representing the previous 24 h. Thirty-eight contaminants were detected in composite samples and MPT extracts, with MPT sampling rates (Rs) for 11 pesticides and 9 PPCPs/drugs ranging from 0.81 to 10.32 mL d-1 in SX and 1.35-32.83 mL d-1 in SX-Gel. Half-times to equilibrium of contaminants with the SX and SX-Gel equipped samplers ranged from two days to >29 days. MPT (SX) samplers were also deployed at 10 wastewater treatment effluent discharge sites across Australia for 7 days (again with complementary composite samples), to validate the sampler performance under varying conditions. Extracts from these MPTs detected 48 contaminants in comparison with 46 in composite samples, with concentrations ranging from 0.1 to 138 ng mL-1. An advantage of the MPT was preconcentration of contaminants, resulting in extract levels often markedly above instrument analytical detection limits. The validation study demonstrated a high correlation between accumulated contaminant mass in the MPTs and wastewater concentrations from composite samples (r2 > 0.70, where concentrations in composite samples were > 3× LOD). The MPT sampler shows promise as a sensitive tool for detecting POCs at trace levels in wastewater effluent and also quantifying these levels if temporal concentration variations are not significant.
Collapse
Affiliation(s)
- Joseph E Clokey
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Darryl W Hawker
- Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Rory Verhagen
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Sara Ghorbani Gorji
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Emma R Knight
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Kevin V Thomas
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Sarit L Kaserzon
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
6
|
Varga L, Fenner K, Singer H, Honti M. From market to environment - consumption-normalised pharmaceutical emissions in the Rhine catchment. WATER RESEARCH 2023; 239:120017. [PMID: 37172372 DOI: 10.1016/j.watres.2023.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
Direct and indirect threats by organic micropollutants can only be reliably assessed and prevented if the exposure to these chemicals is known, which in turn requires a confident estimate of their emitted amounts into the environment. APIs (Active Pharmaceutical Ingredients) enter surface waters mostly through the sewer system and wastewater treatment plants (WWTPs). However, their effluent fluxes are highly variable and influenced by several different factors that challenge robust emission estimates. Here, we defined a dimensionless, theoretically consumption-independent 'escape factor' (kesc) for estimating the amount of APIs (expected to be) present in WWTP effluents. The factor is determined as the proportion of marketed and actually emitted amounts of APIs. A large collection of German and Swiss monitoring datasets were analyzed to calculate stochastic kesc values for 31 APIs, reflecting both the magnitude and uncertainty of consumption-normalised emissions. Escape factors provide an easy-to-use tool for the estimation of average API emissions and expected variability from numerous WWTPs given that consumption data are provided, thereby supporting simulation modeling of the fate of APIs in stream networks or exposure assessments.
Collapse
Affiliation(s)
- Laura Varga
- Department of Sanitary and Environmental Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Mark Honti
- Eötvös Loránd Research Network, ELKH-BME Water Research Group, Budapest H-1111, Hungary
| |
Collapse
|
7
|
Engin AB, Engin ED, Engin A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104081. [PMID: 36805463 DOI: 10.1016/j.etap.2023.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
8
|
Gabrielli M, Delli Compagni R, Gusmaroli L, Malpei F, Polesel F, Buttiglieri G, Antonelli M, Turolla A. Modelling and prediction of the effect of operational parameters on the fate of contaminants of emerging concern in WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159200. [PMID: 36202354 DOI: 10.1016/j.scitotenv.2022.159200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) provide a barrier against the discharge of contaminants of emerging concern (CECs) into the environment. The removal of CECs is highly WWTP-specific and the underlying mechanisms are still poorly understood, hampering the optimization of biological treatment steps for their removal. To fill this knowledge gap, we assessed the influence of four operational parameters of activated sludge biological treatment, namely total suspended solids, temperature, pH and redox conditions, on the sorption and biodegradation of four CECs under controlled laboratory conditions. Design of Experiments was used to better address the factors influencing CECs removal and interactions among operational parameters. The derived statistical models showed results in concordance with previous studies and indicated how sorption and biodegradation of the investigated CECs depend on most tested parameters and few of their interactions. The predictions of the developed models have been compared with literature values, indicating how the tested parameters are responsible for most of the variability of sorption, while they could not reliably generalize biodegradation rates. The developed models were also implemented as an extension of a mechanistic biological treatment model, successfully describing the dynamic behaviour of a large-scale WWTP, which was observed during a three-day continuous monitoring campaign. Compared to a traditional modelling approach, the one including the developed models showed on average almost a three-fold uncertainty reduction, favouring its use to aid WWTP managers and regulators for improved assessment of CEC fate and removal. Finally, the models highlighted that, while higher temperatures and solids concentrations generically favoured CECs removal, removal efficiency vary significantly due to operational parameters and no globally optimum conditions for CECs removal exist. The use of these models opens the door to the combined dynamic management of both traditional contaminants and CECs in WWTPs.
Collapse
Affiliation(s)
- Marco Gabrielli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Riccardo Delli Compagni
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Gusmaroli
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Francesca Malpei
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Manuela Antonelli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
9
|
Rodrigues-Silva F, V M Starling MC, Amorim CC. Challenges on solar oxidation as post-treatment of municipal wastewater from UASB systems: Treatment efficiency, disinfection and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157940. [PMID: 35952890 PMCID: PMC9554792 DOI: 10.1016/j.scitotenv.2022.157940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The application of solar photo-Fenton as post-treatment of municipal secondary effluents (MSE) in developing tropical countries is the main topic of this review. Alternative technologies such as stabilization ponds and upflow anaerobic sludge blanket (UASB) are vastly applied in these countries. However, data related to the application of solar photo-Fenton to improve the quality of effluents from UASB systems are scarce. This review gathered main achievements and limitations associated to the application of solar photo-Fenton at neutral pH and at pilot scale to analyze possible challenges associated to its application as post-treatment of MSE generated by alternative treatments. To this end, the literature review considered studies published in the last decade focusing on CECs removal, toxicity reduction and disinfection via solar photo-Fenton. Physicochemical characteristics of effluents originated after UASB systems alone and followed by a biological post-treatment show significant difference when compared with effluents from conventional activated sludge (CAS) systems. Results obtained for solar photo-Fenton as post-treatment of MSE in developed countries indicate that remaining organic matter and alkalinity present in UASB effluents may pose challenges to the performance of solar advanced oxidation processes (AOPs). This drawback could result in a more toxic effluent. The use of chelating agents such as Fe3+-EDDS to perform solar photo-Fenton at neutral pH was compared to the application of intermittent additions of Fe2+ and both of these strategies were reported as effective to remove CECs from MSE. The latter strategy may be of greater interest in developing countries due to costs associated to complexing agents. In addition, more studies are needed to confirm the efficiency of solar photo-Fenton on the disinfection of effluent from UASB systems to verify reuse possibilities. Finally, future research urges to evaluate the efficiency of solar photo-Fenton at natural pH for the treatment of effluents from UASB systems.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maria Clara V M Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
10
|
Anand U, Adelodun B, Cabreros C, Kumar P, Suresh S, Dey A, Ballesteros F, Bontempi E. Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3883-3904. [PMID: 35996725 PMCID: PMC9385088 DOI: 10.1007/s10311-022-01498-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/22/2022] [Indexed: 05/02/2023]
Abstract
Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01498-7.
Collapse
Affiliation(s)
- Uttpal Anand
- Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, Uttarakhand 249404 India
| | - S. Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462 003 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
11
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
12
|
Hasan M, Alfredo K, Murthy S, Riffat R. Biodegradation of salicylic acid, acetaminophen and ibuprofen by bacteria collected from a full-scale drinking water biofilter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113071. [PMID: 34174686 DOI: 10.1016/j.jenvman.2021.113071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
This study examined the biodegradation of two pharmaceuticals-acetaminophen, and ibuprofen, and one natural organic surrogate-salicylic acid, by bacteria seeded from backwash water collected from a full-scale biofiltration plant. The degradation was studied in the presence of oxygen. Complete removal of salicylic acid was observed in 27-66 h depending on the seasonality of the collected backwash water, while 90-92% acetaminophen removal was observed in more than 225 h. Ibuprofen demonstrated poor removal efficiencies with only 50% biodegradation after 230 h. Adenosine tri phosphate (ATP) in the reactor was found to be linked with the biodegradation rate. ATP was found to be correlated with oxygen uptake rate (OUR). ATP also had a correlation with each of extracellular polymeric substances (EPS), protein and polysaccharides. These results highlight the potential for increasing the biodegradation rates to achieve enhanced contaminant removal.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA.
| | - Katherine Alfredo
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Rumana Riffat
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
13
|
Fork ML, Fick JB, Reisinger AJ, Rosi EJ. Dosing the Coast: Leaking Sewage Infrastructure Delivers Large Annual Doses and Dynamic Mixtures of Pharmaceuticals to Urban Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11637-11645. [PMID: 34405672 DOI: 10.1021/acs.est.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are commonly detected at low concentrations in surface waters, where they disrupt biological and ecological processes. Despite their ubiquity, the annual mass of pharmaceuticals exported from watersheds is rarely quantified. We used liquid chromatography-mass spectroscopy to screen for 92 pharmaceuticals in weekly samples from an urban stream network in Baltimore, MD, USA, that lacks wastewater treatment effluents. Across the network, we detected 37 unique compounds, with higher concentrations and more compounds in streams with higher population densities. We also used concentrations and stream discharge to calculate annual pharmaceutical loads at the watershed outlet, which range from less than 1 kg to ∼15 kg and are equivalent to tens of thousands of human doses. By calculating annual watershed mass balances for eight compounds, we show that ∼0.05 to ∼42% of the pharmaceuticals consumed by humans in this watershed are released to surface waters, with the importance of different pathways (leaking sewage vs treated wastewater effluent) differing among compounds. These results demonstrate the importance of developing, maintaining, and improving sewage infrastructure to protect water resources from pharmaceutical contamination.
Collapse
Affiliation(s)
- Megan L Fork
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike AB, Millbrook, New York 12545, United States
| | - Jerker B Fick
- Department of Chemistry, Umeå University, Umeå 907 36, Sweden
| | - Alexander J Reisinger
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida 32603, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York, 12545 United States
| |
Collapse
|
14
|
Cui D, Wei N, Ling N, Zheng G, Sun Y, Chen Z, Zou X, Deng H, Li W. Effects of sulfamethoxazole on aerobic sludge granulation process. J Appl Microbiol 2021; 132:1091-1103. [PMID: 34453874 DOI: 10.1111/jam.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS Our purpose was to clarify the effect of sulfamethoxazole (SMX) on the start-up period, particle formation, and treatment efficiency of an aerobic granular sludge system. METHODS AND RESULTS We compared an R1 granular sequencing batch reactor (GSBR) started with 5 μg L-1 SMX and an R2 GSBR started without SMX, as a control, to investigate the impact of a trace amount of SMX (5 μg L-1 ) on aerobic granular sludge (AGS) characteristics and the removal of conventional contaminants. AGS granulation in the R1 system was not inhibited by SMX, but the granule particle size was smaller than that in the R2 system. Both systems had good performance removing conventional pollutants. Extracellular polymeric substance secretion in the R1 system was lower than that in the R2 system. After stabilizing reactor operations, the SMX removal efficiency in the R1 system (~73.93%) was higher than that in the R2 system (~70.66%). The start-up modes also determined the differences in the microbial community structure of the AGS systems. CONCLUSIONS SMX-activated AGS performed better than AGS without SMX. SIGNIFICANCE AND IMPACT OF STUDY The study can help engineers determine start-up modes with varieties of antibiotics in AGS processes and provide references for the optimization of water treatment processes.
Collapse
Affiliation(s)
- Di Cui
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Nianpeng Wei
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Guochen Zheng
- Songliao River Basin Water Resources Protection Bureau, Changchun, People's Republic of China
| | - Yuan Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Zeyi Chen
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Xiang Zou
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Hongna Deng
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China
| | - Wenlan Li
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, People's Republic of China.,School of Pharmacy, Harbin University of Commerce, Harbin, People's Republic of China
| |
Collapse
|
15
|
Pons MN, Louis P, Vignati D. Effect of lockdown on wastewater characteristics: a comparison of two large urban areas. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2813-2822. [PMID: 33341772 DOI: 10.2166/wst.2020.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of the lockdown imposed to limit the spread of SARS-CoV-2 in France between March 14 and May 11, 2020 on the wastewater characteristics of two large urban areas (with between 250,000 and 300,000 inhabitants) was studied. The number of outward and inward daily commuters was extracted from national census databases related to the population and their commuting habits. For urban area A, with the larger number of daily inward commuters (110,000, compared to 53,000 for B), lockdown was observed to have an effect on the monthly load averages of chemical oxygen demand, biochemical oxygen demand, total Kjeldahl nitrogen, total suspended solids and total phosphorus, all of which decreased (confidence level of 95%). This decrease, which varied between 20% and 40% and reached 45% for COD, can be related to the cessation of catering and activities such as hairdressing, which generate large amounts of graywater. The ammonium loads, due to the use of toilets before leaving for work and after returning from work, remained constant. In the case of urban area B, lockdown had no noticeable effect. More data would be necessary in the long term to analyze the effect of changes in the balance between ammonia and carbon sources on the operation of wastewater treatment plants.
Collapse
Affiliation(s)
- Marie-Noëlle Pons
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France E-mail: ; Laboratoire Réactions et Génie des Procédés, LTSER-Zone Atelier du Bassin de la Moselle, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France
| | - Pauline Louis
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France E-mail:
| | - Davide Vignati
- Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, CNRS, Campus Bridoux, Rue du Général Delestraint, Metz F-57070, France
| |
Collapse
|
16
|
Svendsen SB, El-Taliawy H, Carvalho PN, Bester K. Concentration dependent degradation of pharmaceuticals in WWTP effluent by biofilm reactors. WATER RESEARCH 2020; 186:116389. [PMID: 32916616 DOI: 10.1016/j.watres.2020.116389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/25/2023]
Abstract
Conventional wastewater treatment lacks the ability to remove many pharmaceuticals. This is leading to emissions to the natural aquatic environment, where these compounds pose a risk to the aquatic organisms. An advanced wastewater treatment technique that has shown promising results is Moving Bed Biofilm Reactors (MBBR). Initial degradation velocity and degradation rate constants of the pharmaceuticals are important parameters for designing an optimal MBBR system; however, the degradation efficiency varies across studies and one of the most plausible causes might be initial concentration. Thus, to verify the effect of initial concentration, the degradation of a mixture of 18 pharmaceuticals at different initial concentrations was studied. For this study MBBR's with very low BOD loading were used as they were conditioned with effluent water. The experiment was set up as a MBBR batch incubation, using effluent wastewater as medium, spiked with the 18 pharmaceuticals in seven different concentration levels (approximately 0-300 µg L-1). The degradation of 14 out of 18 pharmaceuticals was concentration-dependent. The initial degradation velocity of the pharmaceuticals was either proportional to the initial concentration or was following a typical Michaelis-Menten kinetic. The degradation velocity of one compound, i.e., sulfamethizole might have been inhibited at high concentrations. The degradation rate constants from single first-order fittings (KSFO) for some compounds deviated from the expected behavior at low concentrations (below 10 µg L-1). This is suggested to be caused by simplicity of the Michaelis-Menten model, not taking possible occurrence of co-metabolism and mass-transfer limitations into account at low concentrations. This study underlines the fact that K values cannot be interpreted without paying attention to the tested concentration level. Furthermore, it shows that the used MBBRs was able to handle high concentrations of pharmaceuticals, and that the most efficient removal occurs at concentrations above 100 µg L-1.
Collapse
Affiliation(s)
- Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Haitham El-Taliawy
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
17
|
Zhi H, Kolpin DW, Klaper RD, Iwanowicz LR, Meppelink SM, LeFevre GH. Occurrence and Spatiotemporal Dynamics of Pharmaceuticals in a Temperate-Region Wastewater Effluent-Dominated Stream: Variable Inputs and Differential Attenuation Yield Evolving Complex Exposure Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12967-12978. [PMID: 32960577 DOI: 10.1021/acs.est.0c02328] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effluent-dominated streams are becoming increasingly common in temperate regions and generate complex pharmaceutical mixture exposure conditions that may impact aquatic organisms via drug-drug interactions. Here, we quantified spatiotemporal pharmaceutical exposure concentrations and composition mixture dynamics during baseflow conditions at four sites in a temperate-region effluent-dominated stream (upstream, at, and progressively downstream from effluent discharge). Samples were analyzed monthly for 1 year for 109 pharmaceuticals/degradates using a comprehensive U.S. Geological Survey analytical method and biweekly for 2 years focused on 14 most common pharmaceuticals/degradates. We observed a strong chemical gradient with pharmaceuticals only sporadically detected upstream from the effluent. Seventy-four individual pharmaceuticals/degradates were detected, spanning 5 orders of magnitude from 0.28 to 13 500 ng/L, with 38 compounds detected in >50% of samples. "Biweekly" compounds represented 77 ± 8% of the overall pharmaceutical concentration. The antidiabetic drug metformin consistently had the highest concentration with limited in-stream attenuation. The antihistamine drug fexofenadine inputs were greater during warm- than cool-season conditions but also attenuated faster. Differential attenuation of individual pharmaceuticals (i.e., high = citalopram; low = metformin) contributed to complex mixture evolution along the stream reach. This research demonstrates that variable inputs over multiple years and differential in-stream attenuation of individual compounds generate evolving complex mixture exposure conditions for biota, with implications for interactive effects.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton Street, Rm 269 Federal Building, Iowa City, Iowa 52240, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E. Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, West Virginia 25430, United States
| | - Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton Street, Rm 269 Federal Building, Iowa City, Iowa 52240, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Medema G, Been F, Heijnen L, Petterson S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 17:49-71. [PMID: 33024908 PMCID: PMC7528975 DOI: 10.1016/j.coesh.2020.09.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Analysing wastewater can be used to track infectious disease agents that are shed via stool and urine. Sewage surveillance of SARS-CoV-2 has been suggested as a tool to determine the extent of COVID-19 in cities and serve as an early warning for (re-)emergence of SARS-CoV-2 circulation in communities. The focus of this review is on the strength of evidence, opportunities and challenges for the application of sewage surveillance to inform public health decision making. Considerations for undertaking sampling programs are reviewed including sampling sites, strategies, sample transport, storage and quantification methods; together with the approach and evidence base for quantifying prevalence of infection from measured wastewater concentration. Published SARS-CoV-2 sewage surveillance studies (11 peer reviewed and 10 preprints) were reviewed to demonstrate the current status of implementation to support public health decisions. Although being very promising, a number of areas were identified requiring additional research to further strengthen this approach and take full advantage of its potential. In particular, design of adequate sampling strategies, spatial and temporal resolution of sampling, sample storage, replicate sampling and analysis, controls for the molecular methods used for the quantification of SARS-CoV-2 RNA in wastewater. The use of appropriate prevalence data and methods to correlate or even translate SARS-CoV-2 concentrations in wastewater to prevalence of virus shedders in the population is discussed.
Collapse
Affiliation(s)
- Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, Nieuwegein, 3433 PE, the Netherlands
- Delft University of Technology, Stevinweg 1, Delft, 2628 CN, the Netherlands
- Michigan State University, 1405 S Harrison Rd, East-Lansing, Michigan, 48823, USA
| | - Frederic Been
- KWR Water Research Institute, Groningenhaven 7, Nieuwegein, 3433 PE, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, Nieuwegein, 3433 PE, the Netherlands
| | - Susan Petterson
- Water & Health Pty Ltd, North Sydney, 2060, Australia
- School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia
| |
Collapse
|
19
|
Modelling daily and hourly loads of pharmaceuticals in urban wastewater. Int J Hyg Environ Health 2020; 229:113552. [DOI: 10.1016/j.ijheh.2020.113552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/22/2022]
|
20
|
Castrignanò E, Yang Z, Feil EJ, Bade R, Castiglioni S, Causanilles A, Gracia-Lor E, Hernandez F, Plósz BG, Ramin P, Rousis NI, Ryu Y, Thomas KV, de Voogt P, Zuccato E, Kasprzyk-Hordern B. Enantiomeric profiling of quinolones and quinolones resistance gene qnrS in European wastewaters. WATER RESEARCH 2020; 175:115653. [PMID: 32208173 DOI: 10.1016/j.watres.2020.115653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 05/27/2023]
Abstract
Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe with the aim of estimating quinolones consumption via the analysis of human urinary metabolites in wastewater. This report is also the first pan-European study focussed on the enantiomeric profiling of chiral quinolones in wastewater. By considering loads of (fluoro)quinolones in wastewater within the context of human stereoselective metabolism, we identified cities in Southern Europe characterised by both high usage and direct disposal of unused ofloxacin. In Northern European cities, S-(-)-ofloxacin loads were predominant with respect to R-(+)-ofloxacin. Much more potent, enantiomerically pure S-(-)-ofloxacin was detected in wastewaters from Southern European cities, reflecting consumption of the enantiomerically pure antibiotic. Nalidixic acid, norfloxacin and lomefloxacin were detected in wastewater even though they were not prescribed according to official prescription data. S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were detected in wastewater due to metabolism of moxifloxacin. For the first time, average population-normalised ulifloxacin loads of 22.3 and 1.5 mg day-1 1000 people-1 were reported for Milan and Castellón as a result of prulifloxacin metabolism. Enrichment of flumequine with first-eluting enantiomer in all the samples indicated animal metabolism rather than its direct disposal. Fluoroquinolone loads were compared with qnrS gene encoding quinolone resistance to correlate usage of fluoroquinolone and prevalence of resistance. The highest daily loads of the qnrS gene in Milan corresponded with the highest total quinolone load in Milan proving the hypothesis that higher usage of quinolones is linked with higher prevalence of quinolone resistance genes. Utrecht, with the lowest quinolones usage (low daily loads) had also one of the lowest daily loads of the qnrS gene. However, a similar trend was not observed in Oslo nor Bristol where higher qnrS gene loads were observed despite low quinolone usage.
Collapse
Affiliation(s)
- Erika Castrignanò
- Department of Chemistry, Faculty of Science, University of Bath, Bath, BA2 7AY, United Kingdom; Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Zhugen Yang
- Department of Chemistry, Faculty of Science, University of Bath, Bath, BA2 7AY, United Kingdom; School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, BA27AY, United Kingdom
| | - Richard Bade
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sara Castiglioni
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, the Netherlands
| | - Ana Causanilles
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, the Netherlands
| | - Emma Gracia-Lor
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy; Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, Madrid, Spain
| | - Felix Hernandez
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benedek G Plósz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark; Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Nikolaos I Rousis
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Yeonsuk Ryu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway; Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Pim de Voogt
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy; IBED-University of Amsterdam, the Netherlands
| | - Ettore Zuccato
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | | |
Collapse
|
21
|
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136916. [PMID: 32041046 DOI: 10.1016/j.scitotenv.2020.136916] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 05/23/2023]
Abstract
Global Trimethoprim (TMP) and Sulfamethoxazole (SMX) occurrences in raw wastewaters were systematically collected from the literature (n = 140 articles) in order to assess the relevance of using the SMX/TMP ratio as a marker of the main origin of wastewaters. These two antibiotics were selected due to their frequent use in association (i.e. co-trimoxazole) in a 5:1 ratio (SMX:TMP) for medication purposes, generating a unique opportunity to globally evaluate the validity of this ratio based on concentration values. Several parameters (e.g. sorption, biodegradation) may affect the theoretical SMX/TMP ratio. However, the collected data highlighted the good agreement between the theoretical ratio and the experimental one, especially in wastewater treatment plant influents and hospital effluents. Only livestock effluents displayed a very high SMX/TMP ratio, indicative of the very significant use of sulfonamide alone in this industry. Conversely, several countries displayed low SMX/TMP ratio values, highlighting local features in the human pharmacopoeia. This review provides new insights in order to develop an easy to handle and sound marker of wastewater origins (i.e. human/livestock), beyond atypical local customs.
Collapse
Affiliation(s)
- Thomas Thiebault
- EPHE, PSL University, UMR 7619 METIS, Sorbonne University, CNRS, F-75005, Paris, France.
| |
Collapse
|
22
|
Giebułtowicz J, Nałęcz-Jawecki G, Harnisz M, Kucharski D, Korzeniewska E, Płaza G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials' Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules 2020; 25:molecules25061470. [PMID: 32213976 PMCID: PMC7144726 DOI: 10.3390/molecules25061470] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022] Open
Abstract
In this study, a screening of 26 selected antimicrobials using liquid chromatography coupled to a tandem mass spectrometry method in two Polish wastewater treatment plants and their receiving surface waters was provided. The highest average concentrations of metronidazole (7400 ng/L), ciprofloxacin (4300 ng/L), vancomycin (3200 ng/L), and sulfamethoxazole (3000 ng/L) were observed in influent of WWTP2. Ciprofloxacin and sulfamethoxazole were the most dominant antimicrobials in influent and effluent of both WWTPs. In the sludge samples the highest mean concentrations were found for ciprofloxacin (up to 28 μg/g) and norfloxacin (up to 5.3 μg/g). The removal efficiency of tested antimicrobials was found to be more than 50% for both WWTPs. However, the presence of antimicrobials influenced their concentrations in the receiving waters. The highest antimicrobial resistance risk was estimated in influent of WWTPs for azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethoprim and in the sludge samples for the following antimicrobials: azithromycin, ciprofloxacin, clarithromycin, norfloxacin, trimethoprim, ofloxacin, and tetracycline. The high environmental risk for exposure to azithromycin, clarithromycin, and sulfamethoxazole to both cyanobacteria and eukaryotic species in effluents and/or receiving water was noted. Following the obtained results, we suggest extending the watch list of the Water Framework Directive for Union-wide monitoring with sulfamethoxazole.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland; (J.G.); (D.K.)
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland;
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, 5 Oczapowskiego, 10-719 Olsztyn, Poland; (M.H.); (E.K.)
| | - Dawid Kucharski
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland; (J.G.); (D.K.)
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, 5 Oczapowskiego, 10-719 Olsztyn, Poland; (M.H.); (E.K.)
| | - Grażyna Płaza
- Microbiology Unit, Institute for Ecology of Industrial Areas, 6 Kossutha, 40-844 Katowice, Poland
- Correspondence: ; Tel.: +48 322546031
| |
Collapse
|
23
|
di Biase A, Kowalski MS, Devlin TR, Oleszkiewicz JA. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:849-866. [PMID: 31349180 DOI: 10.1016/j.jenvman.2019.06.053] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The review encompasses the development of municipal wastewater treatment process using MBBR from early stages, established application, and recent advancements. An overview of main drivers leading to the MBBR technology development over its early stage is discussed. Biocarriers types and features together with biofilm development and role of extracellular polymeric substances (EPS) are presented, ultimately, addressing the challenge in decreasing startup time required for full operation. Furthermore, the review investigates the state of the art of MBBR technology for nutrient removal (i.e., COD and BOD, nitrogen and phosphorus) through process functionality and configuration of established (e.g., IFAS) and under development (e.g. PN/A) applications. Reactor operational characteristics such as filling fractions, mixing properties, dissolved oxygen requirements, and loading rates are presented and related to full scale examples. Current literature discussing the most recent studies on MBBR capability in reduction and removal of chemicals of emerging concern (CEC) released is presented. Ultimately, high rate carbon and nitrogen removal through A/B stage process are examined in its main operational parameters and its application towards energy neutrality suggesting novel MBBR application to further reduce energy requirements and plant footprint.
Collapse
Affiliation(s)
- Alessandro di Biase
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3T 5V6, Canada.
| | - Maciej S Kowalski
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3T 5V6, Canada
| | - Tanner R Devlin
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3T 5V6, Canada; Nexom, Winnipeg, R2J 3R8, Canada
| | - Jan A Oleszkiewicz
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3T 5V6, Canada
| |
Collapse
|
24
|
Paíga P, Correia M, Fernandes MJ, Silva A, Carvalho M, Vieira J, Jorge S, Silva JG, Freire C, Delerue-Matos C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:582-600. [PMID: 30121536 DOI: 10.1016/j.scitotenv.2018.08.129] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 05/23/2023]
Abstract
The removal efficiency of pharmaceuticals in wastewater treatment plants (WWTPs) is variable and some of these compounds pass these plants almost intact and others presenting a removal efficiency close to 100%. Their incomplete removal results in a continuous discharge of pharmaceuticals into the environment. To assess the profile of contamination of influents and effluents over a day, a set of 83 pharmaceuticals were evaluated hourly in a WWTP in Leiria, Portugal. The composite samples of the influent and effluent were also collected. Concentrations varied from <MDL for ketoprofen, clarithromycin, ofloxacin, and diltiazem to 63.97 μg/L for caffeine in the WWTP influent composite sample and <MDL for clarithromycin, bupropion, and diltiazem to 2.01 μg/L for O-desmethylvenlafaxine for effluent composite sample. Concentrations in the range of μg/L were found for hydroxyibuprofen, salicylic acid, d,l-norephedrine, and caffeine in the WWTP influent, and diclofenac, carbamazepine, O-desmethylvenlafaxine in the WWTP effluents. For the samples collected hourly, thirty-eight and twenty-nine pharmaceuticals were detected in at least one WWTP sample. In the WWTP influent the total concentration of detected pharmaceuticals was higher between 15 and 22 h and lower in the period from 23 to 10 h in the morning. In the WWTP effluent, a slight variation was noticed throughout the sampling hours. Carbamazepine, fluoxetine, sertraline, atorvastatin, caffeine, simvastatin, and trazodone were the pharmaceuticals with risk quotient (RQ) >1 in WWTP influents, and carbamazepine, fluoxetine, sertraline the pharmaceuticals with an RQ > 1 in WWTP effluents.
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela Correia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| | - Maria João Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; IIT/LTA - Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ana Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; IIT/LTA - Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Manuela Carvalho
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Joana Vieira
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal
| | - Jaime Gabriel Silva
- Águas de Santo André, Cerca da Água, Rua dos Cravos, 7500-130 Vila Nova de Santo André, Portugal; Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Freire
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
25
|
Yu X, Zhang M, Zuo J, Shi X, Tang X, Chen L, Li Z. Evaluation of antibiotic resistant lactose fermentative opportunistic pathogenic Enterobacteriaceae bacteria and bla TEM-2 gene in cephalosporin wastewater and its discharge receiving river. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:458-465. [PMID: 30245270 DOI: 10.1016/j.jenvman.2018.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the concentration of cephalosporin, the resistant levels of lactose fermentative opportunistic pathogenic Enterobacteriaceae bacteria (LFOPEB) against seven antibiotics and one cephalosporin-resistant gene in cephalosporin wastewater (CPWW) treatment plant and its discharge receiving river. Although large numbers of bacteria have been removed during the CPWW treatment process, the antibiotic resistant rates of the isolates to β-lactam antibiotics significantly increased (p = 0.032) after treatment, while the percentage of resistant LFOPEB to non-β-lactam antibiotics did not change dramatically. Furthermore, the discharge of the effluent of CPWW treatment plant (CPWWeff) led to an obvious increase in the percentages of β-lactam antibiotic-resistant LFOPEB and relative abundance of the blaTEM-2 gene in the downstream receiving river (RWdown) in comparison with those in the upstream receiving river (RWup). The antibiotic resistant phenotypes of isolates in the influent of CPWW treatment plant (CPWWin), CPWWeff and RWdown appeared to be seriously affected by the cephalosporin residues, which suggested that main antibiotic resistance phenotypes in antibiotic contaminated water were closely associated with its antibiotic composition. Therefore, CPWW treatment process has been proved to result in selective growth of ARB and proliferation of ARG. Besides, CPWWeff was also proved to be an important supplier of ARB and ARG to the receiving river.
Collapse
Affiliation(s)
- Xin Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; China Academy of Urban Planning & Design, Beijing 100044, China
| | - Mengyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; China Urban Construction Design & Research Institute CO.LTD, Beijing 100120, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xuchuan Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyao Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
26
|
Li WL, Zhang ZF, Ma WL, Liu LY, Song WW, Li YF. An evaluation on the intra-day dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1139-1147. [PMID: 30021279 DOI: 10.1016/j.scitotenv.2018.05.362] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater have become an emerging issue due to their negative effects on human health and aquatic ecosystems. Two full-scale municipal and industrial wastewater treatment plants (WWTPs) along the Songhua River were chosen to evaluate the intra-day dynamics, seasonal variations and removal of 12 selected PPCPs. Our results suggested that the selected PPCPs were frequently detected in the influent and effluent. Caffeine was the predominant compound in the influent; while the selected PPCPs was dominated by TCS in the effluent, suggesting the different fates of selected PPCPs in the WWTPs. The intra-day dynamics of PPCPs in the influent were evaluated, suggesting that the 12 PPCPs can be grouped into three categories because of their different use patterns. The analysis of seasonal changes of PPCPs concentrations in the WWTPs suggested that the concentrations of some PPCPs were influenced by the chemical usage, degradation and temperature. The removal efficiency for the PPCPs were very high with the values ranged from 70.0% to 99.7% for WWTP#1, and from 62.5% to 99.4% for WWTP#2. Significant seasonal variations of PPCPs removal efficiency were observed. Base on the mass loading of PPCPs in the two WWTPs, our results suggested that WWTP#1 in the urban core received much more PPCPs in comparison to WWTP#2 in the suburban regions, suggesting that influences of the service population.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada.
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
27
|
Farkas K, Marshall M, Cooper D, McDonald JE, Malham SK, Peters DE, Maloney JD, Jones DL. Seasonal and diurnal surveillance of treated and untreated wastewater for human enteric viruses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33391-33401. [PMID: 30259243 PMCID: PMC6245017 DOI: 10.1007/s11356-018-3261-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/14/2018] [Indexed: 04/16/2023]
Abstract
Understanding the abundance and fate of human viral pathogens in wastewater is essential when assessing the public health risks associated with wastewater discharge to the environment. Typically, however, the microbiological monitoring of wastewater is undertaken on an infrequent basis and peak discharge events may be missed leading to the misrepresentation of risk levels. To evaluate diurnal patterns in wastewater viral loading, we undertook 3-day sampling campaigns with bi-hourly sample collection over three seasons at three wastewater treatment plants. Untreated influent was collected at Ganol and secondary-treated effluent was sampled at Llanrwst and Betws-y-Coed (North Wales, UK). Our results confirmed the presence of human adenovirus (AdV), norovirus genotypes I and II (NoVGI and NoVGII) in both influent and effluent samples while sapovirus GI (SaVGI) was only detected in influent water. The AdV titre was high and relatively constant in all samples, whereas the NoVGI, NoVGII and SaVGI showed high concentrations during autumn and winter and low counts during the summer. Diurnal patterns were detected in pH and turbidity for some sampling periods; however, no such changes in viral titres were observed apart from slight fluctuations in the influent samples. Our findings suggest that viral particle number in wastewater is not affected by daily chemical fluctuations. Hence, a grab sample taken at any point during the day may be sufficient to enumerate the viral load of wastewater effluent within an order of magnitude while four samples a day are recommended for testing wastewater influent samples.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - Miles Marshall
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - David Cooper
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Dafydd E Peters
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, LL57 2AS, UK
| | - John D Maloney
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
28
|
Polesel F, Farkas J, Kjos M, Almeida Carvalho P, Flores-Alsina X, Gernaey KV, Hansen SF, Plósz BG, Booth AM. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants. WATER RESEARCH 2018; 141:19-31. [PMID: 29753974 DOI: 10.1016/j.watres.2018.04.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/21/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Due to their widespread application in consumer products, elemental titanium (e.g., titanium dioxide, TiO2) and silver (Ag), also in nanoparticulate form, are increasingly released from households and industrial facilities to urban wastewater treatment plants (WWTPs). A seven-day sampling campaign was conducted in two full-scale WWTPs in Trondheim (Norway) employing only primary treatment. We assessed the occurrence and elimination of Ti and Ag, and conducted size-based fractionation using sequential filtration of influent samples to separate particulate, colloidal and dissolved fractions. Eight-hour composite influent samples were collected to assess diurnal variations in total Ti and Ag influx. Measured influent Ti concentrations (up to 290 μg L-1) were significantly higher than Ag (<0.15-2.1 μg L-1), being mostly associated with suspended solids (>0.7 μm). Removal efficiencies ≥70% were observed for both elements, requiring for one WWTP to account for the high Ti content (∼2 g L-1) in the flocculant. Nano- and micron-sized Ti particles were observed with scanning transmission electron microscopy (STEM) in influent, effluent and biosolids, while Ag nanoparticles were detected in biosolids only. Diurnal profiles of influent Ti were correlated to flow and pollutant concentration patterns (especially total suspended solids), with peaks during the morning and/or evening and minima at night, indicating household discharges as predominant source. Irregular profiles were exhibited by influent Ag, with periodic concentration spikes suggesting short-term discharges from one or few point sources (e.g., industry). Influent Ti and Ag dynamics were reproduced using a disturbance scenario generator model, and we estimated per capita loads of Ti (42-45 mg cap-1 d-1) and Ag (0.11 mg cap-1 d-1) from households as well as additional Ag load (14-22 g d-1) from point discharge. This is the first study to experimentally and mathematically describe short-term release dynamics and dry-weather sources of emissions of Ti and Ag in municipal WWTPs and receiving environments.
Collapse
Affiliation(s)
- Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark.
| | - Julia Farkas
- SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Marianne Kjos
- SINTEF Materials and Chemistry, Postboks 4760 Torgarden, 7465 Trondheim, Norway
| | | | - Xavier Flores-Alsina
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kongens Lyngby, Denmark
| | - Krist V Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kongens Lyngby, Denmark
| | - Steffen Foss Hansen
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andy M Booth
- SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway.
| |
Collapse
|
29
|
Castrignanò E, Kannan AM, Feil EJ, Kasprzyk-Hordern B. Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry. CHEMOSPHERE 2018; 206:376-386. [PMID: 29754062 DOI: 10.1016/j.chemosphere.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
This paper aims to examine the multiresidue enantiomeric profiling of (fluoro)quinolones and their metabolites in solid and liquid environmental matrices using chiral HPLC-MS/MS method and a CHIRALCEL® OZ-RH column. Simultaneous chiral separation was obtained for chiral ofloxacin and its main metabolites ofloxacin-N-oxide and desmethyl-ofloxacin; moxifloxacin; the prodrug prulifloxacin and its active compound ulifloxacin; flumequine; nadifloxacin and R-(+)-besifloxacin. Achiral antibiotics (ciprofloxacin, norfloxacin and nalidixic acid) were also included in the method to enable the analysis of all targeted quinolones within one analytical run. Satisfactory enantiomeric resolution (Rs ≥ 1) was obtained for five out of eight chiral drugs enabling quantitative analysis. The overall performance of the method was satisfactory with a method precision <20%, relative recoveries >70% for most of the analytes and method detection limits (MDL) at low ng L-1 levels (0.1 < MDL (ng L-1)< 6.4, 0.1 < MDL (ng L-1)< 6.6 and 0.1 < MDL (ng L-1)< 7.0 in influent, effluent and river waters for 83% compounds, 0.01 < MDL (ng g-1)< 4.9 in solids for 91% compounds). Enantiomeric profiling from a week-long monitoring campaign in the UK showed that (±)-ofloxacin was found to be racemic in upstream waters but it was enriched with S-(-)-enantiomer in wastewater and in receiving waters. This could be due to the fact that ofloxacin can be used both as a racemate and as a S-(-)-enantiomer. Its consumption was further confirmed by the chiral signature of the investigated ofloxacin metabolites. As a result, alterations in the enantiomeric composition of antibiotics could influence not only their activity and toxicity in the environment, but also could induce changes in the microbial communities constantly exposed to them.
Collapse
Affiliation(s)
- Erika Castrignanò
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Andrew M Kannan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, BA27AY, United Kingdom
| | | |
Collapse
|
30
|
Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, Sorial GA, Asgari G, Ramavandi B. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:703-712. [PMID: 29426195 DOI: 10.1016/j.scitotenv.2018.01.305] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Occurrence and frequency of six most prescribed antibiotics (tetracycline, norfloxacin, azithromycin, anhydro erythromycin, cephalexin, and amoxicillin) were assessed in three wastewater treatment plants (WWTPs), and in water and sediments of the Persian Gulf at Bushehr coastline, Iran. The antibiotics concentration in the influent and effluent of septic tank (the hospital WWTP), activated sludge (the hospital WWTP), and stabilization pond (municipal WWTP) ranged between 7.89 and 149.63, 13.49-198.47, 6.55-16.37 ng/L, respectively. Conventional treatment resulted in incomplete removal of most of the studied antibiotics. Furthermore, the activated sludge was more effective in terms of antibiotic elimination compared to the stabilization pond or septic tank. The mean concentration of antibiotics ranged 1.21-51.50 ng/L in seawater and 1.40-25.32 ng/g in sediments during summer and winter. Norfloxacin was the dominant detected antibiotic in seawater, sediments, and influent of two hospital WWTPs. Seasonal comparisons showed significant differences for erythromycin and amoxicillin concentrations in seawater. Spatial variation indicated the role of physicochemical properties on distribution of antibiotics in seawater and sediments. The results emphasize the need to pay attention to antibiotic contamination in water and sediments of the Persian Gulf.
Collapse
Affiliation(s)
- Raheleh Kafaei
- School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Papari
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soleyman Sahebi
- Research and Technology Center of Membrane Processes (RTCMP), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Rahim Tahmasebi
- Department of Biostatistics, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - George A Sorial
- Environmental Engineering Program, Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahman Ramavandi
- Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
31
|
Roudbari A, Rezakazemi M. Hormones removal from municipal wastewater using ultrasound. AMB Express 2018; 8:91. [PMID: 29858695 PMCID: PMC5984614 DOI: 10.1186/s13568-018-0621-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Estrogens are one of the micro-pollutants in the wastewater which have detrimental effects on water living organisms. The aim of this study was to evaluate the efficiency of ultrasound to reduce the estrogen (E1) and 17 beta-estradiol (E2) from municipal wastewater. Hence, a cylindrical batch reactor was designed. The effects of powers, frequency, exposure time and pH on reduction efficiency were investigated. The residual concentration of E1 and E2 hormones was measured in reactor effluent by electrochemiluminescence (ECL) method. The results showed that ultrasound removed 85-96% of both E1 and E2 hormones after 45 min while other parameters changes in the range of their operations. Also, the frequency and power of ultrasound had a significant effect on reduction efficiency of hormones while the exposure had no significant effect. Furthermore, the interaction of power and frequency reduced their efficacy to 64.3% (Pvalue = 0.005). The result also indicated that the ultrasound waves have high ability to reduce Steroid hormones from municipal wastewater. The proposed method can be considered as one of the significant strategies for reduction or destruction of hormones from wastewater due to the non-generation of dangerous by-products and the low energy consumption.
Collapse
|
32
|
Atinkpahoun CNH, Le ND, Pontvianne S, Poirot H, Leclerc JP, Pons MN, Soclo HH. Population mobility and urban wastewater dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1431-1437. [PMID: 29890608 DOI: 10.1016/j.scitotenv.2017.12.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Dynamic influent models, which have been proposed to test control strategies using virtual wastewater treatment plants, should be as realistic as possible. The number of inhabitants in the catchment at any given time and their ways of life are among the parameters affecting the quality of these models. Census data related to work and school commutes were used to evaluate the number of people present in a given urban area. Based on the example of a large urban catchment (Grand Nancy, France), the results show that a population increase of 30% could occur during working hours resulting from the imbalance between workers leaving and coming into the catchment. Combined with information related to the local way of life, variation in the population helps to explain changes in wastewater flow rate and pollution (carbon, nitrogen, phosphorus and heavy metals), which present several maxima reflecting daily activities, such as bladder voiding, meals, the use of washrooms, etc. However, no well-defined variation patterns for pH and conductivity, which are linked to the concentrations of anions and cations in the wastewater, were observed. Slight reductions (up to 10% on Sundays) in the flow and pollution load were observed on weekends as the commuter flow decreased. Census data proved to be efficient in helping to understand the daily pattern of urban wastewater characteristics.
Collapse
Affiliation(s)
- Chrystelle N H Atinkpahoun
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France; Unité de Recherche en Ecotoxicologie et Etude de Qualité/Laboratoire d'Etude et de Recherche en Chimie Appliquée/Université d'Abomey-Calavi, 01 BP 2009, Cotonou, Benin
| | - Nang Dinh Le
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France; Danang University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang, Đà Nẵng, Viet Nam
| | - Steve Pontvianne
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Hélène Poirot
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Jean-Pierre Leclerc
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France; INRS, 1 rue du Morvan, CS60027, 54519 Vandœuvre Cedex, France
| | - Marie-Noëlle Pons
- Laboratoire Réactions et Génie des Procédés (UMR 7274 CNRS), Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France; LTSER-Zone Atelier Bassin de la Moselle, LRGP, Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - Henri H Soclo
- Unité de Recherche en Ecotoxicologie et Etude de Qualité/Laboratoire d'Etude et de Recherche en Chimie Appliquée/Université d'Abomey-Calavi, 01 BP 2009, Cotonou, Benin
| |
Collapse
|
33
|
Thiebault T, Fougère L, Destandau E, Réty M, Jacob J. Temporal dynamics of human-excreted pollutants in wastewater treatment plant influents: Toward a better knowledge of mass load fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:246-255. [PMID: 28433767 DOI: 10.1016/j.scitotenv.2017.04.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 05/13/2023]
Abstract
The occurrence of 25 drug target residues (illicit drugs or pharmaceutically active compounds) was investigated during 85 consecutive days in the influents of a wastewater treatment plant in the Region Centre-Val de Loire, France. This long tracking period allowed a better understanding of the patterns affecting the occurrence of this type of contaminants. Among them, 2 were never detected (i.e. heroin and amphetamine). Concerning illicit drugs two patterns were found. Cocaine and ecstasy median loads varied considerably between weekdays and weekend days (i.e. 18.3 and 35.9% respectively) whereas cannabis and heroin (based on 6-mono-acetylmorphine loads) loads were within the same order of magnitude with a significant statistical correlation with pharmaceuticals such as acetaminophen or ketoprofen. The consumption of selected drugs was back-calculated from the loads. Among illicit drugs the highest consumption was found for cannabis with a median consumption of 51mg·day-1·inhabitant-1 (inh) whereas the median consumption for cocaine (based on benzoylecgonine loads) and ecstasy was 32 and 6mg·day-1·103·inh-1 respectively. The highest consumption values of pharmaceutically active compounds (PACs) were found for acetaminophen and acetylsalicylic acid with 108.8 and 34.1mg·day-1·inh-1 respectively, in good agreement with national sales data. A statistically significant weekly pattern was found for several PACs such as metoprolol and trimethoprim, but with the opposite pattern to that of illicit drugs. The variations in daily PAC loads could provide information about the mobility of people in the catchment, especially on the basis of daily taken PACs (i.e. to treat chronicle diseases).
Collapse
Affiliation(s)
- Thomas Thiebault
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France.
| | | | | | - Maxime Réty
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France; Univ Orleans, CNRS, ICOA, UMR 7311, 45067 Orleans, France
| | - Jérémy Jacob
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France
| |
Collapse
|
34
|
Norvill ZN, Toledo-Cervantes A, Blanco S, Shilton A, Guieysse B, Muñoz R. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds. BIORESOURCE TECHNOLOGY 2017; 232:35-43. [PMID: 28214443 DOI: 10.1016/j.biortech.2017.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 05/12/2023]
Abstract
The degradation of the antibiotic tetracycline, supplied at 100µgL-1 in domestic wastewater, was studied in an outdoor, pilot scale, high rate algal pond (HRAP). Effective operation was demonstrated with the biomass concentration and the chemical oxygen demand removal efficiency averaging 1.2±0.1gTSSL-1 and 80±4%, respectively, across all operational periods. Tetracycline removal exceeded 93% and 99% when the HRAP was operated at hydraulic retention times of 4 and 7days, respectively. Batch tests and pulse testing during HRAP operation repeatedly evidenced the significance of photodegradation as a removal mechanism. Sorption dominated tetracycline removal during the night, but accounted for less than 6% of the total pollutant removal based on sorbed tetracycline extracted from biomass. Overall, these results provide the first demonstration of efficient antibiotic removal, occurring mainly via indirect photodegradation, during relevant HRAP operation (low pollutant concentration, domestic wastewater and natural sunlight).
Collapse
Affiliation(s)
- Zane N Norvill
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Alma Toledo-Cervantes
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Saul Blanco
- The Institute of the Environment, La Serna, 58, 24007 Leon, Spain
| | - Andy Shilton
- School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Benoit Guieysse
- School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Raul Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.
| |
Collapse
|
35
|
Muter O, P Erkons I, Selga T, Berzins A, Gudra D, Radovica-Spalvina I, Fridmanis D, Bartkevics V. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:402-413. [PMID: 28126281 DOI: 10.1016/j.scitotenv.2017.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Municipal wastewater containing 21 pharmaceutical compounds, as well as activated sludge obtained from the aeration tank of the same wastewater treatment plant were used in lab-scale biodegradation experiments. The concentrations of pharmaceutical compounds were determined by high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry and ranged from 13.2ng/L to 51.8μg/L. Activated sludge was characterized in the terms of phylogenetic and catabolic diversity of microbial community, as well as its morphology. Proteobacteria (24.0%) represented the most abundant phylum, followed by Bacteroidetes (19.8%) and Firmicutes (13.2%). Bioaugmentation of wastewater with activated sludge stimulated the biodegradation process for 14 compounds. The concentration of carbamazepine in non-amended and bioaugmented WW decreased during the first 17h up to 30% and 70%, respectively. Diclofenac and ibuprofen demonstrated comparatively slow removal. The stimulating effect of the added nutrients was observed for the degradation of almost all pharmaceuticals detected in WW. The most pronounced effect of nutrients was found for erythromycin. The results were compared with those obtained for the full-scale WW treatment process.
Collapse
Affiliation(s)
- Olga Muter
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia.
| | - Ingus P Erkons
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Turs Selga
- Faculty of Biology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Andrejs Berzins
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Center, 1 Ratsupites Str., Riga LV-1067, Latvia
| | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Center, 1 Ratsupites Str., Riga LV-1067, Latvia
| | - Vadims Bartkevics
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| |
Collapse
|
36
|
Souza BM, Marinho BA, Moreira FC, Dezotti MWC, Boaventura RAR, Vilar VJP. Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6195-6204. [PMID: 26555882 DOI: 10.1007/s11356-015-5690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The present study aims to assess the removal of 3-amino-5-methylisoxazole (AMI), a recalcitrant by-product resulting from the biological breakdown of some pharmaceuticals, applying a solar photo-Fenton process assisted by ferrioxalate complexes (SPFF) (Fe3+/H2O2/oxalic acid/UVA-Vis) and classical solar photo-Fenton process (SPF) (Fe2+/H2O2/UVA-Vis). The oxidation ability of SPFF was evaluated at different iron/oxalate molar ratios (1:3, 1:6, and 1:9, with [total iron] = 3.58 × 10-2 mM and [oxalic acid] = 1.07 × 10-1, 2.14 × 10-1 and 3.22 × 10-1 mM, respectively) and pH values (3.5-6.5), using low iron contents (2.0 mg Fe3+ L-1). Additionally, the use of other organic ligands such as citrate and ethylenediamine-N,N'-disuccinic acid (EDDS) was tested. The oxidation power of the classical SPF was assessed at different pH values (2.8-4.0) using 2.0 mg Fe2+ per liter. Furthermore, the effect of AMI concentration (2-20 mg L-1), presence of inorganic ions (Cl-, SO42-, NO3-, HCO3-, NH4+), and radical scavengers (sodium azide and D-mannitol) on the SPF method at pH 3.5 was also assessed. Experiments were done using a lab-scale photoreactor with a compound parabolic collector (CPC) under simulated solar radiation. A pilot-scale assay was conducted using the best operation conditions. While at near neutral pH, an iron/oxalate molar ratio of 1:9 led to the removal of 72 % of AMI after 90 min of SPFF, at pH 3.5, an iron/oxalate molar ratio of 1:3 was enough to achieve complete AMI degradation (below the detection limit) after 30 min of reaction. The SPF process at pH 3.5 underwent a slower AMI degradation, reaching total AMI degradation after 40 min of reaction. The scale up of SPF process showed a good reproducibility. Oxalic and oxamic acids were identified as the main low-molecular-weight carboxylic acids detected during the pilot-scale SPF reaction. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Bianca M Souza
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Chemical Engineering Program-COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Belisa A Marinho
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisca C Moreira
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Márcia W C Dezotti
- Chemical Engineering Program-COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Rui A R Boaventura
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
37
|
Krzeminski P, Schwermer C, Wennberg A, Langford K, Vogelsang C. Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:166-176. [PMID: 27566858 DOI: 10.1016/j.jhazmat.2016.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 05/24/2023]
Abstract
Membrane filtration using ultrafiltration (UF), nanofiltration (NF) or reverse osmosis (RO) membranes was evaluated as an efficient effluent polishing step at municipal wastewater treatment plants (WWTPs) for the removal of selected contaminants of emerging concern and for improvement of water quality according to water reuse requirements. In samples collected at two largest WWTPs in Norway, 12 out of 14 selected personal care products and organophosphate flame retardants (OPFRs) were found above analytical detection limit. The highest concentrations were observed for BP3, OC (UV filters), HHCB, AHTN (fragrances), TCPP and TBP (OPFRs), exceeding the predicted no-effect concentration for BP3 in one sample and AHTN in five samples. Independently of the membrane type used, membrane filtration effectively (>60%) removed BP3, UV-329, OC, HHCB, AHTN and DBPP. However, UF was insufficient (<20%) for removal of DEET, TCPP and TCEP. UF was sufficient to remove 30-50% of COD, 80-95% of TP, up to 30% of TN and NH4, and a min of 2log reduction of E. coli. Water quality improved further with application of NF and RO. The results indicate that membrane filtration can be effective post-treatment to improve overall water quality and a measure to reduce potential risk in the receiving aquatic environment.
Collapse
Affiliation(s)
- P Krzeminski
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway.
| | - C Schwermer
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway
| | - A Wennberg
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway
| | - K Langford
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway
| | - C Vogelsang
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway
| |
Collapse
|
38
|
Polesel F, Andersen HR, Trapp S, Plósz BG. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10316-10334. [PMID: 27479075 DOI: 10.1021/acs.est.6b01899] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.
Collapse
Affiliation(s)
- Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
39
|
Torresi E, Fowler SJ, Polesel F, Bester K, Andersen HR, Smets BF, Plósz BG, Christensson M. Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs-Implications on Micropollutant Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9279-9288. [PMID: 27477857 DOI: 10.1021/acs.est.6b02007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In biofilm systems for wastewater treatment (e.g., moving bed biofilms reactors-MBBRs) biofilm thickness is typically not under direct control. Nevertheless, biofilm thickness is likely to have a profound effect on the microbial diversity and activity, as a result of diffusion limitation and thus substrate penetration in the biofilm. In this study, we investigated the impact of biofilm thickness on nitrification and on the removal of more than 20 organic micropollutants in laboratory-scale nitrifying MBBRs. We used novel carriers (Z-carriers, AnoxKaldnes) that allowed controlling biofilm thickness at 50, 200, 300, 400, and 500 μm. The impact of biofilm thickness on microbial community was assessed via 16S rRNA gene amplicon sequencing and ammonia monooxygenase (amoA) abundance quantification through quantitative PCR (qPCR). Results from batch experiments and microbial analysis showed that (i) the thickest biofilm (500 μm) presented the highest specific biotransformation rate constants (kbio, L g(-1) d(-1)) for 14 out of 22 micropollutants; (ii) biofilm thickness positively associated with biodiversity, which was suggested as the main factor for the observed enhancement of kbio; (iii) the thinnest biofilm (50 μm) exhibited the highest nitrification rate (gN d(-1) g(-1)), amoA gene abundance and kbio values for some of the most recalcitrant micropollutants (i.e., diclofenac and targeted sulfonamides). Although thin biofilms favored nitrification activity and the removal of some micropollutants, treatment systems based on thicker biofilms should be considered to enhance the elimination of a broad spectrum of micropollutants.
Collapse
Affiliation(s)
- Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
- Veolia Water Technologies AB-AnoxKaldnes , Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| | - S Jane Fowler
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University , Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Magnus Christensson
- Veolia Water Technologies AB-AnoxKaldnes , Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| |
Collapse
|
40
|
Dong H, Yuan X, Wang W, Qiang Z. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 178:11-19. [PMID: 27127893 DOI: 10.1016/j.jenvman.2016.04.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 05/05/2023]
Abstract
The occurrence and removal of 19 antibiotics (including four macrolides, eight sulfonamides, three fluoroquinolones, three tetracyclines, and trimethoprim) were investigated in two ecological (constructed wetland (CW) and stabilization pond (SP)) and two conventional wastewater treatment processes (activated sludge (AS) and micro-power biofilm (MP)) in a county of eastern China. All target antibiotics were detected in the influent and effluent samples with detection frequencies of >90%. Clarithromycin, ofloxacin, roxithromycin and erythromycin-H2O were the dominant antibiotics with maximum concentrations reaching up to 6524, 5411, 964 and 957 ng/L, respectively; while the concentrations of tiamulin, sulfamerazine, sulfathiazole, sulfamethazine, sulfamethizole and sulfisoxazole were below 10 ng/L. Although the mean effluent concentrations of target antibiotics were obviously lower than the influent ones (except ciprofloxacin), their removals were usually incomplete. Principal component analysis showed that the AS and CW outperformed the MP and SP processes and the AS performed better than the CW process in terms of antibiotics removal. Both the AS and CW processes exhibited higher removal efficiencies in summer than in winter, indicating biological degradation could play an important role in antibiotics removal. Because of the incomplete removal, the total concentration of detected antibiotics increased in the mixing and downstream sections of a local river receiving the effluent from a typical wastewater treatment facility practicing AS process. Nowadays, ecological wastewater treatment processes are being rapidly planned and constructed in rural areas of China; however, the discharge of residual antibiotics to the aquatic environment may highlight a necessity for optimizing or upgrading their design and operation.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangjuan Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weidong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
41
|
Straub JO. Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:767-79. [PMID: 25693841 DOI: 10.1002/etc.2945] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 05/27/2023]
Abstract
Sulfamethoxazole (SMX) is an old sulfonamide antibiotic that was launched first in combination with trimethoprim in 1969 by F.Hoffmann-La Roche. Although sales figures for SMX have been declining over the past 20 yr, the compound is still widely used; moreover, many measured environmental concentrations (MECs) are available from Europe, the United States, Asia, Australia, and Africa. To assess aquatic risks of SMX in Europe, the exposure of European surface waters was predicted based on actual sales figures from IMS Health, incorporating environmental fate data on one side, and based on collated MECs representing more than 5500 single measurements in Europe on the other. Environmental effects were assessed using chronic and subchronic ecotoxicity data for 16 groups of aquatic organisms, from periphyton communities to cyanobacteria, algae, higher plants, various invertebrates, and vertebrates. Predicted no-effect concentrations (PNECs) were derived using both deterministic and probabilistic methodology. The predicted environmental concentration (PEC)/PNEC and MEC/PNEC comparisons overall showed no appreciable risk, except in a low incidence (<0.55%) of cases in which exceptionally high MECs led to MEC/PNEC risk characterization ratios greater than 1. The PNECs derived in the present study can be used to extend aquatic environmental risk assessment for SMX to other continents. No risk appears for indirect human exposure to SMX via the environment.
Collapse
|
42
|
Montes N, Otero M, Coimbra RN, Méndez R, Martín-Villacorta J. Removal of tetracyclines from swine manure at full-scale activated sludge treatment plants. ENVIRONMENTAL TECHNOLOGY 2015; 36:1966-1973. [PMID: 25672878 DOI: 10.1080/09593330.2015.1018338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to investigate the fate of three tetracyclines (TCs), namely oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC) at two different full-scale swine manure-activated sludge treatment plants. Throughout treatment, OTC, CTC and DC were removed by 71-76%, 75-80% and 95%, respectively. Removal of these TCs under physical treatment was deniable. On the contrary, the flocculation-coagulation and the secondary clarification resulted in a relevant reduction of the concentration of these TCs.
Collapse
Affiliation(s)
- Nuria Montes
- a Department of Applied Chemistry and Physics, IMARENABIO , University of León , Campus de Vegazana, 24071 León , Spain
| | | | | | | | | |
Collapse
|
43
|
Marx C, Mühlbauer V, Schubert S, Oertel R, Ahnert M, Krebs P, Kuehn V. Representative input load of antibiotics to WWTPs: Predictive accuracy and determination of a required sampling quantity. WATER RESEARCH 2015; 76:19-32. [PMID: 25776917 DOI: 10.1016/j.watres.2015.02.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/22/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Predicting the input loads of antibiotics to wastewater treatment plants (WWTP) using certain input data (e.g. prescriptions) is a reasonable method if no analytical data is available. Besides the spatiotemporal uncertainties of the projection itself, only a few studies exist to confirm the suitability of required excretion data from literature. Prescription data with a comparatively high resolution and a sampling campaign covering 15 months were used to answer the question of applicability of the prediction approach. As a result, macrolides, sulfamethoxazole and trimethoprim were almost fully recovered close to 100% of the expected input loads. Nearly all substances of the beta-lactam family exhibit high elimination rates during the wastewater transport in the sewer system with a low recovery rate at the WWTP. The measured input loads of cefuroxime, ciprofloxacin and levofloxacin fluctuated greatly through the year which was not obvious from relatively constant prescribed amounts. The latter substances are an example that available data are not per se sufficient to monitor the actual release into the environment. Furthermore, the extensive data pool of this study was used to calculate the necessary number of samples to determine a representative annual mean load to the WWTP. For antibiotics with low seasonality and low input scattering a minimum of about 10 samples is required. In the case of antibiotics exhibiting fluctuating input loads 30 to 40 evenly distributed samples are necessary for a representative input determination. As a high level estimate, a minimum number of 20-40 samples per year is proposed to reasonably estimate a representative annual input load of antibiotics and other micropollutants.
Collapse
Affiliation(s)
- Conrad Marx
- Institute for Urban Water Management, Dresden University of Technology, 01062 Dresden, Germany.
| | - Viktoria Mühlbauer
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Germany
| | - Markus Ahnert
- Institute for Urban Water Management, Dresden University of Technology, 01062 Dresden, Germany
| | - Peter Krebs
- Institute for Urban Water Management, Dresden University of Technology, 01062 Dresden, Germany
| | - Volker Kuehn
- Institute for Urban Water Management, Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
44
|
Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. WATER RESEARCH 2015; 72:3-27. [PMID: 25267363 DOI: 10.1016/j.watres.2014.08.053] [Citation(s) in RCA: 1177] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 05/17/2023]
Abstract
This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.
Collapse
Affiliation(s)
- Bruce Petrie
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
45
|
Stadler LB, Su L, Moline CJ, Ernstoff AS, Aga DS, Love NG. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:106-15. [PMID: 25200120 DOI: 10.1016/j.jhazmat.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 05/12/2023]
Abstract
We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.
Collapse
Affiliation(s)
- Lauren B Stadler
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109, United States.
| | - Lijuan Su
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, United States.
| | - Christopher J Moline
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109, United States.
| | - Alexi S Ernstoff
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109, United States.
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, United States.
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109, United States.
| |
Collapse
|
46
|
Occurrence and Fate of Pharmaceuticals and Personal Care Products in Wastewater. PERSISTENT ORGANIC POLLUTANTS (POPS): ANALYTICAL TECHNIQUES, ENVIRONMENTAL FATE AND BIOLOGICAL EFFECTS 2015. [DOI: 10.1016/b978-0-444-63299-9.00007-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater. CHEMOSPHERE 2014; 111:70-79. [PMID: 24997902 DOI: 10.1016/j.chemosphere.2014.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain.
| |
Collapse
|
48
|
Wang D, Sui Q, Lu SG, Zhao WT, Qiu ZF, Miao ZW, Yu G. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4276-4285. [PMID: 24306725 DOI: 10.1007/s11356-013-2363-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5-38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.
Collapse
Affiliation(s)
- Dan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Brandt EMF, de Queiroz FB, Afonso RJCF, Aquino SF, Chernicharo CAL. Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:718-726. [PMID: 23850766 DOI: 10.1016/j.jenvman.2013.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
This work assessed the behaviour of nine pharmaceuticals and/or endocrine disrupting chemicals (EDCs) in demo-scale upflow anaerobic sludge blanket reactors (UASB reactors) coupled to distinct simplified post-treatment units (submerged bed, polishing ponds, and trickling filters) fed on raw sewage taken from a municipality in Brazil. The dissolved concentration of the studied micropollutants in the raw and treated sewage was obtained using solid phase extraction (SPE) followed by analysis in a liquid chromatography system coupled to a hybrid high resolution mass spectrometer consisting of an ion-trap and time of flight (LC-MS-IT-TOF). The UASB reactors demonstrated that they were not appropriate for efficiently removing the assessed compounds from the sewage. Furthermore, this study demonstrated that the hydraulic retention time (HRT) was an important parameter for the removal of the hydrophilic and less biodegradable compounds, such as trimethoprim and sulfamethoxazole. The post-treatment units substantially increased the removal of most target micropollutants present in the anaerobic effluents, with a greater removal of micropollutants in simplified systems that require a large construction area, such as the submerged bed and polishing ponds, probably because of the higher HRT employed. Alternatively, compact post-treatment systems, such as trickling filters, tended to be less effective at removing most of the micropollutants studied, and the type of packing proved to be crucial for determining the fate of such compounds using trickling filters.
Collapse
Affiliation(s)
- Emanuel M F Brandt
- Department of Sanitary and Environmental Engineering (Departamento de Engenharia Sanitária e Ambiental - DESA), Faculty of Engineering (Escola de Engenharia), Federal University of Minas Gerais (Universidade Federal de Minas Gerais), Av. Antônio Carlos, 6627, BL 1 - sala 4623, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
50
|
Coutu S, Wyrsch V, Wynn HK, Rossi L, Barry DA. Temporal dynamics of antibiotics in wastewater treatment plant influent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 458-460:20-6. [PMID: 23639908 DOI: 10.1016/j.scitotenv.2013.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 04/14/2023]
Abstract
A yearlong field experimental campaign was conducted to reveal time scales over which antibiotic fluxes vary in the influent of a wastewater treatment plant (WTP). In particular, sampling was carried out to ascertain the amplitudes of monthly, daily and hourly fluctuations of several antibiotics. A total of 180 samples was collected at the entrance of a WTP in Lausanne, Switzerland. Sample concentrations were multiplied by flow rate to obtain monthly, daily and hourly mass fluxes of six antibiotics (trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, clindamycin and metronidazole). Seasonality in mass fluxes was observed for all substances, with maximum values in winter being up to an order of magnitude higher than in summer. The hourly measurements of the mass flux of antibiotics were found to have a period of 12h. This was due to peaks in toilet use in the morning and early evening. In particular, the morning peak in flushing coincided with high concentrations (and hence high mass fluxes) due to overnight accumulation of substances in urine. However, little variation was observed in the average daily flux. Consequently, fluctuations in mass fluxes of antibiotics were mainly evident at the monthly and hourly time scales, with little variation on the day-week time scale. These results can aid in optimizing removal strategies and future sampling campaigns focused on antibiotics in wastewater.
Collapse
Affiliation(s)
- Sylvain Coutu
- Laboratoire de Technologie Écologique, Institut d'ingénierie de l'environnement, Faculté de l'environnement naturel, Architectural et construit (ENAC), Station 2, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|