1
|
Zhang M, Zhang Q, Ye L. Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene. Anal Bioanal Chem 2024:10.1007/s00216-024-05617-x. [PMID: 39467911 DOI: 10.1007/s00216-024-05617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.
Collapse
Affiliation(s)
- Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Qicheng Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
2
|
Zhao D, Hu M, Hu C, Wang D, Chen H, Ou Y, Liu R, Li X, Wu L, Liu P, Shen Z, Chen Q. Multivalent bifunctional nanobody to enhance the sensitivity of direct competitive chemiluminescence immunoassay for the detection of microcystin LR in lake water. Talanta 2024; 283:127080. [PMID: 39467444 DOI: 10.1016/j.talanta.2024.127080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Microcystin-LR (MC-LR), a toxic cyanobacterial toxin in freshwater, poses significant health and ecological risks due to its ability to induce cell apoptosis and liver damage. Sensitive detection of MC-LR is crucial for public health and water safety. In this work, we engineered a multivalent bifunctional nanobody (A2.3-C4-SBP) by fusing the anti-MC-LR nanobody gene (A2.3) with self-assembling peptides (C4) and a streptavidin-binding peptide (SBP). A2.3-C4-SBP was directionally immobilized on the ELISA microplate via streptavidin-mediated to develop a multivalent bifunctional nanobody-based chemiluminescent immunoassay (MBN-CLIA) for MC-LR detection in lake water. The IC50 of the A2.3-C4-SBP heptamer based CLIA was 5.80 ng/mL, and the LOD (IC10) was 0.33 ng/mL, which were 9.51-fold and 1.82-fold lower, respectively, than those of the A2.3-SBP monomer based CLIA. Additionally, the IC50 and LOD were 1.26-fold and 1.82-fold lower, respectively, than those of the A2.3-C4-SBP heptamer without streptavidin-mediated directional immobilization. In summary, this work developed a sensitive, rapid and simple immunoassay for the detection of MC-LR in lake water based on multivalent bifunctional nanobodies. Furthermore, the proposed combined strategy of nanobody multimerization and directed immobilization is simple to operate and has great potential to improve the sensitivity and signal amplification of various immunoassays.
Collapse
Affiliation(s)
- Danyi Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Mai Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenghao Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Di Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hailun Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yangwei Ou
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Rongli Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330031, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Peng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
| | - Zhiwei Shen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Qi Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
4
|
Dos Santos FCF, Lima GFC, Merlo E, Januario CDF, Miranda-Alves L, Miranda RA, Lisboa PC, Graceli JB. Single microcystin exposure impairs the hypothalamic-pituitary-gonadal axis at different levels in female rats. Mol Cell Endocrinol 2024; 586:112203. [PMID: 38490633 DOI: 10.1016/j.mce.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 μg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.
Collapse
Affiliation(s)
- Flavia C F Dos Santos
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Gabriela F C Lima
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Cidalia de F Januario
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-904, Ilha do Governador, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil.
| |
Collapse
|
5
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
6
|
Wu P, Zhang M, Xue X, Ding P, Ye L. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Mikrochim Acta 2023; 190:314. [PMID: 37474872 PMCID: PMC10359370 DOI: 10.1007/s00604-023-05887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.
Collapse
Affiliation(s)
- Pian Wu
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
7
|
Wang W, Zhang H, Wei L, Ma Y, Jiang H, Yuen CNT, Zhang J, Wu H, Shu Y. Microcystin-leucine arginine causes brain injury and functional disorder in Lithobates catesbeianus tadpoles by oxidative stress and inflammation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106509. [PMID: 36989925 DOI: 10.1016/j.aquatox.2023.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a toxin commonly found in eutrophic waters worldwide, but its potential effects on amphibian brain toxicity and exposure mechanisms are unclear. In this study, Lithobates catesbeianus tadpoles were exposed to MC-LR for 30 days at realistic ambient concentrations (0, 0.5, and 2 µg/L) to reveal its effects on brain health. The MC-LR bioaccumulation in the brain increased in dependence on the concentration of MC-LR exposure. Exposure to 0.5 and 2 µg/L MC-LR resulted in a significant down-regulation of the expression of structural components of the blood-brain barrier (CLDN1), while the expression of genes associated with inflammation (NLRP3, TNF, IL-1β, and CXCL12) was significantly up-regulated with increased number of eosinophils. In the hippocampal and hypothalamic regions, the number of vacuolated neuropils increased with increasing MC-LR exposure concentration, while the expression of genes associated with neuronal development (LGALS1, CACNA2D2, and NLGN4X) and neurotransmitter transmission (SLC6A13 and AChE) was significantly down-regulated. Moreover, the levels of neurotransmitters (5-HT, glutamate, GABA, and ACh) were significantly reduced. These results provide strong evidence that MC-LR exposure at realistic ambient concentrations of 0.5 and 2 µg/L can break the blood-brain barrier and raise the accumulation of MC-LR in the brain tissue, causing structural damage and functional disorder to brain neurons. Further, based on transcriptomic and biochemical analysis, it was revealed that MC-LR exposure induces DNA damage through oxidative stress and may be an important pathway causing brain structural damage and functional disorder. Overall, this study demonstrates the significant effects of MC-LR on the brain tissue of amphibians, highlighting the sensitivity of amphibians to MC-LR.
Collapse
Affiliation(s)
- Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Luting Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi Ma
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Calista N T Yuen
- State Key Laboratory in Marine Pollution Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jihui Zhang
- School of Food Science and Biology Engineering, Wuhu Institute of Technology, Wuhu, Anhui 241000, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
8
|
Li P, Fu H, Bai Z, Feng X, Qi J, Song X, Hu X, Chen L. A dummy molecularly imprinted ratiometric fluorescence nanosensor for the sensitive detection of guanidyl-microcystins in environmental water. Analyst 2023; 148:573-582. [PMID: 36594361 DOI: 10.1039/d2an01928k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An effective strategy is proposed to construct a highly sensitive ratiometric fluorescence sensing platform for microcystins (MCs) based on a dummy molecularly imprinted polymer using metformin as a template. The imprinted nanohybrids of carbon dots (CDs) combined with fluorescein isothiocyanate (FITC) are synthesized (CDs-FITC-SiO2@MIP), in which the CDs and FITC serve as assisted response signals and reference enhancement signals, respectively. Metformin can be used as a dummy template for MCs due to its partially similar molecular fragments to MCs that can form a specific recognition site cavity. MCs can simultaneously induce an obvious fluorescence quenching effect for the CDs and a reference fluorescence enhancement for FITC-SiO2, enabling ratiometric fluorescence detection of MCs. Thus, CDs-FITC-SiO2@MIP used as a signal probe has favorable sensitivity, stability, and selectivity. More importantly, a good linear relationship between the fluorescence intensity ratio (I620/450) and the concentration of MCs in the range of 0.5-500 μg L-1 is obtained with a LOD of 0.013 μg L-1 and 0.022 μg L-1 for MC-RR and MC-LR, respectively, under the optimum conditions. This method has great application potential in water quality monitoring by using CDs-FITC-SiO2@MIP as a promising candidate for monitoring MCs in complex systems.
Collapse
Affiliation(s)
- Ping Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Zhenyu Bai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Xiaoyang Feng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xingliang Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Xueping Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
9
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
10
|
Yuan R, Liu Q, Hong H, Ma H, Xiao L, Li Y, Jiang D, Hao N, Wang K. Enhanced cathodic electrochemiluminescent microcystin-LR aptasensor based on surface plasmon resonance of Bi nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128877. [PMID: 35427978 DOI: 10.1016/j.jhazmat.2022.128877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Sensitive testing for Microcystins-LR (MC-LR) is needed because of its serious environmental and human health hazards. In this work, a new type of surface plasmon resonance (SPR) enhanced cathodic electrochemiluminescence (ECL) aptasensing platform was designed in which boron and nitrogen co-doped graphene quantum dots (BN-GQDs) were used as the luminary and bismuth nanoparticles (Bi NPs) were used as the SPR source. SPR effect of non-precious metal Bi NPs can induce and enhance ECL signal of BN-GQDs because the fluorescence spectrum of BN-GQDs overlaps well with the ultraviolet-visible absorption spectrum of Bi NPs. On this basis, a sensitive sensing system based on the Bi NPs and BN-GQDs was established for MC-LR detection. The results showed that the ECL sensing signal obtained was linear with the negative logarithm of the target MC-LR concentration in the range of 0.01-5000 pM, and the detection limit was 0.003 pM. In addition, the sensor had high stability and good reproducibility, which can be applied to the detection of MC-LR in actual samples. The method had good specificity and can not be disturbed by its homolog, which can be used for sensitive and reliable detection of complex samples.
Collapse
Affiliation(s)
- Ruishuang Yuan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Honghong Hong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hanyu Ma
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liting Xiao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; Advanced Technology Institute of Suzhou, 215123 Jiangsu, PR China
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|
12
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
13
|
Zhang Y, Wu D, Fan Z, Li J, Gao L, Wang Y, Wang L. Microcystin-LR induces ferroptosis in intestine of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112610. [PMID: 34365207 DOI: 10.1016/j.ecoenv.2021.112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Previous studies provide comprehensive evidence of the environmental hazards and intestinal toxicity of microcystin-LR (MC-LR) exposure. However, little is known about the mechanisms underlying the injury of intestine exposed to MC-LR. Juvenile common carp (Cyprinus carpio) were exposed to MC-LR (0 and 10 μg/L) for 15 days. The results suggest that organic anion-transporting polypeptides 3a1, 4a1, 2b1, and 1d1 mediate MC-LR entry into intestinal tissues. Lesion morphological features (vacuolization, deformation and dilation of the endoplasmic reticulum [ER], absence of mitochondrial cristae in mid-intestine), up-regulated mRNA expressions of ER stress (eukaryotic translation initiation factor 2-alpha kinase 3, endoplasmic reticulum to nucleus signaling 1, activating transcription factor [ATF] 6, ATF4, DNA damage-inducible transcript 3), iron accumulation, and down-regulated activity of glutathione peroxidase (GPx) and glutathione (GSH) content were all typical characteristics of ferroptosis in intestinal tissue following MC-LR exposure. GSH levels in intestinal tissue corroborated as the most influential GSH/GPx 4- related metabolic pathway in response to MC-LR exposure. Verrucomicrobiota, Planctomycetes, Bdellovibrionota, Firmicutes and Cyanobacteria were correlated with the ferroptosis-related GSH following MC-LR exposure. These findings provide new perspectives of the ferroptosis mechanism of MC-LR-induced intestinal injury in the common carp.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Lei Gao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yu'e Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
14
|
Tavakoli Y, Mohammadipanah F, Te SH, You L, Gin KYH. Biodiversity, phylogeny and toxin production profile of cyanobacterial strains isolated from lake Latyan in Iran. HARMFUL ALGAE 2021; 106:102054. [PMID: 34154781 DOI: 10.1016/j.hal.2021.102054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Monitoring toxigenic cyanobacteria in freshwaters is of great importance due to the adverse health impacts on humans and aquatic organisms. Here we studied cyanobacterial occurrence and biodiversity in a drinking water reservoir in Tehran province, Iran. In total, nine different species representing three orders of Synechococcales, Oscillatoriales and Nostocales were isolated and classified into six families and seven genera ranging from 92.3% to 99.0% similarities in their partial 16S rDNA with GenBank sequences. The cultures were analyzed for cyanotoxins production by the Artemia salina bioassay, ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and also screened for the presence of marker genes involved in toxins production. Ethyl acetate extracts of three strains showed more than 50% mortality on A. salina larvae after 24 h at a concentration of 500 µg/ml. Production of at least one of the cyanotoxins, microcystin (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a), was detected in 6 of the strains. Seven MC variants with a total concentration of 130.6 ng/mg of biomass dry weight were detected for the strain Phormidium sp. UTMC6001 and molecular screening of the mcyE gene also confirmed the presence of this biomarker in its genome. Our study also revealed the production of CYN in a novel picocyanobacterial strain Cyanobium sp. UTMC6007 at 1.0 ng/mg of biomass dry weight. Considering the limited information on freshwater toxic cyanobacteria taxonomy in the Middle East, these findings will expand our knowledge and consequently aid in development of new water management policies in future.
Collapse
Affiliation(s)
- Yasaman Tavakoli
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran; Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran.
| | - Shu Harn Te
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Luhua You
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Karina Yew-Hoong Gin
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering 2, Singapore 117576, Singapore.
| |
Collapse
|
15
|
Li Q, Long Z, Wang H, Zhang G. Functions of constructed wetland animals in water environment protection - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144038. [PMID: 33348153 DOI: 10.1016/j.scitotenv.2020.144038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWLs) are widely used for water environment protection. In some cases, CWL animals can help improve CWL treatment efficiency and contribute to CWL maintenance and management. However, while plants, microorganisms, and substrates in CWLs have received much attention, animals have been largely ignored. Therefore, the aims of this review are to determine the roles wetland animals play in the water environmental protection of CWLs. This study introduced species of wetland animals and the main factors that can affect their survival. The way in which CWL animals affect pollutants was discussed in detail from four perspectives: adsorption and bioaccumulation, bioturbation, and the influence of CWL animals on plants and microorganisms. The characteristics of CWL animals that can be used for biological monitoring are summarized, and the use of CWLs for the protection of wetland biodiversity is also discussed. Finally, some prospects are proposed for future research. This study will help researchers better understand the role of CWL animals in CWLs and encourage researchers to focus on studies of wetland animals.
Collapse
Affiliation(s)
- Qiangang Li
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Zeqing Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongjie Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
16
|
Occurrence of microcystins, anabaenopeptins and other cyanotoxins in fish from a freshwater wildlife reserve impacted by harmful cyanobacterial blooms. Toxicon 2021; 194:44-52. [PMID: 33610629 DOI: 10.1016/j.toxicon.2021.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/16/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
Harmful algal blooms of cyanobacteria (CyanoHABs) can lead to the release of potent toxins that can seriously affect ecosystem integrity. Some freshwater watersheds are particularly at risk considering the threats to already imperiled wildlife. The consumption of tainted drinking water and contaminated food also raises concerns for human health. In the present study, a pilot survey was conducted in the riverine ecosystem of the Pike River Ecological Reserve (QC, Canada) near Missisquoi Bay, Lake Champlain. We examined the occurrence of multiclass cyanotoxins including 12 microcystins, anatoxins, cylindrospermopsin (CYN), anabaenopeptins (AP-A, AP-B), and cyanopeptolin-A in surface waters and wild-caught fish during the summer 2018. Out of the 18 targeted cyanotoxins, 14 were detected in bloom-impacted surface water samples; toxins peaked during early-mid September with the highest concentrations for MC-LR (3.8 μg L-1) and MC-RR (2.9 μg L-1). Among the 71 field-collected fish from 10 species, 30% had positive detections to at least one cyanotoxin. In positive samples, concentration ranges in fish muscle were as follows for summed microcystins (∑MCs: 0.16-9.2 μg kg-1), CYN (46-75 μg kg-1), AP-A (1.1-5.4 μg kg-1), and AP-B (0.12-5.0 μg kg-1). To the best of our knowledge, this is one the first reports of anabaenopeptins occurrence in wildlife. The maximum ∑MCs in fish was 1.15-fold higher than the World Health Organization (WHO) daily intake recommendation for adults and nearly equated the derived value for young children. The concentration of CYN was also about 3-fold higher than the limit derived from the human health guideline values.
Collapse
|
17
|
Jing M, Lin D, Lin J, Li Q, Yan H, Feng X. Mercury, microcystins and Omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116047. [PMID: 33246762 DOI: 10.1016/j.envpol.2020.116047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Fish is an important source of nutritional omega-3 (n-3) polyunsaturated fatty acids, but it also readily accumulates toxic mercury (Hg) and microcystins (MC) in eutrophic aquatic systems. In China, farmed fish was widely consumed, and aquaculture has caused pervasive eutrophication of freshwater lakes, resulting in the increasing accumulation of MC in fish tissue. To assess the risk-benefit of consuming farmed fish, 205 fish samples of 10 primary species were collected from the eutrophic Wujiangdu (WJD) Reservoir, SW China. The contents of Hg, microcystin-RR (MC-RR), microcystin-LR (MC-LR), and polyunsaturated fatty acids (PUFA) in fish were analyzed. The results showed that THg and MeHg concentrations in all fish sampls were well below the safety limit (500 ng/g w.w) established by the Standardization Administration of China, with average values of 22.9 ± 22.8 and 6.0 ± 6.6 ng/g wet weight (w.w.), respectively. Average concentrations of MC-RR and MC-LR were 40 ± 80 and 50 ± 80 ng/g w.w., respectively. MC-RR and MC-LR concentrations in fish were significantly higher in silver carp and black carp than in perch and catfish (p < 0.05). In nutritional terms, average concentrations of n-3 PUFA and the eicosapentaenoic (EPA) + docosahexaenoic acids (DHA) of fish were 2.0 ± 2.5 and 1.4 ± 0.5 mg/g w.w., respectively. The risk-benefit assessment suggests that the n-3 PUFA benefits from consuming all farmed fish species in the WJD Reservoir outweigh the adverse effects of MeHg. However, except for perch, most fish species still pose a high MC-LR exposure risk that created a requirement for fish consumption advisories and monitoring. Consequently, more attention should be paid on the health risk of combined exposure to pollutants by aquatic product consumption.
Collapse
Affiliation(s)
- Min Jing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Lin
- School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China
| | - Jing Lin
- School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550000, PR China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| |
Collapse
|
18
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
19
|
Shi F, Li W, Zhao H, He Y, Jiang Y, Ni J, Abbasi B, Rui R, Ju S. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology 2020; 158:358-367. [PMID: 33038821 DOI: 10.1016/j.theriogenology.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Microcystin-LR (MC-LR), as a well-known hepatotoxin, was recently found to accumulate in gonads and induce a variety of reproductive damages in zebrafish, mice and other model organisms, however, little information is available on whether MC-LR has toxic effects on the mammalian oocytes, especially in livestock species. In this study, the effects of MC-LR on meiotic maturation of porcine oocytes were investigated, and the potential mechanism of MC-LR toxicity was explored. Germinal vesicle (GV)-stage oocytes were exposed to 0, 20, 40 and 60 μM MC-LR, respectively, during the in vitro maturation for 44 h, and the results showed that the first polar body (PbI) extrusion rate of the oocytes decreased significantly when the MC-LR concentration reached 40 (P < 0.01) or 60 μM (P < 0.001). After treated with 60 μM MC-LR for 44 h, a significant higher percentage of the oocytes arrested at anaphase-telophase I (ATI) stage (P < 0.01). Laser scanning confocal results further confirmed that a significantly larger proportion of the 60 μM MC-LR-treated oocytes exhibited aberrant spindles and misaligned chromosomes, suggesting a failure of spindle assembly and homologous chromosome segregation during the ATI stage. Furthermore, the ROS levels in the 60 μM MC-LR-exposed oocytes were significantly higher than the control group (P < 0.01), while the expression of antioxidant related genes (SOD1, CAT and GPX) were much lower compared with control group, indicating that oxidative stress was induced and the antioxidant capacity of oocytes was depleted by 60 μM MC-LR treatment. Additionally, markedly decreased mitochondrial membrane potential (MMP) (P < 0.01) and significantly higher incidence of early apoptosis (P < 0.01) were observed in the 60 μM MC-LR-treated oocytes, suggesting that MC-LR exposure induced apoptosis in porcine oocytes. Moreover, the protein expression of PP2A was remarkably inhibited, whereas the expression of p53, BAX, Caspase3 and Cleaved-caspase3 were prominently increased in the 60 μM MC-LR-exposed oocytes. Together, these results suggested that 60 μM of MC-LR exposure can induce oxidative stress, and lead to aberrant spindles, impaired MMP, and trigger apoptosis, which eventually result in failure of porcine oocyte maturation.
Collapse
Affiliation(s)
- Fengyao Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
20
|
Wang L, Lin W, Zha Q, Guo H, Zhang D, Yang L, Li L, Li D, Tang R. Persistent Exposure to Environmental Levels of Microcystin-LR Disturbs Cortisol Production via Hypothalamic-Pituitary-Interrenal (HPI) Axis and Subsequently Liver Glucose Metabolism in Adult Male Zebrafish ( Danio rerio). Toxins (Basel) 2020; 12:toxins12050282. [PMID: 32353954 PMCID: PMC7290660 DOI: 10.3390/toxins12050282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/28/2022] Open
Abstract
There is growing evidence that microcystin-LR (MC-LR) is a new endocrine disruptor, whereas the impacts of persistent exposure to MC-LR on the hypothalamic-pituitary-interrenal (HPI) axis and health hazards thereafter have not been investigated. In this work, adult male zebrafish (Danio rerio) were immersed into MC-LR solutions at concentrations of 0, 1, 5 and 25 μg/L for 30 d, respectively. The results showed that persistent MC-LR exposure caused an extensive upregulation of HPI-axis genes but an inhibition of brain nuclear receptors (gr and mr), which finally increased serum cortisol levels. Furthermore, the decreased expression of hepatic gr might partly be responsible for the strong inhibition on the expression of downstream genes involved in glucose metabolic enzymes, including gluconeogenesis-related genes (pepck, fbp1a, g6pca), glycogenolysis-related gene (pyg), glycolysis-related genes (gk, pfk1b, pk) and glycogenesis-related gene (gys2). These findings are in accordance with the decline in serum glucose, indicating that long-term MC-LR exposure caused a lower production of glucose relative to glucose lysis. Our above results firstly establish the link between persistent MC-LR exposure and impaired glucose metabolism, suggesting that long-term MC-LR-mediated stress might threaten fish’s health.
Collapse
Affiliation(s)
- Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingji Zha
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
- Correspondence:
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
| |
Collapse
|
21
|
Zhang D, Lin W, Liu Y, Guo H, Wang L, Yang L, Li L, Li D, Tang R. Chronic Microcystin-LR Exposure Induces Abnormal Lipid Metabolism via Endoplasmic Reticulum Stress in Male Zebrafish. Toxins (Basel) 2020; 12:toxins12020107. [PMID: 32046144 PMCID: PMC7076763 DOI: 10.3390/toxins12020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
In order to explore effects of low levels of continuous microcystin-LR (MC-LR) (a cyanotoxin) exposure on hepatic lipid metabolism on the basis of the endoplasmic reticulum stress (ERS) pathway, we exposed adult male zebrafish to MC-LR (0, 1, 5, and 25 μg/L) for 60 days, and hepatic histopathology as well as lipid metabolic parameters were determined with mRNA levels of ERS signal molecules and downstream factors, along with genes associated with lipid metabolism in zebrafish liver. The results revealed that prolonged exposure to MC-LR remarkably altered the levels of hepatic total cholesterol and triglyceride and led to hepatic steatosis, which was also confirmed by hepatic cytoplasmic vacuolization in Hematoxylin/eosin (H&E) stain and lipid droplet accumulation in Oil Red O stain. The severity of hepatic damage and lipidation was increased in a dose-related manner. MC-LR exposure significantly upregulated transcriptional levels of ERS markers including hspa5, mapk8, and chop, indicating the occurrence of ERS in the liver of zebrafish. Concurrently, MC-LR significantly improved mRNA expression of unfolded protein response (UPR) pathway-related genes including atf6, eif2ak3, ern1, and xbp1s, suggesting that all of the three UPR branches were activated by MC-LR. MC-LR also induced significant upregulation of downstream lipid metabolism-related factors and genes including srebf1, srebf2, fatty acid synthase (fasn), acetyl-CoA carboxylase (acaca), stearoyl-CoA desaturase (scd), HMG CoA reductase (hmgcra), and HMG CoA synthase (hmgcs1), and downregulation of genes associated with lipolysis such as triglyceride hydrolase gene (atgl), hormone-sensitive enzyme gene (hsla), and carnitine palmitoyltransferase gene (cpt1aa). Our present results indicated that the cause of hepatic lipid accumulation by MC-LR was mainly by upregulating lipogenic and cholesterol genes but downregulating the expression of lipolytic genes through the induction of srebf1 and srebf2, which were involved in the activation of ERS signal pathways.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Yinjie Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Modley LAS, Rampedi IT, Avenant-Oldewage A, Mhuka V, Nindi M, Van Dyk C. Microcystin concentrations and liver histopathology in Clarias gariepinus and Oreochromis mossambicus from three impacted rivers flowing into a hyper-eutrophic freshwater system: A pilot study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103222. [PMID: 31426013 DOI: 10.1016/j.etap.2019.103222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The Roodeplaat Dam and its three inflowing rivers are highly impacted by surrounding anthropogenic activities. The system is hyper-eutrophic and characterized by seasonal algal blooms and previous studies have reported levels of the hepatotoxin microcystin in the water of the impoundment. Limited information is available on the microcystin concentrations in the inflowing rivers and no information is available on the bioaccumulated levels and potential health effects in fish inhabiting these rivers. The aim of this study was to do a histopathological assessment and to determine the concentrations of bioaccumulated microcystins in the livers of two indicator fish species Clarias gariepinus and Oreochromis mossambicus. The results showed that the two species bioaccumulate microcystins at different concentrations and that their hepatic health response varied. The liver index was significantly higher for C. gariepinus compared to O. mossambicus. No significant positive correlation was found between the bioaccumulated microcystin levels and the liver histology index. It is recommended that this pilot study be followed by a controlled exposure study to confirm a possible cause and effect relationship between microcystin exposure and the specific liver alterations identified.
Collapse
Affiliation(s)
- Lee-Ann S Modley
- Department of Geography, Energy and Environmental Management, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Isaac T Rampedi
- Department of Geography, Energy and Environmental Management, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | | | - Vimbai Mhuka
- Department of Chemistry, College of Science, The Science Campus, Engineering and Technology, University of South Africa, Florida park, Roodepoort, 1709, South Africa
| | - Mathew Nindi
- Department of Chemistry, College of Science, The Science Campus, Engineering and Technology, University of South Africa, Florida park, Roodepoort, 1709, South Africa
| | - Cobus Van Dyk
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa.
| |
Collapse
|
23
|
Tian X, She C, Qi Z, Xu X. Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Zhang F, Peng H, Jiang S, Wang C, Xu X, Wang L. Construction of precious metal-loaded BiOI semiconductor materials with improved photocatalytic activity for microcystin-LR degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8226-8236. [PMID: 30701471 DOI: 10.1007/s11356-019-04266-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The composite photocatalyst of precious metal loaded on BiOI (M/BiOI, M = Pt, Au, Ag) was prepared by photochemical deposition and used for the photocatalytic degradation of microcystins (MC-LR). The material was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence spectra (PL). The effect of photodegradation of MC-LR and the possible mechanism were investigated. It turned out that, among precious metals of Pt, Au, and Ag, Ag had the most significant improvement for photocatalytic activity of BiOI and Au was the least. The Ag/BiOI catalyst was illuminated 2 h under the simulated visible-light condition with the optimal load ratio of Ag catalyst (1.0 wt%) and the 2-h illumination under simulated visible-light condition, the degradation rate of MC-LR was 61.26% ± 0.12%. In addition, through the experiment of trapping agent and the analysis of electron spin resonance (ESR), we could conclude that the main active species is O2- in the process of the degradation of MC-LR by three precious metal-loaded BiOI semiconductor materials.
Collapse
Affiliation(s)
- Fan Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Hui Peng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Shanqing Jiang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Chuqiao Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Xia Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Liping Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China.
| |
Collapse
|
25
|
Dalu T, Wasserman RJ. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:835-841. [PMID: 29958171 DOI: 10.1016/j.scitotenv.2018.06.256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/04/2023]
Abstract
Anthropogenic disturbances within or near aquatic ecosystems often contribute to eutrophication events. Cyanobacteria are a key group responsible for environmental problems associated with eutrophication processes. Interest is growing in estimating the threat of cyanobacteria in tropical Africa, however, there is still a lack of understanding regarding temporal drivers of cyanobacteria dynamics in natural aquatic ecosystems given the paucity of relevant fundamental research in this area. To better understand cyanobacteria dynamics, potential drivers of cyanobacteria dynamics were investigated in a model tropical reservoir system, whereby phytoplankton communities and water quality parameters were sampled during the tropical hot-wet, cool-dry and hot-dry seasons. Fifteen cyanobacteria taxa were recorded over the study period. Microcystis spp. and Cylindrospermopsis spp., known cyanotoxins producers, were the most prevalent bloom-forming taxa found in the study, with overall Cyanobacteria relative abundances being greatest during the cool-dry season. This was likely driven by decreased river inflows and increased reservoir mixing during the cool-dry period. Combinations of macrophyte cover, dissolved oxygen levels, water transparency, reactive phosphorus, water depth and chemical oxygen demand were found to significantly affect cyanobacteria community structure. The study highlights that under climate change forecasts (for much of tropical arid Africa), potentially harmful and problematic algal species may proliferate. Management options, therefore, need to be explored to maintain water quality and potable availability to mitigate against indirect harmful effects of environmental changes on ecosystems and human communities that utilise their services.
Collapse
Affiliation(s)
- Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou 0950, South Africa.
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
26
|
Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, Tsatsakis AM, Karimi G. Determination of microcystin-LR, employing aptasensors. Biosens Bioelectron 2018; 119:110-118. [DOI: 10.1016/j.bios.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023]
|
27
|
Zhang L, Gu L, Hou X, Kong Q, Chen K, Zhu X, Huang Y, Chen Y, Yang Z. Chlorophytes prolong mixotrophic Ochromonas eliminating Microcystis: Temperature-dependent effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:705-713. [PMID: 29803042 DOI: 10.1016/j.scitotenv.2018.05.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacterial blooms, caused by eutrophication and climate warming, exert severely negative effects on aquatic ecosystem. Some species of protozoans can graze on toxic cyanobacteria and degrade microcystins highly efficiently, which shows a promising way to control the harmful algae. However, in the field, many different species of algae coexist with Microcystis and may affect protozoans eliminating Microcystis. Therefore, in this study, we assessed the impacts of chlorophytes, a type of beneficial algae for zooplankton and common competitors of cyanobacteria, on flagellate Ochromonas eliminating toxin-producing Microcystis at different temperatures. Our results showed that Ochromonas still eliminated Microcystis population and degraded the total microcystins with the addition of chlorophytes, although the time of eliminating Microcystis was prolonged and temperature-dependent. Additionally, in the grazing treatments, chlorophytes populations gradually increased with the depletion of Microcystis, whereas Microcystis dominated in the mixed algal cultures without Ochromonas. The findings indicated that although chlorophytes prolong mixotrophic Ochromonas eliminating Microcystis, the flagellate grazing Microcystis helps chlorophytes dominating in the primary producers, which is significant in improving water quality and reducing aquatic ecosystem risks.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xinying Hou
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingdan Kong
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ke Chen
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
28
|
Bakhtiari AR, Javedankherad I, Mohammadi J, Taghizadeh R. Distribution of linear alkylbenzenes as a domestic sewage molecular marker in surface sediments of International Anzali Wetland in the southwest of the Caspian Sea, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20920-20929. [PMID: 29766425 DOI: 10.1007/s11356-018-1942-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Due to directly receiving high volume of untreated urban and industrial sewage and in turn transferring the pollutants to fish and back to humans, the International Anzali Wetland has been considered to be urgently registered in the Montreux Record. Hence, the present study was aimed to determine the spatial distribution of the linear alkylbenzenes (LABs) in surface sediments of the wetland and its sewage contamination situation. The surface sediments (sampling stations = 167) were collected from the western, eastern, southwest, and central regions of the wetland. The samples were extracted, fractioned, and then analyzed using gas chromatography-mass spectrometry (GC-MS). The concentration of LABs in the sediment samples revealed a range from 394.12 to 109,305.26 ng g-1 dw. The concentrations of ΣLABs in the eastern region were significantly higher than that in the other regions. The occurrence of low ratio of internal to external isomers (I/E ratio) of LABs (from 0.65 to 1.30) and D% (from - 0.07 to 24.13) implied effluent row or poorly untreated sewage into the wetland. No correlation was observed between the detected LAB concentrations with total organic carbon (TOC) and grain size. Taken together, regional anthropogenic inputs are the controlling factors for the observed spatial distributions of ∑LABs in the International Anzali Wetland. The findings suggested that LABs are powerful indicators to trace anthropogenic sewage contamination and also highlighted the necessity of sewage treatment plants to be founded around the International Anzali Wetland, especially in the vicinity of the eastern and central regions.
Collapse
Affiliation(s)
- Alireza Riyahi Bakhtiari
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 64414-356, Noor, Mazandaran, Iran.
| | - Islam Javedankherad
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 64414-356, Noor, Mazandaran, Iran
| | - Jahangard Mohammadi
- Department of Soil Science, College of Agriculture, Shahrekord University, P.O. Box 88186-34141, Shahrekord, Iran
| | - Roholla Taghizadeh
- Faculty of Agriculture and Natural Resources, University of Ardakan, P.O. Box 89516-56767, Yazd, Iran
| |
Collapse
|
29
|
Pham TL, Shimizu K, Dao TS, Motoo U. First report on free and covalently bound microcystins in fish and bivalves from Vietnam: Assessment of risks to humans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2953-2957. [PMID: 28493476 DOI: 10.1002/etc.3858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/09/2017] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
The free and covalently bound microcystins (MCs) in 3 fish and 2 bivalves from the Dau Tieng Reservoir in Vietnam were investigated for the first time in the present study. The results showed that all species were contaminated with MCs. Our findings indicate that eating the muscle of fish from the Dau Tieng Reservoir is safe but that eating the bivalves is not safe during toxic cyanobacterial bloom episodes. Environ Toxicol Chem 2017;36:2953-2957. © 2017 SETAC.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Vietnam Academy of Science and Technology (VAST), Institute of Tropical Biology, Ho Chi Minh City, Vietnam
| | | | - Thanh-Son Dao
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- University of Technology, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Utsumi Motoo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|