1
|
Mancini A, Vitucci D, Lasorsa VA, Lupo C, Brustio PR, Capasso M, Orrù S, Rainoldi A, Schena F, Buono P. Six months of different exercise type in sedentary primary schoolchildren: impact on physical fitness and saliva microbiota composition. Front Nutr 2024; 11:1465707. [PMID: 39512522 PMCID: PMC11542257 DOI: 10.3389/fnut.2024.1465707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Lifestyle influences microbiota composition. We previously reported a healthier microbiota composition in saliva from active schoolchildren compared to sedentary. In the present study, we evaluated the effects of 6 months of different exercise types on physical fitness and saliva microbiota composition in 8-11-years-old sedentary schoolchildren. Methods Sixty-four sedentary children from five primary schools in Turin, Italy, were divided into three groups: one continued normal curricular activity while two underwent different exercise protocols for 6 months. The Structured Exercise (Sa) group did 2 h per week of muscle activation, strength and coordination exercises supervised by a kinesiologist. The Daily Mile (Dm) group did 1 h per week of Sa plus 15 min of walking/running outdoors four times a week, supervised by a class teacher; control group (Ct) did 2 h a week of curricular exercise supervised by a class teacher. Physical fitness was evaluated before and after the intervention. Saliva samples were collected post-intervention in all participants and analyzed using PCR amplification of 16S rRNA bacterial genes. The Amplicon Sequence Variants were filtered, decontaminated, and phylogenetically classified using DADA2 software. Differential abundance analysis of microbiome taxa and pathway data was conducted using the LEfSe algorithm and PICRUSt. Results The Sa group showed better performances in lower limb power and sprint performance while both the Sa and Dm groups improved in endurance and balance at the end of the intervention; only balance resulted slightly improved in the Ct group. Among the genera differently enriched in saliva after the training intervention, we found that the Prevotella, the Dubosiella and the Family XIII AD3011 group were the most abundant in the Sa group; differently, the Neisseria and the Abiotrophia in Ct group. Four species showed significant the Prevotella melaninogenica and the Prevotella nanceiensis were more abundant in the Sa, conversely, Gemella sanguinis was enriched in Dm and Abiotrophia defectiva in Ct saliva group. Conclusion We demonstrated that Sa and Dm, not curricular exercise, improve the physical fitness components in sedentary schoolchildren correlated to health and promote an enrichment in saliva microbiota species associated to a healthier profile.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Daniela Vitucci
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Stefania Orrù
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
2
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Liu M, Xiang F, Pan J, Xue Y, Sun M, Zhao K, Zhang W, Lei B, Gao P, Li L, Yuan W. Host-derived lactic acid bacteria alleviate short beak and dwarf syndrome by preventing bone loss, intestinal barrier disruption, and inflammation. Vet Microbiol 2024; 296:110187. [PMID: 39053390 DOI: 10.1016/j.vetmic.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Short-beak and dwarf syndrome (SBDS) is caused by novel goose parvovirus (NGPV) infection, which leads to farm economic losses. Our research aimed to investigate the potential of administering isolated lactic acid bacteria (LAB) in alleviating SBDS in ducks. Eight wild LAB strains were isolated from duck feces and their biosecurity was investigated in both duck embryo fibroblast (DEF) and live ducks. Moreover, the LAB strains exhibited no detrimental effects on bone metabolism levels and facilitated the tight junction proteins (TJPs) mRNA expression, and contributing to the mitigation of inflammation in healthy ducks. Subsequently, we conducted in vitrol and in vivo experiments to assess the impact of LAB on NGPV infection. The LAB strains significantly reduced the viral load of NGPV and downregulated the mRNA levels of pro-inflammatory factors in DEF. Additionally, LAB treatment alleviated SBDS in NGPV-infected ducks. Furthermore, LAB treatment alleviated intestinal damage, and reduced the inflammatory response, while also mitigating bone resorption in NGPV-infected ducks. In conclusion, the LAB strains isolated from duck feces have favorable biosecurity and alleviate SBDS in ducks, and the mechanism related to LAB improves intestinal barrier integrity, alleviates inflammation, and reduces bone resorption. Our study presents a novel concept for the prevention and treatment of NGPV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NGPV.
Collapse
Affiliation(s)
- Mandi Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Fengjun Xiang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Jialu Pan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Yongzhi Xue
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Peipei Gao
- Guye Agriculture and Rural Affairs Bureau, Tangshan, China
| | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China.
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China.
| |
Collapse
|
4
|
Bissolotti L, Rota M, Calza S, Romero-Morales C, Alonso-Pérez JL, López-Bueno R, Villafañe JH. Gender-Specific Differences in Spinal Alignment and Muscle Power in Patients with Parkinson's Disease. Diagnostics (Basel) 2024; 14:1143. [PMID: 38893669 PMCID: PMC11171582 DOI: 10.3390/diagnostics14111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is an advancing neurodegenerative disorder characterized by spinal anomalies and muscular weakness, which may restrict daily functional capacities. A gender-focused examination of these effects could provide valuable insights into customized rehabilitation strategies for both sexes. PURPOSE This study investigates the influence of spinal alignment on lower-limb function during the sit-to-stand (STS) movement in patients with Parkinson's disease compared to healthy individuals. METHODS A cross-sectional study was conducted with 43 consecutive patients with PD (25 males and 18 females; average age 73.7 ± 7.1 years) and 42 healthy controls (22 males and 20 females; average age 69.8 ± 6.0 years). Assessments included the International Physical Activity Questionnaire (IPAQ), Hoehn and Yahr staging, and measurements of vertical deviations from several spinal landmarks. Lower-limb muscle power during the STS task was evaluated using the Muscle Quality Index (MQI). RESULTS Both absolute (Watts) and relative (Watts/Kg) muscle power in the lower limbs were notably decreased in the PD group compared to the control group. Within the PD cohort, muscle power showed a negative relationship with age and a positive association with the degree of lumbar lordosis (PL-L3). Importantly, gender-specific analysis revealed that male patients with PD had significantly higher lower-limb muscle power compared to female patients with PD, highlighting the need for gender-tailored therapeutic approaches. CONCLUSIONS The findings suggest that preserving lumbar lordosis is crucial for maintaining effective lower-limb muscle biomechanics in individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Luciano Bissolotti
- Fondazione Teresa Camplani Casa di Cura Domus Salutis, 25123 Brescia, Italy;
| | - Matteo Rota
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Carlos Romero-Morales
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - José Luís Alonso-Pérez
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, C/Inocencio García 1, 38300 La Orotava, Canary Islands, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Onelife Center, Multidisciplinary Pain Treatment Center, 28925 Alcorcón, Spain
| | - Rubén López-Bueno
- Department of Physical Medicine and Nursing, University of Zaragoza, 50009 Zaragoza, Spain;
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46100 Valencia, Spain
| | - Jorge Hugo Villafañe
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
5
|
Wang M, Zheng H, Wang S, Luo H, Li Z, Song X, Xu H, Li P, Sun S, Wang Y, Yuan Z. Comparative analysis of changes in diarrhea and gut microbiota in Beigang pigs. Microb Pathog 2023; 185:106441. [PMID: 37944676 DOI: 10.1016/j.micpath.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Increasing evidence indicated that the gut microbiota is a large and complex organic combination, which is closely related to the host health. Diarrhea is a disease with devastating effects on livestock that has been demonstrated to be associated with gut microbiota. Currently, studies on gut microbiota and diarrhea have involved multiple species, but changes in gut microbiota of Beigang pigs during diarrhea have not been characterized. Here, we described gut microbial changes of Beigang pigs during diarrhea. Results indicated that a total of 4423 OTUs were recognized in diarrheic and healthy Beigang pigs, and Firmicutes and Bacteroidota were the most dominant phyla regardless of health status. However, the major components of the gut microbiota changed between diarrheic and healthy Beigang pigs. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla (Synergistota, Actinobacteriota and Spirochaetota) and 30 genera increased significantly during diarrhea, whereas the relative abundances of 3 phyla (Patescibacteria, Bacteroidota and Fibrobacterota) and 41 genera decreased significantly. In conclusion, this study found significant changes in the gut microbiota of Beigang pigs during diarrhea. Meanwhile, this also lays the foundation for the prevention and treatment of diarrhea in Beigang pigs and the further discovery of more anti-diarrhea probiotics.
Collapse
Affiliation(s)
- Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shuaiwei Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Houqiang Luo
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Ziwei Li
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xianzhang Song
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Hongxi Xu
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Peide Li
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Siyu Sun
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Yan Wang
- Tibet Livestock Research Institute, Tibet Academy of Agriculture and Animal Science, Lhasa, 850009, China.
| | - Zhenjie Yuan
- Tibet Livestock Research Institute, Tibet Academy of Agriculture and Animal Science, Lhasa, 850009, China.
| |
Collapse
|
6
|
Morgado MC, Sousa M, Coelho AB, Costa JA, Seabra A. Exploring Gut Microbiota and the Influence of Physical Activity Interventions on Overweight and Obese Children and Adolescents: A Systematic Review. Healthcare (Basel) 2023; 11:2459. [PMID: 37685493 PMCID: PMC10487561 DOI: 10.3390/healthcare11172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The recognition that the gut microbiota of obese children differs from lean children has grown, and some studies suggest that physical activity positively influences the gut microbiota. This systematic review explores the changes in the gut microbiota composition of obese and non-obese children and adolescents and provides an understanding of the effects of physical activity interventions in modulating their microbiota. The PRISMA protocol was used across PubMed, Scopus, and Web of Science. Overall, twenty-four research papers were included in accordance with the chosen inclusion and exclusion criteria, eighteen studies compared the gut microbiota of obese and normal-weight children and adolescents, and six studies explored the effect of physical activity interventions on the gut microbiota. The analysis indicated that obese gut microbiota is reduced in Bacteroidetes, Bifidobacterium and alpha diversity but enriched in Proteobacteria and Lactobacillus. Interventions with physical activity seem to improve the alpha diversity and beneficial bacteria linked to body weight loss in children and adolescents. The gut microbiota of obese children exhibited a remarkably individual variation. More interventions are needed to clearly and accurately explore the relationships between child obesity, gut microbiota, and physical activity and to develop approaches to decrease the incidence of paediatric obesity.
Collapse
Affiliation(s)
- Micaela C. Morgado
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| | - Mónica Sousa
- CIDEFES, Universidade Lusófona, 1749-024 Lisboa, Portugal
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - André B. Coelho
- Faculty of Sports Science and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal;
| | - Júlio A. Costa
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| | - André Seabra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| |
Collapse
|
7
|
Wei N, Wang S, Li X, Pan R, Yi W, Song J, Liu L, Liu J, Yuan J, Song R, Cheng J, Su H. The association between greenery type and gut microbiome in schizophrenia: did all greenspaces play the equivalent role? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100006-100017. [PMID: 37624502 DOI: 10.1007/s11356-023-29419-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In recent years, attention has been focused on the benefit of greenspace on mental health, and it is suggested this link may vary with the type of greenspace. More and more studies have emphasized the influence of the gut microbiome on schizophrenia (SCZ). However, the effects of greenspaces on the gut microbiota in SCZ and the effect of different types of greenspaces on the gut microbiota remain unclear. We aim to examine if there were variations in the effects of various greenspace types on the gut microbiome in SCZ. Besides, we sink to explore important taxonomic compositions associated with different greenspace types. We recruited 243 objects with schizophrenia from Anhui Mental Health Center and collected fecal samples for 16Sr RNA gene sequencing. Three types of greenery coverage were calculated with different circular buffers (800, 1500, and 3000 m) corresponding to individual addresses. The association between greenspace and microbiome composition was analyzed with permutational analysis of variance (PERMANOVA). We conducted the linear regression to capture specific gut microbiome taxa associated with greenery coverage. Tree coverage was consistently associated with microbial composition in both 1500 m (R2 = 0.007, P = 0.030) and 3000 m (R2 = 0.007, P = 0.039). In contrast, there was no association with grass cover in any of the buffer zones. In the regression analysis, higher tree coverage was significantly correlated with the relative abundance of several taxa. Among them, tree coverage was positively associated with increased Bifidobacterium longum (β = 1.069, P = 0.004), which was the dominant composition in the gut microbiota. The relationship between greenspace and gut microbiome in SCZ differed by the type of greenspace. Besides, "tree coverage" may present a dominant effect on the important taxonomic composition. Our findings might provide instructive evidence for the design of urban greenspace to optimize health and well-being in SCZ as well as the whole people.
Collapse
Affiliation(s)
- Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Shusi Wang
- Hefei Stomatological Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Morgado MC, Sousa M, Marques C, Coelho AB, Costa JA, Seabra A. Effects of Physical Activity and Nutrition Education on the Gut Microbiota in Overweight and Obese Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1242. [PMID: 37508739 PMCID: PMC10378599 DOI: 10.3390/children10071242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Childhood obesity continues to represent a growing challenge, and it has been associated with gut microbiota dysbiosis. This study examines the gut microbiota composition in overweight and obese school children and assesses whether a 12-week multidisciplinary intervention can induce changes in the gut microbiota. The intervention, which combined recreational football and nutritional education, was implemented among 15 school children, aged 7-10 years, with a Body Mass Index ≥ 85th percentile. The children were assigned into two groups: Football Group (n = 9) and Nutrition and Football Group (n = 6). Faecal samples were collected at the beginning and end of the program and analysed by sequencing the 16S rRNA gene. Over the intervention, a significant decrease was found collectively for Bifidobacterium genera (p = 0.011) and for Roseburia genera in the Football Group (p = 0.021). The relative abundance of Roseburia (p = 0.002) and Roseburia faecis (p = 0.009) was negatively correlated with moderate to vigorous physical activity (MVPA), while Prevotella copri was positively correlated with MVPA (p = 0.010) and with the daily intake of protein (p = 0.008). Our findings suggest that a multidisciplinary intervention was capable of inducing limited but significant positive changes in the gut microbiota composition in overweight and obese school children.
Collapse
Affiliation(s)
- Micaela C Morgado
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal
| | - Mónica Sousa
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Cláudia Marques
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - André B Coelho
- Faculty of Sports Science and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal
| | - Júlio A Costa
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal
| | - André Seabra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal
| |
Collapse
|
9
|
Yu Y, Lin X, Feng F, Wei Y, Wei S, Gong Y, Guo C, Wang Q, Shuai P, Wang T, Qin H, Li G, Yi L. Gut microbiota and ionizing radiation-induced damage: Is there a link? ENVIRONMENTAL RESEARCH 2023; 229:115947. [PMID: 37080277 DOI: 10.1016/j.envres.2023.115947] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.
Collapse
Affiliation(s)
- Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feiyang Feng
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
10
|
Shah S, Mu C, Moossavi S, Shen-Tu G, Schlicht K, Rohmann N, Geisler C, Laudes M, Franke A, Züllig T, Köfeler H, Shearer J. Physical activity-induced alterations of the gut microbiota are BMI dependent. FASEB J 2023; 37:e22882. [PMID: 36943402 DOI: 10.1096/fj.202201571r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Physical inactivity is one of the leading causes of chronic metabolic disease including obesity. Increasing physical activity (PA) has been shown to improve cardiometabolic and musculoskeletal health and to be associated with a distinct gut microbiota composition in trained athletes. However, the impact of PA on the gut microbiota is inconclusive for individuals performing PA in their day-to-day life. This study examined the role of PA and hand-grip strength on gut microbiome composition in middle-aged adults (40-65 years, n = 350) with normal (18.5-24.9 kg/m2 ) and overweight (25-29.9 kg/m2 ) body mass index (BMI). PA was recorded using the International Physical Activity Questionnaire, and hand-grip strength was measured using a dynamometer. Serum samples were assessed for lipidomics while DNA was extracted from fecal samples for microbiome analysis. Overweight participants showed a higher concentration of triacylglycerols, and lower concentrations of cholesteryl esters, sphingomyelin, and lyso-phosphotidylcholine lipids (p < .05) compared with those with normal BMI. Additionally, overweight participants had a lower abundance of the Oscillibacter genus (p < .05). The impact of PA duration on the gut microbiome was BMI dependent. In normal but not overweight participants, high PA duration showed greater relative abundance of commensal taxa such as Actinobacteria and Proteobacteria phyla, as well as Collinsella and Prevotella genera (p < .05). Furthermore, in males with normal BMI, a stronger grip strength was associated with a higher relative abundance of Faecalibacterium and F. prausnitzii (p < .05) compared with lower grip strength. Taken together, data suggest that BMI plays a significant role in modeling PA-induced changes in gut microbiota.
Collapse
Affiliation(s)
- Shrushti Shah
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Grace Shen-Tu
- Alberta's Tomorrow Project, Cancer Control Alberta, Alberta Health Services, Edmonton, Alberta, Canada
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Deng R, Wang M, Song Y, Shi Y. A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms 2023; 11:microorganisms11040903. [PMID: 37110325 PMCID: PMC10141121 DOI: 10.3390/microorganisms11040903] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
This article aims to provide an overview of research hotspots and trends in exercise and the gut microbiome, a field which has recently gained increasing attention. The relevant publications on exercise and the gut microbiome were identified from the Web of Science Core Collection database. The publication types were limited to articles and reviews. VOSviewer 1.6.18 (Centre for Science and Technology Studies, Leiden University, Leiden, the Netherlands) and the R package "bibliometrix" (R Foundation: Vienna, Austria) were used to conduct a bibliometric analysis. A total of 327 eligible publications were eventually identified, including 245 original articles and 82 reviews. A time trend analysis showed that the number of publications rapidly increased after 2014. The leading countries/regions in this field were the USA, China, and Europe. Most of the active institutions were from Europe and the USA. Keyword analysis showed that the relationship between disease, the gut microbiome, and exercise occurs throughout the development of this field of research. The interactions between the gut microbiota, exercise, status of the host's internal environment, and probiotics, are important facets as well. The research topic evolution presents a trend of multidisciplinary and multi-perspective comprehensive analysis. Exercise might become an effective intervention for disease treatment by regulating the gut microbiome. The innovation of exercise-centered lifestyle intervention therapy may become a significant trend in the future.
Collapse
Affiliation(s)
- Ruiyi Deng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Mopei Wang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing 100191, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Gonzalez-Alvarez ME, Sanchez-Romero EA, Turroni S, Fernandez-Carnero J, Villafañe JH. Correlation between the Altered Gut Microbiome and Lifestyle Interventions in Chronic Widespread Pain Patients: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:256. [PMID: 36837458 PMCID: PMC9964638 DOI: 10.3390/medicina59020256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Background: Lifestyle interventions have a direct impact on the gut microbiome, changing its composition and functioning. This opens an innovative way for new therapeutic opportunities for chronic widespread patients. Purpose: The goal of the present study was to evaluate a correlation between lifestyle interventions and the gut microbiome in patients with chronic widespread pain (CWP). Methods: The systematic review was conducted until January 2023. Pain and microbiome were the two keywords selected for this revision. The search was conducted in PubMed, Chochrane, PEDro and ScienceDirect, where 3917 papers were obtained. Clinical trials with lifestyle intervention in CWP patients were selected. Furthermore, these papers had to be related with the gut microbiome, excluding articles related to other types of microbiomes. Results: Only six articles were selected under the eligibility criteria. Lifestyle interventions were exercise, electroacupuncture and ingesting a probiotic. Conclusions: Lifestyle intervention could be a suitable choice to improve the gut microbiome. This fact could be extrapolated into a better quality of life and lesser levels of pain.
Collapse
Affiliation(s)
- María Elena Gonzalez-Alvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain
- Escuela Internacional de Doctorado, Rey Juan Carlos University, 28008 Madrid, Spain
| | - Eleuterio A. Sanchez-Romero
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial (SEDCYDO), 28009 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Josué Fernandez-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain
- Escuela Internacional de Doctorado, Rey Juan Carlos University, 28008 Madrid, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
13
|
Tovani-Palone MR, Pedersini P. Potential role of the microbiome in liver injury during COVID-19: Further research is needed. World J Gastroenterol 2023; 29:503-507. [PMID: 36688015 PMCID: PMC9850931 DOI: 10.3748/wjg.v29.i3.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Although different studies have associated coronavirus disease 2019 (COVID-19) with the occurrence of liver injury, the hepatic injury route during the COVID-19 course is not yet fully understood. In order to better understand the mechanisms of the disease, the human gut microbiota has been the subject of extensive discussion in the context of COVID-19 pathophysiology. However, many questions remain, including the risks of liver injury due to COVID-19 specific populations. Further research in this field could allow the discovery of new personalized treatment strategies aimed at improving the microbiota composition, thereby reducing COVID-19 severity and its complications in different populations. In this article, we discussed basic mechanisms of severe acute respiratory syndrome coronavirus 2 infection and recent evidence on the relationship between COVID-19, the gut microbiome and liver injury as well as proposed recommendations for further research.
Collapse
Affiliation(s)
- Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | | |
Collapse
|
14
|
Awuti K, Wang X, Sha L, Leng X. Exploring the regulatory mechanism of osteoporosis based on intestinal flora: A review. Medicine (Baltimore) 2022; 101:e32499. [PMID: 36596003 PMCID: PMC9803483 DOI: 10.1097/md.0000000000032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is 1 of the common diseases of bone metabolism in clinic. With the aging of the population in China, osteoporosis is becoming more and more serious, and it has become 1 of the major public health problems. However, traditional therapies, such as calcium therapy and estrogen therapy, can cause serious adverse effects and damage to the body when ingested over a long period of time. Therefore, there is an urgent need to explore alternative therapies with less side effects in clinical practice. Intestinal flora is a hot topic of research in recent years. It has been studied in inflammatory bowel disease, diabetes, depression and so on. Recently, intestinal flora has received increasing attention in the pathways regulating bone metabolism. This paper contains a review of recent studies related to osteoporosis and gut flora in terms of its metabolites, immune, endocrine, and brain-gut axis pathways. The strong association between intestinal flora and bone metabolism suggests, to some extent, that intestinal flora can be a potential target for osteoporosis prevention and treatment, providing new ideas and therapies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Kasimu Awuti
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xukai Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Liquan Sha
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- * Liquan Sha, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130117, China ()
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Zhang YW, Cao MM, Li YJ, Chen XX, Yu Q, Rui YF. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. J Transl Med 2022; 20:490. [PMID: 36303163 DOI: 10.1186/s12967-022-03700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by the decreased bone mass and destruction of bone microstructure, which tends to result in the enhanced bone fragility and related fractures, as well as high disability rate and mortality. Exercise is one of the most common, reliable and cost-effective interventions for the prevention and treatment of OP currently, and numerous studies have revealed the close association between gut microbiota (GM) and bone metabolism recently. Moreover, exercise can alter the structure, composition and abundance of GM, and further influence the body health via GM and its metabolites, and the changes of GM also depend on the choice of exercise modes. Herein, combined with relevant studies and based on the inseparable relationship between exercise intervention-GM-OP, this review is aimed to discuss the moderating effects and potential mechanisms of exercise intervention on GM and bone metabolism, as well as the interaction between them.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Xiang-Xu Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China. .,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China. .,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China. .,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
16
|
Viciani E, Barone M, Bongiovanni T, Quercia S, Di Gesu R, Pasta G, Manetti P, Iaia FM, Trecroci A, Rampelli S, Candela M, Biagi E, Castagnetti A. Fecal microbiota monitoring in elite soccer players along the 2019-2020 competitive season. Int J Sports Med 2022; 43:1137-1147. [PMID: 35595508 DOI: 10.1055/a-1858-1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physical exercise affects the human gut microbiota that, in turn, influences athletes' performance. The current understanding of how the microbiota of professional athletes changes along with different phases of training is sparse. We aim to characterize the fecal microbiota in elite soccer players along with different phases of a competitive season using 16S rRNA gene sequencing. Fecal samples were collected after the summer off-season period, the pre-season retreat, the first half of the competitive season, and the 8 weeks COVID-19 lockdown that interrupted the season 2019-2020. According to our results, the gut microbiota of professional athletes changes along with the phases of the season, characterized by different training, diet, nutritional surveillance, and environment sharing. Pre-season retreat, during which nutritional surveillance and exercise intensity were at their peak, caused a decrease in bacterial groups related to unhealthy lifestyle and an increase in health-promoting symbionts. The competitive season and forced interruption affected other features of the athletes' microbiota, i.e. bacterial groups that respond to dietary fibers load and stress levels. Our longitudinal study, focusing on one of the most followed sports worldwide, provides baseline data for future comparisons and microbiome-targeting interventions aimed at developing personalized training and nutrition plans for performances maximization.
Collapse
Affiliation(s)
| | - Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tindaro Bongiovanni
- Department of Health, Nutrition and Exercise Physiology, Parma Calcio 1913, Parma, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | - Giulio Pasta
- Medical Department, Parma Calcio 1913, Parma, Italy
| | | | - F Marcello Iaia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Athos Trecroci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, BOLOGNA, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
18
|
Association Between Long-Term Regular Exercise and Gut Microbiota Among Middle-Aged and Older Urban Chinese. Int J Sport Nutr Exerc Metab 2022; 32:144-152. [DOI: 10.1123/ijsnem.2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/06/2021] [Accepted: 01/02/2022] [Indexed: 11/18/2022]
Abstract
Increasing evidence has suggested that physical activity may modulate gut microbiome composition. We investigated associations of long-term regular exercise with gut microbiota among middle-aged and older urban Chinese individuals. Gut microbiota was assessed using 16S ribosomal ribonucleic acid gene sequencing of stool samples from 2,151 participants from the Shanghai Women’s Health Study and Shanghai Men’s Health Study. Participants were free of cancer, diabetes, and cardiovascular diseases at the time of stool sample collection. Physical activity was assessed in repeat surveys between 1996 and 2015 using validated questionnaires. Regular exercise was defined as any type of leisure-time physical activity with a standard metabolic equivalent score >3.0. Stool samples were collected using the 95% ethanol method between 2015 and 2018 with an average of 3.0 years (SD = 0.9) after the latest exposure assessment. General linear regression and permutational multivariate analysis of variance were carried out to evaluate associations of microbial α- and β-diversity with regular exercise participation. Logistic regression and linear regression models were used to evaluate the prevalence and relative abundance of individual taxa in association with regular exercise. Regular exercise was significantly associated with β-diversity (Bray–Curtis and Jaccard dissimilarities, both false discovery rates = 0.03%, 0.12% and 0.09% variance explained, respectively) but not with α-diversity. Relative abundance of genus Ruminococcus was significantly lower among regular exercisers compared with nonexercisers (median relative abundance: 0.64% vs. 0.81%, false discovery rate <0.10). Further studies are needed to validate the findings from this study and evaluate health benefits of regular exercise on gut microbiota.
Collapse
|
19
|
Disease-Modifying Adjunctive Therapy (DMAT) in Osteoarthritis-The Biological Effects of a Multi-Mineral Complex, LithoLexal ® Joint-A Review. Clin Pract 2021; 11:901-913. [PMID: 34940003 PMCID: PMC8700461 DOI: 10.3390/clinpract11040104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Modern advances in molecular medicine have led to the reframing of osteoarthritis as a metabolically active, inflammatory disorder with local and systemic contributing factors. According to the ‘inflammatory theory’ of osteoarthritis, immune response to an initial damage is the key trigger that leads to progressive joint destruction. Several intertwined pathways are known to induce and govern articular inflammation, cartilage matrix degradation, and subchondral bone changes. Effective treatments capable of halting or delaying the progression of osteoarthritis remain elusive. As a result, supplements such as glucosamine and chondroitin sulphate are commonly used despite the lack of scientific consensus. A novel option for adjunctive therapy of osteoarthritis is LithoLexal® Joint, a marine-derived, mineral-rich extract, that exhibited significant efficacy in clinical trials. LithoLexal® has a lattice microstructure containing a combination of bioactive rare minerals. Mechanistic research suggests that this novel treatment possesses various potential disease-modifying properties, such as suppression of nuclear factor kappa-B, interleukin 1β, tumor necrosis factor α, and cyclooxygenase-2. Accordingly, LithoLexal® Joint can be considered a disease-modifying adjunctive therapy (DMAT). LithoLexal® Joint monotherapy in patients with knee osteoarthritis has significantly improved symptoms and walking ability with higher efficacy than glucosamine. Preliminary evidence also suggests that LithoLexal® Joint may allow clinicians to reduce the dose of nonsteroidal anti-inflammatory drugs in osteoarthritic patients by up to 50%. In conclusion, the multi-mineral complex, LithoLexal® Joint, appears to be a promising candidate for DMAT of osteoarthritis, which may narrow the existing gap in clinical practice.
Collapse
|
20
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
21
|
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol 2021; 27:5037-5046. [PMID: 34497433 PMCID: PMC8384738 DOI: 10.3748/wjg.v27.i30.5037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include a spectrum of chronic inflammatory disorders of the gastrointestinal tract whose pathogenesis is yet to be elucidated. The intestinal microbiome has been studied as a causal component, with certain microbiotic alterations having been observed in subtypes of IBD. Physical exercise is a modulator of the intestinal microbiome, causing shifts in its composition that are partially corrective of those observed in IBD; furthermore, physical exercise may be beneficial in patients with certain IBD subtypes. This review studies the effects of physical exercise on the human gut microbiome while investigating pathophysiologic mechanisms that could explain physical activity’s clinical effects on patients with IBD.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastassios Philippou
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michael Koutsilieris
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
22
|
Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet-induced obese mice. Nutrition 2021; 93:111439. [PMID: 34507264 DOI: 10.1016/j.nut.2021.111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Species Lactobacillus acidophilus and butyrate producer Clostridium cochlearium have been shown to have potential antiobesity effects. The aim of this study was to show that the combination of C. cochlearium and L. acidophilus (CC-LA) has beneficial effects on body weight control and glucose homeostasis in high-fat diet-induced obese (DIO) mice. METHODS In this study, thirty-six 6-wk-old male C57BL/6 mice were randomly assigned to three groups of 12 mice each. The experimental group (CC-LA) was administered with CC-LA mixture and fed ad libitum with a high-fat diet. High-fat diet (HF) control and low-fat diet (LF) control groups were treated with the same dose of sterile water as the CC-LA group. RESULTS After 17 wk of dietary intervention, the CC-LA group showed 17% less body weight gain than the HF group did (P < 0.01). The CC-LA group also showed significantly reduced incremental area under the curve of oral glucose tolerance test and homeostatic model assessment for insulin resistance compared with the HF group. The results from 16S rRNA sequencing analysis of gut microbiota showed that the CC-LA administration led to overall increased α-diversity indices, and a significant microbial separation from the HF group. The ratio of Firmicutes to Bacteroidetes (F/B) was reduced from 3.30 in the HF group to 1.94 in the CC-LA group. The relative abundances of certain obesity-related taxa were also decreased by CC-LA administration. CONCLUSION The present study provided evidence that the CC-LA combination reduced obesity and improved glucose metabolism in high-fat diet-treated DIO mice, potentially mediated by the modulation of gut microbiota.
Collapse
|
23
|
Koponen KK, Salosensaari A, Ruuskanen MO, Havulinna AS, Männistö S, Jousilahti P, Palmu J, Salido R, Sanders K, Brennan C, Humphrey GC, Sanders JG, Meric G, Cheng S, Inouye M, Jain M, Niiranen TJ, Valsta LM, Knight R, Salomaa VV. Associations of healthy food choices with gut microbiota profiles. Am J Clin Nutr 2021; 114:605-616. [PMID: 34020448 PMCID: PMC8326043 DOI: 10.1093/ajcn/nqab077] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diet has a major influence on the human gut microbiota, which has been linked to health and disease. However, epidemiological studies on associations of a healthy diet with the microbiota utilizing a whole-diet approach are still scant. OBJECTIVES To assess associations between healthy food choices and human gut microbiota composition, and to determine the strength of association with functional potential. METHODS This population-based study sample consisted of 4930 participants (ages 25-74; 53% women) in the FINRISK 2002 study. Intakes of recommended foods were assessed using a food propensity questionnaire, and responses were transformed into healthy food choices (HFC) scores. Microbial diversity (alpha diversity) and compositional differences (beta diversity) and their associations with the HFC score and its components were assessed using linear regression. Multiple permutational multivariate ANOVAs were run from whole-metagenome shallow shotgun-sequenced samples. Associations between specific taxa and HFC were analyzed using linear regression. Functional associations were derived from Kyoto Encyclopedia of Genes and Genomes orthologies with linear regression models. RESULTS Both microbial alpha diversity (β/SD, 0.044; SE, 6.18 × 10-5; P = 2.21 × 10-3) and beta diversity (R2, 0.12; P ≤ 1.00 × 10-3) were associated with the HFC score. For alpha diversity, the strongest associations were observed for fiber-rich breads, poultry, fruits, and low-fat cheeses (all positive). For beta diversity, the most prominent associations were observed for vegetables, followed by berries and fruits. Genera with fiber-degrading and SCFA-producing capacities were positively associated with the HFC score. The HFC score was associated positively with functions such as SCFA metabolism and synthesis, and inversely with functions such as fatty acid biosynthesis and the sulfur relay system. CONCLUSIONS Our results from a large, population-based survey confirm and extend findings of other, smaller-scale studies that plant- and fiber-rich dietary choices are associated with a more diverse and compositionally distinct microbiota, and with a greater potential to produce SCFAs.
Collapse
Affiliation(s)
- Kari K Koponen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aaro Salosensaari
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Turku, Finland
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Matti O Ruuskanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Joonatan Palmu
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Turku, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Rodolfo Salido
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Caitriona Brennan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Gregory C Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Guillaume Meric
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Susan Cheng
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Teemu J Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Turku, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Liisa M Valsta
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Veikko V Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
24
|
Pedersini P, Bishop MD, Villafañe JH. Osteoarthritis Related Pain: Which Procedure is the Optimal Choice? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/11014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells 2021; 10:cells10040938. [PMID: 33920695 PMCID: PMC8072750 DOI: 10.3390/cells10040938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.
Collapse
|
26
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Turroni S, Magnani M, Kc P, Lesnik P, Vidal H, Heer M. Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2020; 11:553929. [PMID: 33013480 PMCID: PMC7505921 DOI: 10.3389/fphys.2020.553929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The upcoming exploration missions will imply a much longer duration than any of the missions flown so far. In these missions, physiological adaptation to the new environment leads to changes in different body systems, such as the cardiovascular and musculoskeletal systems, metabolic and neurobehavioral health and immune function. To keep space travelers healthy on their trip to Moon, Mars and beyond and their return to Earth, a variety of countermeasures need to be provided to maintain body functionality. From research on the International Space Station (ISS) we know today, that for instance prescribing an adequate training regime for each individual with the devices available in the respective spacecraft is still a challenge. Nutrient supply is not yet optimal and must be optimized in exploration missions. Food intake is intrinsically linked to changes in the gut microbiome composition. Most of the microbes that inhabit our body supply ecosystem benefit to the host-microbe system, including production of important resources, bioconversion of nutrients, and protection against pathogenic microbes. The gut microbiome has also the ability to signal the host, regulating the processes of energy storage and appetite perception, and influencing immune and neurobehavioral function. The composition and functionality of the microbiome most likely changes during spaceflight. Supporting a healthy microbiome by respective measures in space travelers might maintain their health during the mission but also support rehabilitation when being back on Earth. In this review we are summarizing the changes in the gut microbiome observed in spaceflight and analog models, focusing particularly on the effects on metabolism, the musculoskeletal and immune systems and neurobehavioral disorders. Since space travelers are healthy volunteers, we focus on the potential of countermeasures based on pre- and probiotics supplements.
Collapse
Affiliation(s)
- Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Pukar Kc
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France.,Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, Pierre-Benite, France
| | - Martina Heer
- International University of Applied Sciences, Bad Reichenhall, Germany.,Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|