1
|
Lomwongsopon P, Martínez BM, Jiménez AB, Bardenstein AL, Kusano Y, de Claville Christiansen J, Varrone C. Enhancing biodegradation of polyolefins and real mixed plastic waste by combination of pretreatment and mixed microbial consortia. CHEMOSPHERE 2025; 373:144151. [PMID: 39884136 DOI: 10.1016/j.chemosphere.2025.144151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Polyolefins (PO)1 are the most common consumer plastics, constituting about half of plastic waste. This work investigated the process combining physicochemical pretreatment and PO-enriched mixed microbial consortia (MMCs) on biodegrading European real mixed plastic waste. The MMCs, acclimatized on PO powders, were enriched with strains that could use PO, primarily dominated by the genus Rhodanobacter. Several pretreatment methods were investigated on pure polyethylene (PE) and polypropylene (PP). UVC combined with Fenton's reagent was found to be the best pretreatment process for pure PO, increasing the total oxidative indices of PE and PP by 135 and 21 times, respectively, and decrease the total crystallinity of PP by 2.3 times (but not PE), compared to the untreated ones. Maximum 7.7% and 16.3% weight reductions were achieved after MMCs biodegradation of UVC-Fenton-treated PE and PP powders (80 μm), with a 4.3- and 27.2-times improvement from the untreated ones. Selected pretreatments and MMCs were then applied to real mixed plastic waste and post-consumer multilayers from 10 different streams. The highest weight reductions after 30-days biodegradation were obtained using mixed plastic reject from a biogas plant (MW2) followed by the unrecyclable mixed plastic waste from a Danish municipality (MW1), with a reduction of 36.8% and 30.0% using radio frequency (RF) oxygen plasma pretreatment, respectively. Integration of ultrasonic irradiation with atmospheric pressure plasma treatment increased the biodegradation of MW1 to 39.4%. This study addressed the bottleneck of slow biodegradation of recalcitrant plastics, laying down the basis for future development of biotechnological recycling of unrecyclable plastic fractions.
Collapse
Affiliation(s)
- Passanun Lomwongsopon
- Section of Bioresources and Process Engineering, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Belén Monje Martínez
- AIMPLAS, Instituto Technológico del Plástico, València Parc Tecnològic, C/Gustave Eiffel 4, 46980, Paterna, Valencia, Spain
| | - Alberto Barranca Jiménez
- AIMPLAS, Instituto Technológico del Plástico, València Parc Tecnològic, C/Gustave Eiffel 4, 46980, Paterna, Valencia, Spain
| | | | - Yukihiro Kusano
- Plastics and Packaging Technology, Danish Technological Institute, 2630, Taastrup, Denmark
| | | | - Cristiano Varrone
- Section of Bioresources and Process Engineering, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
2
|
Irfan H, Irfan H, Khan MA, Inanc O, Hasibuzzaman MA. Microplastics and nanoplastics: emerging threats to cardiovascular health - a comprehensive review. Ann Med Surg (Lond) 2025; 87:209-216. [PMID: 40109649 PMCID: PMC11918686 DOI: 10.1097/ms9.0000000000002831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 03/22/2025] Open
Abstract
Background Global plastic production surged to 400.3 million metric tons in 2022, contributing significantly to environmental pollution. Projections estimate that 13.2 billion tons of plastic waste will be present in ecosystems by 2050. This increase in plastic production has led to substantial human exposure to microplastics (MPs) and nanoplastics (NPs). While their environmental and general health impacts are well-documented, the specific effects on cardiovascular health remain underexplored. Objectives This review aims to examine the presence of MPs and NPs in the environment, their routes of human exposure, and their toxicological implications for the cardiovascular system (CVS), focusing on oxidative stress, apoptosis, cardiac fibrosis, and major adverse cardiovascular events (MACE). Methods A comprehensive literature review was conducted using PubMed, Scopus, and Google Scholar. Relevant studies from the past 10 years were selected based on keywords like "microplastics," "nanoplastics," and "cardiovascular health." Results MPs and NPs are found in air, water, and food, entering the human body primarily through inhalation, ingestion, and dermal contact. These particles induce oxidative stress, mitochondrial dysfunction, and apoptosis, which impair cardiovascular health. MPs have been detected in arterial tissues, particularly in atherosclerotic plaques, correlating with increased MACE risk. MP exposure is linked to VC, reduced vessel flexibility, and increased thrombosis severity. Additionally, MPs contribute to inflammation and lipid metabolism disruption, which further exacerbate heart disease. Conclusion The evidence suggests a concerning link between plastic exposure and cardiovascular health, highlighting the urgent need for further research to understand the long-term effects of MPs and NPs on CVSs.
Collapse
Affiliation(s)
- Hamza Irfan
- Department of Internal Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Haider Irfan
- Department of Internal Medicine, Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | | | - Oyku Inanc
- Gulhane Training and Research Hospital, Ankara, Turkey
| | - Md Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Khalil MA, Schagerl M, Al-Zahrani M, Sun J. Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. TOXICS 2024; 12:909. [PMID: 39771124 PMCID: PMC11728610 DOI: 10.3390/toxics12120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling methods, MP production and environmental accumulation are expanding at an alarming rate, resulting in a range of economic, social, and environmental repercussions. Aquatic organisms, including fish and various crustaceans, consume MPs, which are ultimately consumed by humans at the tertiary level of the food chain. Blocking the digestive tracts, disrupting digestive behavior, and ultimately reducing the reproductive growth of entire living organisms are all consequences of this phenomenon. In order to assess the potential environmental impacts and the resources required for the life of a plastic product, the importance of life cycle assessment (LCA) and circularity is underscored. MPs-related ecosystem degradation has not yet been adequately incorporated into LCA, a tool for evaluating the environmental performance of product and technology life cycles. It is a technique that is designed to quantify the environmental effects of a product from its inception to its demise, and it is frequently employed in the context of plastics. The control of MPs is necessary due to the growing concern that MPs pose as a newly emergent potential threat. This is due to the consequences of their use. This paper provides a critical analysis of the formation, distribution, and methods used for detecting MPs. The effects of MPs on ecosystems and human health are also discussed, which posed a great challenge to conduct an LCA related to MPs. The socio-economic impacts of MPs and their management are also discussed. This paper paves the way for understanding the ecotoxicological impacts of the emerging MP threat and their associated issues to LCA and limits the environmental impact of plastic.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | | | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Maha A. Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
4
|
Khant NA, Chia RW, Moon J, Lee JY, Kim H. Review on the relationship between microplastics and heavy metals in freshwater near mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66009-66028. [PMID: 39641844 DOI: 10.1007/s11356-024-35675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs), degraded from plastic wastes, have drawn significant attention worldwide due to its prevalence and rapid transition. Contamination of freshwater with MPs has become an emerging global issue. Heavy metals (HMs), a prominent global pollutant, also garnered much attention due to their potential interaction with MPs, presenting a multifaceted environmental threat. The primary source of HM contamination in freshwater has been identified as mining sites. Additionally, the increasing use of plastic materials within mining areas raises concerns about MP release into the surrounding freshwater environments. Recent studies only provide information on the contamination of HMs status with MPs. However, studies on the mechanism responsible for MPs contamination from both external and internal sources of freshwater MPs and HMs are limited. The knowledge gaps in the deposition and fate of MPs in various mining situations and the possibility of combined impacts of heavy metals and MPs in the ecosystem raise ecological concerns. Here, we review the origins of MPs and HM pollution within mining sites and explore the potential combined detrimental impacts on plants and animal life. We found out that polystyrene (PS) and polyethylene (PE) have higher adsorption affinity to heavy metals, and the mingle toxic consequence of the MPs and HM can depend on the MP surface properties, pH, and salinity of the neighboring water solution. The Langmuir and Freundlich isotherm models enable the efficient design of adsorption systems. The Langmuir model describes single-layer adsorption at homogeneous sites, while the Freundlich model addresses multilayer adsorption on heterogeneous surfaces. The crucial mechanism of adsorption and desorption that underlies the occurrence of both MPs and heavy metals is a decisive matter in this issue.
Collapse
Affiliation(s)
- Naing Aung Khant
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jinah Moon
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research On Microplastic in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
6
|
Voudrias EA. Management of COVID-19 healthcare waste based on the circular economy hierarchy: A critical review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:977-996. [PMID: 37753975 DOI: 10.1177/0734242x231198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The overall objective of this work was to conduct a critical literature review on the application of the circular economy (CE) hierarchy for the management of COVID-19 healthcare waste (HCW). To describe the problem created by COVID-19 HCW, first, the subsystems of the overall management system, including generation, segregation, classification, storage, collection, transport, treatment and disposal, were reviewed and briefly described. Then, the CE hierarchy using the 10R typology was adapted to the management of COVID-19 HCW and included the strategies Refuse, Reduce, Resell/Reuse, Repair, Reprocess, Refurbish, Remanufacture, Repurpose, Recycle and Recover (energy). Disposal was added as a sink of residues from the CE strategies. Using the detailed 10R CE hierarchy for COVID-19 HCW management is the novelty of this review. It was concluded that R-strategy selection depends on its position in the CE hierarchy and medical item criticality and value. Indicative HCW components, which can be managed by each R-strategy, were compiled, but creating value by recovering infectious downgraded materials contaminated with body fluids and tissues is not currently possible. Therefore, after applying the circular solutions, the end of pipe treatment and disposal would be necessary to close material cycles at the end of their life cycles. Addressing the risks, knowledge gaps and policy recommendations of this article may help to combat COVID-19 and future pandemics without creating environmental crises.
Collapse
Affiliation(s)
- Evangelos A Voudrias
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
7
|
Patchaiyappan A, Singh A, Bautès N, Abimannan A. Face mask littering in coastal environment of Coromandel beaches, a comparison between street and beach littering - perspective and perceptions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61270-61282. [PMID: 39412720 DOI: 10.1007/s11356-024-35014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The usage of face mask has been encouraged globally to combat the COVID-19 pandemic. However, their improper disposal has begun to impact the environment. In the present study, face mask littering was assessed in sixteen stations across the beaches in Coromandel coast of South India for a period of four weeks. Moreover, an online questionnaire was recorded to evaluate the people's perception about face mask usage and littering. In terms of land use pattern, stations with both fishing and tourism activities had higher abundance of face mask littering when compared with exclusive fishing and tourism stations. The study also found that mask littering was higher in streets when compared to the beaches. Of 163 respondents, most of the respondents preferred using disposable single use masks and 39.9% of the respondents preferred to dispose of the face masks along with other wastes. The study highlights the lack of proper solid waste management, negligent littering, and the need for raising awareness, strategic intervention to control this menace.
Collapse
Affiliation(s)
- Arunkumar Patchaiyappan
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India.
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
- Svarnim, Sri Aurobindo Society, Puducherry, 605001, India.
| | - Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nicolas Bautès
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India
| | - Arulkumar Abimannan
- Department of Biotechnology, Achariya Arts and Science College, Affiliated to Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
8
|
Khant NA, Lumongsod RM, Namkoong S, Kim H. A review of the influence mechanisms of climate-induced events on groundwater microplastic contamination: A focus on aquifer vulnerabilities and mitigation strategies. Sci Prog 2024; 107:368504241306270. [PMID: 39665208 PMCID: PMC11635876 DOI: 10.1177/00368504241306270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Climate change and plastic pollution are two main issues that our world is currently facing, and they are mainly linked through various processes, mechanisms, and chemical blueprint. Emerging issues related to microplastic (MP) contamination in freshwater are expanding and diverse research is being carried out globally. Factors causing climate change are increasing the frequency of extreme weather phenomena such as floods, drought, sea level rise, and heat waves, which can directly or indirectly influence the plastic/MP contamination in various ecosystems including groundwater environments. Here, we review the impacts of extreme weather events on MP contamination in freshwater with a specific focus on groundwater environments. This narrative review shows that flooding can have the most adverse effect on the MP pollution in groundwater environments through recharge events. Drought can also have major effects on MP pollution. Karst, alluvial, and coastal aquifers exhibit the highest levels of MP contamination among various aquifer types. Climate change's impact on different types of aquifers can vary depending on hydrogeological conditions and other factors in the groundwater environment. Prevention and comprehensive solutions are crucial for addressing MPs in the environment, with downstream measures being supplementary to upstream ones.
Collapse
Affiliation(s)
- Naing Aung Khant
- Department of Geology, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
9
|
Ozogul F, Rathod N, Köse S, Alak G, Kızılyıldırım S, Bilgin Ş, Emir Çoban Ö, İnanlı AG, Ünal-Şengör GF, İzci L, Ozogul Y, Tokur B, Ucak İ, Ceylan Z, Kulawik P. Biochemical and microbial food safety hazards in seafood: A Mediterranean perspective (Part 2). ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:209-271. [PMID: 40155085 DOI: 10.1016/bs.afnr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The marine environment is teeming with a diverse array of algae, dinoflagellates and phytoplankton. These organisms possess the remarkable capacity to produce toxic compounds that can be passed to humans through the ingestion of seafood, resulting in potential health risks. Similarly, seafood can be susceptible to contamination from various microorganisms, viruses and parasites, thereby, potentially compromising food safety. Consuming seafood that contains toxins or pathogenic microorganisms may have serious health consequences, including the potential for severe illness or even fatality. This chapter delves into the various hazards that arise from biochemical and microbiological factors, with particular emphasis on the Mediterranean region. In addition, it provides a succinct analysis regarding the effect of COVID-19 pandemic on the safety of seafood.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye; Biotechnology Research and Application Center, Çukurova University, Adana, Türkiye.
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, Maharashtra, India.
| | - Sevim Köse
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Çamburnu, Trabzon, Türkiye
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Suna Kızılyıldırım
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - Şengül Bilgin
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Özlem Emir Çoban
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Ayşe Gürel İnanlı
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Gülgün F Ünal-Şengör
- Division of Food Safety, Department of Fisheries and Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, İstanbul, Türkiye
| | - Levent İzci
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye.
| | - Bahar Tokur
- Fatsa Faculty of Marine Sciences, Ordu University, Ordu, Türkiye
| | - İlknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Zafer Ceylan
- Department of Molecular Biology and Genetics/Biotechnology, Science Faculty, Bartın University, Bartın, Turkiye
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland.
| |
Collapse
|
10
|
Song H, Huang Y, Pang J, Li Z, Zhu Z, Cheng H, Gao J, Zuo W, Zhou H. A study of the stabilization and solidification of heavy metals in co-vitrification of medical waste incineration ash and coal fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:46-54. [PMID: 38852376 DOI: 10.1016/j.wasman.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Medical waste incineration ash (MWIA) has significant concentrations of heavy metals, dioxins, and chlorine that, if handled incorrectly, might cause permanent damage to the environment and humans. The low content of calcium (Ca), silicon (Si), and aluminum (Al) is a brand-new challenge for the melting technique of MWIA. This work added coal fly ash (CFA) to explore the effect of melting on the detoxication treatment of MWIA. It was found that the produced vitrification product has a high vitreous content (98.61%) and a low potential ecological risk, with an initial ash solidification rate of 67.38%. By quantitatively assessing the morphological distribution features of heavy metals in ashes before melting and molten products, the stabilization and solidification rules of heavy metals during the melting process were investigated. This work ascertained the feasibility of co-vitrification of MWIA and CFA. In addition, the high-temperature melting and vitrification accelerated the detoxification of MWIA and the solidification of heavy metals.
Collapse
Affiliation(s)
- Huikang Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Junfeng Pang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China; China Everbright Greentech Limited., Nanjing 211164, China
| | - Zhiyuan Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhicheng Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Haoqiang Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Jiawei Gao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Wu Zuo
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Haiyun Zhou
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| |
Collapse
|
11
|
Rodriguez Morris MI, Kontar W, Hicks AL. Use, reuse, and waste management of single-use products associated with the COVID-19 pandemic in the United States. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1736-1746. [PMID: 38353376 DOI: 10.1002/ieam.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 08/13/2024]
Abstract
Single-use product usage is not a new concern. However, during the early stages of the COVID-19 pandemic, the use and disposal of single-use products, especially those related to managing the pandemic, rose to prominence. Reports of shortages-and at the same time litter formation arising from improper disposal of various pandemic-related materials such as gloves, masks, wipes, and food takeout containers-were frequently relayed. To address shortages, it was recommended that single-use products be reused in some instances. As these recommendations were widely adopted, it became essential to assess consumer preferences regarding single-use product usage. Aiming to fill that void, a survey was distributed to learn about single-use product usage, possible reuse of single-use products, and waste-management practices during the COVID-19 pandemic in the US. Respondents preferred reusable fabric masks followed by disposable surgical masks. A significant percentage of respondents answered that they would reuse a disposable mask and mostly selected rotating masks as the preferred "disinfection" method in between the reuse of single-use masks. Gloves were not used by most respondents whereas wipes and/or paper towels were used by more than half of respondents. Free-response answers were analyzed for common themes. Concerns related to pandemic-related product use and disposal, and food packaging or food preparation were observed in the free-response answers. This survey reveals that respondents perceived changes in their consumption and waste generation or perceived a change in the type of products consumed and discarded due to the pandemic. Overall, respondents expressed a preference for reuse and a concern over the increase in single-use products. Results of this study can be used to make projections on the consumption and reuse of single-use products in crisis scenarios. In addition, the data can be used to model the use and disposal phase in single-use product life-cycle assessments. Integr Environ Assess Manag 2024;20:1736-1746. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Monica I Rodriguez Morris
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wissam Kontar
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea L Hicks
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Twagirayezu G, Cheng H, Irumva O, Nizeyimana JC, Nizeyimana I, Bakunzibake P, Uwimana A, Birame CS. A critical review and analysis of plastic waste management practices in Rwanda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51126-51146. [PMID: 39126583 DOI: 10.1007/s11356-024-34572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Plastic products are now essential commodities, yet their widespread disposal leads to environmental and human health effects, particularly in developing nations. Therefore, developing nations require comprehensive studies to assess the current state of plastic and plastic waste production to enhance plastic waste management practices. This review analyzes the import and export of plastic and the production of plastic waste in Rwanda, aiming to improve waste management practices. This review used open-access papers, reports, and websites dealing with plastic waste management. In this review, 58 articles from the Web of Science and 86 from other search engines were consulted to write this review. The findings revealed that the daily estimated plastic waste produced per person ranges between 0.012 and 0.056 kg. The estimated amount of plastic waste generated per person per year in Rwanda could be between 4.38 and 20.44 kg. Plastic waste accounts for between 1 and 8% of the total municipal solid waste produced per person per day in the country, which ranges from 219 to 255.5 kg. The average annual amount of imported plastics could reach 568.2881 tons, whereas the average quantity of exported plastics could reach 103.7414 tons. This shows that plastic management practices have not yet adopted technically advanced or improved practices, which should concern efforts to protect our environment. This study suggests approaches that can vastly improve plastic waste management and potentially open massive opportunities for the people of Rwanda.
Collapse
Affiliation(s)
- Gratien Twagirayezu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China.
| | - Olivier Irumva
- School of Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jean Claude Nizeyimana
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | - Philippe Bakunzibake
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Abias Uwimana
- College of Science and Technology, University of Rwanda, P. O. Box 3900, Kigali, Rwanda
| | | |
Collapse
|
13
|
Caner S, Günay D, Arı H, Erdoğan Ş. Microplastic pollution and ecological risk assessment of a pond ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:712. [PMID: 38976167 DOI: 10.1007/s10661-024-12881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Microplastic (MP) pollution has been observed in various ecosystems as a result of the rapid increase in plastic production over the past half-century. Nevertheless, the extent of MP pollution in different ecosystems, particularly in freshwater ecosystems, has not been well-studied, and there are limited investigations on this particular topic, specifically in Türkiye. Here, we quantify the occurrence and distribution of MPs in surface water samples collected from Topçu Pond (Türkiye) for the first time. Water samples were collected at five stations and filtered (30 L for each station) through stacked stainless steel sieves (5 mm, 328 µm, and 61 µm mesh size) with a diameter of 30 cm. The abundance, size, color, shape, and type of collected debris samples were analyzed after the wet peroxide oxidation process. MP particles were observed in all samples at an average abundance of 2.4 MPs/L. The most abundant MP size class and type were 0-999 µm and fiber respectively. On the other hand, prevalent colors were black and colorless in general. According to the Raman analysis results, the identified MP derivatives were polypropylene (40%), polyamide (30%), ethylene acrylic acid (20%), and polyvinylchloride (10%). Moreover, the pollution load index (PLI) index was used to determine the pollution status. PLI values were determined as 1.91 at station S1, 1.73 at station S2, 1.31 at station S3, 1 at station S4 and 1.24 at station S5. The PLI value determined for the overall pond was 1.4. The results of this research show that MP pollution is present in Topçu Pond and contributes to the expanding literature on MP pollution in pond ecosystems.
Collapse
Affiliation(s)
- Serkan Caner
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Dilara Günay
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey.
| |
Collapse
|
14
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
15
|
Ghosh S, Dave V, Sharma P, Patel A, Kuila A. Protective face mask: an effective weapon against SARS-CoV-2 with controlled environmental pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41656-41682. [PMID: 37968481 DOI: 10.1007/s11356-023-30460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Masks are face coverings that give protection from infectious agents, airborne pathogens, bacteria, viruses, surgical fog, dust, and other chemical hazards by acting as a barrier between the wearer and the environment. In the COVID-19 pandemic, this major personal protective equipment's became essential part of our daily life. The aim of this review is to analyze and discuss the different types of masks with their pros and cons, manufacturing procedures, evaluation criteria, and application with some of the sterilization process for reuse and smart mask. The review used a thorough examination of the literature to analyze the preventive effects of surgical, N95, smart mask, and potential environmental damage from those masks. Several studies and evidence were also examined to understand the efficiency of different mask on different environment. N95 respirators are capable of filtering out non-oil-based 95% air-born particles, and surgical masks act as a protective barrier between the wearer and the environment. The application of spoon bond and melt blown techniques in the fabrication process of those masks improves their protective nature and makes them lightweight and comfortable. But the high demand and low supply forced users to reuse and extend their use after sterilizations, even though those masks are recommended to be used once. Universal masking in the SARS-COV-2 pandemic increased the chance of environmental pollution, so the application of smart masks became essential because of their high protection power and self-sterilizing and reusing capabilities.
Collapse
Affiliation(s)
- Shovan Ghosh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| | - Vivek Dave
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India.
| | - Prashansa Sharma
- Department of Home Science, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, India
| | - Akash Patel
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Sikar, Rajasthan, 304022, India
| |
Collapse
|
16
|
Han Y, Gu X, Lin C, He M, Wang Y. Effects of COVID-19 on coastal and marine environments: Aggravated microplastic pollution, improved air quality, and future perspective. CHEMOSPHERE 2024; 355:141900. [PMID: 38579953 DOI: 10.1016/j.chemosphere.2024.141900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.
Collapse
Affiliation(s)
- Yixuan Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Castellani F, Vitali M, Antonucci A, Del Morrone G, Cofone L, D'Ancona G, Pindinello I, Mattiucci S, Protano C. Optimization of a fast and sensitive method based on matrix solid-phase dispersion-LC-ms/ms for simultaneous determination of phthalates and bisphenols in mussel samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:537-549. [PMID: 38547176 DOI: 10.1080/19440049.2024.2334300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/30/2024]
Abstract
Bisphenols and phthalates are wide classes of endocrine disrupting chemicals (EDCs) extensively used as additives in plastic products. In this study, a fast and reliable analytical method based on matrix solid-phase dispersion (MSPD) coupled with LC-MS/MS was developed and optimized for simultaneous determination of 8 bisphenols and 7 phthalates in raw mussel extract. The LC-MS/MS method was tested for linearity (R2), inter- and intra-day repeatability, limit of detection and quantification, both for matrix-free and matrix-matched solutions. The MSPD method was optimized in terms of ratio between sample and sorbent, and the type and quantity of the eluents in order to maximize the recoveries and to minimize matrix effects. The obtained recoveries (values between 75% and 113%), limits of detection (values between 0.048 and 0.36 µg kg-1), limits of quantification (values between 0.16 and 1.28 µg kg-1), repeatability (RSD% between 1.30% and 8.41%) and linearity (R2 > 0.998) were satisfactory and suitable for the determination of target micropollutants in food samples. In addition, the low solvent consumption and fast execution make this method ideal for routinely determinations of bisphenols and phthalates in mussels.
Collapse
Affiliation(s)
- Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Arianna Antonucci
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giammarco Del Morrone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Luigi Cofone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Gabriele D'Ancona
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Ivano Pindinello
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
18
|
Chen DC, Chen DF, Huang SM. Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality. Polymers (Basel) 2024; 16:1113. [PMID: 38675032 PMCID: PMC11054033 DOI: 10.3390/polym16081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This research investigates the control of thickness and weight in plastic extrusion vacuum-thermoforming products to identify optimal key parameters for cost reduction and energy savings. The initial step involves identifying crucial influencing factors. In this step, the Delphi technique was employed through a questionnaire administered to a panel of expert scholars to ensure minimal error and maximal reliability in determining key influencing factors. Consensus was sought to establish appropriateness and consistency. Subsequently, the Taguchi method was applied for quality design and planning of the extrusion vacuum-forming process. The experimental design parameters were selected using an L18 (21 × 37) orthogonal array, and the desired quality characteristics were determined. Comparative analysis of quantitative production data from two consecutive experiments was conducted, and based on F-values and contribution analysis, the combination of control factors maximizing the Signal-to-Noise (S/N) ratio was identified. The objective is to seek optimal parameters for improving the quality of the plastic polypropylene (PP cup lid) manufacturing process, reducing process variability, and identifying the most robust production conditions. Through multiple actual production prediction experiments, it was determined that five control factors, "polypropylene new material ratio," "T-die lips adjustment thickness", "mirror wheel temperature stability", "molding vacuum pressure time", and "forming mold area design", contribute to the maximization of the S/N ratio, i.e., minimizing variability. Statistical validation confirms a significant improvement in product quality and weight control. Noteworthily, the quality control model and experimental design parameters established in this study are also applicable to other plastic products and bio-based materials, such as PET, HIPS, and biodegradable PLA lids with added calcium carbonate. The results of the experimental production demonstrate its ability to consistently control product weight within the range of 3.4 ± 0.1 g, approaching the specified tolerance limits. This capability results in approximately 2.6% cost savings in product weight, contributing significantly to achieving a company's KPI goals for environmental conservation, energy efficiency, and operational cost reduction. Therefore, the findings of this study represent a substantial and tangible contribution.
Collapse
Affiliation(s)
- Dyi-Cheng Chen
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jin-De Road, Changhua City 500, Taiwan;
| | - Der-Fa Chen
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jin-De Road, Changhua City 500, Taiwan;
| | - Shih-Ming Huang
- Department of Mechanical Engineering, Wu Feng University, No. 117, Section 2, Jianguo Road, Minxiong 621303, Taiwan
| |
Collapse
|
19
|
Bromley-Dulfano R, Chan J, Jain N, Marvel J. Switching from disposable to reusable PPE. BMJ 2024; 384:e075778. [PMID: 38499293 DOI: 10.1136/bmj-2023-075778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Rebecca Bromley-Dulfano
- Stanford University School of Medicine, Stanford, CA, USA
- Harvard University, Department of Health Care Policy, Boston, MA
- Stanford Climate and Health, Stanford, CA
| | - Joshua Chan
- Stanford University, Stanford, CA
- Stanford Climate and Health, Stanford, CA
| | - Navami Jain
- Stanford University, Stanford, CA
- Stanford Climate and Health, Stanford, CA
| | - James Marvel
- Stanford University School of Medicine, Stanford, CA, USA
- Stanford Climate and Health, Stanford, CA
| |
Collapse
|
20
|
Bihannic I, Gley R, Gallo L, Badura A, Razafitianamaharavo A, Beuret M, Billet D, Bojic C, Caillet C, Morlot P, Zaffino M, Jouni F, George B, Boulet P, Noûs C, Danger M, Felten V, Pagnout C, Duval JFL. Photodegradation of disposable polypropylene face masks: Physicochemical properties of debris and implications for the toxicity of mask-carried river biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133067. [PMID: 38039813 DOI: 10.1016/j.jhazmat.2023.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Collapse
Affiliation(s)
| | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Lucas Gallo
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | | | | | - David Billet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Clément Bojic
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Fatina Jouni
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Béatrice George
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
| | - Pascal Boulet
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | | |
Collapse
|
21
|
Wang Q, Zhang M, Li R. Does medical waste research during COVID-19 meet the challenge induced by the pandemic to waste management? WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:244-259. [PMID: 37334464 PMCID: PMC10277880 DOI: 10.1177/0734242x231178226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
The COVID-19 pandemic has resulted in an unprecedented amount of medical waste, presenting significant challenges for the safe disposal of hazardous waste. A systematic review of existing research on COVID-19 and medical waste can help address these challenges by providing insights and recommendations for effective management of the massive medical waste generated during the pandemic. This study utilized bibliometric and text mining methods to survey the scientific outcomes related to COVID-19 and medical waste, drawing on data from the Scopus database. The results show that the spatial distribution of medical waste research is unbalanced. Surprisingly, developing countries rather than developed countries lead research in this area. Especially, China, a major contributor to the field, has the highest number of publications and citations, and is also a centre of international cooperation. The main study authors and research institutions are also mainly from China. And the research on medical waste is a multidisciplinary field. Text mining analysis shows that COVID-19 and medical waste research is mainly organized around four themes: (i) medical waste from personal protective equipment; (ii) research on medical waste in Wuhan, China; (iii) threats of medical waste to the environment and (iv) disposal and management of medical waste. This would serve to better understand the current state of medical waste research and to provide some implications for future research.
Collapse
Affiliation(s)
- Qiang Wang
- School of Economics and Management, China University of Petroleum (East China), Qingdao, People’s Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, People’s Republic of China
| | - Min Zhang
- School of Economics and Management, China University of Petroleum (East China), Qingdao, People’s Republic of China
| | - Rongrong Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao, People’s Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, People’s Republic of China
| |
Collapse
|
22
|
Liparoti S, Iozzino V, Speranza V, Pantani R. Modulating poly(lactic acid) degradation rate for environmentally sustainable applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:215-224. [PMID: 38218092 DOI: 10.1016/j.wasman.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The huge amount of plastics generated by the massive use of packaging makes it difficult to manage waste safely. Introducing biodegradable polymers, such as poly(lactic acid) (PLA), can at least partially reduce the environmental pollution from plastic waste. Biodegradable polymers must have a degradation rate appropriate for the intended use to replace durable plastics. This work aims to introduce PLA fillers that can modulate the degradation rate during hydrolysis and composting. For this purpose, fumaric acid and magnesium hydroxide have been proposed. The experimental findings demonstrated that magnesium oxide makes hydrolysis faster than fumaric acid. A model describing the hydrolysis reaction, which also considers the effect of crystallinity, is proposed. The model can capture the filler effect on the kinetic constants related to the autocatalytic part of the hydrolysis reaction. Degradation of the PLA and compounds was also conducted in a composting medium. The compound with fumaric acid shows faster degradation than the compound with magnesium oxide; this behavior is opposite to what is observed during hydrolysis. Degradation in a composting medium is favored in a narrow pH window corresponding to the optimum environment for microorganism growth. Magnesium oxide leads to a pH increase above the optimum level, making the environment less favorable to microorganism growth. Vice-versa, fumaric acid maintains the pH level in the optimum range: it represents an additional carbon source for microorganism growth.
Collapse
Affiliation(s)
- Sara Liparoti
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 Fisciano, SA, Italy.
| | - Valentina Iozzino
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 Fisciano, SA, Italy
| | - Vito Speranza
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 Fisciano, SA, Italy
| | - Roberto Pantani
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 Fisciano, SA, Italy
| |
Collapse
|
23
|
Ganguly RK, Chakraborty SK. Plastic waste management during and post Covid19 pandemic: Challenges and strategies towards circular economy. Heliyon 2024; 10:e25613. [PMID: 38370243 PMCID: PMC10869756 DOI: 10.1016/j.heliyon.2024.e25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Global petroleum consumption suffered drastically as lockdowns were put in place to contain the Coronavirus Disease 2019 (COVID-19). As a result, oil costs dropped, making virgin plastics more cost-effective than recycled plastics. The usage of plastic has increased as a result of lifestyle modifications, cost-based incentives, and other factors, further obscuring the issue. The utilization of personal protective equipment (PPE) during the pandemic had resulted in a significant surge in the quantity of plastic waste. The plastic packaging industry achieved a revenue milestone of US$ 909.2 billion in 2021, boosting a compound annual growth rate of 5.5 %. The escalating dependence on plastics imposed additional pressure on waste management systems, which were proven to be ineffective and insufficient in addressing the issue. This situation exacerbated the problem and contributed to environmental pollution. Globally, 40 % of plastic waste ended up in landfills, 25 % was incinerated, 16 % was recycled, and the remaining 19 % infiltrated within the environment. By investing in circular technologies like feedstock recycling and enhancing infrastructural and environmental conditions, it expected to become viable to manage plastic waste flows during such a period of crisis. Investing in valorization strategies that transform plastic waste into value-added goods, such as fuels and building materials, receives a compelling macroeconomic signal when both plastic waste and plastic demand are on the rise. A robust circular economy can be accomplished by finalising the life cycle of plastic waste. The concept of Plastic Waste Footprint (PWF) aims to assess the environmental impact of plastic products throughout their intended usage period. In the midst of the emerging challenges in waste management during and post pandemic period, this research study has been conducted to explore the challenges and strategies associated with plastic waste in the environment.
Collapse
Affiliation(s)
- Ram Kumar Ganguly
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | |
Collapse
|
24
|
Najafighodousi A, Nemati F, Rayegani A, Saberian M, Zamani L, Li J. Recycling facemasks into civil construction material to manage waste generated during COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12577-12590. [PMID: 38168852 DOI: 10.1007/s11356-023-31726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Growing plastic pollution in the context of COVID-19 has caused significant challenges, exacerbating this already out-of-control issue. The pandemic has considerably boosted the demand for personal protective equipment (PPE), such as facemasks and gloves, all over the globe, and mismanaging this growing plastic pollution has harmed the environment and wildlife significantly. To mitigate negative environmental impacts, it is necessary to develop and implement effective waste management strategies. This present study estimated the daily facemask generation throughout the pandemic in Iran based on the distribution of urban and rural populations and, likewise, the daily generation of hand gloves in the COVID-19 era and the amount of medical waste generated by COVID-19 patients were calculated. In the next step, the quantities of discarded facemasks dumped into the Caspian Sea, the Persian Gulf, and the Gulf of Oman from the coastal cities were determined. Finally, the innovative alternatives for repurposing discarded facemasks in civil construction materials such as concrete, pavement, and partition wall panel were discussed.
Collapse
Affiliation(s)
- Atiyeh Najafighodousi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fariba Nemati
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| | - Arash Rayegani
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood, NSW, 2747, Australia
| | - Mohammad Saberian
- Vice Chancellor's Postdoctoral Fellow, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| | - Leila Zamani
- Center for Environmental Economics and Technology, Department of Environment of Iran, Tehran, Iran
| | - Jie Li
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Pan T, Chen X, Kong C, Gao D, Liu W, Liao H, Junaid M, Wang J. Single and combined toxicity of polystyrene nanoplastics and PCB-52 to the aquatic duckweed Spirodela polyrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166482. [PMID: 37619732 DOI: 10.1016/j.scitotenv.2023.166482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
As nanoplastics and persistent organic pollutants are broadly distributed in aquatic ecosystems and pose a potential threat to ecosystem, most pertinent studies have focused on aquatic animals, while studies on freshwater plants have been rarely reported. Therefore, we analyzed the single and combined toxicological impacts of various concentrations of 80 nm polystyrene nanoplastics (PS-NPs) including 0.5, 5, 10, and 20 mg/L and polychlorinated biphenyl-52 (PCB-52, 2,2',5,5'- tetrachlorobiphenyl) at 0.1 mg/L on the aquatic plant Spirodela polyrhiza (S. polyrhiza) after a 10-day hydroponic experiment. Laser confocal scanning microscopy (LCSM) showed the accumulation of PS-NPs mainly in the root surface and the lower epidermis of leaves, and the enrichment of PS-NPs was aggravated by the presence of PCB-52. PS-NPs at 10 mg/L and 20 mg/L alone or in combination with PCB-52 notably inhibited the growth of S. polyrhiza, reduced the synthesis of chlorophylls a and b, and increased the activities of superoxide dismutase (SOD) and peroxidase (POD) as well as malondialdehyde (MDA) levels, and induced osmotic imbalance (soluble protein and soluble sugar contents) (p < 0.05). However, a single treatment with low levels of PS-NPs had positive effects on the growth (0.5 mg/L) and photosynthetic systems (0.5, 5 mg/L) of S. polyrhiza, while co-exposure exacerbated the damaging impacts of PS-NPs on the antioxidant defense system of S. polyrhiza, which was more pronounced in the roots. Furthermore, correlation analysis revealed that plant growth parameters were positively correlated with chlorophyll a and b content and negatively correlated with soluble sugars, antioxidant enzymes, lipid peroxidation, and carotenoid content (p < 0.05). These results provide data to improve the understanding of the single and combined ecotoxicological effects of nanoplastics and polychlorinated biphenyls (PCBs) in aquatic plants and their application in phytoremediation measures.
Collapse
Affiliation(s)
- Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
26
|
Li Q, Jiang J, Lan Y, Kang S, Yang Y, Zhang J. Combined toxic effects of polypropylene and perfluorooctanoic acid on duckweed and periphytic microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108606-108616. [PMID: 37752396 DOI: 10.1007/s11356-023-30006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Microplastics and perfluorooctanoic acid coexist in the aquatic environment. Duckweed was exposed to a range of concentrations (0.1-1000 μg L-1) of solutions containing polypropylene (PP) and perfluorooctanoic acid (PFOA) for 14 days to measure their toxicity. The result showed the single and combined PP and PFOA treatments did not significantly influence the growth of duckweed. The greatest PP and PFOA concentrations of combined pollution affect plant chlorophyll. Moreover, the combined treatment of duckweed consistently resulted in increased malondialdehyde (MDA) levels, indicating oxidative damage. As an antioxidant stress response, the combination-treated plants were encouraged to produce superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Meanwhile, 3519 Operational Taxonomic Units (OTUs) were identified in the duckweed rhizosphere. Proteobacteria was the most predominant microbial community. Shannon, Simpson, and Chao1 discovered that microbial communities changed in response to single and combination PP and PFOA treatments, with decreased diversity and increased abundance. In addition, SEM analysis also revealed that the combined treatment significantly phyllosphere microorganisms. The findings of this investigation add to our knowledge of how PP and PFOA affect duckweed and the rhizospheric microorganisms, expanding the theoretical basis for employing duckweed in complex contamination.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China.
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Jiahui Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| |
Collapse
|
27
|
Jessica, Cheng S, Cross JS. Effects of virgin and BaP-adsorbed microplastics ingestion by Manila clams (Ruditapes philippinarum). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104259. [PMID: 37660959 DOI: 10.1016/j.etap.2023.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Numerous microplastic-related studies have investigated the impact of plastic materials on the marine food chain. In this study, Manila clams were exposed to microplastic (MP) of various polymer types, shapes, and concentrations to determine the ingestion selectivity and adverse effects caused. Benzo[a]pyrene was introduced as the second stressor to investigate the role of MP as a vector of contaminant. The result of a 2-day acute exposure showed that clams are more likely to ingest those in sphere shapes due to their similarity to microalgae. The feeding rate continuously declined when clams were exposed to at least 2to/L particles. Additionally, co-exposure of MP and B[a]P resulted in higher DNA fragmentation but lower catalase activity compared to single exposure to MP. Our study revealed that the uptake of MP by clams is not only determined by its shape and concentration but also by the presence of existing contaminants.
Collapse
Affiliation(s)
- Jessica
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Jeffrey Scott Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
28
|
Kassab A, Al Nabhani D, Mohanty P, Pannier C, Ayoub GY. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers (Basel) 2023; 15:3881. [PMID: 37835930 PMCID: PMC10575100 DOI: 10.3390/polym15193881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The concept of the circular economy has emerged as a promising solution to address the mounting concerns surrounding plastic waste and the urgent need for sustainable resource management. While conventional centralized recycling remains a common practice for plastic waste, centralized facilities may prove inadequate in handling the ever-increasing volumes of plastic waste generated globally. Consequently, exploring alternative recycling methods, such as distributed recycling by additive manufacturing, becomes paramount. This innovative approach encompasses actively involving communities in recycling practices and promotes a circular economy. This comprehensive review paper aims to explore the critical aspects necessary to realize the potential of distributed recycling by additive manufacturing. In this paper, our focus lies on proposing schemes that leverage existing literature to harness the potential of distributed recycling by additive manufacturing as an effective approach to plastic waste management. We explore the intricacies of the recycling process, optimize 3D printing parameters, address potential challenges, and evaluate the mechanical properties of recycled materials. Our investigation draws heavily from the literature of the last five years, as we conduct a thorough critical assessment of DRAM implementation and its influence on the properties of 3D printing structures. Through comprehensive analysis, we reveal the potential of recycled materials in delivering functional components, with insights into their performance, strengths, and weaknesses. This review serves as a comprehensive guide for those interested in embracing distributed recycling by additive manufacturing as a transformative approach to plastic recycling. By fostering community engagement, optimizing 3D printing processes, and incorporating suitable additives, it is possible to collectively contribute to a more sustainable future while combatting the plastic waste crisis. As progress is made, it becomes essential to further delve into the complexities of material behavior, recycling techniques, and the long-term durability of recycled 3D printed components. By addressing these challenges head-on, it is feasible to refine and advance distributed recycling by additive manufacturing as a viable pathway to minimize plastic waste, fostering a circular economy and cultivating a cleaner planet for generations to come.
Collapse
Affiliation(s)
- Ali Kassab
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| | - Dawood Al Nabhani
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Pravansu Mohanty
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Christopher Pannier
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Georges Y. Ayoub
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| |
Collapse
|
29
|
Mahmud TS, Ng KTW, Hasan MM, An C, Wan S. A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. SUSTAINABLE CITIES AND SOCIETY 2023; 96:104685. [PMID: 37274541 PMCID: PMC10225168 DOI: 10.1016/j.scs.2023.104685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
There is currently a lack of studies on residential waste collection during COVID-19 in North America. SARIMA models were developed to predict residential waste collection rates (RWCR) across four North American jurisdictions before and during the pandemic. Unlike waste disposal rates, RWCR is relatively less sensitive to the changes in COVID-19 regulatory policies and administrative measures, making RWCR more appropriate for cross-jurisdictional comparisons. It is hypothesized that the use of RWCR in forecasting models will help us to better understand the residential waste generation behaviors in North America. Both SARIMA models performed satisfactorily in predicting Regina's RWCR. The SARIMA DCV model's performance is noticeably better during COVID-19, with a 15.7% lower RMSE than that of the benchmark model (SARIMA BCV). The skewness of overprediction ratios was noticeably different between jurisdictions, and modeling errors were generally lower in less populated cities. Conflicting behavioral changes might have altered the residential waste generation characteristics and recycling behaviors differently across the jurisdictions. Overall, SARIMA DCV performed better in the Canadian jurisdiction than in U.S. jurisdictions, likely due to the model's bias on a less variable input dataset. The use of RWCR in forecasting models helps us to better understand the residential waste generation behaviors in North America and better prepare us for a future global pandemic.
Collapse
Affiliation(s)
- Tanvir Shahrier Mahmud
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohammad Mehedi Hasan
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada
| | - Shuyan Wan
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
30
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
31
|
Chorographic assessment on the overburden of single-use plastics bio-medical wastes risks and management during COVID-19 pandemic in India. TOTAL ENVIRONMENT RESEARCH THEMES 2023; 7:100062. [PMCID: PMC10275774 DOI: 10.1016/j.totert.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 09/03/2023]
Abstract
Amid the rapid influx of SARS‑CoV‑2 patients in various hospitals across India, the disposal of COVID-19 bio-medical wastes become a major challenging crisis in these days. As a consequence, the unexpected surge of utilizing Single-Use Plastics (SUP) from Personal Protection Equipments (PPEs) in particular protective gloves, nose masks, body aprons. is common in day to day and estimated as minimum of 730 g of waste can be generated per day/person in India. The research objectives on a national scale focuses that the document being active belongings, communications and preparations associated with hospital desecrates care and the existing facts on the physical condition and ecological risk on health care biomedical throw away which dropped during the SARS‑CoV‑2 virus disease pandemic. Based on number of confirmed COVID-19 cases 5,78,578 and 3,92,1149 health care workers as of 1st July 2020 (includes active, recovered and deaths) in India is assessed using GIS that an average 3150 tons per day of SUP waste generated only due to COVID-19 even though the hospitals make all safety measures to put away the clinical wastes. The States like Maharashtra (484.12tons/day), Tamil Nadu (337.76 tons/day), Andhra Pradesh (229.23 tons/day), Rajasthan (183.87 tons/day), Gujarat (181.41 tons/day), Karnataka, Kerala and Uttar Pradesh are over loaded with 212.73, 244.36 and 176.86 tons/day respectively greater than their normal per day bio-medical waste generated. This study finds the space in handling of Bio-Medical Waste Management of the pandemic COIVD-19 outbreaks and its’ remedial actions to improve the necessity in the future emergency in the developing countries like India.
Collapse
|
32
|
Wang L, Li S, Ahmad IM, Zhang G, Sun Y, Wang Y, Sun C, Jiang C, Cui P, Li D. Global face mask pollution: threats to the environment and wildlife, and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164055. [PMID: 37178835 PMCID: PMC10174332 DOI: 10.1016/j.scitotenv.2023.164055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Face masks are an indispensable low-cost public healthcare necessity for containing viral transmission. After the coronavirus disease (COVID-19) became a pandemic, there was an unprecedented demand for, and subsequent increase in face mask production and use, leading to global ecological challenges, including excessive resource consumption and significant environmental pollution. Here, we review the global demand volume for face masks and the associated energy consumption and pollution potential throughout their life cycle. First, the production and distribution processes consume petroleum-based raw materials and other energy sources and release greenhouse gases. Second, most methods of mask waste disposal result in secondary microplastic pollution and the release of toxic gases and organic substances. Third, face masks discarded in outdoor environments represent a new plastic pollutant and pose significant challenges to the environment and wildlife in various ecosystems. Therefore, the long-term impacts on environmental and wildlife health aspects related to the production, use, and disposal of face masks should be considered and urgently investigated. Here, we propose five reasonable countermeasures to alleviate these global-scale ecological crises induced by mask use during and following the COVID-19 pandemic era: increasing public awareness; improving mask waste management; innovating waste disposal methods; developing biodegradable masks; and formulating relevant policies and regulations. Implementation of these measures will help address the pollution caused by face masks.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxuan Li
- School of Languages and Culture, Hebei GEO University; Shijiazhuang 050031, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Guiying Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuan Jiang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
33
|
Shen J, Shi W. Post-Pandemic: Investigation of the Degradation of Various Commercial Masks in the Marine Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10553-10564. [PMID: 37462155 PMCID: PMC10399566 DOI: 10.1021/acs.langmuir.3c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Indexed: 08/02/2023]
Abstract
During COVID-19, personal protective equipment such as face masks was in urgent demand in the daily life. As the pandemic may have withdrawn from public attention, the disposal of face masks is a significant issue, especially plastic pollution. To address the degradation of the polymers in the marine environment, seven commercial masks were investigated via artificial weathering procedures in substitute ocean water. A suite of structural and chemical characterization techniques was employed, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), and contact angle goniometry, to probe the treatment impact on commercially available N95, surgical, polyurethane, polyester, nylon, silk, and cotton masks. This work provides insights into the comprehensive analysis of material degradation in nature and raises public awareness of environmental issues post-pandemic.
Collapse
Affiliation(s)
- Jiayi Shen
- Division of Natural and Applied
Sciences, Duke Kunshan University, Kunshan, Jiangsu Province 215316, China
| | - Weiwei Shi
- Division of Natural and Applied
Sciences, Duke Kunshan University, Kunshan, Jiangsu Province 215316, China
| |
Collapse
|
34
|
Cubas ALV, Moecke EHS, Provin AP, Dutra ARA, Machado MM, Gouveia IC. The Impacts of Plastic Waste from Personal Protective Equipment Used during the COVID-19 Pandemic. Polymers (Basel) 2023; 15:3151. [PMID: 37571045 PMCID: PMC10421242 DOI: 10.3390/polym15153151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
The period from 2019 to 2022 has been defined by the COVID-19 pandemic, resulting in an unprecedented demand for and use of Personal Protective Equipment (PPE). However, the disposal of PPE without considering its environmental impact and proper waste management practices has become a growing concern. The increased demand for PPE during the pandemic and associated waste management practices have been analyzed. Additionally, the discussion around treating these residues and exploring more environmentally friendly alternatives, such as biodegradable or reusable PPE, is crucial. The extensive use of predominantly non-degradable plastics in PPE has led to their accumulation in landfills, with potential consequences for marine environments through the formation of microplastics. Therefore, this article seeks to establish a connection between these issues and the Sustainable Development Goals, emphasizing the importance of efficient management aligned with sustainable development objectives to address these emerging challenges and ensure a more sustainable future.
Collapse
Affiliation(s)
- Anelise Leal Vieira Cubas
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Elisa Helena Siegel Moecke
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Paula Provin
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Regina Aguiar Dutra
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Marina Medeiros Machado
- Environmental Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto 35402-163, Brazil;
| | - Isabel C. Gouveia
- FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
35
|
DÜZENCİ S, MALAK B. Environmental Ethics and Mental Health during COVID-19. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2023. [DOI: 10.18863/pgy.1076940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
As the cause of the COVID-19 pandemic, climate change, population density, ecological changes, etc. natural phenomena are shown. The physical, chemical, biological, socioeconomic, cultural and psychological effects of COVID-19 have been felt all over the world. COVID-19 negatively affects the environment with an unbalanced increase in medical waste and disposable products, while quarantine and pandemic measures have given an opportunity for nature to renew itself. The causes and consequences of COVID-19 have brought the concepts of environmental health and therefore environmental ethics to the agenda of healthcare professionals. As the environmental ethics attitudes and behaviors of health professionals develop, health professionals will be able to take initiatives to create these attitudes and behaviors in society. Environmental ethics has been evaluated in the context of public health, mostly in the physical health. However, environmental ethics is also very important in terms of community mental health. Living in an unhealthy environment threatens mental health. Because people want to live in a safe environment, every factor that threatens this trust poses a risk for mental health. There is actually literally no way to talk about happiness in an environment where there is no environmental order and nature is deteriorated and polluted. Therefore, we aimed to explain the concepts of environmental health, environmental ethics and mental health during the COVID-19 process. Thus, an important strategy development in the pandemic process can be achieved by enabling the assessment and management of the causes of the COVID-19 pandemic from a broader perspective.
Collapse
|
36
|
Li J, Zhang T, Shan X, Zheng W, Zhang Z, Ouyang Z, Liu P, Guo X. Abandoned disposable masks become hot substrates for plastisphere, whether in soil, atmosphere or water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131321. [PMID: 37003000 PMCID: PMC10060800 DOI: 10.1016/j.jhazmat.2023.131321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
A large number of surgical masks (SMs) to be discarded indiscriminately during the spread of COVID-19. The relationship between the changes of masks entering the environment and the succession of the microorganisms on them is not yet clear. The natural aging process of SMs in different environments (water, soil, and atmosphere) was simulated, the changes and succession of the microbial community on SMs with aging time were explored. The results showed that the SMs in water environment had the highest aging degree, followed by atmospheric environment, and SMs in soil had the lowest aging degree. The results of high-throughput sequencing demonstrated the load capacity of SMs for microorganisms, showed the important role of environment in determining microbial species on SMs. According to the relative abundance of microorganisms, it is found that compared with the water environment, the microbial community on SMs in water is dominated by rare species. While in soil, in addition to rare species, there are a lot of swinging strains on the SMs. Uncovering the ageing of SMs in the environment and its association with the colonization of microorganisms will help us understand the potential of microorganisms, especially pathogenic bacteria, to survive and migrate on SMs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China.
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Wei W, Yang Q, Xiang D, Chen X, Wen Z, Wang X, Xu X, Peng C, Yang L, Luo M, Xu J. Combined impacts of microplastics and cadmium on the liver function, immune response, and intestinal microbiota of crucian carp (Carassius carassius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115104. [PMID: 37295303 DOI: 10.1016/j.ecoenv.2023.115104] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and the heavy metal cadmium (Cd) have attracted global attention for their toxicological interactions in aquatic organisms. The purpose of this investigation was evaluating the effect of MPs (1 mg L-1) and Cd (5 mg L-1) on the liver function, immune response of crucian carp (Carassius carassius) after 96 h exposure, and intestinal microbiota after 21 days, respectively. Co-exposure to MPs and Cd significantly enhanced MP accumulation in the liver of the crucian carp compared to the accumulation with exposure to MPs alone. Co-exposure to MPs and Cd triggered notable histopathological alterations accompanied by increased hepatic cell necrosis and inflammation, and was associated with higher aspartate aminotransferase and alanine aminotransferase levels, lower superoxide dismutase and catalase activity levels, but higher malondialdehyde content and total antioxidant capacity in the liver. Moreover, the combined treatment of MPs and Cd led to the up-regulated transcription of genes related to immune response, such as interleukin 8 (il-8), il-10, il-1β, tumor necrosis factor-α, and heat shock protein 70, both in the liver and spleen. Co-exposure to MPs and Cd reduced the variety and abundance of the intestinal microbiota in the crucian carp. Our research indicates that the combined exposure to MPs and Cd may exert synergistic toxic effects on crucian carp, which could impede the sustainable growth of the aquaculture industry and pose potential risks to food safety.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiufeng Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Dan Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
38
|
Vlad-Bubulac T, Hamciuc C, Serbezeanu D, Suflet DM, Rusu D, Lisa G, Anghel I, Preda DM, Todorova T, Rîmbu CM. Organophosphorus Reinforced Poly(vinyl alcohol) Nanocomposites Doped with Silver-Loaded Zeolite L Nanoparticles as Sustainable Materials for Packaging Applications. Polymers (Basel) 2023; 15:polym15112573. [PMID: 37299371 DOI: 10.3390/polym15112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The sustainable development of innovative eco-friendly multifunctional nanocomposites, possessing superior characteristics, is a noteworthy topic. Novel semi-interpenetrated nanocomposite films based on poly(vinyl alcohol) covalently and thermally crosslinked with oxalic acid (OA), reinforced with a novel organophosphorus flame retardant (PFR-4) derived from co-polycondensation in solution reaction of equimolar amounts of co-monomers, namely, bis((6-oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl)-(4-hydroxyaniline)-methylene)-1,4-phenylene, bisphenol S, and phenylphosphonic dichloride, in a molar ratio of 1:1:2, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag), have been prepared by casting from solution technique. The morphology of the as prepared PVA-oxalic acid films and their semi-interpenetrated nanocomposites with PFR-4 and ze-Ag was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the organophosphorus compound and nanoparticles within the nanocomposite films has been introspected by means of energy dispersive X-ray spectroscopy (EDX). It was established that composites with a very low phosphorus content had noticeably improved flame retardancy. The peak of the heat release rate was reduced up to 55%, depending on the content of the flame-retardant additive and the doping ze-Ag nanoparticles introduced into the PVA/OA matrix. The ultimate tensile strength and elastic modulus increased significantly in the reinforced nanocomposites. Considerably increased antimicrobial activity was revealed in the case of the samples containing silver-loaded zeolite L nanoparticles.
Collapse
Affiliation(s)
- Tăchiță Vlad-Bubulac
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Hamciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Diana Serbezeanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniela Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Bd. Mangeron, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Dana-Maria Preda
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Totka Todorova
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl.11, 1113 Sofia, Bulgaria
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| |
Collapse
|
39
|
Li A, Cui H, Sheng Y, Qiao J, Li X, Huang H. Global plastic upcycling during and after the COVID-19 pandemic: The status and perspective. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110092. [PMID: 37200549 PMCID: PMC10167783 DOI: 10.1016/j.jece.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues worldwide since the vast majority of post-consumer plastics are hard to degrade in the environment. The coronavirus disease (COVID-19) pandemic had disrupted the previous effort of plastic pollution mitigation to a great extent due to the overflow of plastic-based medical waste. In the post-pandemic era, the remaining challenge is how to motivate global action towards a plastic circular economy. The need for one package of sustainable and systematic plastic upcycling approaches has never been greater to address such a challenge. In this review, we summarized the threat of plastic pollution during COVID-19 to public health and ecosystem. In order to solve the aforementioned challenges, we present a shifting concept, regeneration value from plastic waste, that provides four promising pathways to achieve a sustainable circular economy: 1) Increasing reusability and biodegradability of plastics; 2) Transforming plastic waste into high-value products by chemical approaches; 3) The closed-loop recycling can be promoted by biodegradation; 4) Involving renewable energy into plastic upcycling. Additionally, the joint efforts from different social perspectives are also encouraged to create the necessary economic and environmental impetus for a circular economy.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
40
|
Gunjyal N, Rani S, Asgari Lajayer B, Senapathi V, Astatkie T. A review of the effects of environmental hazards on humans, their remediation for sustainable development, and risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:795. [PMID: 37264257 DOI: 10.1007/s10661-023-11353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, IIT Roorkee, Roorkee, 247667, India
| | - Swati Rani
- Department of Biotechnology, Ambala College of Engineering and Applied Research, 133001, Ambala Cantt, Jagadhari Rd, P.O, Sambhalkha, Haryana, India.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
41
|
Hurley R, Braaten HFV, Nizzetto L, Steindal EH, Lin Y, Clayer F, van Emmerik T, Buenaventura NT, Eidsvoll DP, Økelsrud A, Norling M, Adam HN, Olsen M. Measuring riverine macroplastic: Methods, harmonisation, and quality control. WATER RESEARCH 2023; 235:119902. [PMID: 36989801 DOI: 10.1016/j.watres.2023.119902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
River systems are a key environmental recipient of macroplastic pollution. Understanding the sources of macroplastic to rivers and the mechanisms controlling fate and transport is essential to identify and tailor measures that can effectively reduce global plastic pollution. Several guidelines exist for monitoring macroplastic in rivers; yet, no single method has emerged representing the standard approach. This reflects the substantial variability in river systems globally and the need to adapt methods to the local environmental context and monitoring goals. Here we present a critical review of methods used to measure macroplastic flows in rivers, with a specific focus on opportunities for methods testing, harmonisation, and quality assurance and quality control (QA/QC). Several studies have already revealed important findings; however, there is significant disparity in the reporting of methodologies and data. There is a need to converge methods, and their adaptations, towards greater comparability. This can be achieved through: i) methods testing to better understand what each method effectively measures and how it can be applied in different contexts; ii) incorporating QA/QC procedures during sampling and analysis; and iii) reporting methodological details and data in a more harmonised way to facilitate comparability and the utilisation of data by several end users, including policy makers. Setting this as a priority now will facilitate the collection of rigorous and comparable monitoring data to help frame solutions to limit plastic pollution, including the forthcoming global treaty on plastic pollution.
Collapse
Affiliation(s)
- Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Oslo, Norway; RECETOX, Masaryk University, Brno, Czech Republic
| | - Eirik Hovland Steindal
- Norwegian Institute for Water Research (NIVA), Oslo, Norway; Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Yan Lin
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - Tim van Emmerik
- Hydrology and Quantitative Water Management Group, Wageningen University, the Netherlands
| | | | | | - Asle Økelsrud
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Magnus Norling
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - Marianne Olsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
42
|
Arora Y, Sharma S, Sharma V. Microalgae in Bioplastic Production: A Comprehensive Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:7225-7241. [PMID: 37266400 PMCID: PMC10183103 DOI: 10.1007/s13369-023-07871-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/28/2023] [Indexed: 06/03/2023]
Abstract
The current era of industrialization includes a constantly increasing demand for plastic products, but because plastics are rarely recycled and are not biodegradable plastic pollution or "white pollution" has been the result. The consumption of petroleum-based plastics will be 20% of global annual oil by 2050, and thus there is an inevitable need to find an innovative solution to reduce plastic pollution. The biodegradable and environmentally benign bioplastics are suitable alternative to fossil-based plastics in the market due to sustainability, less carbon footprint, lower toxicity and high degradability rate. Microalgal species is an innovative approach to be explored and improved for bioplastic production. Microalgae are generally present in abundant quantity in our ecosystem, and polysaccharide in the algae can be processed and utilized to make biopolymers. Also, these species have a high growth rate and can be easily cultivated in wastewater streams. The review aims to determine the recent status of bioplastic production techniques from microalgal species and also reveal optimization opportunities involved in the process. Several strategies for bioplastic production from algal biomass are being discussed nowadays, and the most prominent are "with blending" (blending of algal biomass with bioplastics and starch) and "without blending" (microalgae as a feedstock for polyhydroxyalkanoates production). The advanced research on modern bioengineering techniques and well-established genetic tools like CRISPR-Cas9 should be encouraged to develop recombinant microalgae strains with elevated levels of PHA/PHB inside the cell.
Collapse
Affiliation(s)
- Yukta Arora
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, Punjab India
| | - Shivika Sharma
- Biochemical Conversion Division, SSS-NIBE, Kapurthala, Punjab India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, Punjab India
| |
Collapse
|
43
|
Peula FJ, Martín-Lara MÁ, Calero M. Effect of COVID-19 pandemic on municipal solid waste generation: a case study in Granada city (Spain). JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:1-13. [PMID: 37360948 PMCID: PMC10156574 DOI: 10.1007/s10163-023-01671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
The 2020 coronavirus pandemic has involved a series of political and social measures that have been adapted to the spread of the disease. Apart from the severe effects on health sector, the most effects of the pandemic have been felt in households and day-to-day life. Consequently, COVID-19 has had a significant impact on the generation of not only medical and health care waste but also of municipal solid waste production and composition. In this context, this work studied the implications of COVID-19 for municipal solid waste generation in Granada, Spain. Granada is a city where the economy is based mainly on the services sector, tourism and the University. Therefore, the impact of COVID-19 pandemic has greatly affected the city and it can be analyzed through the municipal solid waste generation. For the study of the incidence of COVID-19 in the generation of waste a period that goes from March 2019 to February 2021 has been chosen. The results show that, in the global calculation, a decrease in the generation of waste in the city is observed in this last year, reaching - 13.8%. Regarding the organic-rest fraction, the decrease in the COVID year represents - 11.7%. However, bulky waste has shown an increase in the COVID year which may be related to higher home furnishings renovation rates than in other years. Finally, glass is the waste flow that best indicates the effect of COVID in the service sector. In leisure areas, a significant reduction in the collection of glass is observed (- 45%). Supplementary Information The online version contains supplementary material available at 10.1007/s10163-023-01671-2.
Collapse
Affiliation(s)
| | | | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
44
|
O'Sullivan J. Plastics and Health. J Midwifery Womens Health 2023; 68:315-319. [PMID: 37158479 DOI: 10.1111/jmwh.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Affiliation(s)
- Janette O'Sullivan
- Department of Nursing, Kingsborough Community College, Brooklyn, New York
| |
Collapse
|
45
|
Petrescu DC, Rastegari H, Petrescu-Mag IV, Petrescu-Mag RM. Determinants of proper disposal of single-use masks: knowledge, perception, behavior, and intervention measures. PeerJ 2023; 11:e15104. [PMID: 37041977 PMCID: PMC10083004 DOI: 10.7717/peerj.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background Although many studies testify to consumer behavior's role in the context of waste-related sustainability objectives, little research examined what people know, think, and feel about the environmental impacts of their personal protective equipment (PPE) or their behavior towards them, in general. Therefore, the present article complements existing information about the public perceptions, knowledge, and behavior of single-use masks in a context where the pandemic has put increasing pressure on waste management public services. From February to June 2020, municipal solid waste increased ten times in Romania. The study identified the factors that predicted the proper disposal of single-use masks and the measures preferred to prevent or minimize the negative impact of single-use mask waste. Method Data from a representative sample of 705 Romanians were collected using a structured questionnaire. The data were analyzed with SPSS and SmartPLS. The Cochran's Q test was run to determine the existence of differences between percentages of people who preferred various measures. Dunn's test with a Bonferroni correction was used to identify the exact pair of groups where the differences were located. The study utilized structural equation models (SEM) based on at least partial squares with SmartPLS software (3.2.8) to investigate causal links between constructs. The model considered that the dependent variable (environmentally friendly behavior: proper disposal of single-use masks) could be influenced by the knowledge, perception, behavior, and demographics variables. Results The findings indicated that knowledge of the type of material of single-use masks had a direct positive (β = 0.173) and significant effect on their proper disposal. The perception of mask waste impact has a negative and significant (β = -0.153, p < 0.001) impact on the proper disposal of single-use masks. This path coefficient illustrates that the worse the perceived impact of single-use masks on waste management activity, the higher the proper disposal of single-use masks. Gender has a positive (β = 0.115) and significant (p < 0.001) effect on the proper disposal of single-use masks. Conclusions It was concluded that the 5Rs waste management approach should be reconsidered for single-use mask waste. For example, "Reuse" and the classic "Recycle" have limited applications since they may lead to virus transmission and possible infection. "Reducing" the use of single-use masks could have repercussions on one's health. Summing up, the study outlined recommendations for effective interventions for the proper disposal of single-use masks from the perspective of behavioral studies.
Collapse
Affiliation(s)
- Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hamid Rastegari
- Department of Rural Development Management, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Ioan Valentin Petrescu-Mag
- Department of Engineering and Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Department of Environmental Science, Faculty of Environmental Science and Engineering, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
47
|
Devereux R, Ayati B, Westhead EK, Jayaratne R, Newport D. Impact of the Covid-19 pandemic on microplastic abundance along the River Thames. MARINE POLLUTION BULLETIN 2023; 189:114763. [PMID: 36842283 PMCID: PMC9951046 DOI: 10.1016/j.marpolbul.2023.114763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 05/23/2023]
Abstract
In April 2020, the Covid-19 pandemic changed human behaviour worldwide, creating an increased demand for plastic, especially single-use plastic in the form of personal protective equipment. The pandemic also provided a unique situation for plastic pollution studies, especially microplastic studies. This study looks at the impact of the Covid-19 pandemic and three national lockdowns on microplastic abundance at five sites along the river Thames, UK, compared to pre-Covid-19 levels. This study took place from May 2019-May 2021, with 3-L water samples collected monthly from each site starting at Teddington and ending at Southend-on-Sea. A total of 4480 pieces, the majority of fibres (82.1 %), were counted using light microscopy. Lockdown 2 (November 2020) had the highest average microplastic total (27.1 L-1). A total of 691 pieces were identified via Fourier Transform Infrared Spectroscopy (FTIR). Polyvinyl chloride (36.19 %) made up the most microplastics identified. This study documents changes in microplastic abundance before, during and after the Covid-19 pandemic, an unprecedented event, as well as documenting microplastic abundance along the river Thames from 2019 to 2021.
Collapse
Affiliation(s)
- Ria Devereux
- Sustainability Research Institute (SRI), University of East London, Knowledge Dock, Docklands Campus, 4-6 University Way, London E16 2RD, United Kingdom of Great Britain and Northern Ireland.
| | - Bamdad Ayati
- Sustainability Research Institute (SRI), University of East London, Knowledge Dock, Docklands Campus, 4-6 University Way, London E16 2RD, United Kingdom of Great Britain and Northern Ireland
| | - Elizabeth Kebede Westhead
- Department of Bioscience, University of East London, Water Lane, London E15 4LZ, United Kingdom of Great Britain and Northern Ireland
| | - Ravindra Jayaratne
- Department of Engineering & Construction, University of East London, Docklands Campus, 4-6 University Way, London E16 2RD, United Kingdom of Great Britain and Northern Ireland
| | - Darryl Newport
- Suffolk Sustainability Research Institute (SSI), University of Suffolk, Waterfront Building, Ipswich, Suffolk IP4 1QJ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
48
|
Dey TK, Rasel M, Roy T, Uddin ME, Pramanik BK, Jamal M. Post-pandemic micro/nanoplastic pollution: Toward a sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161390. [PMID: 36621482 PMCID: PMC9814273 DOI: 10.1016/j.scitotenv.2023.161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The global health crisis caused by the COVID-19 pandemic has resulted in massive plastic pollution from the use of personal protection equipment (PPE), with polypropylene (PP) being a major component. Owing to the weathering of exposed PPEs, such contamination causes microplastic (MP) and nanoplastic (NP) pollution and is extremely likely to act as a vector for the transportation of COVID-19 from one area to another. Thus, a post-pandemic scenario can forecast with certainty that a significant amount of plastic garbage combined with MP/NP formation has an adverse effect on the ecosystem. Therefore, updating traditional waste management practices, such as landfilling and incineration, is essential for making plastic waste management sustainable to avert this looming catastrophe. This study investigates the post-pandemic scenario of MP/NP pollution and provides an outlook on an integrated approach to the recycling of PP-based plastic wastes. The recovery of crude oil, solid char, hydrocarbon gases, and construction materials by approximately 75, 33, 55, and 2 %, respectively, could be achieved in an environmentally friendly and cost-effective manner. Furthermore, the development of biodegradable and self-sanitizing smart PPEs has been identified as a promising alternative for drastically reducing plastic pollution.
Collapse
Affiliation(s)
- Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Biplob K Pramanik
- Department of Civil and Infrastructure Engineering, RMIT University, Australia
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
49
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
50
|
Snigdha, Hiloidhari M, Bandyopadhyay S. Environmental footprints of disposable and reusable personal protective equipment ‒ a product life cycle approach for body coveralls. JOURNAL OF CLEANER PRODUCTION 2023; 394:136166. [PMID: 36721728 PMCID: PMC9880867 DOI: 10.1016/j.jclepro.2023.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Body coveralls, often made of single-use plastics, are essential Personal Protective Equipment (PPE) and, along with masks, are widely used in healthcare facilities and public spaces in the wake of the recent COVID-19 pandemic. The widespread use of these body coveralls poses a significant threat to terrestrial and aquatic ecosystems, given their polluting nature and disposal frequency. Therefore, it is necessary to promote the adoption of alternatives that increase the safe reusability of PPE clothing and reduce environmental and health hazards. This study presents a comparative Cradle-to-Grave Life Cycle Assessment (LCA) of disposable and reusable PPE body coveralls from a product life cycle perspective. A comprehensive life cycle inventory and LCA framework specific to Indian conditions have been developed through this study. The LCA is performed as per standard protocols using SimaPro software under recipe 2016 (H) impact assessment method. Six midpoint impact categories viz. Global Warming Potential, Terrestrial Acidification, Freshwater Eutrophication, Terrestrial Ecotoxicity, Human Carcinogenic Toxicity, and Water Consumption are assessed, along with Cumulative Energy Demand. Results suggest that reusable PPE improves environmental and human health performance in all the impact categories except water consumption. Sensitivity analysis reveals that replacing conventional electricity with solar energy for PPE manufacturing and disposal will provide additional environmental benefits. The findings can help the medical textile industries, healthcare workers, and policymakers to make environmentally informed choices.
Collapse
Affiliation(s)
- Snigdha
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Moonmoon Hiloidhari
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Somnath Bandyopadhyay
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|