1
|
Jia B, Zhu K, Bai Z, Abudula A, Liu B, Yan J, Wu Z, Tan H, Liu Q, Morawska L, Wang L, Chen J. Non targeted and targeted LC-MS/MS insights into the composition and concentration of atmospheric microplastics and additives: Impacts and regional changes of sandstorms in Shanghai and Hohhot, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176254. [PMID: 39277009 DOI: 10.1016/j.scitotenv.2024.176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Increasing dust storms impact ecosystems and human health by resuspending dust and microplastics. Plastic pollution is a major global concern. This study examines the molecular composition and concentration of atmospheric microplastics and additives in Hohhot and Shanghai, China during dust and non-dust days using non-target and target LC-MS/MS analysis with Multiple Reaction Monitoring (MRM) methodology and a self-established plastic monomers database. In Hohhot, 98 microplastics and additives types were identified on dust days (41 unique) and 70 on non-dust days (10 unique), mainly PEG, HTPE, PET, PPG, and Nylon. The types fluctuate ranging from 35 to 65 due to dusty conditions. In Shanghai, 50 types were identified (no unique), with 25 to 30 types consistently present. Hohhot's microplastics concentration during dust days peaked at 3531.59 ng/m3, about three times higher than non-dust days (1669.17 ng/m3) and significantly higher than Shanghai's maximum of 589.85 ng/m3. Overall, microplastic monomers in both cities were mostly compounds with low unsaturation, indicating potential for long-term atmospheric persistence. Highly reactive monomers like HTPE, PEG, thrive on dust days in Hohhot due to insufficient light and strong winds. These conditions reduce photochemical reactivity, accelerate microplastic aging through collisions, and resuspend more microplastics from the soil, resulting in a wider variety of microplastics with different m/z and carbon contents during sandstorms. On non-dust days, microplastics have more concentrated m/z values, indicating that substances with similar chemical properties disperse more under normal conditions. These findings highlight the significant impact of dust storms on microplastics characteristics. SYNOPSIS: This study indicates that dust storms and regional differences can have significant impacts on the diversity and abundance of atmospheric microplastics.
Collapse
Affiliation(s)
- Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Hohhot University, China
| | - Ayizuohere Abudula
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zelong Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Haihong Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | | | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
2
|
Schwenger KJP, Ghorbani Y, Bharatselvam S, Chen L, Chomiak KM, Tyler AC, Eddingsaas NC, Fischer SE, Jackson TD, Okrainec A, Allard JP. Links between fecal microplastics and parameters related to metabolic dysfunction-associated steatotic liver disease (MASLD) in humans: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176153. [PMID: 39260480 DOI: 10.1016/j.scitotenv.2024.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) can persist in the environment and human body. Murine studies showed that exposure to MPs could cause metabolic dysregulation, contributing metabolic dysfunction-associated steatotic liver disease (MASLD) or steatohepatitis (MASH). However, research on the role of MPs in humans is limited. Thus, we aimed to assess links between human fecal MPs and liver histology, gene expression, immune cells and intestinal microbiota (IM). We included 6 lean healthy liver donors and 6 normal liver (obese) and 11 MASH patients. Overall, pre-BSx, we observed no significant differences in fecal MPs between groups. However, fecal MP fibers and total MPs positively correlated with portal and total macrophages and total killer T cells while total fecal MPs were positively correlated with natural killer cells. Additionally, 19 genes related to immune system and apoptosis correlated with fecal MPs at baseline. Fecal MP fibers correlated positively with fecal Bifidobacterium and negatively with Lachnospiraceae. Patients with MASH (n = 11) were re-assessed 12-months post-bariatric surgery (BSx) and we found that those with persistent disease (n = 4) had higher fecal MP fragments than those with normalized liver histology (n = 7). At 12-month post-BSx, MP fragments positively correlated with helper T cells and total MPs positively correlated with natural killer T cells and B cells. Our study is the first to look at 1) the role of MPs in MASH and its association with IM, immune cells and hepatic gene expression and 2) look at the role of MPs longitudinally in MASH persistence following BSx. Future research should further explore this relationship.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kristina M Chomiak
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Anna Christina Tyler
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nathan C Eddingsaas
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Jasińska JM, Michalska K, Szuwarzyński M, Mazur T, Cholewa-Wójcik A, Kopeć M, Juszczak L, Kamińska I, Nowak N, Jamróz E. Phytolacca americana extract as a quality-enhancing factor for biodegradable double-layered films based on furcellaran and gelatin - Property assessment. Int J Biol Macromol 2024; 279:135155. [PMID: 39214197 DOI: 10.1016/j.ijbiomac.2024.135155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
For the first time, novel active double-layered films based on furcellaran (FUR) and gelatin (GEL) with the addition of Phytolacca americana (PA) extract were obtained. The 1st layer consisted of FUR and GEL, while the aqueous extract of P. americana berries was added in three different concentrations to the 2nd FUR-based layer. The films were characterised by good mechanical (TS range of 0.0011-0.0013 MPa, EAB range between 30.38 %-33.51 %) and water properties (WVTR range of 574.74-588.49 g/m2xd). Structural analysis (SEM and AFM) confirmed good film structure: regular, without cracks or air bubbles. The films showed antioxidant activity tested via the Folin-Ciocâlteu method (4.77-20.70 mg GAExg-1), FRAP assay (0.18-3.40 mM TExg-1) and CUPRAC assay (48.63-53.99 mM TExg-1). The film with the highest PA concentration (6 %) demonstrated the ability to neutralise free radicals, DPPH• and ABTS2+•, at the levels of 1.97 % and 17.34 %, respectively. The ecotoxicity test performed on Lepidium sativum seeds confirmed the lack of ecotoxic film aspects. The biodegradation test indicated that the films are biodegradable. The obtained films can be a good alternative to plastic packaging films (used in the food packaging industry), which are currently a global problem related to the development of post-consumer plastics.
Collapse
Affiliation(s)
- Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Klaudia Michalska
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków PL-31-343, Poland
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Tomasz Mazur
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Michał Kopeć
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Kraków, al. Mickiewicza 21, PL-31-120 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science & Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, PL-42-200 Czestochowa, Poland; Department of Food Analysis and Evaluation of Food Quality, University of Agriculture in Krakow, Balicka 122, PL-30-149 Kraków, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, PL-31-120 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| |
Collapse
|
4
|
Xu H, Dong C, Yu Z, Hu Z, Yu J, Ma D, Yao W, Qi X, Ozaki Y, Xie Y. First identification of microplastics in human uterine fibroids and myometrium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124632. [PMID: 39074687 DOI: 10.1016/j.envpol.2024.124632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Microplastics (MPs) pollution has received widespread attention in recent years as the use of plastics continues to increase. However, currently no studies have reported the finding of MPs in human uterine fibroids (UFs) and myometrium tissues. In this study, UFs tissues (n = 48) and myometrium tissues (n = 40) from 48 patients and myometrium tissues (n = 8) from healthy population were collected. Following digestion of the samples by 10% KOH and 30% H2O2, MPs were analyzed qualitatively and quantitatively using Raman spectroscopy. The 16 UFs and myometrium tissue samples contained an average of 1.5 ± 1.17 MP particles per gram of tissue. Notably, the abundance of MPs in the UFs tissues (2.13 ± 1.17 particles per gram) was higher than in the myometrium tissues (0.88 ± 0.78 particles per gram). In the same cohort of individuals with UFs, the quantities of MPs detected in the affected UFs tissue (2.63 ± 1.77 particles per gram) exceeded those detected in healthy tissue (1.08 ± 0.93 particles per gram), particularly in elderly patients. A correlation was observed between elevated MP levels and frequent consumption of takeout meals and bottled water among patients, indicating that MP ingestion through food sources might have contributed to the increased abundance and variety of MPs within UFs. Furthermore, UFs increased in size with higher concentrations of MPs, which may have been related to elevated levels of MPs-induced hormones. This study provides new insights into the assessment of the relationship between exposure to MPs and human disease risk.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Chunlin Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ding Ma
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Xiaowei Qi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
5
|
Sim HH, Shiwakoti S, Lee JH, Lee IY, Ok Y, Lim HK, Ko JY, Oak MH. 2,7-Phloroglucinol-6,6'-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175007. [PMID: 39053557 DOI: 10.1016/j.scitotenv.2024.175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated β-galactosidase (SA-β-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-β-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.
Collapse
Affiliation(s)
- Hwan-Hee Sim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hyeok Lee
- Division of Commercialization Support, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - In-Young Lee
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Yejoo Ok
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
6
|
Visentin E, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Preliminary characterization of microplastics in beef hamburgers. Meat Sci 2024; 217:109626. [PMID: 39137452 DOI: 10.1016/j.meatsci.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The diffusion of microplastics in meat products is an emerging topic, as their impact on animal and human health is still largely unknown. The present study aimed to preliminarily determine the number and the quality of microplastics diffusion in beef hamburgers (n = 10) through Fourier-transformed infrared micro-spectroscopy in attenuated total reflectance mode analysis. Microplastics were detected in all analyzed samples. The abundance of microplastics ranged from 200.00 to 30,300.00 MP/kg. Microplastics observed in the analyzed samples were mainly characterized by irregular shapes (95.99%), grey color (70.16%), and dimensions comprised between 51 and 100 μm (57.46%). Eighteen different polymers were detected, with polycarbonate (30,300.00 MP/kg), polyethylene (1580.00 MP/kg) and polypropylene (750.00 MP/kg) being the most abundant classes. Results demonstrate an extensive diffusion of microplastics in the analyzed samples, which may be originated from various sources, including animal body, industrial processing, and packaging. Findings from this study will aid in pinpointing the source of microplastics contamination, enabling the creation of targeted guidelines to mitigate microplastics spread in processed meat food.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
7
|
Ahamad MI, Rehman A, Mehmood MS, Mahmood S, Zafar Z, Lu H, Feng W, Lu S. Spatial Distribution, Ecological and Human Health Risks of Potentially Toxic Elements (PTEs) in River Ravi, Pakistan: A Comprehensive Study. ENVIRONMENTAL RESEARCH 2024; 263:120205. [PMID: 39442657 DOI: 10.1016/j.envres.2024.120205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/21/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Significant quantities of potentially toxic elements have been and are still being discharged into Pakistan's rivers through natural sources and anthropogenic activities. The present study provides a comprehensive study of potentially toxic element contamination in the water and sediment of the Ravi River, Pakistan. The research aims to examine the extent of pollution, its ecological risks, and the potential human health impacts through detailed geospatial analysis and statistical correlation. Water and sediment representative samples were taken and analyzed for potentially toxic elements, including Cobalt (Co), Cadmium (Cd), Zinc (Zn), Nickel (Ni), Arsenic (As), Chromium (Cr), Lead (Pb), Copper (Cu), and Manganese (Mn). Various pollution indices, such as the "Geo-accumulation Index (Igeo), Modified degree of Contamination (mCd), Nemerow comprehensive pollution index (Pt), Contamination factor (CF), Enrichment factor (EF), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI)," were calculated to determine the contamination levels and ecological risks. The results indicated significant spatial variability in metal concentrations, with higher levels observed in industrial and urban areas (near Lahore). Cd and As were identified as the most critical pollutants, exhibiting high Igeo, CF, EF, and PERI values. The PLI revealed that several regions along the river are heavily polluted. Pt shows high comprehensive pollution near Lahore and moderate to high pollution in surrounding areas. According to mCd, most of the study area, especially sampling points near Lahore, ranges between 8 and 16, indicating a high degree of pollution. The Human Health Risk (HHR) assessment, considering ingestion, inhalation, and dermal contact pathways, highlighted that children are particularly vulnerable, showing higher Hazard Quotient (HQ) and Hazard Index (HI) values for several metals. Correlation analysis revealed significant relationships between certain metals, suggesting common sources of contamination, likely from industrial discharges and urban runoff. The comprehensive mapping and statistical analysis underscore the urgent need for implementing effective pollution control measures to mitigate the risks posed by potentially toxic element contamination in the Ravi River. This study provides critical insights for policymakers and environmental managers to prioritize areas for remediation and to develop strategies to protect both ecological and human health in the region.
Collapse
Affiliation(s)
- Muhammad Irfan Ahamad
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
| | - Adnanul Rehman
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Muhammad Sajid Mehmood
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Shakeel Mahmood
- Department of Geography, Government College University, Lahore, 54000, Pakistan
| | - Zeeshan Zafar
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, 450046, China; Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou, 450001, China; Xinyang Academy of Ecological Research, Xinyang, 464000, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China.
| | - Wanfu Feng
- The Forest Science Research Institute of Xinyang, Henan, Xinyang, 464031, China; Henan Jigongshan Forest Ecosystem National Observation and Research Station, Henan, Xinyang, 464031, China
| | - Siqi Lu
- Department of Geography, University of Connecticut, Storrs, CT, 06269-4148, USA.
| |
Collapse
|
8
|
Sun Q, Zhang Y, Tian L, Tu J, Corley R, Kuprat AP, Dong J. Investigation of inter-subject variation in ultrafine particle deposition across human nasal airways: A study involving children, adults, and the elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177028. [PMID: 39437906 DOI: 10.1016/j.scitotenv.2024.177028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The airflow and particle dynamics in adult nasal airways have been extensively investigated, but the impact of age-related anatomical changes in children and the elderly remains underexplored. This study systematically investigates age-related anatomical variations and associated influence on nasal airflow dynamics and ultrafine particle deposition characteristics by using Computational Fluid-Particle Dynamics (CFPD) approach. Numerical simulations were conducted for 9 healthy nasal subjects spanning a wide age range. 6 Nasal subjects from the Development Group were used as the primary models for data analysis and deposition correlation development, while 3 subjects from the Validation Group were used to validate the reliability of the derived total and subregional deposition correlations. Our results reveal distinctive variations across age groups. Specifically, the elderly and children exhibit unique patterns that differ from those of young adults. While total deposition efficiency differs significantly between children and adults, filtration efficiency in the subregion with most deposition, main respiratory, remains consistent. Lastly, overall and subregional empirical equations for deposition efficiency were developed by incorporating the combined diffusion parameter, Sca∆b, corroborating the use of geometrical characteristic parameters for each specific subject in predicting nasal deposition efficiency across different age groups. Our findings are expected to improve the predictive nanoparticle exposure analysis in nasal airways across different age groups, thereby improving the respiratory health for individuals throughout the life span.
Collapse
Affiliation(s)
- Qinyuan Sun
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, China
| | - Lin Tian
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
| | - Jiyuan Tu
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - Richard Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID 83714, USA; Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Andrew P Kuprat
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jingliang Dong
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, China; Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia; First Year College, Victoria University, Footscray Park Campus, Footscray, VIC 3011, Australia.
| |
Collapse
|
9
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
10
|
Li K, Yu K, Zhang Y, Du H, Sioutas C, Wang Q. Unveiling the mechanism secret of abrasion emissions of particulate matter and microplastics. Sci Rep 2024; 14:23710. [PMID: 39390026 PMCID: PMC11467408 DOI: 10.1038/s41598-024-74137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Recent research highlights that non-exhaust emissions from the abrasion of tires and other organic materials have emerged as a substantial source of airborne particulate matter and marine microplastics. Despite their growing impact, the underlying mechanisms driving these abrasion emissions have remained largely unexplored. In this study, we uncover that abrasion emissions from organic materials are fundamentally governed by a fatigue fracture process, wherein particles are progressively detached from the material surface under cyclic abrasion loads. Our findings demonstrate that these emissions increase significantly only when the applied abrasion loads surpass the material's toughness threshold. We establish a scaling relationship between the concentration of emitted particulate matter and the measurable crack propagation rate of the organic material, offering a robust quantitative method to estimate abrasion emissions. This work not only introduces a novel mechanistic framework for understanding particulate matter pollution from organic material abrasion but also provides a scientific basis for developing strategies to mitigate emissions of airborne particulates and marine microplastics.
Collapse
Affiliation(s)
- Ketian Li
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kunhao Yu
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yanchu Zhang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Haixu Du
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Constantinos Sioutas
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Ren H, Yin K, Lu X, Liu J, Li D, Liu Z, Zhou H, Xu S, Li H. Synergy between nanoplastics and benzo[a]pyrene promotes senescence by aggravating ferroptosis and impairing mitochondria integrity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174418. [PMID: 38960162 DOI: 10.1016/j.scitotenv.2024.174418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Micro-nano plastics have been reported as important carriers of polycyclic aromatic hydrocarbons (PAHs) for long-distance migration in the environment. However, the combined toxicity from long-term chronic exposure beyond the vehicle-release mechanism remains elusive. In this study, we investigated the synergistic action of Benzo[a]pyrene (BaP) and Polystyrene nanoparticles (PS) in Caenorhabditis elegans (C. elegans) as a combined exposure model with environmental concentrations. We found that the combined exposure to BaP and PS, as opposed to single exposures at low concentrations, significantly shortened the lifespan of C. elegans, leading to the occurrence of multiple senescence phenotypes. Multi-omics data indicated that the combined exposure to BaP and PS is associated with the disruption of glutathione homeostasis. Consequently, the accumulated reactive oxygen species (ROS) cannot be effectively cleared, which is highly correlated with mitochondrial dysfunction. Moreover, the increase in ROS promoted lipid peroxidation in C. elegans and downregulated Ferritin-1 (Ftn-1), resulting in ferroptosis and ultimately accelerating the aging process of C. elegans. Collectively, our study provides a new perspective to explain the long-term compound toxicity caused by BaP and PS at real-world exposure concentrations.
Collapse
Affiliation(s)
- Huasheng Ren
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Kai Yin
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xinhe Lu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiaojiao Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dandan Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zuojun Liu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Remigante A, Spinelli S, Gambardella L, Bozzuto G, Vona R, Caruso D, Villari V, Cappello T, Maisano M, Dossena S, Marino A, Morabito R, Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic Biol Med 2024; 223:1-17. [PMID: 39038767 DOI: 10.1016/j.freeradbiomed.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 μg/mL PS-NPs or PS-MPs for 3 and 24 h, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1 %) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERβ), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, 98166, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Messina, 98158, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| |
Collapse
|
13
|
Zhang L, Zhang G, Shi Z, He M, Ma D, Liu J. Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173890. [PMID: 38885717 DOI: 10.1016/j.scitotenv.2024.173890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Microplastic pollution is a major environmental threat, especially to terrestrial ecosystems. To better understand the effects of microplastics on soil microbiota, the influence of micro- to nano-scale polypropylene plastics was investigated on microbial community diversity, functionality, co-occurrence, assembly, and their interaction with soil-plant using high-throughput sequencing approaches and multivariate analyses. The results showed that polypropylene micro/nano-plastics mainly reduced bacterial diversity, not fungal, and that plastic size had a stronger effect than concentration on the assembly of microbial communities. Nano-plastics decreased the complexity and connectivity of both bacterial and fungal networks compared to micro-plastics. Moreover, bacteria were more sensitive and deterministic to polypropylene micro/nano-plastic stress than fungi, as shown by their different growth rates, guanine-cytosine content, and cell structure. Interestingly, the dominant ecological process for bacteria shifted from stochastic drift to deterministic selection with polypropylene micro/nano-plastic exposure. Furthermore, nano-plastics directly or indirectly disrupted the interactions within intra-microbes and between soil-bacteria-plant by altering soil nutrients and stoichiometry (C:N:P) or plant diversity. Collectively, the results indicate that polypropylene nano-plastics pose more ecological risks to soil microbes and their plant-soil interactions. This study sheds light on the potential ecological consequences of polypropylene micro/nano-plastic pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China..
| | - Dan Ma
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
14
|
Shi Y, Miao H, Zhou S, Leng X, Wu Y, Huang Y. Visualized analysis of microplastics in residents' diets and regional investigation of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174166. [PMID: 38908578 DOI: 10.1016/j.scitotenv.2024.174166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Microplastics are widely distributed in ecosystems and are increasingly found in food. This poses a potential threat to human health. However, current detections of microplastic in food primarily focused on the simple matrices, such as water, milk, and beverages, with relatively few methods available for complex matrices. Due to the strong matrix interference, non-destructive detection of microplastics in food has always been challenging. Thus, in this study, infrared spectral imaging approach was employed in tandem with chemometrics to perform nondestructive and in-situ characterization of microplastics in twelve diverse Chinese diets including meat and seafood stuffs. Results demonstrate that the proposed method can efficiently characterize common microplastics, such as polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE), etc., in various complex matrices. The IR spectral imaging was subsequently applied to the detection of microplastics in seafood samples collected from 24 provinces across China. Results revealed the widespread presence of microplastics in seafood diets with significant regional variations. Overall, this study offers an innovative and applicable means for detecting microplastics in complex foods and provides a reference for the rapid detection of microplastics in various materials.
Collapse
Affiliation(s)
- Yizhi Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Shuang Zhou
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
15
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
16
|
Xayachak T, Haque N, Lau D, Pramanik BK. The missing link: A systematic review of microplastics and its neglected role in life-cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176513. [PMID: 39326758 DOI: 10.1016/j.scitotenv.2024.176513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The issue of plastic pollution has been exacerbated by the discovery of small plastic particles known as "microplastic". While the harmful effects of microplastics are becoming increasingly apparent, life-cycle assessment (LCA), as a holistic environmental assessment tool, has yet to offer a solution that can quantitatively capture the impacts associated with microplastics. In this paper, we conducted a systematic literature review to investigate how existing LCA studies quantify the environmental and human health effects of microplastics. A detailed analysis of 187 studies revealed that microplastics are rarely quantified, or even qualitatively discussed, in most LCAs. Thus, the true impacts of plastic products may be underrepresented and underestimated, leading to biased decision-making. We believe that this status quo is attributable to four fundamental issues, including (i) lack of microplastic leakage data; (ii) lack of quantitative cause-effect relationships between microplastic concentration and their impacts; (iii) exclusion of the "use" phase from the scope of analysis; and (iv) exclusion of long-term effects from landfilled plastic waste. These findings highlight the need for greater efforts and investment in microplastic research and data collection. To address the current knowledge gap, this article presents practical recommendations on how microplastics can be incorporated into the LCA framework, based on latest research.
Collapse
Affiliation(s)
- Tu Xayachak
- School of Engineering, RMIT University, VIC 3001, Australia
| | - Nawshad Haque
- CSIRO, Clayton South, Melbourne, VIC 3169, Australia
| | - Deborah Lau
- CSIRO, Private Bag 10, Clayton South, VIC 3169, Australia
| | | |
Collapse
|
17
|
Pham DT, Choi SH, Kwon JH. Year-round spatial and temporal distribution of microplastics in water and sediments of an urban freshwater system (Jungnang Stream, Korea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124362. [PMID: 38908675 DOI: 10.1016/j.envpol.2024.124362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Streams and tributaries can play a significant role in the transport of inland microplastics to rivers and oceans; however, research on microplastics in these water bodies is limited compared to riverine and marine environments. Analyzing microplastic abundance at higher spatial and temporal resolutions is crucial to comprehend the dynamics of microplastics in these water bodies. Therefore, this study investigated year-round spatiotemporal variations of microplastics monthly in surface waters and sediments along the Jungnang Stream, one of the main tributaries to the Han River in South Korea. The mean concentration of microplastics in the stream was 9.8 ± 7.9 particles L-1 in water and 3640 ± 1620 particles kg-1 in sediment. Microplastic concentrations in surface waters during summer were significantly higher than in other seasons, positively linked to increased precipitation and river discharges. Polymer compositions mainly consisted of polyethylene, polypropylene, and polyethylene terephthalate, with the majority of microplastics detected smaller than 200 μm. Fragment-shaped microplastics were predominant over fibrous ones. The estimated annual input and output of microplastics through surface waters were 1.2-207 kg (2.7-150 billion particles) and 11.3-272 kg (17-769 billion particles), with the summer months contributing more than 70% of the total output. The greater microplastics output in the Jungnang Stream's waters compared to its receiving waters (Han River) indicates microplastics transport from water to other environmental compartments, such as sediments. These findings highlight the importance of investigating microplastic abundances in surface waters and sediments with temporal resolution, at least across different seasons. Such investigations offer valuable insights into the spatiotemporal occurrence and dynamic transport of microplastics, providing essential information for water management and the development of policies in freshwater ecosystems.
Collapse
Affiliation(s)
- Dat Thanh Pham
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang-Hyun Choi
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Zhao J, Zhang H, Shi L, Jia Y, Sheng H. Detection and quantification of microplastics in various types of human tumor tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116818. [PMID: 39083862 DOI: 10.1016/j.ecoenv.2024.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Microplastics (MPs) have been detected in various human tissues. However, whether MPs can accumulate within tumors and how they affect the tumor immune microenvironment (TIME) and therapeutic responses remains unclear. This study aimed to determine the presence of MPs in tumors and their potential effects on the TIME. Sixty-one tumor samples were collected for analysis. The presence of MPs in tumors was qualitatively and quantitatively assessed using pyrolysis-gas chromatography-mass spectrometry. MPs were detected in 26 of the samples examined. Three types of MPs were identified: polystyrene, polyvinyl chloride, and polyethylene. In lung, gastric, colorectal, and cervical tumors, the MP detection rates were 80 %, 40 %, 50 %, and 17 % (7.1-545.9 ng/g), respectively. MPs were detected in 70 % of pancreatic tumors (18.4-427.1 ng/g) but not detected in esophageal tumors. In pancreatic cancer, the MP-infiltrated TIME exhibited a reduction in CD8+ T, natural killer, and dendritic cell counts, accompanied by substantial neutrophil infiltration. This study illustrates the potential presence of MPs in diverse tumors; varying adhesive affinities were observed among different tumor types. MPs may lead to a more adverse TIME in pancreatic tumors. Further investigations are warranted to assess whether MPs promote tumor progression and affect the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Shi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Islam MZ, Zaman SU, Sami NI, Roy S, Jeba F, Islam MS, Salam A. Human inhalation exposure assessment of the airborne microplastics from indoor deposited dusts during winter in Dhaka, Bangladesh. Heliyon 2024; 10:e36449. [PMID: 39253203 PMCID: PMC11381766 DOI: 10.1016/j.heliyon.2024.e36449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Microplastic (MP) contamination has become a concern due to its ubiquitous presence. Recent studies have found MPs to be present in multiple human organs. This study was carried out to evaluate the presence and characterize MPs in indoor dust deposition. Deposited dust was collected from fifteen households in Dhaka city. The samples underwent quantification of MPs using stereomicroscopy. Fourier Transform Infrared (FTIR) spectroscopy was performed to understand the polymer composition. MPs of the size group ranging from 50 to 250 μm were the most dominant. The deposition rates varied from 7.52 × 10³ MPs/m2/day to 66.29 × 10³ MPs/m2/day, with the mean deposition rate being 34 × 10³ MPs/m2/day. Notably, the number of occupants and the height of the sampling location above the ground level were found to influence the deposition rates. Various polymers, including polyester (PET), polyethylene (PE), Nylon, and polypropylene (PP), were identified. The estimated mean inhalation exposure was 2986 ± 1035 MPs/kg-BW/day. This work highlights the need for additional research to explore indoor microplastic deposition and its potential effect on human health in the densely inhabited and severely polluted megapolis of Dhaka, Bangladesh.
Collapse
Affiliation(s)
- Md Zubayer Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Uz Zaman
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nafis Ibtida Sami
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatabdi Roy
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Farah Jeba
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Earth & Atmospheric Sciences, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Md Safiqul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
20
|
Visentin E, Manuelian CL, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Characterization of microplastics in skim-milk powders. J Dairy Sci 2024; 107:5393-5401. [PMID: 38608944 DOI: 10.3168/jds.2023-24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
The diffusion of microplastics in the food supply chain is prompting public concern as their impact on human health is still largely unknown. The aim of this study was to qualitatively and quantitatively characterize microplastics in skim-milk powder samples (n = 16) from different European countries (n = 8) through Fourier-transform infrared microspectroscopy in attenuated total reflectance mode analysis. The present study highlights that the use of hot alkaline digestion has enabled the efficacious identification of microplastics in skim-milk powders used for cheesemaking across European countries. The adopted protocol allowed detection of 29 different types of polymeric matrices for a total of 536 plastic particles. The most abundant microplastics were polypropylene, polyethylene, polystyrene, and polyethylene terephthalate. Microplastics were found in skim-milk powders in 3 different shapes (fiber, sphere, and irregular fragments) and 6 different colors (black, blue, brown, fuchsia, green, and gray). Results demonstrate the presence of microplastics in all skim-milk powder samples, suggesting a general contamination. Results of the present study will help to evaluate the impact of microplastics intake on human health.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - C L Manuelian
- Group of Ruminant Research (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
21
|
Maurizi L, Simon-Sánchez L, Vianello A, Nielsen AH, Vollertsen J. Every breath you take: High concentration of breathable microplastics in indoor environments. CHEMOSPHERE 2024; 361:142553. [PMID: 38851509 DOI: 10.1016/j.chemosphere.2024.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics (MPs) in the air and their potential impact on human health underscore the pressing need to develop robust methods for quantifying their presence, particularly in the breathable fraction (<5 μm). In this study, Raman micro-spectroscopy (μRaman) was employed to assess the concentration of indoor airborne MPs >1 μm in four indoor environments (a meeting room, a workshop, and two apartments) under different levels of human activity. The indoor airborne MP concentration spanned between 58 and 684 MPs per cubic meter (MP m-3) (median 212 MP m-3, MPs/non-plastic ratio 0-1.6%), depending not only on the type and level of human activity, but also on the surface area and air circulation of the investigated locations. Additionally, we assessed in the same environments the filtration performance of a type IIR surgical facemask, which could overall retain 85.4 ± 3.9% of the MPs. We furthermore estimated a human MP intake from indoor air of 3415 ± 2881 MPs day-1 (mostly poly-amide MPs), which could be decreased to 283 ± 317 MPs day-1 using the surgical facemask. However, for the breathable fraction of MPs (1-5 μm), the efficiency of the surgical mask was reduced to 57.6%.
Collapse
Affiliation(s)
- L Maurizi
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark.
| | - L Simon-Sánchez
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A Vianello
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A H Nielsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - J Vollertsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| |
Collapse
|
22
|
Wootton N, Gillanders BM, Leterme S, Noble W, Wilson SP, Blewitt M, Swearer SE, Reis-Santos P. Research priorities on microplastics in marine and coastal environments: An Australian perspective to advance global action. MARINE POLLUTION BULLETIN 2024; 205:116660. [PMID: 38981192 DOI: 10.1016/j.marpolbul.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Plastic and microplastic contamination in the environment receive global attention, with calls for the synthesis of scientific evidence to inform actionable strategies and policy-relevant practices. We provide a systematic literature review on microplastic research across Australian coastal environments in water, sediment and biota, highlighting the main research foci and gaps in information. At the same time, we conducted surveys and workshops to gather expert opinions from multiple stakeholders (including researchers, industry, and government) to identify critical research directions to meet stakeholder needs across sectors. Through this consultation and engagement process, we created a platform for knowledge exchange and identified three major priorities to support evidence-based policy, regulation, and management. These include a need for (i) method harmonisation in microplastic assessments, (ii) information on the presence, sources, and pathways of plastic pollution, and (iii) advancing our understanding of the risk of harm to individuals and ecosystems.
Collapse
Affiliation(s)
- Nina Wootton
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia.
| | - Bronwyn M Gillanders
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Warwick Noble
- Water Quality, Environment Protection Authority, GPO Box 2607, Adelaide, South Australia 5001, Australia
| | - Scott P Wilson
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia; School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Michelle Blewitt
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia
| | - Stephen E Swearer
- Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Patrick Reis-Santos
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
23
|
Kumar N, Lamba M, Pachar AK, Yadav S, Acharya A. Microplastics - A Growing Concern as Carcinogens in Cancer Etiology: Emphasis on Biochemical and Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01436-0. [PMID: 39031249 DOI: 10.1007/s12013-024-01436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
In today's world, the widespread presence of microplastics is undeniable, with concentrations found in various environments, including up to 1000 particles per liter in seawater and up to 10 particles per cubic meter in the atmosphere. Originating from diverse sources, both intentional and unintentional, these minuscule fragments, measuring less than 5 mm, pose significant threats to environmental and human health. Recent research has uncovered a concerning link between microplastics and cancer, prompting urgent investigation. Studies demonstrate microplastics can infiltrate cells, disrupt biological processes, and potentially foster carcinogenic environments. From inducing DNA damage and oxidative stress to triggering inflammatory responses and dysregulating cellular pathways, microplastics exhibit a multifaceted capability in contributing to cancer development. Furthermore, microplastics act as carriers for a range of contaminants, compounding their impact on human health. Their accumulation within tissues and organs raises concerns for short and long-term health consequences, including chronic diseases, reproductive issues, and developmental abnormalities. This review explores the biochemical and molecular mechanisms underlying the interaction between microplastics and cellular systems, providing insights into routes of exposure and health effects, with a focus on lung, skin, and digestive system cancers. As we confront this pressing environmental and public health challenge, a deeper understanding of the microplastic-cancer relationship is crucial to safeguarding the well-being of present and future generations.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India.
| | - Mridul Lamba
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India
| | - Ashok Kumar Pachar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sonal Yadav
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
24
|
Prabhu K, Ghosh S, Sethulekshmi S, Shriwastav A. In vitro digestion of microplastics in human digestive system: Insights into particle morphological changes and chemical leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173173. [PMID: 38740201 DOI: 10.1016/j.scitotenv.2024.173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Despite the well-reported occurrences and established pathways for microplastics (MPs) ingestion by humans, the eventual fate of these particles in the human gastrointestinal system is poorly understood. The present study tries to gain a better understanding of the fate of four common food-borne MPs, i.e. Polystyrene (PS), Polypropylene (PP), Low-density Polyethylene (LDPE), and Nylon, in a simulated in vitro human digestive system. Firstly, the changes in the physicochemical properties of 20-210 μm sized MPs as well as the leaching of chemicals were monitored using fluorescence microscopy, FTIR, and LC-QTOF-MS. Thereafter, the mass loss and morphological alterations in 3-4 mm sized MPs were observed after removing the organic matter. The interaction of PS and PP MPs with duodenal and bile juices manifested in a corona formation. The increase in surface roughness in PP MPs aligned with MP-enzyme dehydrogenation reactions and the addition of NO groups. A few fragments ranging from 30 to 250 μm, with negligible mass loss, were released during the MP digestion process. In addition, the leaching of compounds, e.g. capsi-amide, butanamide, and other plasticizers and monomers was also observed from MPs during digestion, and which may have the potential to accumulate and get absorbed by the digestive organs, and to subsequently impart toxic effects.
Collapse
Affiliation(s)
- Keerthana Prabhu
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Sayanti Ghosh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - S Sethulekshmi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
25
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
26
|
Singh P, Varshney G, Kaur R. Primary Microplastics in the Ecosystem: Ecological Effects, Risks, and Comprehensive Perspectives on Toxicology and Detection Methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:314-365. [PMID: 38967482 DOI: 10.1080/26896583.2024.2370715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.
Collapse
Affiliation(s)
- Pooja Singh
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Gunjan Varshney
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Raminder Kaur
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
27
|
Chen CF, Albarico FPJB, Wang MH, Lim YC, Chen CW, Dong CD. Potential risks of accumulated microplastics in shells and soft tissues of cultured hard clams (Meretrix taiwanica) and associated metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135088. [PMID: 39018596 DOI: 10.1016/j.jhazmat.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) pose risks to both aquatic ecosystems and human health. This study investigated MPs in the shells and soft tissues of hard clams (Meretrix taiwanica) cultured in the inland waters of Taiwan. This study further developed two novel risk indices for assessing the potential ecological and health consequences of MPs. Moreover, the metal concentrations in the clam's soft tissues and the associated consumption health risks were investigated. Clamshells contained significant amounts of MPs with an average abundance of 16.6 ± 6.9 MPs/ind., which was higher than in the soft tissues (2.7 ± 1.7 MPs/ind.). The distribution and sizes of MPs in shells and soft tissues were similar, primarily small-sized (<2 mm, >99 %), blue (>65 %), and fibrous (>99 %). Dominant MP polymer types included rayon (83.5 %), polyethylene terephthalate (11.8 %), and polyacrylonitrile (3.6 %). The proposed MP potential ecological risk index indicates a higher potential ecological MP risk in soft tissues (302-423) than in shells (270-278) of the clams. The MP potential hazard risk index showed that the risk of exposure to MP through shellfish consumption decreased with age. The total hazard index (THI) value suggested negligible health hazards from metal exposure through shellfish consumption. Moreover, there was no significant correlation between MPs and metal concentrations in soft tissues, suggesting that metals bound to MPs contribute minimally to the total accumulated metals in clam's soft tissues. This study confirms the presence of MPs in clam shells and provides a novel tool to assess the potential ecological and health risks associated with MPs in shellfish.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
28
|
La Maestra S, Benvenuti M, Alberti S, Ferrea L, D'Agostini F. UVB-Aged Microplastics and Cellular Damage: An in Vitro Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:48-57. [PMID: 38896243 PMCID: PMC11283437 DOI: 10.1007/s00244-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Plastics are synthetic organic compounds whose widespread use generates enormous waste. Different processes, such as mechanical abrasion, microbiological activity, and UVB irradiation, can fragment the plastic material and generate microplastics (MPs). MPs are ubiquitous, and various organisms, including humans, can ingest or inhale them, with potential adverse health effects. The differences between UV-aged and virgin particles were studied to evaluate the genotoxic damage and oxidative stress induced by polystyrene MPs with 1 and 5 µm sizes on the monocyte-like cell line (THP-1). Fourier transform infrared spectroscopy and Ζ-potential measurements were used to characterise MP particles after UVB exposure. Cells exposed to MPs show a widespread change in the cellular environment with the generation of reactive oxidative species (ROS), as indicated by the increased malondialdehyde level. The occurrence of genotoxic damage is correlated to the smaller size and ageing state of the MPs. The biochemical and genomic alterations observed in this in vitro study suggest that MPs, ubiquitous pollutants, following natural degradation and oxidation processes can cause various adverse effects on the health of the exposed population, making it necessary to carry out further studies to better define the real risk.
Collapse
Affiliation(s)
- Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy.
| | - Mirko Benvenuti
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Linda Ferrea
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Francesco D'Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
29
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Han J, Li Q. Soil Microplastic Pollution and Microbial Breeding Techniques for Green Degradation: A Review. Microorganisms 2024; 12:1147. [PMID: 38930528 PMCID: PMC11205638 DOI: 10.3390/microorganisms12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microplastics (MPs), found in many places around the world, are thought to be more detrimental than other forms of plastics. At present, physical, chemical, and biological methods are being used to break down MPs. Compared with physical and chemical methods, biodegradation methods have been extensively studied by scholars because of their advantages of greenness and sustainability. There have been numerous reports in recent years summarizing the microorganisms capable of degrading MPs. However, there is a noticeable absence of a systematic summary on the technology for breeding strains that can degrade MPs. This paper summarizes the strain-breeding technology of MP-degrading strains for the first time in a systematic way, which provides a new idea for the breeding of efficient MP-degrading strains. Meanwhile, potential techniques for breeding bacteria that can degrade MPs are proposed, providing a new direction for selecting and breeding MP-degrading bacteria in the future. In addition, this paper reviews the sources and pollution status of soil MPs, discusses the current challenges related to the biodegradation of MPs, and emphasizes the safety of MP biodegradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| |
Collapse
|
30
|
Jahan I, Chowdhury G, Baquero AO, Couetard N, Hossain MA, Mian S, Iqbal MM. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121117. [PMID: 38733848 DOI: 10.1016/j.jenvman.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The ecological health of freshwater rivers is deteriorating globally due to careless human activities, for instance, the emission of plastic garbage into the river. The current research was the first assessment of microplastics (MPs) pollution in water, sediment, and representative organisms (fish, crustacean, and bivalve) from the Surma River. Water, sediment, and organisms were sampled from six river sites (Site 1: Charkhai; Site 2: Golapganj; Site 3: Alampur; Site 4: Kazir Bazar; Site 5: Kanishail and Site 6: Lamakazi), and major water quality parameters were recorded during sampling. Thereafter, MPs in water, sediment, and organism samples were extracted, and then microscopically examined to categorize selected MPs types. The abundance of MPs, as well as size, and color distribution, were estimated. Polymer types were analyzed by ATR-FTIR, the color loss of MPs was recorded, the Pollution Load Index (PLI) was calculated, and the relationship between MPs and water quality parameters was analyzed. Sites 4 and 5 had comparatively poorer water quality than other sites. Microplastic fibers, fragments, and microbeads were consistently observed in water, sediment, and organisms. A substantial range of MPs in water, sediment, and organisms (37.33-686.67 items/L, 0.89-15.12 items/g, and 0.66-48.93 items/g, respectively) was recorded. There was a diverse color range, and MPs of <200 μm were prevalent in sampling areas. Six polymer types were identified by ATR-FTIR, namely Polyethylene (PE), Polyamide (PA), Polypropylene (PP), Cellulose acetate (CA), Polyethylene terephthalate (PET), and Polystyrene (PS), where PE (41%) was recognized as highly abundant. The highest PLI was documented in Site 4 followed by Site 5 both in water and sediment. Likewise, Sites 4 and 5 were substantially different from other study areas according to PCA. Overall, the pervasiveness of MPs was evident in the Surma River, which requires further attention and prompt actions.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; School of Science, Technology and Engineering, University of the Sunshine Coast, QLD 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Andrea Osorio Baquero
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Coastal Marine Ecosystems Research Centre (CMERC), Central Queensland University, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton QLD 4701, Australia.
| | - Sohel Mian
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
31
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
32
|
Lee JC, Kim DY, Lee EH, Lee SW. Empowering powdered activated carbon (PAC) with 3D printing: Achieving highly efficient and reusable cationic dye removal. CHEMOSPHERE 2024; 357:141982. [PMID: 38608778 DOI: 10.1016/j.chemosphere.2024.141982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Powdered activated carbon (PAC) has been extensively used as an effective adsorbent. Despite its excellent adsorption ability, PAC has drawbacks, including difficulty in filtration and reactivation after use, limitations of mass transfer in deeper areas because of its aggregated powder form, and limited applicability in high-flow systems. To overcome these limitations, we used a three-dimensional (3D) printing system to fabricate PAC into a 3D structure. Spectral and microscopic analyses indicated that PAC was embedded into 3D monolith and exhibited high porosity suitable for facile mass transfer. The designed 3D PAC filter effectively removed 200 ppm-methylene blue (MB) within 8 h and showed an adsorption efficiency of 93.4 ± 0.9%. The adsorption of MB onto the 3D PAC filter was described by the pseudo-first-order kinetic and Freundlich isotherm models. The negatively charged 3D PAC filter might attract the positively charged MB, thus favoring the physical adsorption of MB onto the 3D PAC filter. The adsorption performance of the 3D PAC filter was tested at various pH levels of 4-10 and against MB spiked in seawaters and freshwaters to evaluate its feasibility for use in real environments. Finally, the reproducibility and reusability of the 3D PAC filter were demonstrated through repeated adsorption and desorption processes against MB.
Collapse
Affiliation(s)
- Ji-Cheol Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Da-Yeon Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea; Institute for Future Earth, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea; Center for Functional Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
33
|
Diansyah G, Rozirwan, Rahman MA, Nugroho RY, Syakti AD. Dynamics of microplastic abundance under tidal fluctuation in Musi estuary, Indonesia. MARINE POLLUTION BULLETIN 2024; 203:116431. [PMID: 38692003 DOI: 10.1016/j.marpolbul.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Tidal dynamics contribute to fluctuations in microplastic abundance (MPs). This is the first study to characterize MPs under the influence of tidal fluctuations in the Musi River Estuary. MPs samples were collected during flood and ebb tides at 10 research stations representing the inner, middle and outer parts of the Musi River Estuary. MPs were extracted to identify the shape, color and size. MP abundances were 467.67 ± 127.84 particles/m3 during flood tide and 723.67 ± 112.05 particles/m3 during ebb tide. The concentration of MPs in the outer zone of the estuary (ocean) was detected to be higher than in the inner zone of the estuary (river). The MPs found were dominated by black color, film shape and size 101-250 μm. A greater abundance of MPs at ebb tide than at flood tide implies that the Musi Estuary's largest source of emissions is discharge from the river.
Collapse
Affiliation(s)
- Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia.
| | - Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
| | - M Akbar Rahman
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Redho Yoga Nugroho
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Agung Dhamar Syakti
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Tanjung Pinang 29100, Riau Islands, Indonesia
| |
Collapse
|
34
|
Aghaei M, Khoshnamvand N, Janjani H, Dehghani MH, Karri RR. Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:65-74. [PMID: 38887772 PMCID: PMC11180043 DOI: 10.1007/s40201-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 06/20/2024]
Abstract
Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Khoshnamvand
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosna Janjani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
35
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
36
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
37
|
Chen XC, Wang A, Wang JJ, Zhang ZD, Yu JY, Yan YJ, Zhang JY, Niu J, Cui XY, Liu XH. Influences of coexisting aged polystyrene microplastics on the ecological and health risks of cadmium in soils: A leachability and oral bioaccessibility based study. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133884. [PMID: 38412647 DOI: 10.1016/j.jhazmat.2024.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd. The mechanisms by which MPs influence soil Cd were discussed from direct and indirect perspectives. Results showed that there was no significant difference in the leachability of soil Cd with/without aged PS. Additionally, aged PS led to a significant decrease in the bioaccessibility of soil Cd in gastric phase, but not in small intestinal phase. The increase in surface roughness and the new characteristic peaks (e.g., Si-O-Si) of aged PS directly accounted for the change in Cd bioaccessibility. The change in organic matter content indirectly accounted for the exceptional increase in Cd bioaccessibility of black soil with aged PS in small intestinal phase. Furthermore, the changes in cation exchange capacity and Cd mobility factor caused by aged PS explained the change in Cd leachability. These results contribute to a deeper understanding about environmental and public health in complicated emerging scenarios.
Collapse
Affiliation(s)
- Xiao-Chen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Ao Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jun-Jie Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou City Construction Design and Research Institute Co., Ltd., 340 Liuyibei Road, Fuzhou 350001, PR China
| | - Zeng-Di Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jian-Ying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, 1 Kejidong Road, Fuzhou 350108, PR China
| | - Ying-Jie Yan
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou University Zhicheng College, 50 Yangqiaoxi Road, Fuzhou 350002, PR China
| | - Jian-Yu Zhang
- Jiangsu Longchang Chemical Co., Ltd., 1 Qianjiang Road, Rugao 226532, PR China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, 33 Xuefunan Road, Fuzhou 350118, PR China
| | - Xiao-Yu Cui
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China
| | - Xian-Hua Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China.
| |
Collapse
|
38
|
Chen J, Qi R, Cheng Y, Wang L, Cao X. Effects of micro/nanoplastics on oxidative damage and serum biochemical parameters in rats and mice: a meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:197. [PMID: 38696118 DOI: 10.1007/s10653-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.
Collapse
Affiliation(s)
- Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Ruiquan Qi
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Le Wang
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Chongshan Road 66, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
39
|
Martin L, Simpson K, Brzezinski M, Watt J, Xu W. Cellular response of keratinocytes to the entry and accumulation of nanoplastic particles. Part Fibre Toxicol 2024; 21:22. [PMID: 38685063 PMCID: PMC11057139 DOI: 10.1186/s12989-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Plastic accumulation in the environment is rapidly increasing, and nanoplastics (NP), byproducts of environmental weathering of bulk plastic waste, pose a significant public health risk. Particles may enter the human body through many possible routes such as ingestion, inhalation, and skin absorption. However, studies on NP penetration and accumulation in human skin are limited. Loss or reduction of the keratinized skin barrier may enhance the skin penetration of NPs. The present study investigated the entry of NPs into a human skin system modeling skin with compromised barrier functions and cellular responses to the intracellular accumulations of NPs. Two in vitro models were employed to simulate human skin lacking keratinized barriers. The first model was an ex vivo human skin culture with the keratinized dermal layer (stratum corneum) removed. The second model was a 3D keratinocyte/dermal fibroblast cell co-culture model with stratified keratinocytes on the top and a monolayer of skin fibroblast cells co-cultured at the bottom. The penetration and accumulation of the NPs in different cell types were observed using fluorescent microscopy, confocal microscopy, and cryogenic electron microscopy (cryo-EM). The cellular responses of keratinocytes and dermal fibroblast cells to stress induced by NPs stress were measured. The genetic regulatory pathway of keratinocytes to the intracellular NPs was identified using transcript analyses and KEGG pathway analysis. The cellular uptake of NPs by skin cells was confirmed by imaging analyses. Transepidermal transport and penetration of NPs through the skin epidermis were observed. According to the gene expression and pathway analyses, an IL-17 signaling pathway was identified as the trigger for cellular responses to internal NP accumulation in the keratinocytes. The transepidermal NPs were also found in co-cultured dermal fibroblast cells and resulted in a large-scale transition from fibroblast cells to myofibroblast cells with enhanced production of α-smooth muscle actin and pro-Collagen Ia. The upregulation of inflammatory factors and cell activation may result in skin inflammation and ultimately trigger immune responses.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA.
| |
Collapse
|
40
|
Sharma P, Sharma P. Micro(nano)plastics: invisible compounds with a visible impact. F1000Res 2024; 13:69. [PMID: 38659492 PMCID: PMC11040229 DOI: 10.12688/f1000research.142212.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The plastic related research has been an epicentre in recent times. The presence and spread of micro (nano) plastics (MNPs) are well-known in the terrestrial and aquatic environment. However, the focus on the fate and remediation of MNP in soil and groundwater is limited. The fate and bioaccumulation of ingested MNPs remain unknown within the digestive tract of animals. There is also a significant knowledge gap in understanding the ubiquitous organic environmental pollutants with MNPs in biological systems. Reducing plastic consumption, improving waste management practices, and developing environmentally friendly alternatives are some of the key steps needed to address MNP pollution. For better handling and to protect the environment from these invisible substances, policymakers and researchers urgently need to monitor and map MNP contamination in soil and groundwater.
Collapse
Affiliation(s)
- Prabhakar Sharma
- Department of Agricultural Engineering and Technology, School of Engineering, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Prateek Sharma
- Environmental Science, Central University of Jharkhand, Ranchi, Jharkhand, 835222, India
| |
Collapse
|
41
|
Kisielinski K, Hockertz S, Hirsch O, Korupp S, Klosterhalfen B, Schnepf A, Dyker G. Wearing face masks as a potential source for inhalation and oral uptake of inanimate toxins - A scoping review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:115858. [PMID: 38537476 DOI: 10.1016/j.ecoenv.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND From 2020 to 2023 many people around the world were forced to wear masks for large proportions of the day based on mandates and laws. We aimed to study the potential of face masks for the content and release of inanimate toxins. METHODS A scoping review of 1003 studies was performed (database search in PubMed/MEDLINE, qualitative and quantitative evaluation). RESULTS 24 studies were included (experimental time 17 min to 15 days) evaluating content and/or release in 631 masks (273 surgical, 228 textile and 130 N95 masks). Most studies (63%) showed alarming results with high micro- and nanoplastics (MPs and NPs) release and exceedances could also be evidenced for volatile organic compounds (VOCs), xylene, acrolein, per-/polyfluoroalkyl substances (PFAS), phthalates (including di(2-ethylhexyl)-phthalate, DEHP) and for Pb, Cd, Co, Cu, Sb and TiO2. DISCUSSION Of course, masks filter larger dirt and plastic particles and fibers from the air we breathe and have specific indications, but according to our data they also carry risks. Depending on the application, a risk-benefit analysis is necessary. CONCLUSION Undoubtedly, mask mandates during the SARS-CoV-2 pandemic have been generating an additional source of potentially harmful exposition to toxins with health threatening and carcinogenic properties at population level with almost zero distance to the airways.
Collapse
Affiliation(s)
- Kai Kisielinski
- Social Medicine, Emergency Medicine and Clinical Medicine (Surgery), Private Practice, 40212 Düsseldorf, Germany.
| | - Stefan Hockertz
- Toxicology, Pharmacology, Immunology, tpi consult AG, Haldenstr. 1, CH 6340 Baar, Switzerland
| | - Oliver Hirsch
- Department of Psychology, FOM University of Applied Sciences, 57078 Siegen, Germany
| | - Stephan Korupp
- Surgeon, Emergency Medicine, Private Practice, 52070 Aachen, Germany
| | - Bernd Klosterhalfen
- Institute of Pathology, Dueren Hospital, Roonstrasse 30, 52351 Dueren, Germany
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gerald Dyker
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
42
|
Du L, Wu D, Yang X, Xu L, Tian X, Li Y, Huang L, Liu Y. Joint toxicity of cadmium (II) and microplastic leachates on wheat seed germination and seedling growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:166. [PMID: 38592562 DOI: 10.1007/s10653-024-01942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.
Collapse
Affiliation(s)
- Ling Du
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xi Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Li Xu
- Cuiping Ecological Environment Bureau of Yibin City, Yibin, 644000, China
| | - Xu Tian
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Youping Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Lijuan Huang
- Guangyuan Ecological Environment Monitoring Center Station, Guangyuan, 628040, China
| | - Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
43
|
Zhang D, Wu C, Liu Y, Li W, Li S, Peng L, Kang L, Ullah S, Gong Z, Li Z, Ding D, Jin Z, Huang H. Microplastics are detected in human gallstones and have the ability to form large cholesterol-microplastic heteroaggregates. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133631. [PMID: 38335610 DOI: 10.1016/j.jhazmat.2024.133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shiyu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Saif Ullah
- Department of Gastroenterology, First affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dan Ding
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
44
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T. Adsorption properties and mechanism of Cu(II) on virgin and aged microplastics in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29434-29448. [PMID: 38575820 DOI: 10.1007/s11356-024-33131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) migrate by adsorbing heavy metals in aquatic environments and act as their carriers. However, the aging mechanisms of MPs in the environment and the interactions between MPs and heavy metals in aquatic environments require further study. In this study, two kinds of materials, polyamide (PA) and polylactic acid (PLA) were used as target MPs, and the effects of UV irradiation on the physical and chemical properties of the MPs and the adsorption behavior of Cu(II) were investigated. The results showed that after UV irradiation, pits, folds and pores appeared on the surface of aged MPs, the specific surface area (SSA) increased, the content of oxygen-containing functional groups increased, and the crystallinity decreased. These changes enhanced the adsorption capacity of aged MPs for Cu(II) pollutants. The adsorption behavior of the PA and PLA MPs for Cu(II) conformed to the pseudo-second-order model and Langmuir isotherm model, indicating that the monolayer chemical adsorption was dominant. The maximum amounts of aged PA and PLA reached 1.415 and 1.398 mg/g, respectively, which were 1.59 and 1.76 times of virgin MPs, respectively. The effects of pH and salinity on the adsorption of Cu(II) by the MPs were significant. Moreover, factors such as pH, salinity and dosage had significant effects on the adsorption of Cu(II) by MPs. Oxidative complexation between the oxygen-containing groups of the MPs and Cu(II) is an important adsorption mechanism. These findings reveal that the UV irradiation aging of MPs can enhance the adsorption of Cu(II) and increase their role as pollutant carriers, which is crucial for assessing the ecological risk of MPs and heavy metals coexisting in aquatic environments.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| |
Collapse
|
45
|
Hongsawat P, Thinjong W, Chouychai B, Punyapalakul P, Prarat P. Microplastics in retail shellfish from a seafood market in eastern Thailand: Occurrence and risks to human food safety. MARINE POLLUTION BULLETIN 2024; 201:116228. [PMID: 38467085 DOI: 10.1016/j.marpolbul.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to investigate the presence of microplastics in three economically essential shellfish species: green mussels, cockles and spotted babylon. The average abundance of microplastics ranged from 2.41 to 2.84 particles/g wet weight. The predominant shape was fiber, with colors ranging from black-grey to transparent. The size of the microplastics discovered was <1.0 mm. Polystyrene and polyethylene were the most detected types in mussels and cockles, while linen was the predominant type in spotted babylon. The Thai population's estimated annual intake (EAI) of microplastics through shellfish consumption ranged from 20.23 to 1178.42 particles/person/year. The potential human health risks were evaluated using the polymer hazard index (PHI), which led to risk categories III-IV. These findings, along with others from the literature, indicate that shellfish consumption may pose risks to human health, depending on the species consumed and the origin of the specimens.
Collapse
Affiliation(s)
- Parnuch Hongsawat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Waleerat Thinjong
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Bopit Chouychai
- Faculty of Engineering and Technology, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Research unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panida Prarat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand.
| |
Collapse
|
46
|
Zhou T, Song S, Min R, Liu X, Zhang G. Advances in chemical removal and degradation technologies for microplastics in the aquatic environment: A review. MARINE POLLUTION BULLETIN 2024; 201:116202. [PMID: 38484537 DOI: 10.1016/j.marpolbul.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 04/07/2024]
Abstract
In recent years, global attention has been extensively focused on the water pollution and health risks caused by microplastics(MPs), thereby making the treatment of microplastics a key area of research. Chemical removal and degradation present effective approaches to addressing this issue. Consequently, this review summarizes the latest research advancements in the chemical removal and degradation of microplastics in water, comparing the treatment efficacy and advantages and disadvantages of various removal/degradation techniques. It elucidates the chemical mechanisms underlying the removal/degradation of microplastics and identifies the primary influencing factors during the treatment process. A systematic analysis of the performance of microplastic treatment technologies is conducted, examining the impact of microplastic characteristics, operational conditions, and other parameters on the effectiveness of microplastic treatment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xin Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
47
|
Yang W, Wu L, Li G, Shi L, Zhang J, Liu L, Chen Y, Yu H, Wang K, Xin L, Tang D, Shen Q, Xu C, Geng H, Wu H, Duan Z, Cao Y, He X. Atlas and source of the microplastics of male reproductive system in human and mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25046-25058. [PMID: 38466387 DOI: 10.1007/s11356-024-32832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Regarding the impact of microplastics (MPs) on the male reproductive system, previous studies have identified a variety of MPs in both human semen and testicular samples. These studies have put forward the hypothesis that small particles can enter the semen through the epididymis and seminal vesicles. Here, we performed qualitative and quantitative analyses of MPs in human testis, semen, and epididymis samples, as well as in testis, epididymis, seminal vesicle, and prostate samples from mice via pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The goal of this approach was to comprehensively characterize the distribution of MPs within the male reproductive system. Additionally, we aimed to evaluate potential sources of MPs identified in semen, as well as to identify possible sources of overall MP exposure. Our results highlighted a general atlas of MPs in the male reproductive system and suggested that MPs in semen may originate from the epididymis, seminal vesicles, and prostate. An exposure questionnaire, coupled with the characteristics of the MPs detected in the male reproductive system, revealed that high urbanization, home-cooked meals, and using scrub cleansers were important sources of MP exposure in men. These findings may provide novel insights into alleviating the exposure of men to MPs.
Collapse
Affiliation(s)
- Wen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Longmei Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Department of Obstetrics and Gynecology, Anhui Public Health Clinical Center, Hefei, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Lan Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Liting Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Yuge Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Kai Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Lei Xin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, 230032, China.
| |
Collapse
|
48
|
Zahid H, Afzal N, Arif MM, Zahid M, Nawab S, Qasim MM, Alvi FN, Nazir S, Perveen I, Abbas N, Saleem Y, Mazhar S, Nawaz S, Faridi TA, Awan HMA, Syed Q, Abidi SHI. Microorganism-mediated biodegradation for effective management and/or removal of micro-plastics from the environment: a comprehensive review. Arch Microbiol 2024; 206:198. [PMID: 38558101 DOI: 10.1007/s00203-024-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.
Collapse
Affiliation(s)
- Hassan Zahid
- Department of Public Health, University of Health Sciences, Lahore, Pakistan
| | - Nimra Afzal
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Maaz Arif
- Department of Medical Education, University of Health Sciences, Lahore, Pakistan
| | - Mahnoor Zahid
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Samia Nawab
- Government Graduate College (W), Township, Lahore, Pakistan
| | | | | | | | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan.
| | - Naaz Abbas
- Minhaj University Lahore, Lahore, Pakistan
| | - Yasar Saleem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Sania Mazhar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Shaista Nawaz
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | | | | | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| |
Collapse
|
49
|
Dailianis S, Rouni M, Ainali NM, Vlastos D, Kyzas GZ, Lambropoulou DA, Bikiaris DN. New insights into the size-independent bioactive potential of pristine and UV-B aged polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170616. [PMID: 38311086 DOI: 10.1016/j.scitotenv.2024.170616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 μm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 μg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 μm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| | - Maria Rouni
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-65404 Kavala, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
50
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|