1
|
Falasca S, Zinzi M, Siani AM, Curci G, Ding L, Santamouris M. Investigating the effects of the greenery increase on air temperature, ventilation and cooling energy demand in Melbourne with the Weather Research and Forecasting model and Local Climate Zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176016. [PMID: 39241880 DOI: 10.1016/j.scitotenv.2024.176016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Vegetation has a well-known potential for mitigating urban overheating. This work aims to explore the effects of enhancing urban greenery in Melbourne (Australia) through a configuration of the Weather Research and Forecasting (WRF) model including the Building Effect Parameterization and the Local Climate Zones and presents novelties in: i) covering two-months and ii) focusing on air circulation and buildings cooling energy demand through the ventilation coefficient (VC) and the cooling degree hours (CDHs). A control case and two "what-if" scenarios with a growing green coverage equal to 35 % (control case), 50 % (modest increase) and 60 % (robust increase) have been designed and then simulated for January and February 2019. Outcomes reveal a maximum drop in 2 m temperature of approximately 0.4 °C and 0.8 °C at 14:00 LT for the modest and robust green increase scenario, respectively. The urban-rural energy surplus for cooling buildings is reduced and even counterbalanced. Peak CDHs decrease from 143 °C·h of the control case to 135 °C·h (modest increase) and 126 °C·h (robust increase), while they measure 137 °C·h in the non-urban areas. Average wind speed increases by 0.8 m/s (equal to 22 % with respect to the control case). Furthermore, adding urban greenery has an unfavorable implication on VC (maximum reduction of 500 m2s-1) with a consequent deterioration of the transport and dispersion of pollutants. Middle- and high-density classes are touched more than low-density by the VC reduction. In addition, the benefits of enhancing urban greenery concern physiologically and psychologically the quality of life of the dwellers.
Collapse
Affiliation(s)
- Serena Falasca
- Department of Physics, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Michele Zinzi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
| | - Anna Maria Siani
- Department of Physics, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Curci
- Department of Physical and Chemical Sciences (DSFC), University of L'Aquila, 67100 L'Aquila, Italy; Center of Excellence for the Remote Sensing and Forecast of Severe Weather (CETEMPS), Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lan Ding
- School of Built Environment, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
2
|
Saha M, Kafy AA, Bakshi A, Nath H, Alsulamy S, Rahaman ZA, Saroar M. The urban air quality nexus: Assessing the interplay of land cover change and air pollution in emerging South Asian cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124877. [PMID: 39233268 DOI: 10.1016/j.envpol.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Air quality degradation presents a significant public health challenge, particularly in rapidly urbanizing regions where changes in land use/land cover (LULC) can dramatically influence pollution levels. This study investigates the association between LULC changes and air pollution (AP) in the five fastest-growing cities of Bangladesh from 1998 to 2021. Leveraging satellite data from Landsat and Sentinel-5P, the analysis reveals a substantial increase in urban areas and sparse vegetation, with declines in dense vegetation and water bodies over this period. Urban expansion was most pronounced in Sylhet (22-254%), while Khulna experienced the largest increase in sparse vegetation (2-124%). Dense vegetation loss was highest in Dhaka (20-77%) and water bodies (9-59%) over this period. Concentrations of six major air pollutants (APTs) - aerosol index, CO, HCHO, NO2, O3, and SO2 - were quantified, showing alarmingly high levels in densely populated industrial and commercial zones. Pearson's correlation indicates strong positive associations between APTs and urban land indices (R > 0.8), while negative correlations exist with vegetation indices. Geographically weighted regression modeling identifies city centers with dense urban built-up as pollution hotspots, where APTs exhibited stronger impacts on land cover changes (R2 > 0.8) compared to other land classes. The highest daily emissions were observed for O3 (1031 tons) and CO (356 tons) at Chittagong in 2021. In contrast, areas with substantial green cover displayed weaker pollutant-land cover associations. These findings underscore how unplanned urbanization drives AP by replacing natural land cover with emission sources, providing crucial insights to guide sustainable urban planning strategies integrating pollution mitigation and environmental resilience.
Collapse
Affiliation(s)
- Milan Saha
- Department of Urban & Regional Planning, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh; School of Environmental Science and Management, Independent University, Bangladesh.
| | - Abdulla Al Kafy
- Department of Geography & the Environment, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Arpita Bakshi
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh.
| | - Hrithik Nath
- Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh; Department of Civil Engineering, University of Creative Technology Chittagong (UCTC), Chattogram, 4212, Bangladesh.
| | - Saleh Alsulamy
- Department of Architecture, Architecture & Planning College, King Khalid University, 61421, Abha, Saudi Arabia.
| | - Zullyadini A Rahaman
- Department of Geography & Environment, Faculty of Human Sciences, Sultan Idris Education University, Tanjung Malim, 35900, Malaysia.
| | - Mustafa Saroar
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh.
| |
Collapse
|
3
|
Manzueta R, Kumar P, Ariño AH, Martín-Gómez C. Strategies to reduce air pollution emissions from urban residential buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175809. [PMID: 39197781 DOI: 10.1016/j.scitotenv.2024.175809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
As cities continue to grow, developing mitigation strategies is crucial to minimize the corresponding increase in air pollutants. One source of potentially controllable air pollution is the emissions from residential buildings. We conducted a literature review to systematically examine air pollution emissions from residential buildings in urban areas, identifying pollutants and their sources; investigated mitigation-aimed intervention types by field of application or study, and finally listed and discussed strategies to reduce the concentration of air pollutants in residential buildings. Our compilation shows that among the nature-based solutions, green walls offered the highest relative reduction of air pollution (-15 % NO2 and -23 % PM10). Of the construction-based solutions, already-available photocatalytic paint can achieve reductions of 25 % NO, 23 % NOx and 19 % NO2 as is. Industrial-based solutions promise high levels of reduction, but these must be adapted to residential buildings. The integration of various existing and potentially adapted mitigation solutions may achieve even higher pollution reduction rates in urban areas.
Collapse
Affiliation(s)
- Robiel Manzueta
- Department of Construction, Building Services and Structures, Universidad de Navarra, Pamplona 31008, Spain; Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Arturo H Ariño
- Department of Environmental Biology and Institute of Biodiversity and Environment (BIOMA), Universidad de Navarra, Pamplona 31008, Spain.
| | - César Martín-Gómez
- Department of Construction, Building Services and Structures, Universidad de Navarra, Pamplona 31008, Spain.
| |
Collapse
|
4
|
Murphy MS, Abdulaziz KE, Lavigne É, Erwin E, Guo Y, Dingwall-Harvey AL, Stieb D, Walker MC, Wen SW, Shin HH. Association between prenatal air pollutant exposure and autism spectrum disorders in young children: A matched case-control study in Canada. ENVIRONMENTAL RESEARCH 2024; 261:119706. [PMID: 39084506 DOI: 10.1016/j.envres.2024.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The direction and magnitude of association between maternal exposure to ambient air pollutants across gestational windows and offspring risk of autism spectrum disorders (ASD) remains unclear. We sought to evaluate the time-varying effects of prenatal air pollutant exposure on ASD. We conducted a matched case-control study of singleton term children born in Ontario, Canada from 1-Apr-2012 to 31-Dec-2016. Provincial birth registry data were linked with applied behavioural analysis services and ambient air pollutant datasets to ascertain prenatal exposure to nitrogen dioxide (NO2), ground-level ozone (O3), fine particulate matter (PM2.5), and ASD diagnoses. Covariate balance between cases and controls was established using coarsened exact matching. Conditional logistic regression was used to assess the association between prenatal air pollutant exposure and ASD. Distributed lag non-linear models (DLNM) were used to examine the effects of single-pollutant exposure by prenatal week. Sensitivity analyses were conducted to assess the impact of exposure period on the observed findings. The final sample included 1589 ASD cases and 7563 controls. Compared to controls, cases were more likely to be born to mothers living in urban areas, delivered by Caesarean section, and assigned male sex at birth. NO2 was a consistent and significant contributor to ASD risk after accounting for co-exposure to O3, PM2.5 and covariates. The odds ratio per interquartile range increase was 2.1 (95%CI 1.8-2.3) pre-conception, 2.2 (2.0-2.5) for the 1st trimester, 2.2 (1.9-2.5) for the 2nd trimester, and 2.1 (1.9-2.4) for the 3rd trimester. In contrast, findings for O3 and PM2.5 with ASD were inconsistent. Findings from DLNM and sensitivity analyses were similar. Exposure to NO2 before and during pregnancy was significantly associated with ASD in offspring. The relationship between prenatal O3 and PM2.5 exposure and ASD remains unclear. Further investigation into the combined effects of multi-pollutant exposure on child neurodevelopment is warranted.
Collapse
Affiliation(s)
- Malia Sq Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kasim E Abdulaziz
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erica Erwin
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yanfang Guo
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alysha Lj Dingwall-Harvey
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stieb
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mark C Walker
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada; International and Global Health Office, University of Ottawa, Ottawa, Canada
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada
| | - Hwashin Hyun Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Zhao K, He F, Zhang B, Liu C, Hu Y, Dong Y, Zhang P, Liu C, Wei J, Lu Z, Guo X, Huang Q, Jia X, Mi J. Short-term ozone exposure on stroke mortality and mitigation by greenness in rural and urban areas of Shandong Province, China. BMC Public Health 2024; 24:2955. [PMID: 39449115 PMCID: PMC11515287 DOI: 10.1186/s12889-024-20454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Short-term exposure to ozone (O3) has been associated with higher stroke mortality, but it is unclear whether this association differs between urban and rural areas. The study aimed to compare the association between short-term exposure to O3 and ischaemic and haemorrhagic stroke mortality across rural and urban areas and further investigate the potential impacts of modifiers, such as greenness, on this association. METHODS A multi-county time-series analysis was carried out in 19 counties of Shandong Province from 2013 to 2019. First, we employed generalized additive models (GAMs) to assess the effects of O3 on stroke mortality in each county. We performed random-effects meta-analyses to pool estimates to counties and compare differences in rural and urban areas. Furthermore, a meta-regression model was utilized to assess the moderating effects of county-level features. RESULTS Short-term O3 exposure was found to be associated with increased mortality for both stroke subtypes. For each 10-µg/m3 (lag0-3) rise in O3, ischaemic stroke mortality rose by 1.472% in rural areas and 1.279% in urban areas. For each 0.1-unit increase in the Enhanced Vegetation Index (EVI) per county, the ischaemic stroke mortality caused by a 10-µg/m3 rise in O3 decreased by 0.60% overall and 1.50% in urban areas. CONCLUSIONS Our findings add to the evidence that short-term O3 exposure increases ischaemic and haemorrhagic stroke mortality and has adverse effects in urban and rural areas. However, improving greenness levels may contribute to mitigating the detrimental effects of O3 on ischaemic stroke mortality.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xian, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yang Hu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yilin Dong
- Liaocheng Centre for Disease Control and Prevention, Liaocheng, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20740, USA
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qing Huang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
| |
Collapse
|
6
|
Leitão IA, Van Schaik L, Iwasaki S, Ferreira AJD, Geissen V. Accumulation of airborne microplastics on leaves of different tree species in the urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174907. [PMID: 39034008 DOI: 10.1016/j.scitotenv.2024.174907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) are omnipresent in the environment and they are linked to ecosystem and human health problems. The atmospheric transport of MPs and the role of tree leaves in MP atmospheric deposition has not been adequately studied. MP concentrations on the leaves of different tree species in urban regions of the Netherlands and Portugal, along with related MP deposition, were investigated in this study. We collected leaves from cedar, eucalyptus, oak, pine and willow trees, together with monthly deposition of particles under the trees and in the open space in Coimbra (Portugal). In Wageningen (the Netherlands), we collected leaves from a fir and a holly tree at different heights above the ground and with dry and wet weather conditions. MPs were extracted through density separation and quantified under a microscope. Polymer types were identified using μ-FTIR. The results showed a higher number of MP particles on the needle-shaped leaves from fir (2.52 ± 2.14 particles·cm-2) and pine (0.5 ± 0.13 particles·cm-2) and significantly lower numbers of MPs per cm2 of leaf area on the bigger leaves from eucalyptus (0.038 ± 0.003 particles·cm-2) and cedar (0.037 ± 0.002 particles·cm-2). All tree leaves seemed to filter airborne MPs, especially the smallest particles. A non-significantly higher number of particles on leaves was detected on lower tree branches and after dry periods. The deposition of MPs under trees was generally higher than in the open space. Our results indicated that part of the MPs retained by the tree leaves floats down to lower branches and to the soil surface. We also saw that different tree species had different capacities to retain particles on their leaves over time. To control the transport of MPs through the atmosphere, it is essential to consider the role of different vegetation types in filtering small particles, especially in cities.
Collapse
Affiliation(s)
- I A Leitão
- Soil Physics and Land Management Group (SLM), Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands; Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal.
| | - L Van Schaik
- Soil Physics and Land Management Group (SLM), Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - S Iwasaki
- Soil Physics and Land Management Group (SLM), Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - A J D Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - V Geissen
- Soil Physics and Land Management Group (SLM), Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| |
Collapse
|
7
|
Werder E, Lawrence K, Deng X, Braxton Jackson W, Christenbury K, Buller I, Engel L, Sandler D. Residential air pollution, greenspace, and adverse mental health outcomes in the U.S. Gulf Long-term Follow-up Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174434. [PMID: 38960154 PMCID: PMC11332601 DOI: 10.1016/j.scitotenv.2024.174434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Air pollution and greenness are environmental determinants of mental health, though existing evidence typically considers each exposure in isolation. We evaluated relationships between co-occurring air pollution and greenspace levels and depression and anxiety. We estimated cross-sectional associations among 9015 Gulf Long-term Follow-up Study participants living in the southeastern U.S. who completed the Patient Health Questionnaire-9 (depression: score ≥ 10) and Generalized Anxiety Disorder Questionnaire-7 (anxiety: score ≥ 10). Participant residential addresses were linked to annual average concentrations of particulate matter (1 km PM2.5) and nitrogen dioxide (1 km NO2), as well as satellite-based greenness (2 km Enhanced Vegetation Index (EVI)). We used adjusted log-binomial regression to estimate prevalence ratios (PR) and 95 % confidence intervals (CI) for associations between exposures (quartiles) and depression and anxiety. In mutually adjusted models (simultaneously modeling PM2.5, NO2, and EVI), the highest quartile of PM2.5 was associated with increased prevalence of depression (PR = 1.17, 95 % CI: 1.06-1.29), whereas the highest quartile of greenness was inversely associated with depression (PR = 0.89, 95 % CI: 0.80-0.99). Joint exposure to greenness mitigated the impact of PM2.5 on depression (PRPM only = 1.20, 95 % CI: 1.06-1.36; PRPM+green = 0.98, 95 % CI: 0.83-1.16) and anxiety (PRPM only = 1.10, 95 % CI: 1.00-1.22; PRPM+green = 0.95, 95 % CI: 0.83-1.09) overall and in subgroup analyses. Observed associations were stronger in urbanized areas and among nonwhite participants, and varied by neighborhood deprivation. NO2 exposure was not independently associated with depression or anxiety in this population. Relationships between PM2.5, greenness, and depression were strongest in the presence of characteristics that are highly correlated with lower socioeconomic status, underscoring the need to consider mental health as an environmental justice issue.
Collapse
Affiliation(s)
| | | | | | - W Braxton Jackson
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, USA
| | - Kate Christenbury
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, USA
| | - Ian Buller
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, USA
| | - Lawrence Engel
- Epidemiology Branch, NIEHS, NC, USA; Department of Epidemiology, UNC Gillings School of Public Health, NC, USA
| | | |
Collapse
|
8
|
Islam A, Pattnaik N, Moula MM, Rötzer T, Pauleit S, Rahman MA. Impact of urban green spaces on air quality: A study of PM10 reduction across diverse climates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176770. [PMID: 39393695 DOI: 10.1016/j.scitotenv.2024.176770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Urban areas face high particulate matter (PM10) levels, increasing the risk of respiratory and cardiovascular diseases. Green spaces can significantly reduce PM10 concentration, as shown at various scales, from boroughs to whole cities. However, long-term monitoring is needed to understand the specific mechanisms and cumulative impact of green spaces on air quality to changing pollution levels. We investigated the influence of neighbourhood green space percentage, climatic variables, and population density on PM10 deposition during the vegetation period across eight cities in contrasting climate zones over 20 years (2000-2020). We used a correlation matrix, generalized additive model, one-way ANOVA, and Tukey HSD test to analyze the impact of these factors on PM10 deposition rates, assess the role of green space percentage in reducing it, and identify significant differences in PM10 parameters at different proximities to emission sources. Cities with higher population density in warmer, drier climates had higher PM levels, since land surface temperature and wind pressure positively correlated with PM10 deposition, while relative humidity showed a negative correlation. The study found significantly higher PM10 concentrations in industrial areas (36.25 μg/m³) than in roadside areas (25.73 μg/m³) and parks (20.17 μg/m³) (p < 0.01). This highlights the need for targeted interventions in different zones. The study found a complex relationship between green space percentage and PM10 deposition rate onto plant surfaces. Our model suggests that at least 27% of green spaces as land cover can significantly reduce the particulate matter flux, although the minimum threshold can vary depending on the specific urban contexts. The study focused on the proportionate cover of green spaces; still, further investigation including quantitative aspects of urban surface forms, and traffic emissions can comprehend the climatic context and determine the optimal extent of green space required for strategic planning toward future urban sustainability initiatives.
Collapse
Affiliation(s)
- Azharul Islam
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising, Germany.
| | - Nayanesh Pattnaik
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising, Germany.
| | - Md Moktader Moula
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Thomas Rötzer
- Forest Growth and Yield Science, School of Life Sciences, Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Stephan Pauleit
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising, Germany.
| | - Mohammad A Rahman
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising, Germany; The University of Melbourne, Burnley, Victoria, Australia.
| |
Collapse
|
9
|
Wang Z, Wang X, Wang Z, Mai S. The impact of green low-carbon development on public health: a quasi-natural experimental study of low-carbon pilot cities in China. Front Public Health 2024; 12:1470592. [PMID: 39440176 PMCID: PMC11493735 DOI: 10.3389/fpubh.2024.1470592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background In recent years, climate change and environmental pollution have posed significant threats to public health. As environmental policies such as low-carbon city initiatives are progressively implemented, their role in enhancing public health has become a topic of growing interest. This study aimed to investigate the relationship between green low-carbon development and public health and to analyze the underlying mechanisms. Methods We utilized data from 271 prefecture-level cities in China spanning from 2007 to 2020, focusing on green low-carbon development, climate change, environmental pollution, and public health. Employing the quasi-natural experimental framework of China's low-carbon city pilot projects, we constructed a multi-site difference-in-differences (DID) model for empirical analysis. Various robustness checks, including parallel trend tests, placebo tests, sample selection bias checks, and adjustments to the temporal and spatial scope of the samples, were conducted to ensure the reliability of the results. Additionally, we explored the positive effects of green low-carbon development on public health through dual mediation pathways involving climate change mitigation and pollution reduction. Finally, we examined the heterogeneity of the results across different city tiers, economic growth rates, levels of technological investment, and green finance development. Results The findings indicate that green low-carbon development significantly enhances public health, a conclusion supported by robustness tests. Mechanism analysis reveals that the benefits of green low-carbon development on public health are realized through mitigating climate change and reducing environmental pollution. Further analysis reveals that the positive impact on public health is more pronounced in first-and second-tier cities, as well as in cities with faster economic growth, greater technological investment, and more developed green finance sectors. Discussion This study highlights the crucial role of urban green low-carbon development in improving environmental quality and public health. In addition to providing empirical evidence that supports the promotion of green low-carbon development in cities, the results point to policy recommendations for enhancing public health. Moreover, the findings contribute to the development of environmental policies and the implementation of the "Healthy China" strategy.
Collapse
Affiliation(s)
- Zhanjie Wang
- School of Business Administration, Guizhou University of Finance and Economics, Guiyang, China
- Institute of Gui-An New District, Guizhou University of Finance and Economics, Guiyang, China
| | - Xinyue Wang
- School of Business Administration, Guizhou University of Finance and Economics, Guiyang, China
| | - Zhichao Wang
- School of Economy & Management, Shihezi University, Shihezi, China
| | - Sheng Mai
- School of Economy & Management, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Luque-García L, García-Baquero G, Lertxundi A, Al-Delaimy WK, Julvez J, Estarlich M, De Castro M, Guxens M, Lozano M, Subiza-Pérez M, Ibarluzea J. Exploring the pathways linking prenatal and early childhood greenness exposure to attention-deficit/hyperactivity disorder symptoms during childhood: An approach based on robust causal inference. Int J Hyg Environ Health 2024; 263:114475. [PMID: 39366079 DOI: 10.1016/j.ijheh.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Epidemiological studies suggest that exposure to greenness during childhood may protect children from developing attention-deficit hyperactivity disorder (ADHD). OBJECTIVE We analyzed the effect of both prenatal (pregnancy) and early childhood (4-5-year follow-up) residential greenness exposure and green space availability on ADHD symptoms during childhood (up to the age of 12 years) and further explored the potential mediating role of PM2.5 and physical activity in the association. METHODS The study population included participants from the INfancia y Medio Ambiente (INMA) prospective birth cohort (Gipuzkoa, Sabadell, and Valencia). Average Normalized Difference Vegetation Index (NDVI) in buffers of 100-, 300- and 500-m around the residential addresses was used as an indicator of greenness, while green space availability was determined based on the presence of a major green space within 150-m from the residence. Childhood ADHD symptoms were assessed at the 6-8- and 10-12-year follow-ups using Conners Parents Rating Scale-Revised: Short Form. RESULTS Although no association was found for the prenatal exposure period, increased early childhood NDVI inversely associated with the OR of clinically significant ADHD symptoms during the 6-8-year follow-up at the 100-m (OR 0.03, 95% CI: 0.003 to 0.44), 300-m (OR 0.04, 95% CI: 0.003 to 0.42) and 500-m (OR 0.08, 95% CI: 0.01 to 0.76) buffers, but exclusively in the context of direct effects. Additionally, the 10-12-year follow-up analysis found moderate to weak evidence of potential total and direct effects of NDVI at both 100- and 300-m buffers on inattention scores, as well as for NDVI at the 300-m buffer on ADHD index scores. The analysis did not reveal evidence of mediation through PM2.5 or physical activity. CONCLUSIONS The evidence suggests that early childhood greenness exposure may reduce the risk of developing ADHD symptoms later in childhood, and that this association is not mediated through PM2.5 and physical activity.
Collapse
Affiliation(s)
- Leire Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, 20700, Zumarraga, Spain.
| | - Gonzalo García-Baquero
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; CEADIR. Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, 37007, Salamanca, Spain.
| | - Aitana Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Wael K Al-Delaimy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, United States.
| | - Jordi Julvez
- ISGlobal, 08003, Barcelona, Spain; Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain.
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Nursing and Chiropody Faculty of Valencia University, Avenida Menéndez Pelayo, 19, 46010, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain.
| | - Montserrat De Castro
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; ISGlobal, 08003, Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 12, 08002, Barcelona, Spain.
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; ISGlobal, 08003, Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 12, 08002, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Avenida Vicent Andrés Estellés, s/n 46100, Burjassot, Valencia, Spain.
| | - Mikel Subiza-Pérez
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, United Kingdom; Department of Clinical and Health Psychology and Research Methods, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018, Sebastián, Spain.
| | - Jesús Ibarluzea
- Biogipuzkoa Health Research Institute, Environmental Epidemiology and Child Development Group, Paseo Doctor Begiristain s/n, 20014, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Faculty of Psychology, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018, San Sebastián, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain.
| |
Collapse
|
11
|
Moreira X, Van den Bossche A, Moeys K, Van Meerbeek K, Thomaes A, Vázquez-González C, Abdala-Roberts L, Brunet J, Cousins SAO, Defossez E, De Pauw K, Diekmann M, Glauser G, Graae BJ, Hagenblad J, Heavyside P, Hedwall PO, Heinken T, Huang S, Lago-Núñez B, Lenoir J, Lindgren J, Lindmo S, Mazalla L, Naaf T, Orczewska A, Paulssen J, Plue J, Rasmann S, Spicher F, Vanneste T, Verschuren L, Visakorpi K, Wulf M, De Frenne P. Variation in insect herbivory across an urbanization gradient: The role of abiotic factors and leaf secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109056. [PMID: 39186848 DOI: 10.1016/j.plaphy.2024.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Urbanization impacts plant-herbivore interactions, which are crucial for ecosystem functions such as carbon sequestration and nutrient cycling. While some studies have reported reductions in insect herbivory in urban areas (relative to rural or natural forests), this trend is not consistent and the underlying causes for such variation remain unclear. We conducted a continental-scale study on insect herbivory along urbanization gradients for three European tree species: Quercus robur, Tilia cordata, and Fraxinus excelsior, and further investigated their biotic and abiotic correlates to get at mechanisms. To this end, we quantified insect leaf herbivory and foliar secondary metabolites (phenolics, terpenoids, alkaloids) for 176 trees across eight European cities. Additionally, we collected data on microclimate (air temperature) and soil characteristics (pH, carbon, nutrients) to test for abiotic correlates of urbanization effects directly or indirectly (through changes in plant secondary chemistry) linked to herbivory. Our results showed that urbanization was negatively associated with herbivory for Q. robur and F. excelsior, but not for T. cordata. In addition, urbanization was positively associated with secondary metabolite concentrations, but only for Q. robur. Urbanization was positively associated with air temperature for Q. robur and F. excelsior, and negatively with soil nutrients (magnesium) in the case of F. excelsior, but these abiotic variables were not associated with herbivory. Contrary to expectations, we found no evidence for indirect effects of abiotic factors via plant defences on herbivory for either Q. robur or F. excelsior. Additional biotic or abiotic drivers must therefore be accounted for to explain observed urbanization gradients in herbivory and their interspecific variation.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Astrid Van den Bossche
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Karlien Moeys
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Koenraad Van Meerbeek
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Carla Vázquez-González
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Sara A O Cousins
- Department of Physical Geography, Stockholm University, 10691, Stockholm, Sweden
| | - Emmanuel Defossez
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karen De Pauw
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Martin Diekmann
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bente J Graae
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jenny Hagenblad
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Paige Heavyside
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Thilo Heinken
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| | - Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Jonathan Lenoir
- UMR, CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, F-80037, Amiens, France
| | - Jessica Lindgren
- Department of Physical Geography, Stockholm University, 10691, Stockholm, Sweden
| | - Sigrid Lindmo
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Leonie Mazalla
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Anna Orczewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Jolina Paulssen
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Jan Plue
- Department of Urban and Rural Development, SLU Swedish Biodiversity Centre (CBM). Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Spicher
- UMR, CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, F-80037, Amiens, France
| | - Thomas Vanneste
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Louis Verschuren
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium; UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000, Ghent, Belgium
| | - Kristiina Visakorpi
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| |
Collapse
|
12
|
Wu C, Liu J, Li Y, Qin L, Gu R, Feng J, Xu L, Meng X, Chen J, Chen R, Shi Y, Kan H. Association of residential air pollution and green space with all-cause and cause-specific mortality in individuals with diabetes: an 11-year prospective cohort study. EBioMedicine 2024; 108:105376. [PMID: 39353278 PMCID: PMC11472637 DOI: 10.1016/j.ebiom.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To assess the long-term impact of residential air pollution and green space exposure on cause-specific mortality in individuals with type 2 diabetes mellitus (T2DM). METHODS This study includes 174,063 participants newly diagnosed with T2DM from a prospective cohort in Shanghai, China, enrolled between 2011 and 2013. Residential annual levels of air pollutants, including fine (PM2.5) and coarse (PM2.5-10) particulate matter, nitrogen dioxide (NO2), along with the normalized difference vegetation index (NDVI), were derived from satellite-based exposure models. FINDINGS During a median follow-up of 7.9 years (equivalent to 1,333,343 person-years), this study recorded 22,205 deaths. Higher exposure to PM2.5 was significantly associated with increased risks for all mortality outcomes, whilst PM2.5-10 showed no significant impacts. The strongest associations of PM2.5 were observed for diabetes with peripheral vascular diseases [hazard ratio (HR): 2.70; per 10 μg/m3 increase] and gastrointestinal cancer (2.44). Effects of NO2 became significant at concentrations exceeding approximately 45 μg/m³, with the highest associations for lung cancer (1.20) and gastrointestinal cancer (1.19). Conversely, each interquartile range increase in NDVI (0.10) was linked to reduced mortality risks across different causes, with HRs ranging from 0.76 to 1.00. The association between greenness and mortality was partly and significantly mediated by reduced PM2.5 (23.80%) and NO2 (26.60%). There was a significant and negative interaction between NO2 and greenness, but no interaction was found between PM2.5 and greenness. INTERPRETATION Our findings highlight the vulnerability of individuals with T2DM to the adverse health effects of air pollution and emphasise the potential protective effects of greenness infrastructure. FUNDING The 6th Three-year Action Program of Shanghai Municipality for Strengthening the Construction of Public Health System (GWVI-11.1-22), the National Key Research and Development Program (2022YFC3702701), and the National Natural Science Foundation of China (82030103, 82373532).
Collapse
Affiliation(s)
- Chunfeng Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyun Li
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Luxin Qin
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Ruilong Gu
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiachen Feng
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Lulu Xu
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jiaxin Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Yan Shi
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
13
|
Sun Z, Chen L, Liu Z, Feng L, Cui Y, Zhang X, Wu Y, Zhang J. Modifying effects of green space on the relationships between air pollution and ischemic cerebrovascular event recurrence in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3648-3658. [PMID: 38357761 DOI: 10.1080/09603123.2024.2314636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
This study aimed to explore how air pollution and green space influence ICE recurrence and whether they might interact with each other. A case-cross design was used in this study, which was carried out in Tianjin, China. A total of 8306 patients with recurrent ICE were collected from 2019 to 2020. The maximum effects of PM2.5, PM10, SO2, NO2, CO were 1.012 (95%CI: 1.004, 1.019), 1.010 (95%CI: 1.004, 1.016), 1.035 (95%CI: 0.982, 1.091), 1.067 (95%CI: 1.043, 1.091) and 1.012 (95%CI: 1.004, 1.021) , respectively, and the risk was higher in males and in the 50-60 age group. In the stratification of greening, it was found that air pollution except O3 had the highest risk of ICE recurrence for those with lower green space. Our study found that air pollution (except O3) can increase the risk of ICE recurrence, and this risk can be reduced by increasing green space.
Collapse
Affiliation(s)
- Zhiying Sun
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lu Chen
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Zhonghui Liu
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lihong Feng
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Yushan Cui
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Xianwei Zhang
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Yan Wu
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Jingwei Zhang
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| |
Collapse
|
14
|
Yang X, Ran G. Factors influencing the coupled and coordinated development of cities in the Yangtze River Economic Belt: A focus on carbon reduction, pollution control, greening, and growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122499. [PMID: 39293115 DOI: 10.1016/j.jenvman.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Atmospheric pollutants PM2.5 and CO2 share similar sources and impact mechanisms. Green innovations and urban greening significantly reduce these pollutants while promoting economic growth. However, the synergies and trade-offs between carbon reduction, pollution control, green expansion, and economic growth remain understudied. This paper examines 110 cities in the Yangtze River Economic Belt (YREB), China's premier green development site, as a unified system. Using fractional-order synthesis analysis, this paper constructs an assessment indicator system and measures synergy with a coupled coordination degree model. The driving factors are explored using a system-generalized method of moments estimation. The findings indicate that most cities in the YREB are at an intermediate coordination stage. The coupling of greening with carbon reduction, pollution control, and growth has a low degree, highlighting an urgent need to strengthen greening efforts. Key drivers include the digital economy, advanced industrial structure, innovative talent aggregation, infrastructure construction, financial investment, and marketization. The digital economy significantly influences all regions of the Yangtze River. Notable heterogeneity exists in the impact of other drivers across different regions. These results offer valuable policy insights for managing carbon emissions and pollutants, contributing to sustainable urban development.
Collapse
Affiliation(s)
- Xuan Yang
- School of Management, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Guanggui Ran
- School of Management, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
15
|
Zhang S, Breitner S, Stafoggia M, Donato FD, Samoli E, Zafeiratou S, Katsouyanni K, Rao S, Diz-Lois Palomares A, Gasparrini A, Masselot P, Nikolaou N, Aunan K, Peters A, Schneider A. Effect modification of air pollution on the association between heat and mortality in five European countries. ENVIRONMENTAL RESEARCH 2024; 263:120023. [PMID: 39293751 DOI: 10.1016/j.envres.2024.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Evidence suggests that air pollution modifies the association between heat and mortality. However, most studies have been conducted in cities without rural data. This time-series study examined potential effect modification of particulate matter (PM) and ozone (O3) on heat-related mortality using small-area data from five European countries, and explored the influence of area characteristics. METHODS We obtained daily non-accidental death counts from both urban and rural areas in Norway, England and Wales, Germany, Italy, and the Attica region of Greece during the warm season (2000-2018). Daily mean temperatures and air pollutant concentrations were estimated by spatial-temporal models. Heat effect modification by air pollution was assessed in each small area by over-dispersed Poisson regression models with a tensor smoother between temperature and air pollution. We extracted temperature-mortality relationships at the 5th (low), 50th (medium), and 95th (high) percentiles of pollutant distributions. At each air pollution level, we estimated heat-related mortality for a temperature increase from the 75th to the 99th percentile. We applied random-effects meta-analysis to derive the country-specific and overall associations, and mixed-effects meta-regression to examine the influence of urban-rural and coastal typologies and greenness on the heat effect modification by air pollution. RESULTS Heat-related mortality risks increased with higher PM levels, rising by 6.4% (95% CI: -2.0%-15.7%), 10.7% (2.6%-19.5%), and 14.1% (4.4%-24.6%) at low, medium, and high PM levels, respectively. This effect modification was consistent in urban and rural regions but more pronounced in non-coastal regions. In addition, heat-mortality associations were slightly stronger at high O3 levels, particularly in regions with low greenness. CONCLUSION Our analyses of both urban and rural data indicate that air pollution may intensify heat-related mortality, particularly in non-coastal and less green regions. The synergistic effect of heat and air pollution implies a potential pathway of reducing heat-related health impacts by improving air quality.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, United States.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, LMU, Munich, Germany
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service - ASL ROMA 1, Rome, Italy
| | - Francesca De' Donato
- Department of Epidemiology, Lazio Regional Health Service - ASL ROMA 1, Rome, Italy
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Zafeiratou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Shilpa Rao
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Pierre Masselot
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, LMU, Munich, Germany
| | - Kristin Aunan
- CICERO Center for International Climate Research, Norway
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, LMU, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
16
|
Pan R, Wang W, Wei N, Liu L, Yi W, Song J, Cheng J, Su H, Fan Y. Does the morphology of residential greenspaces contribute to the development of a cardiovascular-healthy city? ENVIRONMENTAL RESEARCH 2024; 257:119280. [PMID: 38821460 DOI: 10.1016/j.envres.2024.119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUNDS Greenspaces are indispensable for the construction of a healthy city. Research has shown that greenspaces contribute to the reduction of cardiovascular risks. However, the role of greenspace morphology in the development of a healthy city is not well understood. METHODS Our study utilized data from a cardiovascular disease screening cohort comprising 106,238 residents in Anhui Province, China, aged between 35 and 75 years. We calculated landscape indices of each participant using high-resolution land cover data to measure the greenness, fragmentation, connectivity, aggregation, and shape of greenspaces. We used a multivariate linear regression model to assess the associations between these landscape indices and triglyceride risk, and employed a structural equation model to explore the potential contributions of heatwaves and fine particulate matter (PM2.5) to this association. RESULTS Overall, triglyceride was expected to increase by 0.046% (95% CI: 0.040%, 0.052%) with a 1% increase in the percentage of built-up area. Conversely, an increase in the percentage of greenspace was associated with a 0.270% (95% CI: 0.337%, -0.202%) decrease in triglyceride levels. Furthermore, when the total greenspace was held constant, the shape, connectedness, and aggregation of greenspace were inversely correlated with triglyceride levels, with effects of -0.605% (95% CI: 1.012%, -0.198%), -0.031% (95% CI: 0.039%, -0.022%), and -0.049% (95% CI: 0.058%, -0.039%), respectively. Likewise, the protective effect of the area-weighed mean shape index was higher than that of the total amount of greenspace. The stratification results showed that urban residents benefited more from greenspace exposure. Greenspace morphology can minimize triglyceride risk by reducing pollutant and heatwaves, with aggregation having the greatest effect on reducing pollutants whereas fragmentation is more efficient at reducing heatwaves. CONCLUSION Exposure to the greenspaces morphology is associated with a reduction in triglyceride risk. The study has important practical and policy implications for early health monitoring and the spatial layout of greenspace and will provide scientific information for healthy urban planning by reducing unfavorable health consequences.
Collapse
Affiliation(s)
- Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Weiqiang Wang
- Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China.
| |
Collapse
|
17
|
Cardinali M, Beenackers MA, Timmeren AV, Pottgiesser U. Urban green spaces, self-rated air pollution and health: A sensitivity analysis of green space characteristics and proximity in four European cities. Health Place 2024; 89:103300. [PMID: 38924920 DOI: 10.1016/j.healthplace.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Exploring the influence of green space characteristics and proximity on health via air pollution mitigation, our study analysed data from 1,365 participants across Porto, Nantes, Sofia, and Høje-Taastrup. Utilizing OpenStreetMap and the AID-PRIGSHARE tool, we generated nine green space indicators around residential addresses at 15 distances, ranging from 100m to 1500m. We performed a mediation analysis for these 135 green space variables and revealed significant associations between self-rated air pollution and self-rated health for specific green space characteristics. In our study, indirect positive effects on health via air pollution were mainly associated with green corridors in intermediate Euclidean distances (800-1,000m) and the amount of accessible green spaces in larger network distances (1,400-1,500m). Our results suggest that the amount of connected green spaces measured in intermediate surroundings seems to be a prime green space characteristic that could drive the air pollution mitigation pathway to health.
Collapse
Affiliation(s)
- Marcel Cardinali
- Faculty of Architecture and the Built Environment, TU Delft, P.O.Box 5043, 2600GA, Delft, the Netherlands; Institute for Design Strategies, OWL University of Applied Sciences and Arts, 32756, Detmold, Germany.
| | - Mariëlle A Beenackers
- Department of Public Health, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Arjan van Timmeren
- Faculty of Architecture and the Built Environment, TU Delft, P.O.Box 5043, 2600GA, Delft, the Netherlands
| | - Uta Pottgiesser
- Faculty of Architecture and the Built Environment, TU Delft, P.O.Box 5043, 2600GA, Delft, the Netherlands; Institute for Design Strategies, OWL University of Applied Sciences and Arts, 32756, Detmold, Germany
| |
Collapse
|
18
|
Turner A, Wolfe C, Ryan PH. Personal exposure to ultrafine particles in multiple microenvironments among adolescents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:878-885. [PMID: 38418826 DOI: 10.1038/s41370-023-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Experimental studies suggest ultrafine particles (UFPs), the smallest size fraction of particulate matter, may be more toxic than larger particles, however personal sampling studies in children are lacking. OBJECTIVE The objective of this analysis was to examine individual, housing, and neighborhood characteristics associated with personal UFP concentrations as well as the differences in exposures that occur within varying microenvironments. METHODS We measured weekly personal UFP concentrations and GPS coordinates in 117 adolescents ages 13-17 to describe exposures across multiple microenvironments. Individual, home, and neighborhood characteristics were collected by caregiver completed questionnaires. RESULTS Participants regularly exposed to secondhand tobacco smoke had significantly higher indoor concentrations of UFPs compared to participants who were not. We observed that the 'home' microenvironment dominated the relative contribution of overall UFP concentrations and sampling time, however, relative proportion of integrated UFP exposure were higher in 'other' environments. IMPACT STATEMENT In this study, we employed a novel panel study design, involving real-time measurement of UFP exposure within the multiple microenvironments of adolescents. We found a combination of personal sampling and detailed activity patterns should be used in future studies to accurately describe exposure-behavior relationships.
Collapse
Affiliation(s)
- Ashley Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
Liu Y, Kwan MP, Wang J, Cai J. Confounding associations between green space and outdoor artificial light at night: Systematic investigations and implications for urban health. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100436. [PMID: 39027466 PMCID: PMC11254942 DOI: 10.1016/j.ese.2024.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Excessive urbanization leads to considerable nature deficiency and abundant artificial infrastructure in urban areas, which triggered intensive discussions on people's exposure to green space and outdoor artificial light at night (ALAN). Recent academic progress highlights that people's exposure to green space and outdoor ALAN may be confounders of each other but lacks systematic investigations. This study investigates the associations between people's exposure to green space and outdoor ALAN by adopting the three most used research paradigms: population-level residence-based, individual-level residence-based, and individual-level mobility-oriented paradigms. We employed the green space and outdoor ALAN data of 291 Tertiary Planning Units in Hong Kong for population-level analysis. We also used data from 940 participants in six representative communities for individual-level analyses. Hong Kong green space and outdoor ALAN were derived from high-resolution remote sensing data. The total exposures were derived using the spatiotemporally weighted approaches. Our results confirm that the negative associations between people's exposure to green space and outdoor ALAN are universal across different research paradigms, spatially non-stationary, and consistent among different socio-demographic groups. We also observed that mobility-oriented measures may lead to stronger negative associations than residence-based measures by mitigating the contextual errors of residence-based measures. Our results highlight the potential confounding associations between people's exposure to green space and outdoor ALAN, and we strongly recommend relevant studies to consider both of them in modeling people's health outcomes, especially for those health outcomes impacted by the co-exposure to them.
Collapse
Affiliation(s)
- Yang Liu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei-Po Kwan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianying Wang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiannan Cai
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Deng S, Liang J, Peng Y, Liu W, Su J, Zhu S. Spatial analysis of the impact of urban built environment on cardiovascular diseases: a case study in Xixiangtang, China. BMC Public Health 2024; 24:2368. [PMID: 39217314 PMCID: PMC11366168 DOI: 10.1186/s12889-024-19884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The built environment, as a critical factor influencing residents' cardiovascular health, has a significant potential impact on the incidence of cardiovascular diseases (CVDs). METHODS Taking Xixiangtang District in Nanning City, Guangxi Zhuang Autonomous Region of China as a case study, we utilized the geographic location information of CVD patients, detailed road network data, and urban points of interest (POI) data. Kernel density estimation (KDE) and spatial autocorrelation analysis were specifically employed to identify the spatial distribution patterns, spatial clustering, and spatial correlations of built environment elements and diseases. The GeoDetector method (GDM) was used to assess the impact of environmental factors on diseases, and geographically weighted regression (GWR) analysis was adopted to reveal the spatial heterogeneity effect of environmental factors on CVD risk. RESULTS The results indicate that the built environment elements and CVDs samples exhibit significant clustering characteristics in their spatial distribution, with a positive correlation between the distribution density of environmental elements and the incidence of CVDs (Moran's I > 0, p < 0.01). Further factor detection revealed that the distribution of healthcare facilities had the most significant impact on CVDs (q = 0.532, p < 0.01), followed by shopping and consumption (q = 0.493, p < 0.01), dining (q = 0.433, p < 0.01), and transportation facilities (q = 0.423, p < 0.01), while the impact of parks and squares (q = 0.174, p < 0.01) and road networks (q = 0.159, p < 0.01) was relatively smaller. Additionally, the interaction between different built environment elements exhibited a bi-factor enhancement effect on CVDs. In the local analysis, the spatial heterogeneity of different built environment elements on CVDs further revealed the regional differences and complexities. CONCLUSIONS The spatial distribution of built environment elements is significantly correlated with CVDs to varying degrees and impacts differently across regions, underscoring the importance of the built environment on cardiovascular health. When planning and improving urban environments, elements and areas that have a more significant impact on CVDs should be given priority consideration.
Collapse
Affiliation(s)
- Shuguang Deng
- School of Geographical and Planning, Nanning Normal University, Nanning, 530100, Guangxi, China
| | - Jinlong Liang
- School of Geographical and Planning, Nanning Normal University, Nanning, 530100, Guangxi, China.
| | - Ying Peng
- School of Architecture, Guangxi Arts University, Nanning, 530009, Guangxi, China
| | - Wei Liu
- Fatulty of Innovation and Design, City University of Macau, Macau, 999078, China
| | - Jinhong Su
- School of Geographical and Planning, Nanning Normal University, Nanning, 530100, Guangxi, China
| | - Shuyan Zhu
- School of Geographical and Planning, Nanning Normal University, Nanning, 530100, Guangxi, China
| |
Collapse
|
21
|
Zuo W, Cheng B, Feng X, Zhuang X. Relationship between urban green space and mental health in older adults: mediating role of relative deprivation, physical activity, and social trust. Front Public Health 2024; 12:1442560. [PMID: 39267636 PMCID: PMC11390600 DOI: 10.3389/fpubh.2024.1442560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The importance of improving older adults' mental health is increasing worldwide with the rapid development of the aging process. Green space is an important part of the urban built environment, demonstrates a deep connection with the mental health of older adults, and its internal mechanisms have been widely studied. This study analyzed the influence of urban green spaces on the mental health of older adults via three factors: relative deprivation, physical activity, and social trust. Methods Based on the 2018 China Labor Dynamics Survey, a multi-level structural equation model was used to explore the mediating roles of relative deprivation, physical activity, social trust in urban green spaces, and the mental health of older adults. Results Urban green space was positively correlated with the mental health of older adults. Relative deprivation and physical activities played a mediating role between urban green space and the mental health of older adults. Discussion An increase in urban green spaces can help increase the number of older adults obtaining green space resources, and help them maintain good mental health. Secondly, older adults with a relatively homogeneous environment have more equal opportunities to obtain urban green space resources, which helps to reduce the comparison of older adults in access to green space resources and reduce the adverse impact of relative deprivation on their mental health. Additionally, increasing urban green spaces can encourage older adults to engage in physical activities and improve their mental health. Finally, we suggest improving the accessibility, fairness, and quality of green spaces, paying attention to the psychological needs of older adults, encouraging older adults to engage in physical activities in green spaces, and taking various measures to enhance the positive role of green space on the mental health of older adults.
Collapse
Affiliation(s)
- Wen Zuo
- School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, China
| | - Bin Cheng
- School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, China
| | - Xinyan Feng
- School of Business, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xuefang Zhuang
- School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Inés AC, Iván TB, Daniela T, Miranda GR, Alejandra CH. Utilizing spiders for biomonitoring air pollution from road traffic: a novel approach and preliminary findings. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:824. [PMID: 39162853 DOI: 10.1007/s10661-024-13001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are air pollutants generated mainly by fuel combustion, industry, and other anthropogenic sources. The level of these pollutants can be assessed by employing biomonitors, a cost-effective and less contaminating alternative than conventional methods. In the present study, we aimed to investigate whether spiders inhabiting areas around a major city like Córdoba, Argentina, adsorb and retain PAHs in their exoskeletons. Additionally, we aimed to determine if spiders' life traits influence their capacity to accumulate PAHs and explore potential relationships between PAH levels and the types of roads where they were collected. Specimens of a funnel-shaped web spider (Aglaoctenus lagotis) and an orb-weaver (Metepeira spp.) were collected from roadsides. Roads were classified into four categories based on their traffic intensity. Using high-performance liquid chromatography (HPLC), we identified 15 different PAHs. Both species exhibited varying concentrations of PAHs, although Metepeira spp. showed 15-18 times higher PAH levels compared to A. lagotis. Moreover, A. lagotis individuals living alongside highways accumulated up to six times more PAHs compared to those along other road types. These findings suggest that spiders' life traits may influence pollutant concentrations. Our study demonstrates that spiders near roads are exposed to and accumulate PAHs on their exoskeletons, likely sourced from petrogenic vehicular emissions, highlighting their value as biomonitors and emphasizing the need for mitigation measures to address air pollutants emitted from mobile sources.
Collapse
Affiliation(s)
- Argañaraz Carina Inés
- Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| | - Tavera Busso Iván
- Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC)-CONICET, Córdoba, Argentina
| | - Tinunin Daniela
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC)-CONICET, Córdoba, Argentina
| | - Gleiser Raquel Miranda
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC)-CONICET, Córdoba, Argentina
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carreras Hebe Alejandra
- Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC)-CONICET, Córdoba, Argentina
| |
Collapse
|
23
|
Jin MY, Apsunde KA, Broderick B, Peng ZR, He HD, Gallagher J. Evaluating the impact of evolving green and grey urban infrastructure on local particulate pollution around city square parks. Sci Rep 2024; 14:18528. [PMID: 39122758 PMCID: PMC11316050 DOI: 10.1038/s41598-024-68252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The relationship between green and grey urban infrastructure, local meteorological conditions, and traffic-related air pollution is complex and dynamic. This case study examined the effect of evolving morphologies around a city square park in Dublin and explores the twin impacts of local urban development (grey) and maturing parks (green) on particulate matter (PM) pollution. A fixed air quality monitoring campaign and computational fluid dynamic modelling (ENVI-met) were used to assess current (baseline) and future scenarios. The baseline results presented the distribution of PM in the study area, with bimodal (PM2.5) and unimodal (PM10) diurnal profiles. The optimal vegetation height for air quality within the park also differed by wind direction with 21 m vegetation optimal for parallel winds (10.45% reduction) and 7 m vegetation optimal for perpendicular winds (30.36% reduction). Increased building heights led to higher PM2.5 concentrations on both footpaths ranging from 25.3 to 37.0% under perpendicular winds, whilst increasing the height of leeward buildings increased PM2.5 concentrations by up to 30.9% under parallel winds. The findings from this study provide evidence of the importance of more in-depth analysis of green and grey urban infrastructure in the urban planning decision-making process to avoid deteriorating air quality conditions around city square parks.
Collapse
Affiliation(s)
- Meng-Yi Jin
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kiran A Apsunde
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Brian Broderick
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- TrinityHaus Research Centre, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zhong-Ren Peng
- iAdapt: International Center for Adaptation Planning and Design, College of Design, Construction and Planning, University of Florida, Florida, 32611-5706, USA
- Healthy Building Research Center, Ajman University, Ajman, UAE
| | - Hong-Di He
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - John Gallagher
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.
- TrinityHaus Research Centre, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
24
|
Ye Y, Tao Q, Wei H. Public health impacts of air pollution from the spatiotemporal heterogeneity perspective: 31 provinces and municipalities in China from 2013 to 2020. Front Public Health 2024; 12:1422505. [PMID: 39157526 PMCID: PMC11327077 DOI: 10.3389/fpubh.2024.1422505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Air pollution has long been a significant environmental health issue. Previous studies have employed diverse methodologies to investigate the impacts of air pollution on public health, yet few have thoroughly examined its spatiotemporal heterogeneity. Based on this, this study investigated the spatiotemporal heterogeneity of the impacts of air pollution on public health in 31 provinces in China from 2013 to 2020 based on the theoretical framework of multifactorial health decision-making and combined with the spatial durbin model and the geographically and temporally weighted regression model. The findings indicate that: (1) Air pollution and public health as measured by the incidence of respiratory diseases (IRD) in China exhibit significant spatial positive correlation and local spatial aggregation. (2) Air pollution demonstrates noteworthy spatial spillover effects. After controlling for economic development and living environment factors, including disposable income, population density, and urbanization rate, the direct and indirect spatial impacts of air pollution on IRD are measured at 3.552 and 2.848, correspondingly. (3) China's IRD is primarily influenced by various factors such as air pollution, economic development, living conditions, and healthcare, and the degree of its influence demonstrates an uneven spatiotemporal distribution trend. The findings of this study hold considerable practical significance for mitigating air pollution and safeguarding public health.
Collapse
Affiliation(s)
- Yizhong Ye
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| | - Qunshan Tao
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| | - Hua Wei
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| |
Collapse
|
25
|
Zhu C, Zheng S, Yang S, Dong J, Ma M, Zhang S, Liu S, Liu X, Yao Y, Han B. Towards a Green Equal City: Measuring and matching the supply-demand of green exposure in urban center. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121510. [PMID: 38909580 DOI: 10.1016/j.jenvman.2024.121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Exposure to green environments is crucial for human health. However, urbanization has reduced the contact of urban residents with natural environments, causing a mismatch between the supply and demand for green exposure. Research in this field is hindered by the lack of long-term, reliable data sources and methodologies, leading to insufficient consideration of temporal variations in green exposure. This study presented a comprehensive methodology for assessing green exposure at a fine scale utilizing satellite images for urban tree canopy identification. We conducted a case study in the core area of Beijing from 2010 to 2020 and examined the effects of urban renewal and alleviation efforts. The results revealed a slight decrease in green exposure for the elderly over the decade, with minimal changes in equity. In contrast, green exposure for children has increased, with increasing inequality. Moreover, urban renewal has improved green exposure for nearly half of the low-supply blocks. However, a significant mismatch was observed between supply and demand for blocks with increased demand but limited supply. This study enhances the assessment of green exposure and provides guidance for planning and constructing a "Green Equal City".
Collapse
Affiliation(s)
- Chaoyang Zhu
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China
| | - Shanwen Zheng
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China.
| | - Shengjie Yang
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China
| | - Jun Dong
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China
| | - Moheng Ma
- Cornell University College of Architecture, Art, and Planning, Cornell University, Ithaca, NY, 14853, United States
| | - Shanshan Zhang
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China
| | - Shengnan Liu
- College of Architecture and Urban Planning, Beijing University of Technology, Beijing, 100124, China
| | - Xinyu Liu
- Stuart Weitzman School of Design, University of Pennsylvania, PA 19104, United States
| | - Yifeng Yao
- Department of Urban and Rural Planning, School of Architecture and Design, Beijing Jiaotong University, Beijing, 100044, China
| | - Baolong Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100875, China
| |
Collapse
|
26
|
Michalicová R, Pecina V, Hegrová J, Brtnický M, Svoboda J, Prokeš L, Baltazár T, Ličbinský R. Seasonal variation of arsenic in PM 10 and PM x in an urban park: The influence of vegetation-related biomethylation on the distribution of its organic species and air quality. CHEMOSPHERE 2024; 362:142721. [PMID: 38945226 DOI: 10.1016/j.chemosphere.2024.142721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Arsenic (As) levels in particulate matter (PM) are routinely monitored in cities of developed countries. Despite advances in the knowledge of its inorganic species in PM in urban areas, organic species are often overlooked with no information on their behaviour in urban parks - areas with increased potential for As biomethylation. Therefore, the aim of this study was to characterize As distribution, bioaccessibility, seasonal variation and speciation (AsIII, AsV, MMA, DMA and TMAO) in PMx-PM10 of an urban park. Two sites with different distance from the road were selected for winter and summer sampling. From the PM samples, we gravimetrically determined PM10 concentrations in the air and via ICP-MS the total As content there. To assess the portion of bioaccessible As, water extractable As content was analysed. Simultaneously, the As species in PM10 water extracts were analysed via coupling of HPLC with ICP-MS method. There was no seasonal difference in PM10 concentration in the park, probably due to the increased summer PM load related to recreational activities in the park and park design. Spatial distribution of total As in PM10 and As fractional distribution in PMx suggested that As mostly didn't originate from traffic although highest As content was observed in the fine fraction (PM2.5) related to combustion processes. However, significant winter increase of As (determined by AsIII and AsV) despite the unchanged concentration of PM10 indicated a decisive influence of household heating-related combustion and possibly influence of reduced vegetation density. As present in the PM10 was mostly in bioaccessible form. Seasonal influence of As biomethylation was clearly demonstrated on the TMAO specie during the summer campaign. Except the significant summer TMAO increase, the results also indicated the biomethylation influence on DMA. Therefore, an increased risk of exposure to organic As species in urban parks can be expected during summer.
Collapse
Affiliation(s)
| | - Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Agrovyzkum Rapotin, Ltd, Výzkumníků 267, 788 13, Rapotín, Czech Republic
| | - Josef Svoboda
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno, 603 00, Czech Republic
| | - Tivadar Baltazár
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Roman Ličbinský
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| |
Collapse
|
27
|
Yatera K, Nishida C. Contemporary Concise Review 2023: Environmental and occupational lung diseases. Respirology 2024; 29:574-587. [PMID: 38826078 DOI: 10.1111/resp.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Air pollutants have various effects on human health in environmental and occupational settings. Air pollutants can be a risk factor for incidence, exacerbation/aggravation and death due to various lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), hypersensitivity pneumonitis or pneumonia (HP), pulmonary fibrosis such as pneumoconiosis and malignant respiratory diseases such as lung cancer and malignant pleural mesothelioma. Environmental and occupational respiratory diseases are crucial clinical and social issues worldwide, although the burden of respiratory disease due to environmental and occupational causes varies depending on country/region, demographic variables, geographical location, industrial structure and socioeconomic situation. The correct recognition of environmental and occupational lung diseases and taking appropriate measures are essential to their effective prevention.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
28
|
Venkatraman Jagatha J, Schneider C, Sauter T. Parsimonious Random-Forest-Based Land-Use Regression Model Using Particulate Matter Sensors in Berlin, Germany. SENSORS (BASEL, SWITZERLAND) 2024; 24:4193. [PMID: 39000970 PMCID: PMC11244214 DOI: 10.3390/s24134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Machine learning (ML) methods are widely used in particulate matter prediction modelling, especially through use of air quality sensor data. Despite their advantages, these methods' black-box nature obscures the understanding of how a prediction has been made. Major issues with these types of models include the data quality and computational intensity. In this study, we employed feature selection methods using recursive feature elimination and global sensitivity analysis for a random-forest (RF)-based land-use regression model developed for the city of Berlin, Germany. Land-use-based predictors, including local climate zones, leaf area index, daily traffic volume, population density, building types, building heights, and street types were used to create a baseline RF model. Five additional models, three using recursive feature elimination method and two using a Sobol-based global sensitivity analysis (GSA), were implemented, and their performance was compared against that of the baseline RF model. The predictors that had a large effect on the prediction as determined using both the methods are discussed. Through feature elimination, the number of predictors were reduced from 220 in the baseline model to eight in the parsimonious models without sacrificing model performance. The model metrics were compared, which showed that the parsimonious_GSA-based model performs better than does the baseline model and reduces the mean absolute error (MAE) from 8.69 µg/m3 to 3.6 µg/m3 and the root mean squared error (RMSE) from 9.86 µg/m3 to 4.23 µg/m3 when applying the trained model to reference station data. The better performance of the GSA_parsimonious model is made possible by the curtailment of the uncertainties propagated through the model via the reduction of multicollinear and redundant predictors. The parsimonious model validated against reference stations was able to predict the PM2.5 concentrations with an MAE of less than 5 µg/m3 for 10 out of 12 locations. The GSA_parsimonious performed best in all model metrics and improved the R2 from 3% in the baseline model to 17%. However, the predictions exhibited a degree of uncertainty, making it unreliable for regional scale modelling. The GSA_parsimonious model can nevertheless be adapted to local scales to highlight the land-use parameters that are indicative of PM2.5 concentrations in Berlin. Overall, population density, leaf area index, and traffic volume are the major predictors of PM2.5, while building type and local climate zones are the less significant predictors. Feature selection based on sensitivity analysis has a large impact on the model performance. Optimising models through sensitivity analysis can enhance the interpretability of the model dynamics and potentially reduce computational costs and time when modelling is performed for larger areas.
Collapse
Affiliation(s)
| | - Christoph Schneider
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Tobias Sauter
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
29
|
Jia X, Zhang B, Yu Y, Xia W, Lu Z, Guo X, Xue F. Greenness mitigate cause-specific mortality associated with air pollutants in ischemic and hemorrhagic stroke patients: An ecological health cohort study. ENVIRONMENTAL RESEARCH 2024; 251:118512. [PMID: 38458591 DOI: 10.1016/j.envres.2024.118512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Air pollution is one of the most serious environmental risks to mortality of stroke. However, there exists a noteworthy knowledge gap concerning the different stroke subtypes, causes of death, the susceptibility of stroke patient, and the role of greenness in this context. METHODS We analyzed data from an ecological health cohort, which included 334,261 patients aged ≥40 years with stroke (comprising 288,490 ischemic stroke and 45,771 hemorrhagic stroke) during the period 2013-2019. We used Cox proportional hazards models with time-varying exposure to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the associations of annual average fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) with both all-cause and cause-specific mortality. Additionally, we conducted analyses to examine the effect modification by greenness and identify potential susceptibility factors through subgroup analyses. RESULT In multivariable-adjusted models, long-term exposure to PM2.5 and NO2 was associated with increased risk of all-cause mortality (HR: 1.038, 95% CI: 1.029-1.047 for PM2.5; HR: 1.055, 95% CI: 1.026-1.085 for NO2, per 10 μg/m3, for ischemic stroke patients; similar for hemorrhagic stroke patients). Gradually increasing effect sizes were shown for CVD mortality and stroke mortality. The HRs of mortality were slightly weaker with high versus low vegetation exposure. Cumulative exposures increased the HRs of pollutant-related mortality, and greater greenness decreased this risk. Two subtypes of stroke patients exhibited diverse patterns of benefit. CONCLUSION Increasing residential greenness attenuates the increased risk of mortality with different patterns due to chronic air pollutants for ischemic and hemorrhagic stroke, offering valuable insights for precise tertiary stroke prevention strategies.
Collapse
Affiliation(s)
- Xianjie Jia
- Department of Biostatistics, School of Public Health, Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ying Yu
- Department of Physiology, Bengbu Medical College, Bengbu, China
| | - Wanning Xia
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Zilong Lu
- Department of Physiology, Bengbu Medical College, Bengbu, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
30
|
Williams LA, Haynes D, Sample JM, Lu Z, Hossaini A, McGuinn LA, Hoang TT, Lupo PJ, Scheurer ME. PM2.5, vegetation density, and childhood cancer: a case-control registry-based study from Texas 1995-2011. J Natl Cancer Inst 2024; 116:876-884. [PMID: 38366656 DOI: 10.1093/jnci/djae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Air pollution is positively associated with some childhood cancers, whereas greenness is inversely associated with some adult cancers. The interplay between air pollution and greenness in childhood cancer etiology is unclear. We estimated the association between early-life air pollution and greenness exposure and childhood cancer in Texas (1995 to 2011). METHODS We included 6101 cancer cases and 109 762 controls (aged 0 to 16 years). We linked residential birth address to census tract annual average fine particulate matter <2.5 µg/m³ (PM2.5) and Normalized Difference Vegetation Index (NDVI). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) between PM2.5/NDVI interquartile range increases and cancer. We assessed statistical interaction between PM2.5 and NDVI (likelihood ratio tests). RESULTS Increasing residential early-life PM2.5 exposure was associated with all childhood cancers (OR = 1.10, 95% CI = 1.06 to 1.15), lymphoid leukemias (OR = 1.15, 95% CI = 1.07 to 1.23), Hodgkin lymphomas (OR = 1.27, 95% CI = 1.02 to 1.58), non-Hodgkin lymphomas (OR = 1.24, 95% CI = 1.02 to 1.51), ependymoma (OR = 1.27, 95% CI = 1.01 to 1.60), and others. Increasing NDVI exposure was inversely associated with ependymoma (0- to 4-year-old OR = 0.75, 95% CI = 0.58 to 0.97) and medulloblastoma (OR = 0.75, 95% CI = 0.62 to 0.91) but positively associated with malignant melanoma (OR = 1.75, 95% CI = 1.23 to 2.47) and Langerhans cell histiocytosis (OR = 1.56, 95% CI = 1.07 to 2.28). There was evidence of statistical interaction between NDVI and PM2.5 (P < .04) for all cancers. CONCLUSION Increasing early-life exposure to PM2.5 increased the risk of childhood cancers. NDVI decreased the risk of 2 cancers yet increased the risk of others. These findings highlight the complexity between PM2.5 and NDVI in cancer etiology.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ali Hossaini
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Laura A McGuinn
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
31
|
James A, Rene ER, Bilyaminu AM, Chellam PV. Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies. CHEMOSPHERE 2024; 358:142182. [PMID: 38685321 DOI: 10.1016/j.chemosphere.2024.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Globally, air pollution is an unfortunate aftermath of rapid industrialization and urbanization. Although the best strategy is to prevent air pollution, it is not always feasible. This makes it imperative to devise and implement techniques that can clean the air continuously. Plants and microbes have a natural potential to transform or degrade pollutants. Hence, strategies that use this potential of living biomass to remediate air pollution seem to be promising. The simplest future trend can be planting suitable plant-microbe species capable of removing air pollutants like SO2, CO2, CO, NOX and particulate matter (PM) along roadsides and inside the buildings. Established wastewater treatment strategies such as microbial fuel cells (MFC) and constructed wetlands (CW) can be suitably modified to ameliorate air pollution. Green architecture involving green walls and green roofs is facile and aesthetic, providing urban ecosystem services. Certain microbe-based bioreactors such as bioscrubbers and biofilters may be useful in small confined spaces. Several generative models have been developed to assist with planning and managing green spaces in urban locales. The physiological limitations of using living organisms can be circumvent by applying biotechnology and transgenics to improve their potential. This review provides a comprehensive update on not just the plants and associated microbes for the mitigation of air pollution, but also lists the technologies that are available and/or can be modified and used for air pollution control. The article also gives a detailed analysis of this topic in the form of strengths-weaknesses-opportunities-challenges (SWOC). The strategies mentioned in this review would help to attain corporate Environmental Social and Governance (ESG) and Sustainable Development Goals (SDGs), while reducing carbon footprint in the urban scenario. The review aims to emphasise that urbanization is possible while tackling air pollution using facile, green techniques involving plants and associated microbes.
Collapse
Affiliation(s)
- Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
32
|
Babaan J, Wong PY, Chen PC, Chen HL, Lung SCC, Chen YC, Wu CD. Geospatial artificial intelligence for estimating daytime and nighttime nitrogen dioxide concentration variations in Taiwan: A spatial prediction model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121198. [PMID: 38772239 DOI: 10.1016/j.jenvman.2024.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen dioxide (NO2) is a major air pollutant primarily emitted from traffic and industrial activities, posing health risks. However, current air pollution models often underestimate exposure risks by neglecting the bimodal pattern of NO2 levels throughout the day. This study aimed to address this gap by developing ensemble mixed spatial models (EMSM) using geo-artificial intelligence (Geo-AI) to examine the spatial and temporal variations of NO2 concentrations at a high resolution of 50m. These EMSMs integrated spatial modelling methods, including kriging, land use regression, machine learning, and ensemble learning. The models utilized 26 years of observed NO2 measurements, meteorological parameters, geospatial layers, and social and season-dependent variables as representative of emission sources. Separate models were developed for daytime and nighttime periods, which achieved high reliability with adjusted R2 values of 0.92 and 0.93, respectively. The study revealed that mean NO2 concentrations were significantly higher at nighttime (9.60 ppb) compared to daytime (5.61 ppb). Additionally, winter exhibited the highest NO2 levels regardless of time period. The developed EMSMs were utilized to generate maps illustrating NO2 levels pre and during COVID restrictions in Taiwan. These findings could aid epidemiological research on exposure risks and support policy-making and environmental planning initiatives.
Collapse
Affiliation(s)
- Jennieveive Babaan
- Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan City, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei City, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei City, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei City, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei City, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Institute of Environmental Health, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Da Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Department of Geomatics, National Cheng Kung University, Tainan City, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Wu W, Chen D, Ruan X, Wu G, Deng X, Lawrence W, Lin X, Li Z, Wang Y, Lin Z, Zhu S, Deng X, Lin Q, Hao C, Du Z, Wei J, Zhang W, Hao Y. Residential greenness and chronic obstructive pulmonary disease in a large cohort in southern China: Potential causal links, risk trajectories, and mediation pathways. J Adv Res 2024:S2090-1232(24)00214-5. [PMID: 38797475 DOI: 10.1016/j.jare.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Residential greenness may influence COPD mortality, but the causal links, risk trajectories, and mediation pathways between them remain poorly understood. OBJECTIVES We aim to comprehensively identify the potential causal links, characterize the dynamic progression of hospitalization or posthospital risk, and quantify mediation effects between greenness and COPD. METHODS This study was conducted using a community-based cohort enrolling individuals aged ≥ 18 years in southern China from January 1, 2009 to December 31, 2015. Greenness was characterized by normalized difference vegetation index (NDVI) around participants' residential addresses. We applied doubly robust Cox proportional hazards model, multi-state model, and multiple mediation method, to investigate the potential causal links, risk trajectories among baseline, COPD hospitalization, first readmission due to COPD or COPD-related complications, and all-cause death, as well as the multiple mediation pathways (particulate matter [PM], temperature, body mass index [BMI] and physical activity) connecting greenness exposure to COPD mortality. RESULTS Our final analysis included 581,785 participants (52.52% female; average age: 48.36 [Standard Deviation (SD): 17.56]). Each interquartile range (IQR: 0.06) increase in NDVI was associated with a reduced COPD mortality risk, yielding a hazard ratio (HR) of 0.88 (95 % CI: 0.81, 0.96). Furthermore, we observed per IQR (0.04) increase in NDVI was inversely associated with the risk of multiple transitions (baseline - COPD hospitalization, baseline - death, and readmission - death risks), especially a declined risk of all-cause death after readmission (HR = 0.66 [95 %CI: 0.44, 0.99]). Within the observed association between greenness and COPD mortality, three mediators were identified, namely PM, temperature, and BMI (HR for the total indirect effect: 0.773 [95 % CI: 0.703, 0.851]), with PM showing the highest mediating effect. CONCLUSIONS Our findings revealed greenness may be a beneficial factor for COPD morbidity, prognosis, and mortality. This protective effect is primarily attributed to the reduction in PM concentration.
Collapse
Affiliation(s)
- Wenjing Wu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Dan Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xingling Ruan
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Wayne Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Xiao Lin
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Li
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Lin
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Shuming Zhu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xueqing Deng
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxuan Lin
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Department of Statistics, China
| | - Chun Hao
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Peking, China.
| |
Collapse
|
34
|
Byun G, Kim S, Choi Y, Kim A, Team AC, Lee JT, Bell ML. Long-term exposure to PM 2.5 and mortality in a national cohort in South Korea: effect modification by community deprivation, medical infrastructure, and greenness. BMC Public Health 2024; 24:1266. [PMID: 38720292 PMCID: PMC11080206 DOI: 10.1186/s12889-024-18752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Long-term exposure to PM2.5 has been linked to increased mortality risk. However, limited studies have examined the potential modifying effect of community-level characteristics on this association, particularly in Asian contexts. This study aimed to estimate the effects of long-term exposure to PM2.5 on mortality in South Korea and to examine whether community-level deprivation, medical infrastructure, and greenness modify these associations. METHODS We conducted a nationwide cohort study using the National Health Insurance Service-National Sample Cohort. A total of 394,701 participants aged 30 years or older in 2006 were followed until 2019. Based on modelled PM2.5 concentrations, 1 to 3-year and 5-year moving averages of PM2.5 concentrations were assigned to each participant at the district level. Time-varying Cox proportional-hazards models were used to estimate the association between PM2.5 and non-accidental, circulatory, and respiratory mortality. We further conducted stratified analysis by community-level deprivation index, medical index, and normalized difference vegetation index to represent greenness. RESULTS PM2.5 exposure, based on 5-year moving averages, was positively associated with non-accidental (Hazard ratio, HR: 1.10, 95% Confidence Interval, CI: 1.01, 1.20, per 10 µg/m3 increase) and circulatory mortality (HR: 1.22, 95% CI: 1.01, 1.47). The 1-year moving average of PM2.5 was associated with respiratory mortality (HR: 1.33, 95% CI: 1.05, 1.67). We observed higher associations between PM2.5 and mortality in communities with higher deprivation and limited medical infrastructure. Communities with higher greenness showed lower risk for circulatory mortality but higher risk for respiratory mortality in association with PM2.5. CONCLUSIONS Our study found mortality effects of long-term PM2.5 exposure and underlined the role of community-level factors in modifying these association. These findings highlight the importance of considering socio-environmental contexts in the design of air quality policies to reduce health disparities and enhance overall public health outcomes.
Collapse
Affiliation(s)
- Garam Byun
- School of the Environment, Yale University, New Haven, CT, 06511, USA
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea
| | - Sera Kim
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea
| | - Yongsoo Choi
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Ayoung Kim
- Department of Public Health Sciences, Graduate School of Public health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - AiMS-Create Team
- Ai-Machine learning Statistics Collaborative Research Ensemble for Air pollution, Temperature, and all types of Environmental exposures, Seoul National University and Pusan National University, Seoul, Republic of Korea
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea.
- School of Health Policy and Management, College of Health Sciences, Korea University, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, 06511, USA
- School of Health Policy and Management, College of Health Sciences, Korea University, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
35
|
Patwary MM, Sakhvidi MJZ, Ashraf S, Dadvand P, Browning MHEM, Alam MA, Bell ML, James P, Astell-Burt T. Impact of green space and built environment on metabolic syndrome: A systematic review with meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170977. [PMID: 38360326 DOI: 10.1016/j.scitotenv.2024.170977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Metabolic Syndrome presents a significant public health challenge associated with an increased risk of noncommunicable diseases such as cardiovascular conditions. Evidence shows that green spaces and the built environment may influence metabolic syndrome. We conducted a systematic review and meta-analysis of observational studies published through August 30, 2023, examining the association of green space and built environment with metabolic syndrome. A quality assessment of the included studies was conducted using the Office of Health Assessment and Translation (OHAT) tool. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) assessment was used to evaluate the overall quality of evidence. Our search retrieved 18 studies that met the inclusion criteria and were included in our review. Most were from China (n = 5) and the USA (n = 5), and most used a cross-sectional study design (n = 8). Nine studies (50 %) reported only green space exposures, seven (39 %) reported only built environment exposures, and two (11 %) reported both built environment and green space exposures. Studies reported diverse definitions of green space and the built environment, such as availability, accessibility, and quality, particularly around participants' homes. The outcomes focused on metabolic syndrome; however, studies applied different definitions of metabolic syndrome. Meta-analysis results showed that an increase in normalized difference vegetation index (NDVI) within a 500-m buffer was associated with a lower risk of metabolic syndrome (odds ratio [OR] = 0.90, 95%CI = 0.87-0.93, I2 = 22.3 %, n = 4). A substantial number of studies detected bias for exposure classification and residual confounding. Overall, the extant literature shows a 'limited' strength of evidence for green space protecting against metabolic syndrome and an 'inadequate' strength of evidence for the built environment associated with metabolic syndrome. Studies with more robust study designs, better controlled confounding factors, and stronger exposure measures are needed to understand better what types of green spaces and built environment features influence metabolic syndrome.
Collapse
Affiliation(s)
- Muhammad Mainuddin Patwary
- Environment and Sustainability Research Initiative, Khulna, Bangladesh; Environmental Science Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, School of Public Health, Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadia Ashraf
- Environmental Science Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Matthew H E M Browning
- Department of Parks, Recreation and Tourism Management, Clemson University, Clemson, SC, USA
| | - Md Ashraful Alam
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Michelle L Bell
- Yale School of the Environment, Yale University, New Haven, CT, United States
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Harvard University, Boston, MA, USA
| | - Thomas Astell-Burt
- School of Architecture, Design, and Planning, University of Sydney, Australia
| |
Collapse
|
36
|
Yu B, Tang W, Fan Y, Ma C, Ye T, Cai C, Xie Y, Shi Y, Baima K, Yang T, Wang Y, Jia P, Yang S. Associations between residential greenness and obesity phenotypes among adults in Southwest China. Health Place 2024; 87:103236. [PMID: 38593578 DOI: 10.1016/j.healthplace.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Although exposure to greenness has generally benefited human metabolic health, the association between greenness exposure and metabolic obesity remains poorly studied. We aimed to investigate the associations between residential greenness and obesity phenotypes and the mediation effects of air pollutants and physical activity (PA) level on the associations. METHODS We used the baseline of the China Multi-Ethnic Cohort (CMEC) study, which enrolled 87,613 adults. Obesity phenotypes were defined based on obesity and metabolic status, including metabolically unhealthy obesity (MUO), non-obesity (MUNO), metabolically healthy obesity (MHO), and non-obesity (MHNO). Greenness exposure was measured as the 3-year mean values of the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) within the 500-m buffer zones around the participants' residence. Multivariable logistic regression was used to estimate the associations between greenness and obesity phenotypes. Stratified analyses by age, sex, educational level, and urbanicity were performed to identify how the effect varies across different subgroups. Causal mediation analysis was used to examine the mediation effects of air pollutants and PA level. RESULTS Compared with MHNO, each interquartile range (IQR) increase in greenness exposure was associated with reduced risks of MHO (ORNDVI [95% CI] = 0.87 [0.81, 0.93]; OREVI = 0.91 [0.86, 0.97]), MUO (ORNDVI = 0.83 [0.78, 0.88]; OREVI = 0.86 [0.81, 0.91]), and MUNO (ORNDVI = 0.88 [0.84, 0.91]; OREVI = 0.89 [0.86, 0.92]). For each IQR increase in both NDVI and EVI, the risks of MHO, MUO, and MUNO were reduced more in men, participants over 60 years, those with a higher level of education, and those living in urban areas, compared to their counterparts. Concentrations of particulate matter (PM) and PA level partially mediated the associations between greenness exposure and obesity phenotypes. CONCLUSIONS Exposure to residential greenness was associated with decreased risks of MHO, MUO, and MUNO, which was mediated by concentrations of PM and PA level, and modified by sex, age, educational level, and urbanicity.
Collapse
Affiliation(s)
- Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yunzhe Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunlan Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tingting Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Changwei Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yiming Xie
- Jianyang Center for Disease Control and Prevention, Jianyang, China
| | - Yuanyuan Shi
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Kangzhuo Baima
- High Altitude Health Science Research Center of Tibet University, Lhasa, Tibet, China
| | - Tingting Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Mi T, Qiu Z, Li C, Li W, Gao Y, Chen Z, Xu W, Liu Z, Li Q, Jiang M, Liu H, Dai L, Zhan Y. Joint effects of green space and air pollutant exposure on preterm birth: evidence from a nationwide study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35149-35160. [PMID: 38727972 DOI: 10.1007/s11356-024-33561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
An association between green space exposure and preterm birth has been reported. However, evidence on the joint effects of air pollutant and green space exposure on preterm birth from nationwide research is limited in China. Based on a nationwide cohort, this study aims to explore the effect of green space exposure on preterm birth and analyze the joint effects of green space and air pollutant. Logistic regression models were developed to analyze the effects of green space exposure, and interaction effects were evaluated by adding interaction terms between green space and air pollutants. From 2013 to 2019, this study included 2,294,188 records of newborn births, of which 82,921 were preterm births. The results show that for buffer zones with 250 m, 500 m, 1000 m, and 1500 m, every 0.1 unit increase in NDVI exposure was associated with a decrease in the risk of preterm birth by 5.5% (95% CI: 4.6-6.4%), 5.8% (95% CI: 4.9-6.6%), 6.1% (95% CI: 5.3-7.0%), and 5.6% (95% CI: 4.7-6.5%), respectively. Under high-level exposure to air pollutants, high-level NDVI exposure was more strongly negatively correlated with preterm birth than low-level NDVI exposure. High-level green space exposure might mitigate the adverse effect of air pollutants on preterm birth by promoting physical activity, reducing stress, and adsorbing pollutants. Further investigation is needed to explore how green space and air pollution interact and affect preterm birth, in order to improve risk management and provide a reference for newborn health.
Collapse
Affiliation(s)
- Tan Mi
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunyuan Li
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanmin Liu
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobology, Sichuan University, Chengdu, 610041, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Dai
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobology, Sichuan University, Chengdu, 610041, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Zhan
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
38
|
Squillacioti G, Fasola S, Ghelli F, Colombi N, Pandolfo A, La Grutta S, Viegi G, Bono R. Different greenness exposure in Europe and respiratory outcomes in youths. A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 247:118166. [PMID: 38220079 DOI: 10.1016/j.envres.2024.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The existing evidence on the association between greenness and respiratory outcomes remains inconclusive. We aimed at systematically summarizing existing literature on greenness exposure and respiratory outcomes in European children and adolescents, with a preliminary attempt to qualify the distribution of dominant tree species across different geographical areas and bioclimatic regions. Overall, 4049 studies were firstly identified by searching PubMed/MEDLINE, EMBASE, Scopus, Web of Science, GreenFile and CAB direct, up to 29 August 2023. Eighteen primary studies were included in the systematic review and six were meta-analyzed. No overall significant association was observed between the Normalized Difference Vegetation Index, assessed within 500-m buffers (i.e. NDVI-500), and the odds of asthma for 0.3-increase in the exposure (OR: 0.97, 95% CI from 0.53 to 1.78). Similarly, an overall exposure to the NDVI-300 highest tertile, as compared to the lowest tertile, was not significantly associated with asthma (OR: 0.65, 95% CI from 0.22 to 1.91): heterogeneity among studies was significant (p = 0.021). We delineated some key elements that might have mostly contributed to the lack of scientific consensus on this topic, starting from the urgent need of harmonized approaches for the operational definition of greenness. Additionally, the complex interplay between greenness and respiratory health may vary across different geographical regions and climatic conditions. At last, the inconsistent findings may reflect the heterogeneity and complexity of this relationship, rather than a lack of scientific consensus itself. Future research should compare geographical areas with similar bioclimatic parameters and dominant or potentially present vegetation species, in order to achieve a higher inter-study comparability.
Collapse
Affiliation(s)
- Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy.
| | - Salvatore Fasola
- Institute of Translational Pharmacology (IFT), National Research Council, 90146, Palermo, Italy.
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy.
| | - Nicoletta Colombi
- Biblioteca Federata di Medicina Ferdinando Rossi, University of Turin, 10126, Turin, Italy.
| | - Alessandra Pandolfo
- Institute of Translational Pharmacology (IFT), National Research Council, 90146, Palermo, Italy.
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT), National Research Council, 90146, Palermo, Italy.
| | - Giovanni Viegi
- Institute of Clinical Physiology (IFC), National Research Council of Italy, 56126, Pisa, Italy.
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy.
| |
Collapse
|
39
|
Espinoza-Guillen JA, Alderete-Malpartida MB, Navarro-Abarca UF, Gómez-Muñoz HK. Temporal variation of the PM 2.5/PM 10 ratio and its association with meteorological factors in a South American megacity: Metropolitan Area of Lima-Callao, Peru. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:452. [PMID: 38613696 DOI: 10.1007/s10661-024-12611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The Metropolitan Area of Lima-Callao (MALC) is a South American megacity that has suffered a serious deterioration in air quality due to high levels of particulate matter (PM2.5 and PM10). Studies on the behavior of the PM2.5/PM10 ratio and its temporal variability in relation to meteorological parameters are still very limited. The objective of this study was to analyze the temporal trends of the PM2.5/PM10 ratio, its temporal variability, and its association with meteorological variables over a period of 5 years (2015-2019). For this, the Theil-Sen estimator, bivariate polar plots, and correlation analysis were used. The regions of highest mean concentrations of PM2.5 and PM10 were identified at eastern Lima (ATE station-41.2 µg/m3) and southern Lima (VMT station-126.7 µg/m3), respectively. The lowest concentrations were recorded in downtown Lima (CDM station-16.8 µg/m3 and 34.0 µg/m3, respectively). The highest average PM2.5/PM10 ratio was found at the CDM station (0.55) and the lowest at the VMT station (0.27), indicating a predominance of emissions from the vehicular fleet within central Lima and a greater emission of coarse particles by resuspension in southern Lima. The temporal progression of the ratio of PM2.5/PM10 showed positive and highly significant trends in northern and central Lima with values of 0.03 and 0.1 units of PM2.5/PM10 per year, respectively. In the southern region of Lima, the trend was also significant, showcasing a value of 0.02 units of PM2.5/PM10 per year. At the hourly and monthly level, the PM2.5/PM10 ratio presented a negative and significant correlation with wind speed and air temperature, and a positive and significant correlation with relative humidity. These findings offer insights into identifying the sources of PM pollution and are useful for implementing regulations to reduce air emissions considering both anthropogenic sources and meteorological dispersion patterns.
Collapse
Affiliation(s)
- José Abel Espinoza-Guillen
- Programa de Maestría en Ciencias Ambientales, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú.
| | | | - Ursula Fiorela Navarro-Abarca
- Departamento Académico de Ingeniería Ambiental, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú
| | - Hanns Kevin Gómez-Muñoz
- Departamento Académico de Física y Meteorología, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú
| |
Collapse
|
40
|
Tan T, Tang L, Guo X, Li T, Tian Y, Ouyang Z. Associations of residential greenness with bone mineral density and osteoporosis: the modifying effect of genetic susceptibility. Ann Rheum Dis 2024; 83:669-676. [PMID: 38443139 DOI: 10.1136/ard-2023-224941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES To investigate the associations of residential greenness with bone mineral density and incident osteoporosis, and further evaluate the potential modifying effect of genetic susceptibility. METHODS We used the Normalised Difference Vegetation Index (NDVI) at various buffer distances, including 300 m (NDVI300m), 500 m (NDVI500m), 1000 m (NDVI1000m) and 1500 m (NDVI1500m), to serve as indicators of greenness. We fitted linear regression, logistic regression and Cox proportional hazard models to assess the associations of residential greenness with estimated bone mineral density (eBMD), prevalent osteoporosis and incident osteoporosis, respectively. With the Polygenic Risk Score (PRS) for osteoporosis, we further assessed the joint effects of genetic risk and greenness on the risk of osteoporosis. We conducted causal mediation analyses to explore potential mediators. RESULTS Each IQR increase in NDVI300m was associated with 0.0007 (95% CI 0.0002 to 0.0013) increase in eBMD, 6% lower risk of prevalent osteoporosis (OR 0.94; 95% CI 0.92 to 0.97) and 5% lower risk of incident osteoporosis (HR 0.95; 95% CI 0.93 to 0.98). The joint effects of greenness and PRS on the risk of osteoporosis displayed a clear dose-response pattern. Compared with individuals exposed to low NDVI levels and high genetic risk, those exposed to high NDVI levels and low genetic risk had a 56% (95% CI 51% to 61%) lower risk of osteoporosis. The primary mediators in the association between greenness and incident osteoporosis were identified as PM2.5 and NO2. CONCLUSIONS Residential greenness was associated with higher bone mineral density and decreased risk of incident osteoporosis.
Collapse
Affiliation(s)
- Tingting Tan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Osteopathy Laboratory of Surgical,The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Osteopathy Laboratory of Surgical,The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Vashist M, Kumar TV, Singh SK. A comprehensive review of urban vegetation as a Nature-based Solution for sustainable management of particulate matter in ambient air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26480-26496. [PMID: 38570430 DOI: 10.1007/s11356-024-33089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.
Collapse
Affiliation(s)
- Mallika Vashist
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042.
| | | | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042
- Rajasthan Technical University, Kota (Rajasthan), India
| |
Collapse
|
42
|
van den Bosch M, Bartolomeu ML, Williams S, Basnou C, Hamilton I, Nieuwenhuijsen M, Pino J, Tonne C. A scoping review of human health co-benefits of forest-based climate change mitigation in Europe. ENVIRONMENT INTERNATIONAL 2024; 186:108593. [PMID: 38531235 DOI: 10.1016/j.envint.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.
Collapse
Affiliation(s)
- Matilda van den Bosch
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain; School of Population and Public Health, University of British Columbia, Vancouver, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; European Forest Institute, Biocities Facility Rome, Italy.
| | - María Lucía Bartolomeu
- Dirección Nacional de Epidemiología del Ministerio de Salud de La Nación, Buenos Aires, Argentina
| | - Sarah Williams
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Ian Hamilton
- University College London, London, United Kingdom
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Cathryn Tonne
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
43
|
Yao XI, Tong X, Shen C, Song Y, Sun S, Chen K, Shen H. Green space, genetic susceptibility, and risk of osteoporosis:a cohort study from the UK Biobank. CHEMOSPHERE 2024; 353:141632. [PMID: 38442776 DOI: 10.1016/j.chemosphere.2024.141632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the effect of residential exposure to green space on the incident osteoporosis and further explore the modification effect of genetic susceptibility. METHODS Participants from the UK Biobank were followed from 2006 to 2010 (baseline) to December 31st, 2022. Using land use coverage, we evaluated exposure to residential surrounding green space, natural environment, and domestic gardens. We used the Cox regression to examine the association between the residential environment and incident osteoporosis. The interactive effects between polygenic risk score (PRS) of osteoporosis and residential environments on incident osteoporosis were investigated. RESULTS This study included 292,662 participants. Over a median follow-up period of 13.65 years, we documented 9177 incidents of osteoporosis. Per interquartile (IQR) increase in greenness and natural environment at a 300 m buffer was associated with a 4% lower risk of incident osteoporosis [HR = 0.96 (95% CI: 0.93, 0.99)] and [HR = 0.96 (95% CI: 0.93, 0.98)], respectively. We did not identify any interactive effects between genetic risk and residential environment on incident osteoporosis. CONCLUSIONS This study found that public greenness and natural environments could reduce the risk of incident osteoporosis regardless of genetic predisposition. Developing sustainable and publicly accessible natural environments might benefit populations' bone health.
Collapse
Affiliation(s)
- Xiaoxin I Yao
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xinning Tong
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, UK
| | - Yichang Song
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| | - Keng Chen
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China.
| | - Huiyong Shen
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, PR China.
| |
Collapse
|
44
|
Shezi B, Mendoza H, Govindasamy D, Casas L, Balakrishna Y, Bantjes J, Street R. Proximity to public green spaces and depressive symptoms among South African residents: a population-based study. BMC Public Health 2024; 24:925. [PMID: 38553671 PMCID: PMC10981334 DOI: 10.1186/s12889-024-18385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Exposure to green spaces has been suggested to improve mental health and may reduce the risk of depression. However, there is generally limited evidence on the association between green spaces and depression originating from low-and middle-income countries and Africa in particular. Here, we investigate the association between proximity to public green spaces and depressive symptoms among residents of Gauteng Province, South Africa. METHODS We used data from the 2017/2018 Gauteng quality of life survey. We included all individuals aged 18 years or older residing in the nine municipalities of Gauteng Province that completed the survey (n = 24,341). Depressive symptoms were assessed using the Patient Health Questionnaire-2. Proximity to public green spaces was defined as self-reported walking time (either less or greater than 15 min) from individuals' homes to the nearest public green space. To assess the association between access to public green spaces and depressive symptoms, we used mixed-effects models, adjusted for age, sex, population group (African, Indian/Asian, Coloured (mixed race), and White), educational attainment, and municipality. We additionally performed stratified analyses by age, sex, educational attainment, and population group to evaluate whether associations differed within subgroups. Associations are expressed as prevalence ratios (PR) and their 95% confidence intervals (95% CI). RESULTS We observed a 6% (PR = 0.94, 95%CI = 0.92-0.96) prevalence reduction in depressive symptoms for individuals who reported that the nearest public green space was less than 15 min from their homes as compared to those who reported > 15 min. After stratification, this inverse association was stronger among females, individuals aged 35-59 years,those with higher levels of educational attainment, and Coloured individuals as compared to their counterparts. CONCLUSION Our findings suggest that public green spaces close to residential homes may be associated with a reduction in the occurrence of depressive symptoms among urban populations in resource-constrained settings like South Africa.
Collapse
Affiliation(s)
- Busisiwe Shezi
- Environment and Health Research Unit, South African Medical Research Council, 491 Peter Mokaba Ridge, Morningside, 4091, Durban, South Africa.
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Corner Siemert and Beit Street, Doornfontein, 2028, Johannesburg, South Africa.
| | - Hilbert Mendoza
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Campus Drie Eiken, Doornstraat 331, BE-2610, Wilrijk, Belgium
| | - Darshini Govindasamy
- Health Systems Research Unit, South African Medical Research Council, Francie van Zijl Drive, Parow Valley, 7501, Cape Town, South Africa
| | - Lidia Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Campus Drie Eiken, Doornstraat 331, BE-2610, Wilrijk, Belgium
| | - Yusentha Balakrishna
- Biostatistics Research Unit, South African Medical Research Council, 491 Peter Mokaba Ridge, Morningside, 4091, Durban, South Africa
| | - Jason Bantjes
- Mental Health, Alcohol, Substance Use and Tobacco Research Unit, South African Medical Research Council, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa, 7501
- Department of Psychiatry and Mental Health, University of Cape town, Groote Schuur Drive, Observatory, 7925, Cape Town, South Africa
| | - Renée Street
- Environment and Health Research Unit, South African Medical Research Council, Francie van Zijl Drive, Parow Valley, 7501, Cape Town, South Africa
| |
Collapse
|
45
|
Kayyal-Tarabeia I, Michael Y, Lensky IM, Levy I, Blank M, Agay-Shay K. Residential greenness and lower breast and prostate cancer incidence: Evidence from a retrospective cohort study of 977,644 participants from Israel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170631. [PMID: 38309370 DOI: 10.1016/j.scitotenv.2024.170631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND There is limited evidence on the associations between residential greenness and cancer incidence in longitudinal studies. OBJECTIVES The aim of the study was to evaluate the associations between weighted mean residential greenness exposure and cancer incidence. METHODS This is a registry based retrospective cohort study of 977,644 participants. The residential greenness exposure was estimated for every participant, as the weighted mean residential greenness exposure. This was based on the mean Normalized Difference Vegetation Index (NDVI) in the residential small geographic area and the duration of the residence in this area. Cancer incidence cases included consecutive newly diagnosed cases of primary cancer. Analyses were conducted for all cancer sites, lung cancer, bladder cancer, breast cancer, prostate cancer and melanoma-skin cancer. Cox regression models were used to evaluate the crude and adjusted associations (hazards ratios (HR) and its 95 % confidence intervals (CIs)) between tertiles of residential greenness and cancer incidence. Further adjusted models to nitrogen oxides (NOx) were estimated. RESULTS After adjustment to covariates, exposure to the highest tertile of residential greenness, compared to the lowest, were associated with lower risk for all cancer sites (HR = 0.88, 95 % CI: 0.86-0.90), breast cancer (HR = 0.85, 95 % CI: 0.80-0.89) and prostate cancer (HR = 0.85, 95 % CI: 0.79-0.91). In addition, lower risk were observed for the middle tertile of exposure and all cancer sites (HR = 0.88, 95 % CI: 0.86-0.90), breast cancer (HR = 0.88, 95 % CI: 0.84-0.92) and prostate cancer (HR = 0.83, 95 % CI: 0.79-0.89). There was no evidence for mediation by air pollution (NOx). DISCUSSION Residential greenness demonstrated beneficial associations with lower risk for all cancers, breast and prostate cancers. If our observations will be replicated, it may present a useful avenue for public-health intervention to reduce cancer burden through the provision of greenness exposure.
Collapse
Affiliation(s)
- Inass Kayyal-Tarabeia
- The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| | - Yaron Michael
- The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel; Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Itamar M Lensky
- Department of Geography and Environment, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ilan Levy
- Air Quality and Climate Change Division, Israel Ministry of Environmental Protection, Jerusalem 34033, Israel.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar Ilan University, Israel.
| | - Keren Agay-Shay
- The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
46
|
Naik NC, Holzhausen EA, Chalifour BN, Coffman MM, Lurmann F, Goran MI, Bode L, Alderete TL. Air pollution exposure may impact the composition of human milk oligosaccharides. Sci Rep 2024; 14:6730. [PMID: 38509153 PMCID: PMC10954706 DOI: 10.1038/s41598-024-57158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.
Collapse
Affiliation(s)
- Noopur C Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University College of Medicine, Cleveland, OH, USA
| | | | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Maria M Coffman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Lars Bode
- Department of Pediatrics, Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
47
|
Lamichhane DK, Ha E, Hong YC, Lee DW, Park MS, Song S, Kim S, Kim WJ, Bae J, Kim HC. Ambient particulate matter and surrounding greenness in relation to sleep quality among pregnant women: A nationwide cohort study. Heliyon 2024; 10:e26742. [PMID: 38434397 PMCID: PMC10904245 DOI: 10.1016/j.heliyon.2024.e26742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Background Particulate air pollution and residential greenness are associated with sleep quality in the general population; however, their influence on maternal sleep quality during pregnancy has not been assessed. Objective This cross-sectional study investigated the individual and interactive effects of exposure to particulate matter (PM) air pollution and residential greenness on sleep quality in pregnant women. Methods Pregnant women (n = 4933) enrolled in the Korean Children's Environmental Health Study with sleep quality information and residential address were included. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). The average concentrations of PM (PM2.5 and PM10) during pregnancy were estimated through land use regression, and residential greenness in a 1000 m buffer area around participants' residences was estimated using the Normalized Difference Vegetation Index (NDVI1000-m). Modified Poisson regression models were used to estimate the associations between PM and NDVI and poor sleep quality (PSQI >5) after controlling for a range of covariates. A four-way mediation analysis was conducted to examine the mediating effects of PM. Results After adjusting for confounders, each 10 μg/m3 increase in PM2.5 and PM10 exposure was associated with a higher risk of poor sleep quality (relative risk [RR]: 1.06; 95% confidence interval [CI]: 1.01, 1.11; and RR: 1.09; 95% CI: 1.06, 1.13, respectively), and each 0.1-unit increase in NDVI1000-m was associated with a lower risk of poor sleep quality (RR: 0.97; 95% CI: 0.95, 0.99). Mediation analysis showed that PM mediated approximately 37%-56% of the association between residential greenness and poor sleep quality. Conclusions This study identified a positive association between residential greenness and sleep quality. Furthermore, these associations are mediated by a reduction in exposure to particulate air pollution and highlight the link between green areas, air pollution control, and human health.
Collapse
Affiliation(s)
- Dirga Kumar Lamichhane
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Myung-Sook Park
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sanghwan Song
- Environmental Health Research Division, Department of Environmental Health Research, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Suejin Kim
- Environmental Health Research Division, Department of Environmental Health Research, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jisuk Bae
- Department of Preventive Medicine, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ko-CHENS Study Group
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Occupational and Environmental Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Environmental Health Research Division, Department of Environmental Health Research, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea
- Department of Preventive Medicine, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
48
|
Luque-García L, Muxika-Legorburu J, Mendia-Berasategui O, Lertxundi A, García-Baquero G, Ibarluzea J. Green and blue space exposure and non-communicable disease related hospitalizations: A systematic review. ENVIRONMENTAL RESEARCH 2024; 245:118059. [PMID: 38157973 DOI: 10.1016/j.envres.2023.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global increase in non-communicable diseases (NCDs) presents a critical public health concern. Emerging evidence suggests that exposure to natural environments may reduce the risk of developing NCDs through multiple pathways. The present systematic review aims to synthesize and evaluate the observational evidence regarding associations between exposure to green and blue spaces and hospital admissions related to NCDs. A comprehensive literature search strategy was conducted in Embase (Ovid), PubMed, and Web of Science. The risk of bias and quality of the evidence were assessed using The Navigation Guide methodology, an approach specifically designed for environmental health research. Of 3060 search results, 17 articles were included. Notably, the majority of the studies (n = 14; 82.4%) were published from 2020 onwards. Most studies were conducted in the United States (n = 6; 35.3%) and China (n = 4; 23.5%). Exposure to green spaces was assessed through all studies, while only three included blue spaces. In terms of study design, cohort design was employed in nearly half of the studies (n = 8; 47.1%), followed by case-crossover design (n = 3, 17.6%). Over 75% of the included studies (n = 13) had a high or probably high rating in the risk of bias assessment. The studies encompassed diverse NCD outcome domains; cardiovascular diseases (CVDs) (n = 10), respiratory diseases (RSDs) (n = 2), heat-related diseases (n = 1), metabolic diseases (n = 2), cancer (n = 1), neurodegenerative diseases (NDDs) (n = 2), and mental health disorders (n = 2). The present review suggests that a clear link between blue space exposure and NCD hospital admissions is not evident. However, exposure to green spaces appears to predominantly have a protective effect, although the direction of the association varies across different outcome domains. The heterogeneity among the outcome domains together with the limited number of studies, emphasizes the need for more robust evidence.
Collapse
Affiliation(s)
- L Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain.
| | - J Muxika-Legorburu
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - O Mendia-Berasategui
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - A Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - G García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto S/n, 37007, Salamanca, Spain
| | - J Ibarluzea
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain
| |
Collapse
|
49
|
Duan X, Zhao W, Yang B, Lao L, Mei Y, Wu C, Liao Y, Wang Y, Feng Z, Chen W, Ge E, Deng H, Liu X. Association of residential greenness with obstructive sleep apnea among Chinese old adults and the mediation role of PM 2.5 and leisure-time physical activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170120. [PMID: 38232829 DOI: 10.1016/j.scitotenv.2024.170120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Few studies have investigated the association of residential greenness with obstructive sleep apnea (OSA). This study was to comprehensively examine the association of residential greenness exposure with OSA and explore the mediating effect of leisure-time physical activity (LTPA) and PM2.5 on the association among Chinese old adults. A prospective cohort study that enrolled 2027 adults aged ≥65 was conducted between 1st July 2015 and 30th September 2019 in Southern China. OSA was ascertained by Berlin Questionnaire. Greenness exposure was measured by contemporaneous and cumulative average normalized difference vegetation index (NDVI) in the 1000 m radius around each participant's residential address. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were calculated by Cox proportional hazards model to assess the impact of greenness exposure on the incidence of OSA after adjusting for confounders. LTPA and PM2.5 were examined as potential mediators in the aforementioned models. A total of 293, nearly 14.5 %, participants developed OSA within 59,251 person-months of follow-up. When comparing the highest with lowest tertiles, both contemporaneous NDVI (>0.351 vs. ≤0.325: HR = 0.20, 95 % CI = 0.13-0.31) and cumulative NDVI (> 0.346 vs. ≤ 0.317: HR = 0.32, 95 % CI = 0.21-0.47) were associated with a reduced risk of OSA after adjusting for confounders. LTPA and PM2.5 significantly mediated the association between greenness and OSA. In conclusion, this study indicated that exposure to higher residential greenness could decrease OSA risk, and this benefit may be achieved by promoting physical activity and decreasing PM2.5 concentration. The findings suggest to formulate targeted interventional strategies by expanding residential greenness to prevent OSA and reduce disease burden.
Collapse
Affiliation(s)
- Xueru Duan
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Boyi Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lixian Lao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yunting Mei
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuchu Wu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifu Liao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yongqi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zuyi Feng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Erjia Ge
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
| | - Hai Deng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China.
| | - Xudong Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
50
|
Şahin Körmeçli P, Seçkin Gündoğan G. Assessment of vegetation change using NDVI, LST, and carbon analyses in Çankırı Karatekin University, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:331. [PMID: 38429472 DOI: 10.1007/s10661-024-12465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Due to a rising population and urbanization, the green areas have been decreasing in cities, with a negative impact on air pollution, human health, and ecosystem. As part of the urban environment, university campuses contribute to urban ecosystem with their vegetation. This study aims to (1) assess the change of vegetative land cover of the Çankırı Karatekin University in Turkey and (2) evaluate its benefits to the ecosystem in terms of carbon sequestration, storage, and improvement of air quality by means of a simulation. In the study, the density and vegetation change were assessed with NDVI and LST analyses in ArcGIS; carbon emissions and air pollution benefits were estimated in i-Tree Canopy tool. The study showed that the healthy vegetation consisting of trees/shrubs and grass/herbaceous, which was 32.2% (28 ha) in 2000, increased to 85% (74 ha) in 2020 NDVI maps, and the surface temperature also increased between 2000 and 2020 in LST maps.The rise in vegetation as grass/herbaceous areas instead of trees/shrubs and the use of impervious buildings/roads on the land surface increased the land surface temperature. As a result of the analyses in the i-Tree-Canopy tool, it was estimated that the trees/shrubs and grass/herbaceous vegetation canopy covering 31.42% of the study area removed a total of 512,845.65 g of pollutant gas and particles from the air, 20.79 tonnes of carbon sequestered annually, and 522.01 tonnes of carbon stored by vegetative land cover. In the simulation, where 32.62% soil/bare ground areas were converted to trees/shrubs in order to improve vegetation cover in the area, it was determined that it contributed 5 times more to the ecosystem service value for removing pollutants from the air, carbon storage, and improving the ecosystem. It was revealed that the vegetative land cover formed by tree/shrub species should be increased in the campus in the future. The study method model serves as a tool for planning and designing eco-friendly urban environment.
Collapse
Affiliation(s)
- Pelin Şahin Körmeçli
- Faculty of Forestry, Department of Landscape Architecture, Çankırı Karatekin University, Çankırı, Turkey.
| | - Gamze Seçkin Gündoğan
- Çerkeş Vocational School of Higher Education, Department of Architecture and Urban Planning, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|