1
|
Lim K, Rutherford EN, Delpiano L, He P, Lin W, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Predeus A, Teichmann SA, Marioni JC, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. EMBO J 2025:10.1038/s44318-024-00328-6. [PMID: 39815007 DOI: 10.1038/s44318-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo. Here, we describe the development of mature, expandable AT2 organoids derived from human fetal lungs which are phenotypically stable, can differentiate into AT1-like cells, and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Department of Life Sciences, Korea University, 145 Anam-Ro, Seoungbuk-Gu, Seoul, 02841, South Korea
| | | | - Livia Delpiano
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Weimin Lin
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston, MA, 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Genentech, South San Francisco, CA, USA
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina,, 715 Sumter St., Columbia, SC, 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK.
| |
Collapse
|
2
|
Zhao Z, Zeng F, Nie Y, Lu G, Xu H, En H, Gu S, Chan WY, Cao N, Wang J. Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells. Stem Cell Reports 2025; 20:102382. [PMID: 39729989 DOI: 10.1016/j.stemcr.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Zhiju Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - He Xu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - He En
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
3
|
McCall AS, Gutor S, Tanjore H, Burman A, Sherrill T, Chapman M, Calvi CL, Han D, Camarata J, Hunt RP, Nichols D, Banovich NE, Lawson WE, Gokey JJ, Kropski JA, Blackwell TS. Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17:eadk8623. [PMID: 39772774 DOI: 10.1126/scitranslmed.adk8623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells. Using mouse genetic lineage-tracing strategies together with scRNA-seq, we found that these disease-emergent aberrant epithelial cells predominantly arose from airway-derived (Scgb1a1-CreER-traced) progenitors and exhibited transcriptional programs of Hif2a activation. In mice treated with repetitive intratracheal bleomycin, deletion of Epas1 (Hif2a) but not Hif1a, from airway-derived progenitors, or administration of the small-molecule HIF2 inhibitor PT-2385, using both prevention and rescue approaches, attenuated experimental lung fibrosis, reduced the appearance of aberrant epithelial cells, and promoted alveolar repair. In mouse alveolar organoids, genetic or pharmacologic inhibition of Hif2 promoted alveolar differentiation of airway-derived epithelial progenitors. In addition, treatment of human distal lung organoids with PT-2385 increased colony-forming efficiency, enhanced protein and transcriptional markers of alveolar type 2 epithelial cell maturation, and prevented the emergence of aberrant epithelial cells. Together, these studies showed that HIF2 activation drives the emergence of aberrant epithelial populations after repetitive injury and that targeted HIF2 inhibition may represent an effective therapeutic strategy to promote functional alveolar repair in IPF and other interstitial lung diseases.
Collapse
Affiliation(s)
- A Scott McCall
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergey Gutor
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hari Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ankita Burman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- University Health Network, Toronto Lung Transplant Program, Toronto, Ontario M5G 2N2, Canada
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Micah Chapman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jane Camarata
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raphael P Hunt
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - William E Lawson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ciucci G, Braga L, Zacchigna S. Discovery platforms for RNA therapeutics. Br J Pharmacol 2025; 182:281-295. [PMID: 38760893 DOI: 10.1111/bph.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Fucarino A, Pitruzzella A, Burgio S, Intili G, Manna OM, Modica MD, Poma S, Benfante A, Tomasello A, Scichilone N, Bucchieri F. A novel approach to investigate severe asthma and COPD: the 3d ex vivo respiratory mucosa model. J Asthma 2025; 62:110-123. [PMID: 39096201 DOI: 10.1080/02770903.2024.2388781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Purpose: This article illustrates the replication of asthma and COPD conditions in a laboratory setting and the potential applications of this methodology. Introduction: Biologic drugs have been shown to enhance the treatment of severe asthma and COPD. Monoclonal antibodies against specific targets have dramatically changed the management of these conditions. Although the inflammatory pathways of asthma and COPD have already been clearly outlined, alternative mechanisms of action remain mostly unexplored. They could provide additional insights into these diseases and their clinical management. Aims: In vivo or in vitro models have thus been developed to test alternative hypotheses. This study describes sophisticated ex vivo models that mimic the response of human respiratory mucosa to disease triggers, aiming to narrow the gap between laboratory studies and clinical practice. Results: These models successfully replicate crucial aspects of these diseases, such as inflammatory cell presence, cytokine production, and changes in tissue structure, offering a dynamic platform for investigating disease processes and evaluating potential treatments, such as monoclonal antibodies. The proposed models have the potential to enhance personalized medicine approaches and patient-specific treatments, helping to advance the understanding and management of respiratory diseases.
Collapse
Affiliation(s)
- Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Giorgia Intili
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Michele Domenico Modica
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
- Department of Otorhinolaryngology, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Salvatore Poma
- Department of Otorhinolaryngology, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Alida Benfante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Alessandra Tomasello
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Eiken MK, Childs CJ, Brastrom LK, Frum T, Plaster EM, Ahmed DW, Spencer RC, Shachaf O, Pfeiffer S, Levine JE, Alysandratos KD, Kotton DN, Spence JR, Loebel C. Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels. Stem Cell Reports 2024:102376. [PMID: 39672155 DOI: 10.1016/j.stemcr.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse sarcoma-derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in synthetic hydrogels, which supports their growth. Thus, the synthetic hydrogels described here allow us to de-couple exogenous and nascent ECM to interrogate the role of ECM in organoid formation.
Collapse
Affiliation(s)
- Madeline K Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charlie J Childs
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lindy K Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eleanor M Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Donia W Ahmed
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ryan C Spencer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Suzanne Pfeiffer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Justin E Levine
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R Spence
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Sun H, Li Q, Xu T, Zhang W, Sun J, Liu H. Generation of SFTPC-mCherry knock-in reporter human embryonic stem cell line, WAe001-A-2H, using CRISPR/Cas9-based gene targeting. Stem Cell Res 2024; 81:103597. [PMID: 39476617 DOI: 10.1016/j.scr.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 10/19/2024] [Indexed: 12/15/2024] Open
Abstract
The SFTPC gene is responsible for the production of the pulmonary surfactant protein C (SPC), a highly hydrophobic molecule that plays a crucial role in maintaining lung integrity through its influence on the synthesis of alveolar surfactant proteins. In this study, we harnessed the CRISPR/Cas9 system for precise genome editing to create a modified H1 human embryonic stem cell (hESC) line, incorporating the SFTPC-mCherry reporter construct. Therefore, the engineered SFTPC-mCherry knock-in (KI) hESC line can serve as an effective tool for tracking the expression patterns of the SFTPC gene as alveolar type 2 cells differentiate from hESCs.
Collapse
Affiliation(s)
- Hui Sun
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Qian Li
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Wei Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China; Bioland Laboratory, Guangzhou 510005, China.
| | - Jiaqi Sun
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China; Bioland Laboratory, Guangzhou 510005, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China; Bioland Laboratory, Guangzhou 510005, China.
| |
Collapse
|
8
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
9
|
Yao Y, Ritzmann F, Miethe S, Kattler-Lackes K, Colakoglu B, Herr C, Kamyschnikow A, Brand M, Garn H, Yildiz D, Langer F, Bals R, Beisswenger C. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med 2024; 30:227. [PMID: 39578767 PMCID: PMC11585087 DOI: 10.1186/s10020-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | | | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421, Homburg, Germany
| | - Frank Langer
- Department of Thoracic- and Cardiovascular Surgery, Saarland University Hospital, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
10
|
Cheng T, Mao M, Liu Y, Xie L, Shi F, Liu H, Li X. The potential therapeutic effect of human umbilical cord mesenchymal stem cell-derived exosomes in bronchopulmonary dysplasia. Life Sci 2024; 357:123047. [PMID: 39260518 DOI: 10.1016/j.lfs.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, with its incidence rising due to improved survival rates of these infants. BPD results from a combination of prenatal and postnatal factors, such as mechanical ventilation, oxygen toxicity, and infections, all of which significantly impact the prognosis and growth of affected infants. Current treatment options for BPD are largely supportive and do not address the underlying pathology. Exosomes are cell-derived bilayer-enclosed membrane structures enclosing proteins, lipids, RNAs, growth factors, cytokines and metabolites. They have become recognized as crucial regulators of intercellular communication in various physiological and pathological processes. Previous studies have revealed the therapeutic potential of human umbilical cord mesenchymal stem cells-derived exosomes (HUCMSCs-Exos) in promoting tissue repair and regeneration. Therefore, HUCMSCs-Exos maybe a promising and effective therapeutic modality for BPD. In this review, we firstly provide a comprehensive overview of BPD, including its etiology and the mechanisms of lung injury. Then we detail the isolation, characterization, and contents of HUCMSCs-Exos, and discuss their potential mechanisms of HUCMSCs-Exos in BPD treatment. Additionally, we summarize current clinical trials and discuss the challenges in translating these findings from bench to bedside. This review aims to lay the groundwork for future clinical applications of HUCMSCs-Exos in treating BPD.
Collapse
Affiliation(s)
- Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Joe YA, Lee MJ, Choi HS. Experimental Mouse Models and Human Lung Organoid Models for Studying Chronic Obstructive Pulmonary Disease. Biomol Ther (Seoul) 2024; 32:685-696. [PMID: 39410708 PMCID: PMC11535291 DOI: 10.4062/biomolther.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality throughout the world, is a highly complicated disease that includes chronic airway inflammation, airway remodeling, emphysema, and mucus hypersecretion. For respiratory function, an intact lung structure is required for efficient air flow through conducting airways and gas exchange in alveoli. Structural changes in small airways and inflammation are major features of COPD. At present, mechanisms involved in the genesis and development of COPD are poorly understood. Currently, there are no effective treatments for COPD. To develop better treatment strategies, it is necessary to study mechanisms of COPD using proper experimental models that can recapitulate distinctive features of human COPD. Therefore, this review will discuss representative established mouse models to investigate inflammatory processes and basic mechanisms of COPD. In addition, human COPD-mimicking human lung organoid models are introduced to help researchers overcome limits of mouse COPD models.
Collapse
Affiliation(s)
- Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hong Seok Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Sariyar S, Sountoulidis A, Hansen JN, Marco Salas S, Mardamshina M, Martinez Casals A, Ballllosera Navarro F, Andrusivova Z, Li X, Czarnewski P, Lundeberg J, Linnarsson S, Nilsson M, Sundström E, Samakovlis C, Lundberg E, Ayoglu B. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat Commun 2024; 15:9381. [PMID: 39477961 PMCID: PMC11525936 DOI: 10.1038/s41467-024-53752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.
Collapse
Affiliation(s)
- Sanem Sariyar
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Niklas Hansen
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariya Mardamshina
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frederic Ballllosera Navarro
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Emma Lundberg
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Burcu Ayoglu
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
13
|
Luo Y, Liang H. Developmental-status-aware transcriptional decomposition establishes a cell state panorama of human cancers. Genome Med 2024; 16:124. [PMID: 39468667 PMCID: PMC11514945 DOI: 10.1186/s13073-024-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cancer cells evolve under unique functional adaptations that unlock transcriptional programs embedded in adult stem and progenitor-like cells for progression, metastasis, and therapeutic resistance. However, it remains challenging to quantify the stemness-aware cell state of a tumor based on its gene expression profile. METHODS We develop a developmental-status-aware transcriptional decomposition strategy using single-cell RNA-sequencing-derived tissue-specific fetal and adult cell signatures as anchors. We apply our method to various biological contexts, including developing human organs, adult human tissues, experimentally induced differentiation cultures, and bulk human tumors, to benchmark its performance and to reveal novel biology of entangled developmental signaling in oncogenic processes. RESULTS Our strategy successfully captures complex dynamics in developmental tissue bulks, reveals remarkable cellular heterogeneity in adult tissues, and resolves the ambiguity of cell identities in in vitro transformations. Applying it to large patient cohorts of bulk RNA-seq, we identify clinically relevant cell-of-origin patterns and observe that decomposed fetal cell signals significantly increase in tumors versus normal tissues and metastases versus primary tumors. Across cancer types, the inferred fetal-state strength outperforms published stemness indices in predicting patient survival and confers substantially improved predictive power for therapeutic responses. CONCLUSIONS Our study not only provides a general approach to quantifying developmental-status-aware cell states of bulk samples but also constructs an information-rich, biologically interpretable, cell-state panorama of human cancers, enabling diverse translational applications.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Jung H, Kim DH, Díaz RE, White JM, Rucknagel S, Mosby L, Wang Y, Reddy S, Winkler ES, Hassan AO, Ying B, Diamond MS, Locksley RM, Fraser JS, Van Dyken SJ. An ILC2-chitinase circuit restores lung homeostasis after epithelial injury. Sci Immunol 2024; 9:eadl2986. [PMID: 39423283 DOI: 10.1126/sciimmunol.adl2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/15/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Environmental exposures increase the risk for severe lung disease, but specific drivers of persistent epithelial injury and immune dysfunction remain unclear. Here, we identify a feedback circuit triggered by chitin, a common component of airborne particles, that affects lung health after epithelial injury. In mice, epithelial damage disrupts lung chitinase activity, leading to environmental chitin accumulation, impaired epithelial renewal, and group 2 innate lymphoid cell (ILC2) activation. ILC2s, in turn, restore homeostasis by inducing acidic mammalian chitinase (AMCase) in regenerating epithelial cells and promoting chitin degradation, epithelial differentiation, and inflammatory resolution. Mice lacking AMCase or ILC2s fail to clear chitin and exhibit increased mortality and impaired epithelial regeneration after injury. These effects are ameliorated by chitinase replacement therapy, demonstrating that chitin degradation is crucial for recovery after various forms of lung perturbation. Thus, the ILC2-chitinase response circuit may serve as a target for alleviating persistent postinjury lung epithelial and immune dysfunction.
Collapse
Affiliation(s)
- Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - J Michael White
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine, St. Louis, MO, USA
| | - Summer Rucknagel
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauryn Mosby
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanjana Reddy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S Winkler
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard M Locksley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Steven J Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Li T, Mitani Y, Cruz-Acuña R, Karaksheva TA, Sahu V, Martin C, Nakagawa H, Gabre J. EPHA2 Regulates SOX2 during Esophageal Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617209. [PMID: 39416037 PMCID: PMC11482797 DOI: 10.1101/2024.10.08.617209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The human esophagus, derived from the anterior foregut endoderm, requires proper dorsal-ventral patterning for development. The transcription factor SOX2, crucial in this process, when dysregulated, leads to congenital esophageal abnormalities. EPHA2, a receptor tyrosine kinase, is vital in various developmental processes and cancer models, where it activates SOX2. This study demonstrates that EPHA2 regulates SOX2 expression during esophageal development using human iPSCs and iPSC-derived human esophageal organoids (HEO). Inhibition of EPHA2 decreased iPSC-derived HEO formation and SOX2 expression. These findings provide evidence of EPHA2 as being a key regulator of SOX2 signaling in early esophageal development. Highlights SOX2 is crucial for proper esophageal development.EPHA2 is a receptor tyrosine kinase involved in various developmental processes.EPHA2 activates SOX2.Inhibition of EPHA2 decreased SOX2 expression and human esophageal organoid formation.
Collapse
|
16
|
Serna Villa V, Ren X. Lung Progenitor and Stem Cell Transplantation as a Potential Regenerative Therapy for Lung Diseases. Transplantation 2024; 108:e282-e291. [PMID: 38416452 DOI: 10.1097/tp.0000000000004959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Chronic lung diseases are debilitating illnesses ranking among the top causes of death globally. Currently, clinically available therapeutic options capable of curing chronic lung diseases are limited to lung transplantation, which is hindered by donor organ shortage. This highlights the urgent need for alternative strategies to repair damaged lung tissues. Stem cell transplantation has emerged as a promising avenue for regenerative treatment of the lung, which involves delivery of healthy lung epithelial progenitor cells that subsequently engraft in the injured tissue and further differentiate to reconstitute the functional respiratory epithelium. These transplanted progenitor cells possess the remarkable ability to self-renew, thereby offering the potential for sustained long-term treatment effects. Notably, the transplantation of basal cells, the airway stem cells, holds the promise for rehabilitating airway injuries resulting from environmental factors or genetic conditions such as cystic fibrosis. Similarly, for diseases affecting the alveoli, alveolar type II cells have garnered interest as a viable alveolar stem cell source for restoring the lung parenchyma from genetic or environmentally induced dysfunctions. Expanding upon these advancements, the use of induced pluripotent stem cells to derive lung progenitor cells for transplantation offers advantages such as scalability and patient specificity. In this review, we comprehensively explore the progress made in lung stem cell transplantation, providing insights into the current state of the field and its future prospects.
Collapse
Affiliation(s)
- Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | | |
Collapse
|
17
|
Lai S, Guo Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal stem cells as a promising treatment option. Stem Cell Res Ther 2024; 15:312. [PMID: 39300523 DOI: 10.1186/s13287-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is an inflammatory disease characterized by the progressive and irreversible structural and functional damage of lung tissue. Although COPD is a significant global disease burden, the available treatments only ameliorate the symptoms, but cannot reverse lung damage. Researchers in regenerative medicine have examined the use of stem cell transplantation for treatment of COPD and other diseases because these cells have the potential for unlimited self-renewal and the ability to undergo directed differentiation. Stem cells are typically classified as embryonic stem cells, induced pluripotent stem cells, and adult stem cells (which includes mesenchymal stem cells [MSCs]), each with its own advantages and disadvantages regarding applications in regenerative medicine. Although the heterogeneity and susceptibility to senescence of MSCs make them require careful consideration for clinical applications. However, the low tumourigenicity and minimal ethical concerns of MSCs make them appear to be excellent candidates. This review summarizes the characteristics of various stem cell types and describes their therapeutic potential in the treatment of COPD, with a particular emphasis on MSCs. We aim to facilitate subsequent in-depth research and preclinical applications of MSCs by providing a comprehensive overview.
Collapse
Affiliation(s)
- Sumei Lai
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Zhifeng Guo
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
18
|
Goltsis O, Bilodeau C, Wang J, Luo D, Asgari M, Bozec L, Pettersson A, Leibel SL, Post M. Influence of mesenchymal and biophysical components on distal lung organoid differentiation. Stem Cell Res Ther 2024; 15:273. [PMID: 39218985 PMCID: PMC11367854 DOI: 10.1186/s13287-024-03890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Chronic lung disease of prematurity, called bronchopulmonary dysplasia (BPD), lacks effective therapies, stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD, but current protocols do not accurately replicate the distal niche environment of the native lung. Herein, we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation. METHODS Human PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry, immunofluorescence, and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6), E-cadherin (CDH1), NK2 Homeobox 1 (NKX2-1), HT2-280, surfactant proteins B (SFTPB) and C (SFTPC). RESULTS We observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally, we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids, mimicking in situ fetal respiratory movements, increased AEC2 differentiation without affecting proximal epithelial differentiation. CONCLUSION Our data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.
Collapse
Affiliation(s)
- Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jinxia Wang
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Daochun Luo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Meisam Asgari
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Laurent Bozec
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ante Pettersson
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sandra L Leibel
- Department of Pediatrics, Rady Children's Hospital, San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Wambach JA, Vece TJ. Clinical and research innovations in childhood interstitial lung disease (chILD). Pediatr Pulmonol 2024; 59:2233-2235. [PMID: 38651871 PMCID: PMC11324416 DOI: 10.1002/ppul.27025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, Saint Louis, Missouri, USA
| | - Timothy J Vece
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| |
Collapse
|
21
|
Bolsinger MM, Drobny A, Wilfling S, Reischl S, Krach F, Moritz R, Balta D, Hehr U, Sock E, Bleibaum F, Hanses F, Winner B, Huarcaya SP, Arnold P, Zunke F. SARS-CoV-2 Spike Protein Induces Time-Dependent CTSL Upregulation in HeLa Cells and Alveolarspheres. J Cell Biochem 2024; 125:e30627. [PMID: 38971996 DOI: 10.1002/jcb.30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Autophagy and lysosomal pathways are involved in the cell entry of SARS-CoV-2 virus. To infect the host cell, the spike protein of SARS-CoV-2 binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). To allow the fusion of the viral envelope with the host cell membrane, the spike protein has to be cleaved. One possible mechanism is the endocytosis of the SARS-CoV-2-ACE2 complex and subsequent cleavage of the spike protein, mainly by the lysosomal protease cathepsin L. However, detailed molecular and dynamic insights into the role of cathepsin L in viral cell entry remain elusive. To address this, HeLa cells and iPSC-derived alveolarspheres were treated with recombinant SARS-CoV-2 spike protein, and the changes in mRNA and protein levels of cathepsins L, B, and D were monitored. Additionally, we studied the effect of cathepsin L deficiency on spike protein internalization and investigated the influence of the spike protein on cathepsin L promoters in vitro. Furthermore, we analyzed variants in the genes coding for cathepsin L, B, D, and ACE2 possibly associated with disease progression using data from Regeneron's COVID Results Browser and our own cohort of 173 patients with COVID-19, exhibiting a variant of ACE2 showing significant association with COVID-19 disease progression. Our in vitro studies revealed a significant increase in cathepsin L mRNA and protein levels following exposure to the SARS-CoV-2 spike protein in HeLa cells, accompanied by elevated mRNA levels of cathepsin B and D in alveolarspheres. Moreover, an increase in cathepsin L promoter activity was detected in vitro upon spike protein treatment. Notably, the knockout of cathepsin L resulted in reduced internalization of the spike protein. The study highlights the importance of cathepsin L and lysosomal proteases in the SARS-CoV-2 spike protein internalization and suggests the potential of lysosomal proteases as possible therapeutic targets against COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Magdalena M Bolsinger
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Stephanie Reischl
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raul Moritz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susy Prieto Huarcaya
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Man Y, Zhai Y, Jiang A, Bai H, Gulati A, Plebani R, Mannix RJ, Merry GE, Goyal G, Belgur C, Hall SRR, Ingber DE. Exacerbation of influenza virus induced lung injury by alveolar macrophages and its suppression by pyroptosis blockade in a human lung alveolus chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607799. [PMID: 39211234 PMCID: PMC11361059 DOI: 10.1101/2024.08.13.607799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1β, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
Collapse
|
24
|
Ajaykumar CB, Rajkumar S, Suresh B, Birappa G, Gowda DAA, Jayachandran A, Kim KS, Hong SH, Ramakrishna S. Advances in applications of the CRISPR/Cas9 system for respiratory diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:127-147. [PMID: 39824578 DOI: 10.1016/bs.pmbts.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Genetic and environmental factors can have an impact on lung and respiratory disorders which are associated with severe symptoms and have high mortality rates. Many respiratory diseases are significantly influenced by genetic or epigenetic factors. Gene therapy offers a powerful approach providing therapeutic treatment for lung diseases. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) are promising gene modifying tool that can edit the genome. The utilization of CRISPR/Cas9 systems in the investigation of respiratory disorders has resulted in advancements such as the rectification of deleterious mutations in patient-derived cells and the alteration of genes in multiple mammalian lung disease models. New avenues of treatment for lung disorders have been opened up by advances in CRISPR/Cas9 research. In this chapter, we discuss the known genes and mutations that cause several common respiratory disorders such as COPD, asthma, IPF, and ARDS. We further review the current research using CRISPR/Cas9 in numerous respiratory disorders and possible therapeutic treatments.
Collapse
Affiliation(s)
- C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| | | | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
25
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KMO, Commisso C, Smith DM, Sun X, Carlin AF, Sidman RL, Croker BA, Snyder EY. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A 2024; 121:e2408109121. [PMID: 39028694 PMCID: PMC11287264 DOI: 10.1073/pnas.2408109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/21/2024] Open
Abstract
The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.
Collapse
Affiliation(s)
- Sandra L. Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
| | - Rachael N. McVicar
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Alex E. Clark
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Asuka Alvarado
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Bethany A. Grimmig
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Ruslan Nuryyev
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Randee E. Young
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Weiqi Peng
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Yanfang P. Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Eric Griffis
- Nikon Imaging Center, University of California San Diego, La Jolla, CA92093
| | - Cameron J. Nowell
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC3052, Australia
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Suzie Alarcon
- La Jolla Institute for Immunology, La Jolla, CA92037
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA92093
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Cheska M. Galapate
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Koen M. O. Galenkamp
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Cosimo Commisso
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Aaron F. Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Ben A. Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| |
Collapse
|
26
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
27
|
Goh KJ, Lu H, Tan EK, Lee ZY, Wong A, Tran T, Dunn NR, Roy S. Differentiation of CD166-positive hPSC-derived lung progenitors into airway epithelial cells. Biol Open 2024; 13:bio061729. [PMID: 39387302 PMCID: PMC11554259 DOI: 10.1242/bio.061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Collapse
Affiliation(s)
- Kim Jee Goh
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zhao Yong Lee
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Amanda Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - N. Ray Dunn
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
28
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
29
|
Chien Y, Huang XY, Yarmishyn AA, Chien CS, Liu YH, Hsiao YJ, Lin YY, Lai WY, Huang SC, Lee MS, Chiou SH, Yang YP, Chiou GY. Paracrinal regulation of neutrophil functions by coronaviral infection in iPSC-derived alveolar type II epithelial cells. Virus Res 2024; 345:199391. [PMID: 38754785 PMCID: PMC11127603 DOI: 10.1016/j.virusres.2024.199391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xuan-Yang Huang
- Institute of Anatomy, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Chian-Shiu Chien
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ssu-Cheng Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
30
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
31
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
33
|
Patel MN, Tiwari S, Wang Y, O'Neill S, Wu J, Omo-Lamai S, Espy C, Chase LS, Majumdar A, Hoffman E, Shah A, Sárközy A, Katzen J, Pardi N, Brenner JS. Enabling non-viral DNA delivery using lipid nanoparticles co-loaded with endogenous anti-inflammatory lipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598533. [PMID: 38915627 PMCID: PMC11195186 DOI: 10.1101/2024.06.11.598533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Lipid nanoparticles (LNPs) have transformed genetic medicine, recently shown by their use in COVID-19 mRNA vaccines. While loading LNPs with mRNA has many uses, loading DNA would provide additional advantages such as long-term expression and availability of promoter sequences. However, here we show that plasmid DNA (pDNA) delivery via LNPs (pDNA-LNPs) induces acute inflammation in naïve mice which we find is primarily driven by the cGAS-STING pathway. Inspired by DNA viruses that inhibit this pathway for replication, we co-loaded endogenous lipids that inhibit STING into pDNA-LNPs. Specifically, loading nitro-oleic acid (NOA) into pDNA-LNPs (NOA-pDNA-LNPs) ameliorates serious inflammatory responses in vivo enabling prolonged transgene expression (at least 1 month). Additionally, we demonstrate the ability to iteratively optimize NOA-pDNA-LNPs' expression by performing a small LNP formulation screen, driving up expression 50-fold in vitro. Thus, NOA-pDNA-LNPs, and pDNA-LNPs co-loaded with other bioactive molecules, will provide a major new tool in the genetic medicine toolbox, leveraging the power of DNA's long-term and promoter-controlled expression.
Collapse
Affiliation(s)
- Manthan N Patel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Sachchidanand Tiwari
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yufei Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Sarah O'Neill
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jichuan Wu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Serena Omo-Lamai
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolann Espy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Liam S Chase
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Aparajeeta Majumdar
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Evan Hoffman
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Anit Shah
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - András Sárközy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
34
|
Eltanameli B, Piñeiro-Llanes J, Cristofoletti R. Recent advances in cell-based in vitro models for predicting drug permeability across brain, intestinal, and pulmonary barriers. Expert Opin Drug Metab Toxicol 2024; 20:439-458. [PMID: 38850058 DOI: 10.1080/17425255.2024.2366390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.
Collapse
Affiliation(s)
- Bassma Eltanameli
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Janny Piñeiro-Llanes
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
35
|
Gagnon KA, Huang J, Hix OT, Hui VW, Hinds A, Bullitt E, Eyckmans J, Kotton DN, Chen CS. Multicompartment duct platform to study epithelial-endothelial crosstalk associated with lung adenocarcinoma. APL Bioeng 2024; 8:026126. [PMID: 38911024 PMCID: PMC11191334 DOI: 10.1063/5.0207228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | - Veronica W. Hui
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
36
|
Yu Y, Chen Z, Zheng B, Huang M, Li J, Li G. Molecular distinctions of bronchoalveolar and alveolar organoids under differentiation conditions. Physiol Rep 2024; 12:e16057. [PMID: 38825580 PMCID: PMC11144550 DOI: 10.14814/phy2.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.
Collapse
Affiliation(s)
- Yan Yu
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Bin Zheng
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Min Huang
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Junlang Li
- Guangzhou No.3 High SchoolGuangzhouChina
| | - Gang Li
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
37
|
Lim K, Lee MO, Choi J, Kim JH, Kim EM, Woo CG, Chung C, Cho YH, Hong SH, Cho YJ, Ahn SJ. Guidelines for Manufacturing and Application of Organoids: Lung. Int J Stem Cells 2024; 17:147-157. [PMID: 38777828 PMCID: PMC11170115 DOI: 10.15283/ijsc24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.
Collapse
Affiliation(s)
- Kyungtae Lim
- Organoid Standards Initiative
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Mi-Ok Lee
- Organoid Standards Initiative
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jinwook Choi
- Organoid Standards Initiative
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jung-Hyun Kim
- Organoid Standards Initiative
- Collage of Pharmacy, Ajou University, Suwon, Korea
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon, Korea
| | - Eun-Mi Kim
- Organoid Standards Initiative
- Department of Bio and Environmental Technology, Seoul Women’s University, Seoul, Korea
| | - Chang Gyu Woo
- Organoid Standards Initiative
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Chaeuk Chung
- Organoid Standards Initiative
- Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yong-Hee Cho
- Organoid Standards Initiative
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
- Department of Medical Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Seok-Ho Hong
- Organoid Standards Initiative
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Young-Jae Cho
- Organoid Standards Initiative
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
38
|
Li J, de Melo Jorge DM, Wang W, Sun S, Frum T, Hang YA, Liu Y, Zhou X, Xiao J, Wang X, Spence JR, Wobus CE, Zhu HJ. Differential Bioactivation Profiles of Different GS-441524 Prodrugs in Cell and Mouse Models: ProTide Prodrugs with High Cell Permeability and Susceptibility to Cathepsin A Are More Efficient in Delivering Antiviral Active Metabolites to the Lung. J Med Chem 2024; 67:7470-7486. [PMID: 38690769 PMCID: PMC11246197 DOI: 10.1021/acs.jmedchem.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Daniel Macedo de Melo Jorge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Weiwen Wang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Shuxin Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Yu-An Hang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Yueting Liu
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University College of Pharmacy, Rootstown, Ohio 44272, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan 48109, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
39
|
Burgess CL, Huang J, Bawa PS, Alysandratos KD, Minakin K, Ayers LJ, Morley MP, Babu A, Villacorta-Martin C, Yampolskaya M, Hinds A, Thapa BR, Wang F, Matschulat A, Mehta P, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 2024; 31:657-675.e8. [PMID: 38642558 PMCID: PMC11147407 DOI: 10.1016/j.stem.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lauren J Ayers
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline Matschulat
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
40
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Tang W, Huang J, Pegoraro AF, Zhang JH, Tang Y, Bi D, Kotton DN, Guo M. Nuclear size-regulated emergence of topological packing order on growing human lung alveolospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589951. [PMID: 38659777 PMCID: PMC11042317 DOI: 10.1101/2024.04.17.589951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various structures, setting the clock to control developmental processes and trigger maturation. These arrangements can be regulated by tissue topology, biochemical cues, as well as mechanical perturbations. However, the fundamental rules of how local cell packing order is regulated in forming three-dimensional (3D) multicellular architectures remain unclear. Furthermore, how cellular coordination evolves during developmental processes, and whether this cell patterning behavior is indicative of more complex biological functions, is largely unknown. Here, using human lung alveolospheres as a model system, by combining experiments and numerical simulations, we find that, surprisingly, cell packing behavior on alveolospheres resembles hard-disk packing but with increased randomness; the stiffer cell nuclei act as the hard disks surrounded by deformable cell bodies. Interestingly, we observe the emergence of topological packing order during alveolosphere growth, as a result of increasing nucleus-to-cell size ratio. Specifically, we find more hexagon-concentrated cellular packing with increasing bond orientational order, indicating a topological gas-to-liquid transition. Additionally, by osmotically changing the compactness of cells on alveolospheres, we observe that the variations in packing order align with the change of nucleus-to-cell size ratio. Together, our findings reveal the underlying rules of cell coordination and topological phases during human lung alveolosphere growth. These static packing characteristics are consistent with cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as organ development and cellular maturation.
Collapse
|
42
|
Masui A, Hashimoto R, Matsumura Y, Yamamoto T, Nagao M, Noda T, Takayama K, Gotoh S. Micro-patterned culture of iPSC-derived alveolar and airway cells distinguishes SARS-CoV-2 variants. Stem Cell Reports 2024; 19:545-561. [PMID: 38552631 PMCID: PMC11096626 DOI: 10.1016/j.stemcr.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
The emergence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants necessitated a rapid evaluation system for their pathogenesis. Lung epithelial cells are their entry points; however, in addition to their limited source, the culture of human alveolar epithelial cells is especially complicated. Induced pluripotent stem cells (iPSCs) are an alternative source of human primary stem cells. Here, we report a model for distinguishing SARS-CoV-2 variants at high resolution, using separately induced iPSC-derived alveolar and airway cells in micro-patterned culture plates. The position-specific signals induced the apical-out alveolar type 2 and multiciliated airway cells at the periphery and center of the colonies, respectively. The infection studies in each lineage enabled profiling of the pathogenesis of SARS-CoV-2 variants: infection efficiency, tropism to alveolar and airway lineages, and their responses. These results indicate that this culture system is suitable for predicting the pathogenesis of emergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Atsushi Masui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
43
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
44
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Eiken MK, Childs CJ, Brastrom LK, Frum T, Plaster EM, Shachaf O, Pfeiffer S, Levine JE, Alysandratos KD, Kotton DN, Spence JR, Loebel C. Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585720. [PMID: 38562781 PMCID: PMC10983987 DOI: 10.1101/2024.03.19.585720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human induced pluripotent stem cell (iPSC) derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse-sarcoma derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in the synthetic hydrogels. Thus, the synthetic gels described here allow us to de-couple exogenous and nascent ECM in order to interrogate the role of ECM in organoid formation.
Collapse
Affiliation(s)
- Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eleanor M. Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Suzanne Pfeiffer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Justin E. Levine
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Spence
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
47
|
Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, Sun KY, Panariello F, Michielin F, Davidson JR, Russo FM, Jones BC, Lee DDH, Savvidis S, Xenakis T, Simcock IC, Straatman-Iwanowska AA, Hirst RA, David AL, O'Callaghan C, Olivo A, Eaton S, Loukogeorgakis SP, Cacchiarelli D, Deprest J, Li VSW, Giobbe GG, De Coppi P. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat Med 2024; 30:875-887. [PMID: 38438734 PMCID: PMC10957479 DOI: 10.1038/s41591-024-02807-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Giuseppe Calà
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Max Arran Beesley
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Beatrice Sina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Politecnico di Milano, Milan, Italy
| | - Lucinda Tullie
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Kylin Yunyan Sun
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Panariello
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joseph R Davidson
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Francesca Maria Russo
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Brendan C Jones
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dani Do Hyang Lee
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Theodoros Xenakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ian C Simcock
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | | | - Robert A Hirst
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | | | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stavros P Loukogeorgakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium.
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Medical and Surgical Department of the Fetus, Newborn and Infant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
48
|
Kumar S, Granados J, Aceves M, Peralta J, Leandro AC, Thomas J, Williams-Blangero S, Curran JE, Blangero J. Pre-Infection Innate Immunity Attenuates SARS-CoV-2 Infection and Viral Load in iPSC-Derived Alveolar Epithelial Type 2 Cells. Cells 2024; 13:369. [PMID: 38474333 PMCID: PMC10931100 DOI: 10.3390/cells13050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Thomas
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| |
Collapse
|
49
|
Montesi SB, Gomez CR, Beers M, Brown R, Chattopadhyay I, Flaherty KR, Garcia CK, Gomperts B, Hariri LP, Hogaboam CM, Jenkins RG, Kaminski N, Kim GHJ, Königshoff M, Kolb M, Kotton DN, Kropski JA, Lasky J, Magin CM, Maher TM, McCormick M, Moore BB, Nickerson-Nutter C, Oldham J, Podolanczuk AJ, Raghu G, Rosas I, Rowe SM, Schmidt WT, Schwartz D, Shore JE, Spino C, Craig JM, Martinez FJ. Pulmonary Fibrosis Stakeholder Summit: A Joint NHLBI, Three Lakes Foundation, and Pulmonary Fibrosis Foundation Workshop Report. Am J Respir Crit Care Med 2024; 209:362-373. [PMID: 38113442 PMCID: PMC10878386 DOI: 10.1164/rccm.202307-1154ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Beers
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Brown
- Program in Neurotherapeutics, University of Massachusetts Chan Medical School, Worchester, Massachusetts
| | | | | | - Christine Kim Garcia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Grace Hyun J. Kim
- Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, and
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Melanie Königshoff
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin Kolb
- Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph Lasky
- Pulmonary Fibrosis Foundation, Chicago, Illinois
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Chelsea M. Magin
- Department of Bioengineering
- Department of Pediatrics
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Toby M. Maher
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| | - Ganesh Raghu
- Division of Pulmonary, Sleep and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Ivan Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Steven M. Rowe
- Department of Medicine and
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - David Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - J. Matthew Craig
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| |
Collapse
|
50
|
Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, Kechele DO, Sundaram N, Pastrana-Gomez V, Kishimoto K, Yang MC, Jiang C, Tchieu J, Whitsett JA, McCracken KW, Rottier RJ, Kotton DN, Helmrath MA, Wells JM, Takebe T, Zorn AM, Chen YW, Guo M, Gu M. Deciphering Endothelial and Mesenchymal Organ Specification in Vascularized Lung and Intestinal Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.577460. [PMID: 38370768 PMCID: PMC10871227 DOI: 10.1101/2024.02.06.577460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.
Collapse
|