1
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
2
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
3
|
Jirau-Colón H, Jiménez-Vélez BD. PM 2.5 Extracts Induce INFγ-Independent Activation of CIITA, MHCII, and Increases Inflammation in Human Bronchial Epithelium. TOXICS 2024; 12:292. [PMID: 38668515 PMCID: PMC11054084 DOI: 10.3390/toxics12040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| | - Braulio D. Jiménez-Vélez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| |
Collapse
|
4
|
Giammona A, Remedia S, Porro D, Lo Dico A, Bertoli G. The biological interplay between air pollutants and miRNAs regulation in cancer. Front Cell Dev Biol 2024; 12:1343385. [PMID: 38434617 PMCID: PMC10905188 DOI: 10.3389/fcell.2024.1343385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Air pollution, especially fine particulate matter (PM2.5, with an aerodynamic diameter of less than 2.5 μm), represents a risk factor for human health. Many studies, regarding cancer onset and progression, correlated with the short and/or long exposition to PM2.5. This is mainly mediated by the ability of PM2.5 to reach the pulmonary alveoli by penetrating into the blood circulation. This review recapitulates the methodologies used to study PM2.5 in cellular models and the downstream effects on the main molecular pathways implicated in cancer. We report a set of data from the literature, that describe the involvement of miRNAs or long noncoding RNAs on the main biological processes involved in oxidative stress, inflammation, autophagy (PI3K), cell proliferation (NFkB, STAT3), and EMT (Notch, AKT, Wnt/β-catenin) pathways. microRNAs, as well as gene expression profile, responds to air pollution environment modulating some key genes involved in epigenetic modification or in key mediators of the biological processes described below. In this review, we provide some scientific evidences about the thigh correlation between miRNAs dysregulation, PM2.5 exposition, and gene pathways involved in cancer progression.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Sofia Remedia
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Segrate, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
5
|
Are In Vitro Cytotoxicity Assessments of Environmental Samples Useful for Characterizing the Risk of Exposure to Multiple Contaminants at the Workplace? A Systematic Review. TOXICS 2022; 10:toxics10020072. [PMID: 35202258 PMCID: PMC8879481 DOI: 10.3390/toxics10020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
In some occupational environments risk characterization is challenging or impossible to achieve due to the presence of multiple pollutants and contaminants. Thus, in vitro testing using the most relevant cell lines will provide information concerning health effects due to the co-exposure to multiple stressors. The aim of this review article is to identify studies where the cytotoxicity assessment was performed in environmental samples, as well as to describe the main outputs and challenges regarding risk characterization and management. This study is based on a study of the available information/data on cytotoxicity assessment performed on environmental samples following the PRISMA methodology. Different cell lines were used depending on the environment assessed and exposure routes implicated. The A549 alveolar epithelial cell line was applied in four studies for occupational exposure in the waste sorting industry and for outdoor environments; lymphocytes were used in two studies for occupational and outdoor environments; swine kidney cells were used in three studies performed in the waste industry and hepatocellular/Hep G2 in one study in the waste industry. Cytotoxicity assessments in environmental samples should have a more prominent role due to their contribution for identifying and better understanding the associations between co-exposure to environmental contaminants and adverse human health effects as a prioritization for risk management.
Collapse
|
6
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Zou Y, Li S, Li X, Sun Y, Ma M, Tian H, Wang N, Yuan J, Xiao C. Isosinensetin alleviates the injury of human bronchial epithelial cells induced by PM 2.5. Exp Ther Med 2021; 22:1435. [PMID: 34707716 DOI: 10.3892/etm.2021.10870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/25/2021] [Indexed: 01/07/2023] Open
Abstract
Flavonoids which are extracted from citrus peel and pulp have been reported to have multiple beneficial effects on human health. Isosinensetin (ISO) is a type of flavonoid compound, which has several protective effects including anticancer, antioxidant, antiviral, anti-inflammatory and bacteriostatic. However, the molecular mechanism of its antioxidant and anti-inflammatory effects remain unclear. The present study aimed to investigate the intervention effect and possible mechanism of ISO on human bronchial epithelial cells injured by fine particular matter ≤2.5 µm in diameter (PM2.5). In the present study, the cell viability was detected by Cell Counting Kit-8 method. The levels of pro-inflammatory cytokines were analyzed by ELISA. The level of reactive oxygen species (ROS) was detected by fluorescence probe. The expression levels of proliferating cell nuclear antigen (PCNA), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor кΒ (NF-кB) proteins were detected by western blotting. The results revealed that ISO evidently increased the viability of 16-HBE cells and sharply decreased the levels of pro-inflammatory factors in cell culture supernatant. ISO significantly inhibited ROS release caused by PM2.5. Moreover, the expression levels of PCNA, Nrf2 and NF-кB proteins were downregulated after ISO incubation. These results indicated that ISO alleviated 16-HBE-cell injury by PM2.5 through the ROS-Nrf2/NF-кB signaling pathway.
Collapse
Affiliation(s)
- Yang Zou
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Xinming Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Ye Sun
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Mingyue Ma
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Han Tian
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Jianhui Yuan
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
8
|
Juarez Facio AT, Yon J, Corbière C, Rogez-Florent T, Castilla C, Lavanant H, Mignot M, Devouge-Boyer C, Logie C, Chevalier L, Vaugeois JM, Monteil C. Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 2021; 78:105258. [PMID: 34653646 DOI: 10.1016/j.tiv.2021.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 μm or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell® technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.
Collapse
Affiliation(s)
| | - J Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | - C Corbière
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | | | - C Castilla
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - H Lavanant
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - M Mignot
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Devouge-Boyer
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Logie
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - L Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - J-M Vaugeois
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - C Monteil
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France.
| |
Collapse
|
9
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wei H, Yuan W, Yu H, Geng H. Cytotoxicity induced by fine particulate matter (PM 2.5) via mitochondria-mediated apoptosis pathway in rat alveolar macrophages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25819-25829. [PMID: 33474668 PMCID: PMC7817249 DOI: 10.1007/s11356-021-12431-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
Although positive associations exist between ambient particulate matter (PM2.5; diameter ≤ 2.5 μm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM2.5 at concentrations of 33, 100, or 300 μg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca2+) markedly increased in higher PM2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM2.5 exposure. Cumulative findings showed that PM2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM2.5 plays a significant role in lung injury diseases.
Collapse
Affiliation(s)
- Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Wanjun Yuan
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Huan Yu
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Hong Geng
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
11
|
Kumar P, Kalaiarasan G, Porter AE, Pinna A, Kłosowski MM, Demokritou P, Chung KF, Pain C, Arvind DK, Arcucci R, Adcock IM, Dilliway C. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143553. [PMID: 33239200 DOI: 10.1016/j.scitotenv.2020.143553] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, ≤2.5 μm (PM2.5; fine particles) and ≤0.1 μm (PM0.1; ultrafine particles), show the highest bioactivity but acquiring sufficient mass for in vitro and in vivo toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM2.5 and PM0.1 were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection concludes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Alexandra E Porter
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michał M Kłosowski
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, USA
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Christopher Pain
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - D K Arvind
- Centre for Speckled Computing, School of Informatics, University of Edinburgh, Edinburgh, Scotland EH8 9AB, United Kingdom
| | - Rossella Arcucci
- Data Science Institute, Department of Computing, Imperial College London, London SW7 2BU, United Kingdom
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Claire Dilliway
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Niu X, Wang Y, Ho SSH, Chuang HC, Sun J, Qu L, Wang G, Ho KF. Characterization of organic aerosols in PM 1 and their cytotoxicity in an urban roadside area in Hong Kong. CHEMOSPHERE 2021; 263:128239. [PMID: 33297186 DOI: 10.1016/j.chemosphere.2020.128239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Organic compounds in fine particles play major roles in cardiopulmonary diseases. A study was conducted to determine the characteristics and cytotoxicity of organic aerosols (OA) in an urban roadside area in Hong Kong. Chemical components in nonrefractory submicron aerosol (NR-PM1) were observed using a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), and the chemical profile of organic compounds in NR-PM1 was examined with filter-based approach. Associations between cytotoxicity and organic sources and compositions were evaluated. NR-PM1 contributed to 84% of the PM1 concentrations. The NR-PM1 was composed of organics (55 ± 15%), followed by sulfate (21 ± 9%), ammonium (13 ± 6%), nitrate (10 ± 6%) and chloride (1 ± 1%). Three major organic sources were identified using positive matrix factorization, namely primary organic aerosol (POA, 40 ± 19%), more-oxidized oxygenated OA (MO-OOA, 32 ± 22%) and less-oxidized oxygenated OA (LO-OOA, 28 ± 19%). Variations in organic groups, including alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), oxy-PAHs (OPAHs), and fatty acids, demonstrated that traffic and cooking emissions were dominant pollution sources in this roadside station. Human lung alveolar epithelial (A549) cells were exposed to PM1, revealing increases in lactate dehydrogenase (LDH), reactive oxygen species (ROS), and interlukin-6 (IL-6), which indicated the occurrence of inflammatory and oxidative responses. POA was significantly associated with ROS and IL-6, and alkanes, hopanes, steranes, PAHs and OPAHs, and fatty acids presented medium to high correlations with LDH and IL-6, demonstrating the importance of primary emissions and organic compounds in cytotoxicity. This study demonstrated that organic compounds emitted from traffic and cooking play critical roles in PM-induced oxidative stress and inflammation in urban areas.
Collapse
Affiliation(s)
- Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yichen Wang
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
14
|
Figliuzzi M, Tironi M, Longaretti L, Mancini A, Teoldi F, Sangalli F, Remuzzi A. Copper-dependent biological effects of particulate matter produced by brake systems on lung alveolar cells. Arch Toxicol 2020; 94:2965-2979. [PMID: 32577786 DOI: 10.1007/s00204-020-02812-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Road traffic is one of the main sources of particulate emissions into the environment and has an increasing, negative impact on the release of potentially dangerous materials. Vehicle brakes release a significant amount of wear particles, and knowledge regarding their possible adverse effects is limited. One of the most dangerous elements contained in brake pads is copper (Cu), known to be toxic for human health. Therefore, our aim was to study the cell toxicity of particulate matter (PM) produced by different combinations of braking discs and pads containing different amounts of Cu. We investigated whether brake-derived microparticles have toxic effects on lung cells proportionally to their Cu content. Analyte content was measured in friction materials by XRFS and in PM2.5 captured during braking tests using SEM/EDX. The biological impact of brake-derived PM2.5 was investigated on a human epithelial alveolar cell line (A549). Cell viability, oxidative stress, mitochondrial membrane potential, apoptosis, and the pro-inflammatory response of the cells, as well as gene expression, were assessed following exposure to increasing PM2.5 concentrations (1, 10, 100, 200, and 500 µg/ml). The brake debris with the lowest Cu content did not induce significant changes in biological effects on A549 cells compared to normal controls, except for ROS production and IL6 gene expression. PM2.5 containing higher Cu quantities induced cell toxicity that correlated with Cu concentration. Our data suggest that the toxicity of PM2.5 from the brake system is mainly related to Cu content, thus confirming that eliminating Cu from brake pads will be beneficial for human health in urbanized environments.
Collapse
Affiliation(s)
- Marina Figliuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy.
| | - Matteo Tironi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy
| | - Lorena Longaretti
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo, Italy
| | - Alessandro Mancini
- Laboratorio Materiali Advanced R&D Brembo S.P.A, Viale Europa, 2, Stezzano, BG, Italy
| | - Federico Teoldi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, Milan, Italy
| | - Fabio Sangalli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5, Dalmine, BG, Italy
| |
Collapse
|
15
|
Yang JW, Shen YC, Lin KC, Cheng SJ, Chen SL, Chen CY, Kumar PV, Lin SF, Lu HE, Chen GY. Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter. Front Bioeng Biotechnol 2020; 8:519. [PMID: 32548105 PMCID: PMC7272695 DOI: 10.3389/fbioe.2020.00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Recent developments in epidemiology have confirmed that airborne particulates are directly associated with respiratory pathology and mortality. Although clinical studies have yielded evidence of the effects of many types of fine particulates on human health, it still does not have a complete understanding of how physiological reactions are caused nor to the changes and damages associated with cellular and molecular mechanisms. Currently, most health assessment studies of particulate matter (PM) are conducted through cell culture or animal experiments. The results of such experiments often do not correlate with clinical findings or actual human reactions, and they also cause difficulty when investigating the causes of air pollution and associated human health hazards, the analysis of biomarkers, and the development of future pollution control strategies. Microfluidic-based cell culture technology has considerable potential to expand the capabilities of conventional cell culture by providing high-precision measurement, considerably increasing the potential for the parallelization of cellular assays, ensuring inexpensive automation, and improving the response of the overall cell culture in a more physiologically relevant context. This review paper focuses on integrating the important respiratory health problems caused by air pollution today, as well as the development and application of biomimetic organ-on-a-chip technology. This more precise experimental model is expected to accelerate studies elucidating the effect of PM on the human body and to reveal new opportunities for breakthroughs in disease research and drug development.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chih Shen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ko-Chih Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shiue-Luen Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chong-You Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Huai-En Lu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
16
|
de Paula Ribeiro J, Kalb AC, de Bastos Maya S, Gioda A, Martinez PE, Monserrat JM, Jiménez-Vélez BD, Gioda CR. The impact of polar fraction of the fine particulate matter on redox responses in different rat tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32476-32487. [PMID: 31617135 DOI: 10.1007/s11356-019-06452-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) contains different chemical substances that have been associated with health effects and an increased risk of mortality due to their toxicity. In this study, fine particulate matter (PM2.5) samples were collected in a region with rural characteristics (Seropédica (Se)) and another with some industries (Duque de Caxias (DC)) (Brazil, RJ). Rats were exposed to PM2.5 extracts daily for 25 days at different dilutions: 10×, 5×, and a concentrated solution (CS). Biochemical analyses were investigated for total antioxidant capacity (ACAP), lipid peroxidation (LPO) levels, reduced glutathione (GSH) concentration, activity of glutamate cysteine ligase (GCL), and activity of glutathione S-transferase (GST). The liver showed a significant increase in GCL (DC-5×, DC-CS and Se-CS) and GST activities (DC-CS and Se-CS) in both regions when compared to the control group. In the renal cortex, GCL activity decreased in most of the tested groups while GST activity increased only in the 5× groups of both regions (DC and Se). In the renal medulla, GCL activity decreased for Se-10× and DC-CS but increased for Se-5×, and GST activity increased in the Se-10×, DC-5×, and DC-CS groups. Lung GCL increased in all groups for both regions. Moreover, this organ also showed an increase in GST activity when higher metal concentrations were present (5× and CS). TBARS levels were increased for all tissues in most tested concentrations. These data indicate that soluble compounds (e.g., metals) from PM2.5 sampled in areas with different pollution indexes can change the redox status and cause damage to different tissues.
Collapse
Affiliation(s)
- Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Ana Cristina Kalb
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Sabrina de Bastos Maya
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marques de São Vicente 225, Gávea, Rio de Janeiro, RJ, 22451-900, Brazil.
| | - Pablo Elias Martinez
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Braulio D Jiménez-Vélez
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
17
|
Hassan L, Pecht T, Goldstein N, Haim Y, Kloog I, Yarza S, Sarov B, Novack V. The effects of ambient particulate matter on human adipose tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:564-576. [PMID: 31242808 DOI: 10.1080/15287394.2019.1634381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of particulate matter (PM) air pollution on adipose tissue have mainly been studied in animal models. The aim of this study was to examine the potential associations between PM exposure and 25 cellular markers in human omental (OM) and subcutaneous (SC) adipose tissue. The PM exposure assessments for both PM2.5 (PM <2.5 μm in diameter) and PM10 (<10 μm) were based upon a novel hybrid satellite-based spatio-temporally resolved model. We calculated the PM exposure above the background threshold for 1 week (acute phase), 3 and 6 months (intermediate phase), and 1 year (chronic phase) prior to tissue harvesting and tested the associations with adipose cell metabolic effects using multiple linear regressions and heat maps strategy. Chemokine levels were found to increase after acute and intermediate exposure duration to PM10. The levels of stress signaling biomarkers in the SC and OM tissues rose after acute exposure to PM10 and PM2.5. Macrophage and leucocyte counts were associated with severity of PM exposure in all three duration groups. Adipocyte diameter decreased in all exposure periods. Our results provide evidence for significant contribution of air pollutants exposure to adipose tissue inflammation as well as for pathophysiological mechanisms of metabolic dysregulation that may be involved in the observed responses.
Collapse
Affiliation(s)
- Lior Hassan
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Tal Pecht
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Nir Goldstein
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Yulia Haim
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Itai Kloog
- c Department of Geography and Environmental Development, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Shaked Yarza
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Batia Sarov
- d Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Novack
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
18
|
Zheng L, Dong H, Zhao W, Zhang X, Duan X, Zhang H, Liu S, Sui G. An Air-Liquid Interface Organ-Level Lung Microfluidics Platform for Analysis on Molecular Mechanisms of Cytotoxicity Induced by Cancer-Causing Fine Particles. ACS Sens 2019; 4:907-917. [PMID: 30843693 DOI: 10.1021/acssensors.8b01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fine particulate matter less than 2.5 μm in diameter (PM2.5) is regarded as a carcinogenic factor, but the mechanism has been left unexplored. Our goal was to reveal the carcinogenic mechanism at the gene and protein level under the inhalational air-liquid interface (ALI) condition. Herein, we developed an ALI organ-level lung microfluidic platform (ALI-OLMP) carrying lung epithelial cell line BEAS-2B and human pulmonary microvascular endothelial cells (HPMEC); the cell viability was above 98% within 14 days on this system, which was used to mimic the practical alveolar microenvironment for the multiomics analysis, to identify the global gene and protein expression after exposure to PM2.5 in Shanghai, China from 2014 to 2015. The combined RNA-Seq and iTRAQ analysis indicated that the unique set was 2532 genes at 10 μg/cm2 of PM2.5, and there were also at least 25 identical activated signal transduction cascades including bladder cancer, transcriptional dysregulation in cancer, the TP53 (p53) signaling pathway, Jak-STAT signaling pathway, and PI3K-Akt signaling pathway, which could lead to blocking of differentiation, cell proliferation and survival, and sustained angiogenesis. The images obtained by the transmission electron microscopy (TEM) showed that the particles could enter the mitochondria, and even get into the nucleus. The Pearson's correlation coefficient test elucidated that inorganics (EC), organics (OC, PAHs, and alkane), and metals (Cr, Mn, and Sb) were significantly correlated to the dysregulated oncoproteins (VEGF, IL6, MDM2, AKT1, STAT, and P53). The findings may to some extent explain the molecular mechanism of carcinogenicity caused by fine-particle exposure.
Collapse
Affiliation(s)
- Lulu Zheng
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Heng Dong
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Hao Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Zhu J, Zhao Y, Gao Y, Li C, Zhou L, Qi W, Zhang Y, Ye L. Effects of Different Components of PM 2.5 on the Expression Levels of NF-κB Family Gene mRNA and Inflammatory Molecules in Human Macrophage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1408. [PMID: 31010106 PMCID: PMC6518365 DOI: 10.3390/ijerph16081408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Background: Studies have found that exposure to fine particulate matter with sizes below 2.5 µm (PM2.5) might cause inflammation response via the NF-κB pathway. To date, only a few studies have focused on the toxicity of different components of PM2.5. We aimed to explore the effects of PM2.5 with different components on the expression levels of NF-κB family gene mRNA and inflammatory molecules in human macrophages. Methods: Human monocytic cell line THP-1-derived macrophages were exposed to water-soluble (W-PM2.5), fat-soluble (F-PM2.5), and insoluble (I-PM2.5) PM2.5. The cell survival rate was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of inflammatory molecules were determined by enzyme-linked immunosorbent assay (ELISA), and the relative mRNA levels of the NF-κB family gene were determined by real time PCR. Results: PM2.5 could decrease the cell viability. After exposure to W-PM2.5, the levels of interleukins (IL)-1β and IL-12 p70 significantly increased. After exposure to F-PM2.5, the levels of IL-12 p70 significantly increased. The levels of IL-12 p70 and TNF-α after exposure to I-PM2.5 were significantly higher than that in W- and F-PM2.5 treatment groups. The levels of IL-8, C reactive protein (CRP), and cyclooxygenase (COX)-2 increased only after exposure to I-PM2.5. F-PM2.5 increased the mRNA levels of NF-κB genes, especially NF-κB1 and RelA. Conclusions: PM2.5 can decrease the cell survival rate and up-regulate the expression of NF-κB family gene mRNA and inflammatory molecules. The main toxic components of PM2.5 related to inflammatory response in macrophages were the I-PM2.5.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Yizhen Gao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Chunyan Li
- Clinical Teaching and Research Laboratory, Medical School, Xilingol Vocational College, Inner Mongolia 026000, China.
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, China.
| |
Collapse
|
20
|
Shang Y, Wu M, Zhou J, Zhang X, Zhong Y, An J, Qian G. Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:316-324. [PMID: 30599404 DOI: 10.1016/j.jhazmat.2018.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 05/05/2023]
Abstract
Fine particles (PM2.5) emitted from municipal solid waste incineration (MSWI) contain high amounts of toxic compounds and pose a serious threat to environment and human health. In this study, entire particles as well as extracted water-soluble and -insoluble fractions of PM2.5 collected from MSWI and biomass incineration (BMI) were subjected to physiochemical characterization and cytotoxic tests in A549 and BEAS-2B cells. MSWI PM2.5 had higher contents of heavy metals (including Pb, Zn, and Cu) and dioxins (PCDD/Fs) than did BMI PM2.5. The metals were enriched in the water-insoluble fraction, as measured by inductively coupled plasma-atomic emission spectrometry. BMI PM2.5 had a higher content of endotoxin, which was also enriched in the water-insoluble fraction. MSWI PM2.5 caused more serious cell injuries, as indicated by the lower viability, higher ROS generation, and DNA damage, whereas BMI PM2.5 presented higher pro-inflammatory potential, as indicated by increased mRNA levels of interleukin 6. Normal human BEAS-2B cells were more sensitive than A549 cells in all these tests. Toxic effects caused by MSWI and BMI PM2.5 were mostly attributable to their water-insoluble fractions. Our results indicate different chemical and biological compositions in MSWI and BMI PM2.5 probably dominate in different toxic endpoints in vitro.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meiying Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
21
|
Méausoone C, El Khawaja R, Tremolet G, Siffert S, Cousin R, Cazier F, Billet S, Courcot D, Landkocz Y. In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode. Toxicol In Vitro 2019; 58:110-117. [PMID: 30910524 DOI: 10.1016/j.tiv.2019.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Toxicity of toluene and by-products formed during its catalytic oxidative degradation was studied in human bronchial BEAS-2B cells repeatedly exposed. BEAS-2B cells were exposed using an Air-Liquid Interface (ALI) System (Vitrocell®) for 1 h per day during 1, 3 or 5 days to gaseous flows: toluene vapors (100 and 1000 ppm) and outflow after catalytic oxidation of toluene (10 and 100%). After exposure to gaseous flow, cytotoxicity, inflammatory response and Xenobiotic Metabolism Enzymes (XME) gene expression were investigated. No significant cytotoxicity was found after 5 days for every condition of exposure. After cells exposure to catalytic oxidation flow, IL-6 level increased no significantly in a time- and dose-dependent way, while an inverted U-shaped profile of IL-8 secretion was observed. XME genes induction, notably CYP2E1 and CYP2F1 results were in line with the presence of unconverted toluene and benzene formed as a by-product, detected by analytical methods. Exposure to pure toluene also demonstrated the activation of these XMEs involved in its metabolism. Repeated exposure permits to show CYP1A1, CYP1B1 and CY2S1 expression, probably related to the formation of other by-products, as PAHs, not detected by standard analytical methods used for the development of catalysts.
Collapse
Affiliation(s)
- Clémence Méausoone
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Rebecca El Khawaja
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Gauthier Tremolet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Stéphane Siffert
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Renaud Cousin
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesure, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France..
| | - Yann Landkocz
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
22
|
Marchetti S, Longhin E, Bengalli R, Avino P, Stabile L, Buonanno G, Colombo A, Camatini M, Mantecca P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1422-1433. [PMID: 30308911 DOI: 10.1016/j.scitotenv.2018.08.249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Biomass combustion significantly contributes to indoor and outdoor air pollution and to the adverse health effects observed in the exposed populations. Besides, the contribution to toxicity of the particles derived from combustion of different biomass sources (pellet, wood, charcoal), as well as their biological mode of action, are still poorly understood. In the present study, we investigate the toxicological properties of PM10 particles emitted indoor from a stove fueled with different biomasses. PM10 was sampled by gravimetric methods and particles were chemically analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) and elemental content. Human lung A549 cells were exposed for 24 h to 1-10 μg/cm2 PM and different biological endpoints were evaluated to comparatively estimate the cytotoxic, genotoxic and pro-inflammatory effects of the different PMs. Pellet PM decreased cell viability, inducing necrosis, while charcoal and wood ones mainly induced apoptosis. Oxidative stress-related response and cytochrome P450 enzymes activation were observed after exposure to all the biomasses tested. Furthermore, after pellet exposure, DNA lesions and cell cycle arrest were also observed. The severe genotoxic and pro-necrotic effects observed after pellet exposure were likely the consequence of the high metal content. By administering the chelating agent TPEN, the genotoxic effects were indeed rescued. The higher content in PAHs measured in wood and charcoal PMs was likely the reason of the enhanced expression of metabolizing and oxidative stress-related enzymes, like CYP1B1 and HO-1, and the consequent increase in apoptotic cell death. These data suggest that combustion particles from different biomass sources may impact on lung cells according to different pathways, finally producing different toxicities. This is strictly related to the PM chemical composition, which reflects the quality of the combustion and the fuel in particular. Further studies are needed to clarify the role of particle dimension and the molecular mechanisms behind the harmful effects observed.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Eleonora Longhin
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Pasquale Avino
- DiAAA, University of Molise, via De Sanctis, 86100 Campobasso, Italy.
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy.
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy; University of Naples "Parthenope", Via Ammiraglio Ferdinando Acton, 38, 80133 Napoli, Italy; Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Marina Camatini
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
23
|
Onishi T, Honda A, Tanaka M, Chowdhury PH, Okano H, Okuda T, Shishido D, Terui Y, Hasegawa S, Kameda T, Tohno S, Hayashi M, Nishita-Hara C, Hara K, Inoue K, Yasuda M, Hirano S, Takano H. Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1693-1701. [PMID: 30086990 DOI: 10.1016/j.envpol.2018.07.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
Collapse
Affiliation(s)
- Toshinori Onishi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Michitaka Tanaka
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Pratiti H Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitoshi Okano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Daiki Shishido
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Yoshihiro Terui
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | | | - Susumu Tohno
- Graduate School of Energy Science, Kyoto University, Japan
| | - Masahiko Hayashi
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | - Chiharu Nishita-Hara
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | - Keiichiro Hara
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | | | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Longhin E, Holme JA, Gualtieri M, Camatini M, Øvrevik J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol In Vitro 2018; 52:365-373. [PMID: 30048734 DOI: 10.1016/j.tiv.2018.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023]
Abstract
Inflammatory responses have an important role in the onset of many lung diseases associated with urban airborne particulate matter (PM). Here we investigate effects and mechanisms linked to PM-induced expression and release of two main interleukins, IL-6 and IL-8, in human bronchial epithelial BEAS-2B cells. The cells were exposed to well characterized Milan city PM, winter PM2.5 (wPM2.5) and summer PM10 (sPM10), representing combustion and non-combustion sources, respectively. Both wPM2.5 and sPM10 increased mRNA-synthesis and intracellular protein levels of IL-6 and IL-8. Exposure to sPM10 also resulted in continuous and time-dependent increases in release of IL-6 and IL-8 for up to 48 h. By comparison, in wPM2.5-exposed cells IL-8 release was not significantly augmented, while extracellular IL-6 levels were increased but remained constant beyond 24 h exposure. Moreover, wPM2.5 also reduced the lipopolysaccharide (LPS)-increased release of IL-8. No cytotoxicity or significant adsorption of cytokines to wPM2.5 were observed. Immunofluorescence microscopy revealed an accumulation of IL-8 in intracellular vesicles and alterations in actin filament organization in wPM2.5 exposed cells, suggesting that the trafficking of vesicles carrying interleukins to the plasma membrane might be inhibited. Thus, wPM2.5 appeared to impair cytokine release in BEAS-2B cells, in particular of IL-8, possibly by damaging cytoskeletal function involved in protein secretion.
Collapse
Affiliation(s)
- Eleonora Longhin
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy.
| | - Jørn A Holme
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Maurizio Gualtieri
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Marina Camatini
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| |
Collapse
|
25
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
26
|
Feng J, Yu H, Mi K, Su X, Chen Y, Sun JH, Li Q. The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers' Meeting. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1067-1076. [PMID: 28510106 DOI: 10.1007/s10653-017-9976-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers' Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m-3. NO3-, NH4+, SO42- accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl-, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m-3, with an average concentration of 52.51 μg m-3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m-3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layer height increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, and these are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.
Collapse
Affiliation(s)
- Jinglan Feng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China.
| | - Hao Yu
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Kai Mi
- The Xinxiang Meteorological Bureau, Xinxiang, 453007, China
| | - Xianfa Su
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China.
| | - Yunqi Chen
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Jian-Hui Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
27
|
Wei T, Tang M. Biological effects of airborne fine particulate matter (PM 2.5) exposure on pulmonary immune system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:195-201. [PMID: 29734103 DOI: 10.1016/j.etap.2018.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 05/21/2023]
Abstract
Airborne fine particulate matter (PM2.5) attracts more and more attention due to its environmental effects. The immune system appears to be a most sensitive target organ for the environmental pollutants. Inhaled PM2.5 can deposit in different compartments in the respiratory tract and interact with epithelial cells and resident immune cells. Exposed to PM2.5 can induce local or systematic inflammatory responses. This review focus on the effects of respiratory tract exposed to PM2.5. Firstly, we introduced the major emission sources, basic characteristics of PM2.5 and discussed its immunoadjuvant potential. Secondly, we elaborated the immune cells in the respiratory tract and the deposition of PM2.5 regarding the structural characteristics of the respiratory tract. Furthermore, we summarized the in vivo/vitro studies that revealed the immunotoxic effects of PM2.5 exposure to pulmonary cellular effectors and explored the contribution of PM2.5 exposure to the Th1/Th2 balance.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
28
|
Xu F, Qiu X, Hu X, Shang Y, Pardo M, Fang Y, Wang J, Rudich Y, Zhu T. Effects on IL-1β signaling activation induced by water and organic extracts of fine particulate matter (PM 2.5) in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018. [PMID: 29525626 DOI: 10.1016/j.envpol.2018.02.086] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fine particulate matter (PM2.5) air pollution poses a major risk to human health worldwide, and absorbed chemicals play a key role in determining the toxicity of PM2.5. After inhalation and entry into the lungs, PM2.5 components induce pro-inflammatory cytokines (e.g., interleukin (IL)-1β) in pulmonary cells. To test whether PM2.5 components induce IL-1β through signing pathways that include the toll-like receptor 4 (TLR4)/nuclear factor-κ-gene binding (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), we exposed the mouse macrophage cell-line RAW264.7 to both water and organic extracts of PM2.5 sampled over a 1-year period in Beijing, China. Varying degrees of oxidative stress and inflammatory responses were induced following exposure, while organic extracts of PM2.5 collected during the heating season induced more significant responses. This response is attributed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion and biomass burning for domestic heating. The inhibition of signaling molecules suggested that increased IL-1β was associated with the TLR4/NF-κB pathway and NLRP3 inflammasome activation, with a slightly difference between water and organic extracts exposure groups, which was likely the result of different chemical components. Our study elucidated a potentially important mechanism by which PM2.5 components could trigger pulmonary inflammation, thus improving our understanding of the deleterious effects of this important and prevalent form of air pollution.
Collapse
Affiliation(s)
- Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Xinyan Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yanhua Fang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
29
|
Chowdhury PH, Okano H, Honda A, Kudou H, Kitamura G, Ito S, Ueda K, Takano H. Aqueous and organic extract of PM 2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:223-234. [PMID: 29291522 DOI: 10.1016/j.envpol.2017.12.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Particulate matter with diameters <2.5 μm (i.e., PM2.5) has multiple natural and anthropological sources. The association between PM2.5 and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM2.5 that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM2.5 collected during four seasons in November 2014-December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM2.5 was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM2.5 extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM2.5 extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM2.5 components, collection areas and seasons.
Collapse
Affiliation(s)
- Pratiti Home Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitoshi Okano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Hitomi Kudou
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Chowdhury PH, Kitamura G, Honda A, Sawahara T, Hayashi T, Fukushima W, Kudo H, Ito S, Yoshida S, Ichinose T, Ueda K, Takano H. Synergistic effect of carbon nuclei and polyaromatic hydrocarbons on respiratory and immune responses. ENVIRONMENTAL TOXICOLOGY 2017; 32:2172-2181. [PMID: 28444933 DOI: 10.1002/tox.22430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5 ) is generally composed of carbon nuclei associated with various organic carbons, metals, ions and biological materials. Among these components, polyaromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) and quinones have detrimental effects on airway epithelial cells and immunodisrupting effects, which leads to the exacerbation of respiratory allergies. The effects of PAHs and the carbon nuclei, separately as well as in combination, remain to be established. We investigated the effects of BaP, 9,10-phenanthroquinone (9,10-PQ), and 1,2-napthoquinone (1,2-NQ) and their combined effects with heated diesel exhaust particle (H-DEP) as carbon nuclei of typical PM2.5 . We exposed human airway epithelial cells (BEAS-2B), murine bone marrow-derived antigen-presenting cells (APCs), and murine splenocytes to BaP, 9,10-PQ, or 1,2-NQ in the presence and absence of H-DEP. Several important inflammatory cytokines and cell surface molecules were measured. PAHs alone did not have apparent cytotoxic effects on BEAS-2B, whereas combined exposure with H-DEP induced noticeable detrimental effects which mainly reflected the action of H-DEP itself. BaP increased CD86 expression as an APC surface molecule regardless of the presence or absence of H-DEP. None of the BaP, 9,10-PQ, or 1,2-NQ exposure alone or their combined exposure with H-DEP resulted in any significant activation of splenocytes. These results suggest that PAHs and carbon nuclei show additive effects, and that BaP with the carbon nuclei may contribute to exacerbations of allergic respiratory diseases including asthma by PM2.5 , especially via antigen-presenting cell activation.
Collapse
Affiliation(s)
- Pratiti H Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Sawahara
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Hayashi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Fukushima
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitomi Kudo
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seiichi Yoshida
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Oita Prefecture, 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Oita Prefecture, 870-1201, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Encarnación-Medina J, Rodríguez-Cotto RI, Bloom-Oquendo J, Ortiz-Martínez MG, Duconge J, Jiménez-Vélez B. Selective ATP-Binding Cassette Subfamily C Gene Expression and Proinflammatory Mediators Released by BEAS-2B after PM 2.5, Budesonide, and Cotreated Exposures. Mediators Inflamm 2017; 2017:6827194. [PMID: 28900313 PMCID: PMC5576432 DOI: 10.1155/2017/6827194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/02/2017] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette subfamily C (ABCC) genes code for phase III metabolism proteins that translocate xenobiotic (e.g., particulate matter 2.5 (PM2.5)) and drug metabolites outside the cells. IL-6 secretion is related with the activation of the ABCC transporters. This study assesses ABCC1-4 gene expression changes and proinflammatory cytokine (IL-6, IL-8) release in human bronchial epithelial cells (BEAS-2B) exposed to PM2.5 organic extract, budesonide (BUD, used to control inflammation in asthmatic patients), and a cotreatment (Co-T: PM2.5 and BUD). A real-time PCR assay shows that ABCC1 was upregulated in BEAS-2B exposed after 6 and 7 hr to PM2.5 extract or BUD but downregulated after 6 hr of the Co-T. ABCC3 was downregulated after 6 hr of BUD and upregulated after 6 hr of the Co-T exposures. ABCC4 was upregulated after 5 hr of PM2.5 extract, BUD, and the Co-T exposures. The cytokine assay revealed an increase in IL-6 release by BEAS-2B exposed after 5 hr to PM2.5 extract, BUD, and the Co-T. At 7 hr, the Co-T decreases IL-6 release and IL-8 at 6 hr. In conclusion, the cotreatment showed an opposite effect on exposed BEAS-2B as compared with BUD. The results suggest an interference of the BUD therapeutic potential by PM2.5.
Collapse
Affiliation(s)
- Jarline Encarnación-Medina
- School of Pharmacy, University of Puerto Rico, Medical Science Campus, San Juan, PR, USA
- Center for Environmental and Toxicological Research, San Juan, PR, USA
| | - Rosa I. Rodríguez-Cotto
- Center for Environmental and Toxicological Research, San Juan, PR, USA
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
- Institute of Biomedical and Forensic Sciences Research of Puerto Rico Inc. (IBFSR), San Juan, PR, USA
| | - Joseph Bloom-Oquendo
- School of Pharmacy, University of Puerto Rico, Medical Science Campus, San Juan, PR, USA
| | - Mario G. Ortiz-Martínez
- Center for Environmental and Toxicological Research, San Juan, PR, USA
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
- Institute of Biomedical and Forensic Sciences Research of Puerto Rico Inc. (IBFSR), San Juan, PR, USA
| | - Jorge Duconge
- School of Pharmacy, University of Puerto Rico, Medical Science Campus, San Juan, PR, USA
| | - Braulio Jiménez-Vélez
- Center for Environmental and Toxicological Research, San Juan, PR, USA
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
32
|
Audi C, Baïz N, Maesano CN, Ramousse O, Reboulleau D, Magnan A, Caillaud D, Annesi-Maesano I. Serum cytokine levels related to exposure to volatile organic compounds and PM 2.5 in dwellings and workplaces in French farmers - a mechanism to explain nonsmoking COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1363-1374. [PMID: 28503065 PMCID: PMC5426466 DOI: 10.2147/copd.s117866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although French farmers smoke less on average than individuals from the general population, they suffer more from COPD. Exposure to biological and chemical air pollutants in the farm may be the cause of these higher COPD rates. This study investigates the role of bio-contaminants, including the relationship of exposure to volatile organic compounds (VOCs) and fine particulate matter (of diameter of 2.5 µm [PM2.5]) objectively measured in the farm settings (dwellings and workplaces) to serum cytokines involved in COPD, in a sample of 72 farmers from 50 farms in the Auvergne region, France. Mean concentrations of VOCs were highest inside the home, while levels of PM2.5 were highest in workplaces (stables and granaries). After adjusting for confounders, high exposure to PM2.5 was significantly associated with a decreased level of serum cytokines (among others, IL13: β: −0.94, CI: −1.5 to −0.2, P-value =0.004; IL8: β: −0.82, CI: −1.4 to −0.2, P-value =0.005) and high exposure to VOCs according to a VOC global score with a decreased IL13 level (β: −0.5, CI: −0.9 to −0.1, P-value =0.01). Moreover, respiratory symptoms and diseases, including COPD, were associated with a decreased level of serum cytokines significantly in the case of IL5. An alteration of immune response balance in terms of cytokine levels in relation to indoor chemical air pollution exposure may contribute to respiratory health impairment in farmers.
Collapse
Affiliation(s)
- Christelle Audi
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMRS 1136, Epidemiology of Allergic and Respiratory Diseases Department, Medical School Saint-Antoine, Paris
| | - Nour Baïz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMRS 1136, Epidemiology of Allergic and Respiratory Diseases Department, Medical School Saint-Antoine, Paris
| | - Cara N Maesano
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMRS 1136, Epidemiology of Allergic and Respiratory Diseases Department, Medical School Saint-Antoine, Paris
| | | | - Damien Reboulleau
- Centre du Thorax de Nantes INSERM, UMR1087, Institut du thorax, Nantes
| | - Antoine Magnan
- Centre du Thorax de Nantes INSERM, UMR1087, Institut du thorax, Nantes
| | - Denis Caillaud
- Respiratory Diseases Department, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, France
| | - Isabella Annesi-Maesano
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMRS 1136, Epidemiology of Allergic and Respiratory Diseases Department, Medical School Saint-Antoine, Paris
| |
Collapse
|
33
|
Signal Transductions of BEAS-2B Cells in Response to Carcinogenic PM 2.5 Exposure Based on a Microfluidic System. Anal Chem 2017; 89:5413-5421. [PMID: 28447797 DOI: 10.1021/acs.analchem.7b00218] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PM2.5 (particulate matter less than 2.5 μm in diameter) is considered as a harmful carcinogen. Determining the precise relationship between the chemical constituents of PM2.5 in the air and cancer progression could aid the treatment of environment related disease and establishing risk reduction strategies. Herein, we used transcriptomics (RNA-seq) and an integrated microfluidic system to identify the global gene expression and differential target proteins expression induced by ambient fine particles collected from the heavy haze in China. The results clearly indicated that cancer related pathways exhibited the strongest dysregulation. The ambient fine particles could be uptaken into the cells by pinocytosis, mainly promoting the PI3K-Akt pathway, FGF/FGFR/MAPK/VEGF signaling, and the JAK-STAT pathway, leading to evading apoptosis, sustained angiogenesis, and cell proliferation, which are the most important hallmarks of cancer. And fine particles also have been demonstrated to create intracellular reactive oxygen species (ROS) and mitochondrial ROS, change intracellular free Ca2+, and induce apoptosis, which are all key players in mediating cancer progression. It was observed by transmission electron microscopy (TEM) that the particles from the haze could enter the mitochondria, resulting in disturbance of the mitochondrial membrane and disruption of the mitochondria, and these particles can even enter inside the nucleus. It was also found in our study of organics (OC, PAHs) and metals (Zn, As, V) that compounds of fine particles were more closely associated with the exacerbation of cancer and secondary aerosols generated by traffic had the largest impact on cancer related signal transductions.
Collapse
|
34
|
Zhang Y, Zheng L, Tuo J, Liu Q, Zhang X, Xu Z, Liu S, Sui G. Analysis of PM 2.5-induced cytotoxicity in human HaCaT cells based on a microfluidic system. Toxicol In Vitro 2017; 43:1-8. [PMID: 28431925 DOI: 10.1016/j.tiv.2017.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/11/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Human exposure to PM2.5 causes several adverse health effects. Skin is the first barrier against harmful environmental substances and can directly contact with PM2.5, but there is no study about PM2.5-induced cytotoxicity in human skin cells on the molecular level partially due to the shortcomings of traditional research methods. In present study, we established a microfluidic system including a cell culture chip integrated with a high-throughput protein microarray chip to investigate the mechanism of PM2.5-mediated cytotoxicity in human HaCaT cells. We found that PM2.5 was lodged inside the cytoplasm, mitochondria and nucleus of HaCaT cells by TEM. Flow cytometry analysis indicated that the cell apoptosis rate increased from 0.49% to 53.4%. The results of protein microarray showed that NF-κB and NALP3 signal transductions were activated in HaCaT cells after PM2.5 stimulations, up-regulating the expression of IL-1β and IL-6, which resulted in inflammatory response in HaCaT cells. Our findings provide a molecular insight into PM2.5-induced skin injury.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Lulu Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jiang Tuo
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Zhixuan Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
35
|
Teoldi F, Lodi M, Benfenati E, Colombo A, Baderna D. Air quality in the Olona Valley and in vitro human health effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1929-1939. [PMID: 27939080 DOI: 10.1016/j.scitotenv.2016.11.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Air quality is a major point in current health policies in force globally to protect human health and ecosystems. Cardiovascular and lung diseases are the pathologies most commonly associated with air pollution and it has been estimated that exposure to particulate matters and ground-level ozone and nitric oxides caused >500.000 premature deaths in Europe. Although air quality was generally improved in the recent years, further efforts are required to reduce the impact of air pollution on humans. The present study applied a multidisciplinary approach to estimate the adverse effects on the health of the inhabitants of the Olona Valley in the north of Italy. Chemical analyses quantified the air levels of metals, dioxins, PCBs, PAHs and some macropollutants, including total, fine and coarse airborne particles. These results were used as input for the health risk assessment and in vitro bioassays were used to evaluate possible adverse effects on the respiratory tract due to the organic pollutants adsorbed on the airborne particulate matter. Critical alerts were identified from the air characterization and from the chemical-based risk assessment in view of the levels of arsenic, nickel, benzene, fine and coarse particulate matters found in the investigated zone, which can induce severe adverse effects on human health. These findings were confirmed by bioassays with A549 and BEAS-2B cells. We also used the cell transformation assay with BALB/c 3T3 cells to assess the carcinogenicity of the organic extracts of collected particles as an innovative tool to establish the possible chronic effects of inhaled pollutants. No significant changes in morphological transformation were found suggesting that, although the extracts contain compounds with proven carcinogenic potential, in our experimental conditions the levels of these pollutants were too low to induce carcinogenesis as resulted also by the chemical-based risk assessment.
Collapse
Affiliation(s)
- Federico Teoldi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Marco Lodi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Andrea Colombo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
36
|
Wang R, Xiao X, Shen Z, Cao L, Cao Y. Airborne fine particulate matter causes murine bronchial hyperreactivity via MAPK pathway-mediated M 3 muscarinic receptor upregulation. ENVIRONMENTAL TOXICOLOGY 2017; 32:371-381. [PMID: 26916448 DOI: 10.1002/tox.22241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Regarding the human health effects, airborne fine particulate matter 2.5 (PM2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M3 muscarinic receptors in bronchi of PM2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Pharmacy, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xue Xiao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Cao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yongxiao Cao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Honda A, Fukushima W, Oishi M, Tsuji K, Sawahara T, Hayashi T, Kudo H, Kashima Y, Takahashi K, Sasaki H, Ueda K, Takano H. Effects of Components of PM 2.5 Collected in Japan on the Respiratory and Immune Systems. Int J Toxicol 2017; 36:153-164. [PMID: 28056587 DOI: 10.1177/1091581816682224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies have reported that particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) affect respiratory diseases, including asthma. The components and/or factors of PM2.5 that contribute to the exacerbation of asthma have not been identified. We investigated the effects of extracts of PM2.5 collected in Japan on the respiratory and immune systems. PM2.5 was collected from an industrial area and an urban area in December 2013. Airway epithelial cells and immune cells were exposed to aqueous or organic extracts of PM2.5. Exposure to extracts from both areas, especially to organic extracts rather than aqueous extracts, caused a pro-inflammatory response via interleukin (IL) 6 production from airway epithelial cells, and it induced the maturation/activation of bone marrow-derived antigen-presenting cells via dendritic and epithelial cell (DEC) 205 and cluster of differentiation (CD) 86 expression and proportional changes in the constitution of the splenocytes. The extracts collected from the industrial area tended to show greater effects than those from the urban area. These results suggest that organic components of PM2.5 affect the respiratory and immune systems. These effects can differ by the collection areas. In addition, IL-6, DEC205, and CD86 can be predictive biomarkers for the respiratory and immune effects of ambient PM2.5.
Collapse
Affiliation(s)
- Akiko Honda
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wataru Fukushima
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Oishi
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kenshi Tsuji
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Sawahara
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomohiro Hayashi
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitomi Kudo
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Kashima
- 2 Japan Environmental Sanitation Center, Kanagawa, Japan
| | | | - Hideki Sasaki
- 2 Japan Environmental Sanitation Center, Kanagawa, Japan
| | - Kayo Ueda
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Ribeiro JDP, Kalb AC, Campos PP, Cruz ARHDL, Martinez PE, Gioda A, Souza MMD, Gioda CR. Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity. CHEMOSPHERE 2016; 163:569-577. [PMID: 27567156 DOI: 10.1016/j.chemosphere.2016.07.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Previous studies have demonstrated the harmful effects of atmospheric pollutants on cardiac systems because of the presence of particulate matter (PM), a complex mixture of numerous substances including trace metals. In this study, the toxicity of PM2.5 from two regions, rural (PM2.5 level of 8.5 ± 4.0 μg m(-3)) and industrial (PM2.5 level of 14.4 ± 4.1 μg m(-3)) in Brazil, was investigated through in vivo experiments in rats. Metal accumulation and biochemical responses were evaluated after rats were exposed to three different concentrations of PM2.5 in saline extract (10× dilution, 5× dilution, and concentrated). The experimental data showed the bioaccumulation of diverse trace metals in the hearts of groups exposed to PM2.5 from both regions. Furthermore, mobilization of the antioxidant defenses and an increase in lipid peroxidation of the cardiac tissue was observed in response to the industrial and rural area PM2.5. Glutathione-S-transferase activity was increased in groups exposed to the 5× and concentrated rural PM2.5. Additionally, ATP-binding cassette (ABC) transporter activity in the cardiac tissue exposed to PM2.5 was reduced in response to the 5× dilution of the rural and industrial region PM2.5. Histological analysis showed a decrease in the percentage of cardiac cells in the heart at all tested concentrations. The results indicate that exposure to different concentrations of PM2.5 from both sources causes biochemical and histological changes in the heart with consequent damage to biological structures; these factors can favor the development of cardiac diseases.
Collapse
Affiliation(s)
- Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Ana Cristina Kalb
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Paula Peixoto Campos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alex Rubén Huaman De La Cruz
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rio de Janeiro, RJ, Brazil
| | - Pablo Elias Martinez
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rio de Janeiro, RJ, Brazil
| | - Marta Marques de Souza
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
39
|
Guan L, Rui W, Bai R, Zhang W, Zhang F, Ding W. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050483. [PMID: 27171105 PMCID: PMC4881108 DOI: 10.3390/ijerph13050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1-2.5, and 2.5-10 µm in an aerodynamic diameter) ambient particulate matter (PM) on reactive oxygen species (ROS) activity and cell viability in human bronchial epithelial cells (BEAS-2B). The PM samples were collected from an urban site (uPM) in Beijing and a steel factory site (sPM) in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO) significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function.
Collapse
Affiliation(s)
- Longfei Guan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Rui
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ru Bai
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Lawal A, Davids L, Marnewick J. Diesel exhaust particles and endothelial cells dysfunction: An update. Toxicol In Vitro 2016; 32:92-104. [DOI: 10.1016/j.tiv.2015.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
|
41
|
Wang R, Xiao X, Cao L, Shen ZX, Lei Y, Cao YX. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:11-20. [PMID: 26618262 DOI: 10.1016/j.envpol.2015.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ETA and ETB receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ETA and ETB receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ETA and ETB receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ETB receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ETA receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ETB receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ETA receptor is involved in JNK and p38 pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Zhen-xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Lei
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong-xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
42
|
Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells. Gene 2015; 578:38-51. [PMID: 26692141 DOI: 10.1016/j.gene.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia.
| |
Collapse
|
43
|
Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico. Mediators Inflamm 2015; 2015:784212. [PMID: 26681839 PMCID: PMC4670654 DOI: 10.1155/2015/784212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022] Open
Abstract
African Dust Events (ADE) are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR). Increases in PM10 concentration and the effects of biological endotoxins (ENX) are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4) signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004) were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims) was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion), and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR.
Collapse
|
44
|
Kong S, Li X, Li L, Yin Y, Chen K, Yuan L, Zhang Y, Shan Y, Ji Y. Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:59-72. [PMID: 25795988 DOI: 10.1016/j.scitotenv.2015.03.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/29/2015] [Accepted: 03/01/2015] [Indexed: 05/03/2023]
Abstract
Daily PM2.5 samples were collected at a suburban site of Nanjing around 2014 Chinese Spring Festival (SF) and analyzed for 18 kinds of polycyclic aromatic hydrocarbons (PAHs) by GC-MS. Comparison of PAH concentrations during different periods, with different air mass origins and under different pollution situations was done. Sources were analyzed by diagnostics ratios and principal component analysis (PCA). The threat of PAHs was assessed by BaP equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR). The averaged PAHs for pre-SF, SF and after SF periods were 50.6, 17.2 and 29 ng m(-3), indicating the variations of PAH sources, with reduced traffic, industrial and construction activities during SF and gradually re-starting of them after-SF. According to PAH mass concentrations, their relative abundance to particles, ratio of PAHs (3-ring+4-ring)/PAHs(5-ring+6-ring), mass concentrations of combustion-derived and carcinogenic PAHs, fireworks burning is an important source for PAHs during SF. The ILCR values for Chinese New Year day were 0.68 and 3.3 per 100,000 exposed children and adults. It suggested the necessity of controlling fireworks burning during Chinese SF period which was always companied with serious regional haze pollution. PAH concentrations exhibited decreasing trend when air masses coming from the following directions as North China Plain (63.9 ng m(-3))>Central China (53.0 ng m(-3))>Shandong Peninsula (46.6 ng m(-3))>Northwest China (18.8 ng m(-3))>Sea (15.8 ng m(-3)). For different pollution situations, they decreased as haze (44.5 ng m(-3))>fog-haze (28.4 ng m(-3))>clear (12.2 ng m(-3))>fog day (9.2 ng m(-3)). Coal combustion, traffic emission, industrial processes and petroleum (only for non-SF holiday periodss) were the main sources of PM2.5 associated PAHs. Fireworks burning contributed 14.0% of PAHs during SF period. Directly measurement of PAHs from fireworks burning is urgently needed for source apportionment studies in the future.
Collapse
Affiliation(s)
- Shaofei Kong
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xuxu Li
- Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Li Li
- Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Liang Yuan
- Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yingjie Zhang
- Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yunpeng Shan
- Colloge of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yaqin Ji
- Colloge of Environmental Science and Engineering, Nankai University, Tianjin 100086, China.
| |
Collapse
|
45
|
Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 2015; 20:6626-39. [PMID: 25875041 PMCID: PMC6272777 DOI: 10.3390/molecules20046626] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
Endothelial dysfunction and oxidative stress likely play roles in PM2.5-induced harmful effects. Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant that exerts protective effects on cardiovascular diseases (CVDs) in part by scavenging free radicals. The exposure to ambient fine particulate matter (PM2.5) is responsible for certain CVDs. The aim of the present study was to investigate whether EGCG could also inhibit PM2.5-induced oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in human umbilical vein endothelial cells (HUVECs). PM2.5 (200 μg/mL) increased both cell death and intracellular ROS levels significantly, whereas EGCG (50–400 μM) inhibited these effects in a concentration-dependent manner. Western blotting and PCR demonstrated that EGCG increased Nrf2 and HO-1 expression in HUVECs that had been exposed to PM2.5. PD98059 (a selective inhibitor of extracellular signal regulated kinase [ERK]-1/2) and SB203580 (a selective inhibitor of p38 MAPK), but not SP600125 (a selective inhibitor of c-jun N-terminal kinase [JNK]), attenuated the EGCG-induced Nrf2 and HO-1 expression. In addition, silencing Nrf2 abolished EGCG-induced Nrf2 and HO-1 upregulation and enhancement of cell viability. The present study suggests that EGCG protects HUVECs from PM2.5-induced oxidative stress injury by upregulating Nrf2/HO-1 via activation of the p38 MAPK and the ERK1/2 signaling pathways.
Collapse
|
46
|
Honda A, Tsuji K, Matsuda Y, Hayashi T, Fukushima W, Sawahara T, Kudo H, Murayama R, Takano H. Effects of Air Pollution-Related Heavy Metals on the Viability and Inflammatory Responses of Human Airway Epithelial Cells. Int J Toxicol 2015; 34:195-203. [DOI: 10.1177/1091581815575757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn2+, V4+, V5+, Cr3+, Cr6+, Zn2+, Ni2+, and Pb2+ at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V5+ tended to have a greater effect than V4+. The Cr decreased the cell viability, and (Cr+6) at concentrations of 50 and 500 μmol/L was more toxic than (Cr+3). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V+4, V+5), (Cr+3, Cr+6), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.
Collapse
Affiliation(s)
- Akiko Honda
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kenshi Tsuji
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Yugo Matsuda
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Tomohiro Hayashi
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Wataru Fukushima
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Takahiro Sawahara
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Hitomi Kudo
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Rumiko Murayama
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| |
Collapse
|
47
|
Totlandsdal AI, Låg M, Lilleaas E, Cassee F, Schwarze P. Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. ENVIRONMENTAL TOXICOLOGY 2015; 30:188-96. [PMID: 23900936 DOI: 10.1002/tox.21884] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 05/22/2023]
Abstract
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been linked with cellular production and release of several types of mediators related to pulmonary inflammation. A key challenge is to identify the specific components, which may be responsible for these effects. The aim of this study was to compare the proinflammatory potential of two DEP-samples with contrasting contents of polycyclic aromatic hydrocarbons (PAHs) and metals. The DEP-samples were compared with respect to their ability to induce cytotoxicity, expression and release of proinflammatory mediators (IL-6, IL-8), activation of mitogen-activated protein kinases (MAPKs) and expression of CYP1A1 and heme oxygenase-1 (HO-1) in human bronchial epithelial (BEAS-2B) cells. In addition, dithiothreitol and ascorbic acid assays were performed in order to examine the oxidative potential of the PM samples. The DEP-sample with the highest PAH and lowest metal content was more potent with respect to cytotoxicity and expression and release of proinflammatory mediators, CYP1A1 and HO-1 expression and MAPK activation, than the DEP-sample with lower PAH and higher metal content. The DEP-sample with the highest PAH and lowest metal content also possessed a greater oxidative potential. The present results indicate that the content of organic components may be determinant for the proinflammatory effects of DEP. The findings underscore the importance of considering the chemical composition of particulate matter-emissions, when evaluating the potential health impact and implementation of air pollution regulations.
Collapse
Affiliation(s)
- Annike I Totlandsdal
- Division of Environmental Medicine, Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
48
|
Rodríguez-Cotto RI, Ortiz-Martínez MG, Rivera-Ramírez E, Mateus VL, Amaral BS, Jiménez-Vélez BD, Gioda A. Particle pollution in Rio de Janeiro, Brazil: increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 194:112-120. [PMID: 25106047 PMCID: PMC4448729 DOI: 10.1016/j.envpol.2014.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 05/31/2023]
Abstract
Particle pollution from urban and industrialized regions in Rio de Janeiro (RJ), Brazil was analyzed for toxic and pro-inflammatory (cytokines: IL-6, IL-8, IL-10) responses in human bronchial epithelial cells. Trace elements contribution was studied. Airborne particulate matter was collected at: three industrial sites Ind-1 (PM10) and Ind-2a and 2b (PM2.5); Centro urban area (PM10) and two rural sites (PM2.5, PM10). PM10 acetone extracts were toxic and did not elicit cytokine release; aqueous extracts were less toxic and stimulated the release of IL-6 and IL-8. PM2.5 aqueous extracts from Ind-2 decreased the release of IL-6 and IL-8. Zinc concentration was higher at the industrial and rural reference sites (Ref-1-2) although metals were not associated to cytokines changes. These results demonstrate that PM from RJ can either increase or decrease cytokine secretion in vitro while being site specific and time dependent.
Collapse
Affiliation(s)
- Rosa I Rodríguez-Cotto
- University of Puerto Rico, Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico
| | - Mario G Ortiz-Martínez
- University of Puerto Rico, Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico
| | - Evasomary Rivera-Ramírez
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; University of Puerto Rico, Río Piedras Campus, Department of Biology, Puerto Rico
| | - Vinicius L Mateus
- Pontifical Catholic University, Rio de Janeiro (PUC-Rio), Department of Chemistry, RJ, Brazil
| | - Beatriz S Amaral
- Pontifical Catholic University, Rio de Janeiro (PUC-Rio), Department of Chemistry, RJ, Brazil
| | - Braulio D Jiménez-Vélez
- University of Puerto Rico, Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico.
| | - Adriana Gioda
- Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico; Pontifical Catholic University, Rio de Janeiro (PUC-Rio), Department of Chemistry, RJ, Brazil
| |
Collapse
|
49
|
Bodine BG, Bennion BG, Leatham E, Jimenez FR, Wright AJ, Jergensen ZR, Erickson CJ, Jones CM, Johnson JP, Knapp SM, Reynolds PR. Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation. Respir Res 2014; 15:133. [PMID: 25359169 PMCID: PMC4219035 DOI: 10.1186/s12931-014-0133-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/16/2014] [Indexed: 01/25/2023] Open
Abstract
Background Receptors for advanced glycation end-products (RAGE) are multiligand cell-surface receptors expressed abundantly by distal pulmonary epithelium. Our lab has discovered RAGE-mediated effects in the orchestration of lung inflammation induced by tobacco smoke and environmental pollutants; however, the specific contribution of RAGE to the progression of proximal airway inflammation is still inadequately characterized. Methods and results We generated a Tet-inducible transgenic mouse that conditionally overexpressed RAGE using the club cell (Clara) secretory protein (CCSP) promoter expressed by club (Clara) cells localized to the proximal airway. RAGE was induced for 40 days from weaning (20 days of age) until sacrifice date at 60 days. Immunohistochemistry, immunoblotting, and qPCR revealed significant RAGE up-regulation when compared to non-transgenic controls; however, H&E staining revealed no detectible morphological abnormalities and apoptosis was not enhanced during the 40 days of augmentation. Freshly procured bronchoalveolar lavage fluid (BALF) from CCSP-RAGE TG mice had significantly more total leukocytes and PMNs compared to age-matched control littermates. Furthermore, CCSP-RAGE TG mice expressed significantly more tumor necrosis factor alpha (TNF-α), interleukin 7 (IL-7), and interleukin 14 (IL-14) in whole lung homogenates compared to controls. Conclusions These data support the concept that RAGE up-regulation specifically in lung airways may function in the progression of proximal airway inflammation.
Collapse
Affiliation(s)
- B Garrett Bodine
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Brock G Bennion
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Emma Leatham
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Felix R Jimenez
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Alex J Wright
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Zac R Jergensen
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Connor J Erickson
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Cameron M Jones
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Jeff P Johnson
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Steven M Knapp
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| |
Collapse
|
50
|
Fuentes-Mattei E, Velazquez-Torres G, Phan L, Zhang F, Chou PC, Shin JH, Choi HH, Chen JS, Zhao R, Chen J, Gully C, Carlock C, Qi Y, Zhang Y, Wu Y, Esteva FJ, Luo Y, McKeehan WL, Ensor J, Hortobagyi GN, Pusztai L, Fraser Symmans W, Lee MH, Yeung SCJ. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst 2014; 106:dju158. [PMID: 24957076 PMCID: PMC4110474 DOI: 10.1093/jnci/dju158] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor–positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon. Methods We analyzed transcriptomic profiles of pretreatment biopsies from a prospective cohort of 137 ER+ breast cancer patients. We generated transgenic (MMTV-TGFα;Ay/a) and orthotopic/syngeneic (Ay/a) obese mouse models to investigate the effect of obesity on tumorigenesis and tumor progression and to determine biological mechanisms using whole-genome transcriptome microarrays and protein analyses. We used a coculture system to examine the impact of adipocytes/adipokines on breast cancer cell proliferation. All statistical tests were two-sided. Results Functional transcriptomic analysis of patients revealed the association of obesity with 59 biological functional changes (P < .05) linked to cancer hallmarks. Gene enrichment analysis revealed enrichment of AKT-target genes (P = .04) and epithelial–mesenchymal transition genes (P = .03) in patients. Our obese mouse models demonstrated activation of the AKT/mTOR pathway in obesity-accelerated mammary tumor growth (3.7- to 7.0-fold; P < .001; n = 6–7 mice per group). Metformin or everolimus can suppress obesity-induced secretion of adipokines and breast tumor formation and growth (0.5-fold, P = .04; 0.3-fold, P < .001, respectively; n = 6–8 mice per group). The coculture model revealed that adipocyte-secreted adipokines (eg, TIMP-1) regulate adipocyte-induced breast cancer cell proliferation and invasion. Metformin suppress adipocyte-induced cell proliferation and adipocyte-secreted adipokines in vitro. Conclusions Adipokine secretion and AKT/mTOR activation play important roles in obesity-accelerated breast cancer aggressiveness in addition to hyperinsulinemia, estrogen signaling, and inflammation. Metformin and everolimus have potential for therapeutic interventions of ER+ breast cancer patients with obesity.
Collapse
Affiliation(s)
- Enrique Fuentes-Mattei
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Guermarie Velazquez-Torres
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Liem Phan
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Fanmao Zhang
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Ping-Chieh Chou
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Ji-Hyun Shin
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Hyun Ho Choi
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Jiun-Sheng Chen
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Ruiying Zhao
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Jian Chen
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Chris Gully
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Colin Carlock
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Yuan Qi
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Ya Zhang
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Yun Wu
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Francisco J Esteva
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Yongde Luo
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Wallace L McKeehan
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Joe Ensor
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Gabriel N Hortobagyi
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Lajos Pusztai
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - W Fraser Symmans
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Mong-Hong Lee
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu)
| | - Sai-Ching Jim Yeung
- Affiliations of authors: University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (GV-T, LPh, FZ, P-CC, J-HS, HHC, CG, CC, FJE, M-HL, S-CJY); Cancer Biology Graduate Program (GV-T, P-CC, J-HS, HHC, CC, M-HL), Genes and Development Graduate Program (CG, M-HL); Department of Molecular and Cellular Oncology (EF-M, GV-T, LPh, FZ, P-CC, J-HS, HHC, RZ, JC, CG, CC, FJE, M-HL), Department of Breast Medical Oncology (FJE, GNH, LPu); Department of Biostatistics (JE), Department of Bioinformatics and Computational Biology (YQ); Department of Pathology (YZ, YW, WFS); Department of Emergency Medicine (J-SC, S-CJY), and Department of Endocrine Neoplasia and Hormonal Disorders (S-CJY), The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Cancer & Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX (YL, WLM); Present address: Breast Cancer Program, Yale Cancer Center, New Haven, CT (LPu).
| |
Collapse
|