1
|
Gao Z, Yu Y, Eckel-Mahan K, Kolonin MG. Caloric Restriction and Telomere Preservation in TERT Knockout Adipocyte Progenitors Does Not Rescue Mice From Metabolic Dysfunction due to a TERT Function in Adipocyte Mitochondria. Aging Cell 2025:e14499. [PMID: 39932851 DOI: 10.1111/acel.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Inactivation of telomerase (TERT) in adipocyte progenitor cells (APC) expedites telomere attrition, and the onset of diabetes in mice fed high-fat diet (HFD), which promotes APC over-proliferation and replicative senescence. Here, we show that time-restricted feeding or caloric restriction in the postnatal development of mice subsequently subjected to HFD prevents telomere attrition but not glucose intolerance. This metabolic effect of dietary intervention was not observed for mice with TERT KO in endothelial or myeloid cells. To characterize the telomere-independent effects of TERT in the APC lineage, we analyzed mice with TERT knockout in mature adipocytes (AD-TERT-KO), which do not proliferate and avoid telomere attrition. Analysis of adipocytes from AD-TERT-KO mice indicated reliance on glycolysis and decreased mitochondrial oxidative metabolism. We show that AD-TERT-KO mice have reduced cold tolerance and metabolism abnormality indicating a defect in adaptive thermogenesis, characteristic of aging. Conversely, ectopic TERT expression in brown adipocytes-induced mitochondrial oxidation and thermogenic gene expression. We conclude that TERT plays an important non-canonical function in the mitochondria of adipocytes.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Kristin Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
2
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
7
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
8
|
Jin JX, Sun JT, Jiang CQ, Cui HD, Bian Y, Lee S, Zhang L, Lee BC, Liu ZH. Melatonin Regulates Lipid Metabolism in Porcine Cumulus-Oocyte Complexes via the Melatonin Receptor 2. Antioxidants (Basel) 2022; 11:687. [PMID: 35453372 PMCID: PMC9027243 DOI: 10.3390/antiox11040687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that the inclusion of melatonin (MTn) in in vitro maturation protocols improves the developmental competence of oocytes by scavenging reactive oxygen species (ROS). However, the molecular mechanisms integrating melatonin receptor (MT)-mediated lipid metabolism and redox signaling during in vitro cumulus-oocyte complex (COC) development still remain unclear. Here, we aimed to elucidate the potential role of MTn receptors in lipid metabolic adjustments during in vitro porcine COC development. We observed that MTn-mediated Gsα-cAMP/PKA signaling facilitated lipolysis primarily through the MT2 receptor and subsequently increased fatty acid (FA) release by hydrolyzing intracellular triglycerides (TGs) in cumulus cells. Furthermore, CD36 was a critical FA transporter that transported available FAs from cumulus cells to oocytes and promoted de novo TG synthesis in the latter. In addition, MTn regulated lipogenesis and intracellular lipolysis to maintain lipid homeostasis and limit ROS production, thereby supporting oocyte cytoplasmic maturation and the subsequent embryo development. Taken together, these findings provide insight into the possible mechanism integrating MT2-mediated lipid homeostasis and redox signaling, which limits ROS production during in vitro COC development. Therefore, understanding the dynamics of the interactions between lipid homeostasis and redox signaling driven by MT2 is necessary in order to predict drug targets and the effects of therapeutics used to improve female reproductive health.
Collapse
Affiliation(s)
- Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Chao-Qian Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Hong-Di Cui
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Ya Bian
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Lianjin Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| |
Collapse
|
9
|
Herroon MK, Mecca S, Haimbaugh A, Garmo LC, Rajagurubandara E, Todi SV, Baker TR, Podgorski I. Adipocyte-driven unfolded protein response is a shared transcriptomic signature of metastatic prostate carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119101. [PMID: 34280426 DOI: 10.1016/j.bbamcr.2021.119101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
A critical unknown in the field of skeletal metastases is how cancer cells find a way to thrive under harsh conditions, as exemplified by metastatic colonization of adipocyte-rich bone marrow by prostate carcinoma cells. To begin understanding molecular processes that enable tumor cells to survive and progress in difficult microenvironments such as bone, we performed unbiased examination of the transcriptome of two different prostate cancer cell lines in the absence or presence of bone marrow adipocytes. Our RNAseq analyses and subsequent quantitative PCR and protein-based assays reveal that upregulation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) genes is a shared signature between metastatic prostate carcinoma cell lines of different origin. Pathway analyses and pharmacological examinations highlight the ER chaperone BIP as an upstream coordinator of this transcriptomic signature. Additional patient-based data support our overall conclusion that ER stress and UPR induction are shared, important factors in the response and adaptation of metastatic tumor cells to their micro-environment. Our studies pave the way for additional mechanistic investigations and offer new clues towards effective therapeutic interventions in metastatic disease.
Collapse
Affiliation(s)
- Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
10
|
Keenan SN, De Nardo W, Lou J, Schittenhelm RB, Montgomery MK, Granneman JG, Hinde E, Watt MJ. Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control. J Lipid Res 2021; 62:100016. [PMID: 33334871 PMCID: PMC7900760 DOI: 10.1194/jlr.ra120001126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Perilipin 5 (PLIN5) is a lipid-droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155 and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation. FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase at the lipid droplet, but not with α-β hydrolase domain-containing 5. Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis compared with wild-type PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism.
Collapse
Affiliation(s)
- Stacey N Keenan
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Kim M, Im S, Cho YK, Choi C, Son Y, Kwon D, Jung YS, Lee YH. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin. Biomolecules 2020; 10:E1394. [PMID: 33008006 PMCID: PMC7601939 DOI: 10.3390/biom10101394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Soy isoflavones are bioactive phytoestrogens with known health benefits. Soybean embryo extract (SEE) has been consumed as a source of isoflavones, mainly daidzein, glycitein, and genistein. While previous studies have reported the anti-obesity effects of SEE, this study investigates their molecular mechanisms and the synergistic effects of co-treatment with SEE and enzymatically modified isoquercitrin (EMIQ). SEE upregulated genes involved in lipolysis and brown adipocyte markers and increased mitochondrial content in differentiated C3H10T1/2 adipocytes in vitro. Next, we use a high-fat diet-induced obesity mouse model to determine the anti-obesity effect of SEE. Two weeks of single or combined treatment with SEE and EMIQ significantly reduced body weight gain and improved glucose tolerance. Mechanistically, SEE treatment increased mitochondrial content and upregulated genes involved in lipolysis in adipose tissue through the cAMP/PKA-dependent signaling pathway. These effects required a cytosolic lipase adipose triglyceride lipase (ATGL) expression, confirmed by an adipocyte-specific ATGL knockout mouse study. Collectively, this study demonstrates that SEE exerts anti-obesity effects through the activation of adipose tissue metabolism and exhibits a synergistic effect of co-treatment with EMIQ. These results improve our understanding of the mechanisms underlying the anti-obesity effects of SEE related to adipose tissue metabolism.
Collapse
Affiliation(s)
- Minsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yoon keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Doyoung Kwon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| |
Collapse
|
12
|
Pydi SP, Cui Z, He Z, Barella LF, Pham J, Cui Y, Oberlin DJ, Egritag HE, Urs N, Gavrilova O, Schwartz GJ, Buettner C, Williams KW, Wess J. Beneficial metabolic role of β-arrestin-1 expressed by AgRP neurons. SCIENCE ADVANCES 2020; 6:eaaz1341. [PMID: 32537493 PMCID: PMC7269658 DOI: 10.1126/sciadv.aaz1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/02/2020] [Indexed: 05/03/2023]
Abstract
β-Arrestin-1 and β-arrestin-2 have emerged as important signaling molecules that modulate glucose fluxes in several peripheral tissues. The potential roles of neuronally expressed β-arrestins in regulating glucose homeostasis remain unknown. We here report that mice lacking β-arrestin-1 (barr1) selectively in AgRP neurons displayed impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet, while mice overexpressing barr1 selectively in AgRP neurons were protected against obesity-associated metabolic impairments. Additional physiological, biochemical, and electrophysiological data indicated that the presence of barr1 is essential for insulin-mediated hyperpolarization of AgRP neurons. As a result, barr1 expressed by AgRP neurons regulates efferent neuronal pathways that suppress hepatic glucose production and promote lipolysis in adipose tissue. Mice lacking β-arrestin-2 (barr2) selectively in AgRP neurons showed no substantial metabolic phenotypes. Our data suggest that agents able to enhance the activity of barr1 in AgRP neurons may prove beneficial as antidiabetic drugs.
Collapse
Affiliation(s)
- Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenyan He
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Luiz F. Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Douglas J. Oberlin
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Hale Ergin Egritag
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Gary J. Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph Buettner
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism. Int J Obes (Lond) 2020; 45:122-129. [PMID: 32467614 DOI: 10.1038/s41366-020-0606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential. SUBJECTS/METHODS To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice. RESULTS The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms. CONCLUSIONS Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.
Collapse
|
14
|
Lee H, Sung J, Kim Y, Jeong HS, Lee J. Inhibitory effect of diosmetin on inflammation and lipolysis in coculture of adipocytes and macrophages. J Food Biochem 2020; 44:e13261. [PMID: 32367620 DOI: 10.1111/jfbc.13261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
Abstract
The interaction between adipocytes and macrophages in obese tissues plays a critical role in the onset of metabolic syndromes. This study aimed to evaluate the modulatory effect of diosmetin on anti-inflammatory and anti-lipolytic activities in the coculture of macrophages and adipocytes. The secretion of inflammatory mediators increased in a coculture medium, however, diosmetin significantly reduced the levels of these inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-α, and monocyte chemoattractant protein. Diosmetin down-regulated the protein expression of inducible NO synthase in cocultured macrophages and adipocytes, and inhibited the phosphorylation of mitogen-activated protein kinases and the translocation of p65 and p50 to the nucleus. Moreover, it suppressed the phosphorylation of hormone-sensitive lipase and the production of fatty acid-binding protein 4, and increased the mRNA expression of adiponectin in cocultured adipocytes by 18%-35%. These results indicate that diosmetin inhibited inflammation and lipolysis in the crosstalk between adipocytes and macrophages; diosmetin-containing foods could be used in dietary therapy for the prevention of obesity-related metabolic syndromes. PRACTICAL APPLICATIONS: Diosmetin occurs naturally in citrus fruits that have a high inhibitory effect on inflammation in cocultured adipocytes and macrophages via the inactivation of the MAPKs/NF-kB pathway. Diosmetin also inhibited lipolysis via the reduction of FFA and free glycerol. The present study suggests that treatment of diosmetin may be useful for the prevention of obesity and inflammation-related metabolic syndromes.
Collapse
Affiliation(s)
- Hana Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| | - Younghwa Kim
- School of Food Biotechnology and Nutrition, Kyungsung University, Busan, Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
15
|
Adipocyte-specific Beclin1 deletion impairs lipolysis and mitochondrial integrity in adipose tissue. Mol Metab 2020; 39:101005. [PMID: 32344065 PMCID: PMC7235646 DOI: 10.1016/j.molmet.2020.101005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Beclin1 is a core molecule of the macroautophagy machinery. Although dysregulation of macroautophagy is known to be involved in metabolic disorders, the function of Beclin1 in adipocyte metabolism has not been investigated. In the present study, we aimed to study the role of Beclin1 in lipolysis and mitochondrial homeostasis of adipocytes. Methods Autophagic flux during lipolysis was examined in adipocytes cultured in vitro and in the adipose tissue of mice. Adipocyte-specific Beclin1 knockout (KO) mice were used to investigate the activities of Beclin1 in adipose tissues. Results cAMP/PKA signaling increased the autophagic flux in adipocytes differentiated from C3H10T1/2 cells. In vivo autophagic flux was higher in the brown adipose tissue (BAT) than that in the white adipose tissue and was further increased by the β3 adrenergic receptor agonist CL316243. In addition, surgical denervation of BAT greatly reduced autophagic flux, indicating that sympathetic nerve activity is a major regulator of tissue autophagy. Adipocyte-specific KO of Beclin1 led to a hypertrophic enlargement of lipid droplets in BAT and impaired CL316243-induced lipolysis/lipid mobilization and energy expenditure. While short-term effects of Beclin1 deletion were characterized by an increase in mitochondrial proteins, long-term Beclin1 deletion led to severe disruption of autophagy, resulting in mitochondrial loss, and dramatically reduced the expression of genes involved in lipid metabolism. Consequently, adipose tissue underwent increased activation of cell death signaling pathways, macrophage recruitment, and inflammation, particularly in BAT. Conclusions The present study demonstrates the critical roles of Beclin1 in the maintenance of lipid metabolism and mitochondrial homeostasis in adipose tissues. β3 adrenergic receptor stimulation induced autophagy in adipose tissue. Beclin1 in adipocytes is required for lipolysis and lipid utilization. Adipocyte-specific Beclin1 KO reduced CL316243-induced thermogenic gene expression. Adipocyte-specific Beclin1 KO results in defective autophagy, loss of mitochondria, and inflammation.
Collapse
|
16
|
Higashida K, Takeuchi N, Inoue S, Hashimoto T, Nakai N. Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Mol Med Rep 2020; 21:1383-1389. [PMID: 32016466 DOI: 10.3892/mmr.2020.10929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Iron deficiency has been associated with obesity and related metabolic disorders. The aim of the present study was to evaluate the effect of iron deficiency on fat metabolism, particularly regarding the lipolytic activity, lipolysis‑related protein expression, and glucose utilization of adipocytes. Differentiated 3T3‑L1 adipocytes were incubated with an iron chelator, deferoxamine mesylate (DFO), for 48 h. Subsequently, basal and isoproterenol‑stimulated lipolytic activities, the proteins involved in lipolysis and glucose utilization were compared with a control (CON). The results revealed that treatment with DFO significantly decreased the free iron content but did not affect total protein and lipid contents in adipocytes. Iron deprivation caused a significant reduction in isoproterenol‑stimulated lipolysis, but not basal lipolysis. Lipolysis‑related proteins, including perilipin A, adipose triglyceride lipase, hormone sensitive lipase and comparative gene identification‑58, were decreased in the DFO compared with the CON group. Furthermore, glucose utilization, a major precursor of 3‑glycerol phosphate for micro‑lipid droplet synthesis during lipolysis and the expression of glucose transporter (GLUT) 4 were significantly lower in the DFO group when compared with the CON group. However, hypoxia‑inducible factor‑1α and GLUT1 expressions were upregulated in DFO‑treated adipocytes. In conclusion, the results indicated that low iron availability attenuated catecholamine‑stimulated lipolysis by downregulating lipolytic enzymes and glucose utilization in 3T3‑L1 adipocytes.
Collapse
Affiliation(s)
- Kazuhiko Higashida
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Nodoka Takeuchi
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Sachika Inoue
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525‑8577, Japan
| | - Naoya Nakai
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| |
Collapse
|
17
|
Formation and degradation of lipid droplets in human adipocytes and the expression of aldehyde oxidase (AOX). Cell Tissue Res 2019; 379:45-62. [DOI: 10.1007/s00441-019-03152-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractLipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as “novel regulator of adipogenesis”. This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved—together with perilipins—in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.
Collapse
|
18
|
Mottillo EP, Zhang H, Yang A, Zhou L, Granneman JG. Genetically-encoded sensors to detect fatty acid production and trafficking. Mol Metab 2019; 29:55-64. [PMID: 31668392 PMCID: PMC6726923 DOI: 10.1016/j.molmet.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Fatty acids are important for biological function; however, in excess, they can cause metabolic dysregulation. Methods to image and detect fatty acids in real time are lacking. Therefore, the current study examined the dynamics of fatty acid trafficking and signaling utilizing novel fluorescent and luminescent approaches. METHODS We generated fluorescent and luminescent-based genetically-encoded sensors based upon the ligand-dependent interaction between PPARα and SRC-1 to image and detect cellular dynamics of fatty acid trafficking. RESULTS The use of a fluorescent sensor demonstrates that fatty acids traffic rapidly from lipid droplets to the nucleus. Both major lipases ATGL and HSL contribute to fatty acid signaling from lipid droplet to nucleus, however, their dynamics differ. Furthermore, direct activation of lipolysis, independent of receptor-mediated signaling is sufficient to promote lipid droplet to nuclear trafficking of fatty acids. A luminescent-based sensor that reports intracellular fatty acid levels is amenable to high-throughput analysis. CONCLUSIONS Fatty acids traffic from lipid droplets to the nucleus within minutes of stimulated lipolysis. Genetically-encoded fluorescent and luminescent based sensors can be used to probe the dynamics of fatty acid trafficking and signaling.
Collapse
Affiliation(s)
- Emilio P Mottillo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alexander Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Sahu BS, Rodriguez P, Nguyen ME, Han R, Cero C, Razzoli M, Piaggi P, Laskowski LJ, Pavlicev M, Muglia L, Mahata SK, O'Grady S, McCorvy JD, Baier LJ, Sham YY, Bartolomucci A. Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. Cell Rep 2019; 28:2567-2580.e6. [PMID: 31484069 PMCID: PMC6753381 DOI: 10.1016/j.celrep.2019.07.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Structural and functional diversity of peptides and GPCR result from long evolutionary processes. Even small changes in sequence can alter receptor activation, affecting therapeutic efficacy. We conducted a structure-function relationship study on the neuropeptide TLQP-21, a promising target for obesity, and its complement 3a receptor (C3aR1). After having characterized the TLQP-21/C3aR1 lipolytic mechanism, a homology modeling and molecular dynamics simulation identified the TLQP-21 binding motif and C3aR1 binding site for the human (h) and mouse (m) molecules. mTLQP-21 showed enhanced binding affinity and potency for hC3aR1 compared with hTLQP-21. Consistently, mTLQP-21, but not hTLQP-21, potentiates lipolysis in human adipocytes. These findings led us to uncover five mutations in the C3aR1 binding pocket of the rodent Murinae subfamily that are causal for enhanced calculated affinity and measured potency of TLQP-21. Identifying functionally relevant peptide/receptor co-evolution mechanisms can facilitate the development of innovative pharmacotherapies for obesity and other diseases implicating GPCRs.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Ruijun Han
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Louis Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Scott O'Grady
- Department of Animal Science, University of Minnesota, 480 Haecker Hall, 1364 Eckles Avenue, St. Paul, MN, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
21
|
Chia LY, Evans BA, Mukaida S, Bengtsson T, Hutchinson DS, Sato M. Adrenoceptor regulation of the mechanistic target of rapamycin in muscle and adipose tissue. Br J Pharmacol 2019; 176:2433-2448. [PMID: 30740664 PMCID: PMC6592864 DOI: 10.1111/bph.14616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
A vital role of adrenoceptors in metabolism and energy balance has been well documented in the heart, skeletal muscle, and adipose tissue. It has been only recently demonstrated, however, that activation of the mechanistic target of rapamycin (mTOR) makes a significant contribution to various metabolic and physiological responses to adrenoceptor agonists. mTOR exists as two distinct complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) and has been shown to play a critical role in protein synthesis, cell proliferation, hypertrophy, mitochondrial function, and glucose uptake. This review will describe the physiological significance of mTORC1 and 2 as a novel paradigm of adrenoceptor signalling in the heart, skeletal muscle, and adipose tissue. Understanding the detailed signalling cascades of adrenoceptors and how they regulate physiological responses is important for identifying new therapeutic targets and identifying novel therapeutic interventions. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Bronwyn A. Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Dana S. Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
22
|
Yang A, Mottillo EP, Mladenovic-Lucas L, Zhou L, Granneman JG. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat Metab 2019; 1:560-569. [PMID: 31497752 PMCID: PMC6730670 DOI: 10.1038/s42255-019-0066-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patatin-Like Phospholipase Domain Containing 2 (PNPLA2)/Adipose Triglyceride Lipase (ATGL) and PNPLA3/Adiponutrin are close paralogs that appear to have opposite functions on triacylglycerol (TAG) mobilization and storage. PNPLA2/ATGL is a major triglyceride lipase in adipose tissue and liver, whereas a common human variant of PNPLA3, I148M, greatly increases risk of hepatosteatosis. Nonetheless, the function of PNPLA3 and the mechanism by which the I148M variant promotes TAG accumulation are poorly understood. Here we demonstrate that PNPLA3 strongly interacts with α/β hydrolase domain-containing 5 (ABHD5/CGI-58), an essential co-activator of PNPLA2/ATGL. Molecular imaging experiments demonstrate that PNPLA3 effectively competes with PNPLA2/ATGL for ABHD5, and that PNPLA3 I148M is more effective in this regard. Inducible overexpression of PNPLA3 I148M greatly suppressed PNPLA2/ATGL-dependent lipolysis and triggered massive TAG accumulation in brown adipocytes, and these effects were dependent on ABHD5. The interaction of PNPLA3 and ABHD5 can be regulated by fatty acid supplementation and synthetic ABHD5 ligands, raising the possibility that this interaction might be targeted for treatment of fatty liver disease.
Collapse
Affiliation(s)
- Alexander Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48201
- Co-first authors
| | - Emilio P. Mottillo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48201
- Co-first authors
- Correspondence and requests for materials should be addressed to E.P.M. or J.G.G. (J.G.G.), (E.P.M.)
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48201
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48201
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48201
- Correspondence and requests for materials should be addressed to E.P.M. or J.G.G. (J.G.G.), (E.P.M.)
| |
Collapse
|
23
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
24
|
Dev K, Dinish US, Chakraborty S, Bi R, Andersson-Engels S, Sugii S, Olivo M. Quantitative in vivo detection of adipose tissue browning using diffuse reflectance spectroscopy in near-infrared II window. JOURNAL OF BIOPHOTONICS 2018; 11:e201800135. [PMID: 29978566 DOI: 10.1002/jbio.201800135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 05/23/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) biologically function in an opposite way in energy metabolism. BAT induces energy consumption by heat production while WAT mainly stores energy in the form of triglycerides. Recent progress in the conversion of WAT cells to "beige" or "brown-like" adipocytes in animals, having functional similarity to BAT, spurred a great interest in developing the next-generation therapeutics in the field of metabolic disorders. Though magnetic resonance imaging and positron emission tomography could detect classical BAT and WAT in animals and humans, it is of a great challenge in detecting the "browning" process in vivo. Here, to the best of our knowledge, for the first time, we present a simple, cost-effective, label-free fiber optic-based diffuse reflectance spectroscopy measurement in the near infrared II window (~1050-1400 nm) for the quantitative detection of browning in a mouse model in vivo. We could successfully quantify the browning of WAT in a mouse model by estimating the lipid fraction, which serves as an endogenous marker. Lipid fraction exhibited a gradual decrease from WAT to BAT with beige exhibiting an intermediate value. in vivo browning process was also confirmed with standard molecular and biochemical assays.
Collapse
Affiliation(s)
- Kapil Dev
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Smarajit Chakraborty
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Renzhe Bi
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Stefan Andersson-Engels
- Irish Photonic Integration Centre (IPIC), Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Malini Olivo
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
25
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
26
|
Diedrich JD, Herroon MK, Rajagurubandara E, Podgorski I. The Lipid Side of Bone Marrow Adipocytes: How Tumor Cells Adapt and Survive in Bone. Curr Osteoporos Rep 2018; 16:443-457. [PMID: 29869753 PMCID: PMC6853185 DOI: 10.1007/s11914-018-0453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Bone marrow adipocytes have emerged in recent years as key contributors to metastatic progression in bone. In this review, we focus specifically on their role as the suppliers of lipids and discuss pro-survival pathways that are closely linked to lipid metabolism, affected by the adipocyte-tumor cell interactions, and likely impacting the ability of the tumor cell to thrive in bone marrow space and evade therapy. RECENT FINDINGS The combined in silico, pre-clinical, and clinical evidence shows that in adipocyte-rich tissues such as bone marrow, tumor cells rely on exogenous lipids for regulation of cellular energetics and adaptation to harsh metabolic conditions of the metastatic niche. Adipocyte-supplied lipids have a potential to alter the cell's metabolic decisions by regulating glycolysis and respiration, fatty acid oxidation, lipid desaturation, and PPAR signaling. The downstream effects of lipid signaling on mitochondrial homeostasis ultimately control life vs. death decisions, providing a mechanism for gaining survival advantage and reduced sensitivity to treatment. There is a need for future research directed towards identifying the key metabolic and signaling pathways that regulate tumor dependence on exogenous lipids and consequently drive the pro-survival behavior in the bone marrow niche.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
27
|
Chan XHD, Balasundaram G, Attia ABE, Goggi JL, Ramasamy B, Han W, Olivo M, Sugii S. Multimodal imaging approach to monitor browning of adipose tissue in vivo. J Lipid Res 2018; 59:1071-1078. [PMID: 29654114 PMCID: PMC5983400 DOI: 10.1194/jlr.d083410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 (Ucp1) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2-18F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans.
Collapse
Affiliation(s)
- Xin Hui Derryn Chan
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Ghayathri Balasundaram
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Julian L Goggi
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boominathan Ramasamy
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| |
Collapse
|
28
|
Membrane Trafficking Protein CDP138 Regulates Fat Browning and Insulin Sensitivity through Controlling Catecholamine Release. Mol Cell Biol 2018; 38:MCB.00153-17. [PMID: 29378832 DOI: 10.1128/mcb.00153-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/15/2018] [Indexed: 01/22/2023] Open
Abstract
CDP138 is a calcium- and lipid-binding protein that is involved in membrane trafficking. Here, we report that mice without CDP138 develop obesity under normal chow diet (NCD) or high-fat diet (HFD) conditions. CDP138-/- mice have lower energy expenditure, oxygen consumption, and body temperature than wild-type (WT) mice. CDP138 is exclusively expressed in adrenal medulla and is colocalized with tyrosine hydroxylase (TH), a marker of sympathetic nervous terminals, in the inguinal fat. Compared with WT controls, CDP138-/- mice had altered catecholamine levels in circulation, adrenal gland, and inguinal fat. Adrenergic signaling on cyclic AMP (cAMP) formation and hormone-sensitive lipase (HSL) phosphorylation induced by cold challenge but not by an exogenous β3 adrenoceptor against CL316243 were decreased in adipose tissues of CDP138-/- mice. Cold-induced beige fat browning, fatty acid oxidation, thermogenesis, and related gene expression were reduced in CDP138-/- mice. CDP138-/- mice are also prone to HFD-induced insulin resistance, as assessed by Akt phosphorylation and glucose transport in skeletal muscles. Our data indicate that CDP138 is a regulator of stress response and plays a significant role in adipose tissue browning, energy balance, and insulin sensitivity through regulating catecholamine secretion from the sympathetic nervous terminals and adrenal gland.
Collapse
|
29
|
Rondini EA, Mladenovic-Lucas L, Roush WR, Halvorsen GT, Green AE, Granneman JG. Novel Pharmacological Probes Reveal ABHD5 as a Locus of Lipolysis Control in White and Brown Adipocytes. J Pharmacol Exp Ther 2017; 363:367-376. [PMID: 28928121 PMCID: PMC5698943 DOI: 10.1124/jpet.117.243253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Current knowledge regarding acute regulation of adipocyte lipolysis is largely based on receptor-mediated activation or inhibition of pathways that influence intracellular levels of cAMP, thereby affecting protein kinase A (PKA) activity. We recently identified synthetic ligands of α-β-hydrolase domain containing 5 (ABHD5) that directly activate adipose triglyceride lipase (ATGL) by dissociating ABHD5 from its inhibitory regulator, perilipin-1 (PLIN1). In the current study, we used these novel ligands to determine the direct contribution of ABHD5 to various aspects of lipolysis control in white (3T3-L1) and brown adipocytes. ABHD5 ligands stimulated adipocyte lipolysis without affecting PKA-dependent phosphorylation on consensus sites of PLIN1 or hormone-sensitive lipase (HSL). Cotreatment of adipocytes with synthetic ABHD5 ligands did not alter the potency or maximal lipolysis efficacy of the β-adrenergic receptor (ADRB) agonist isoproterenol (ISO), indicating that both target a common pool of ABHD5. Reducing ADRB/PKA signaling with insulin or desensitizing ADRB suppressed lipolysis responses to a subsequent challenge with ISO, but not to ABHD5 ligands. Lastly, despite strong treatment differences in PKA-dependent phosphorylation of HSL, we found that ligand-mediated activation of ABHD5 led to complete triglyceride hydrolysis, which predominantly involved ATGL, but also HSL. These results indicate that the overall pattern of lipolysis controlled by ABHD5 ligands is similar to that of isoproterenol, and that ABHD5 plays a central role in the regulation of adipocyte lipolysis. As lipolysis is critical for adaptive thermogenesis and in catabolic tissue remodeling, ABHD5 ligands may provide a means of activating these processes under conditions where receptor signaling is compromised.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - William R Roush
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Geoff T Halvorsen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Alex E Green
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| |
Collapse
|
30
|
Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18:671-684. [PMID: 28852221 DOI: 10.1038/nrm.2017.76] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.
Collapse
Affiliation(s)
- Rudolf Zechner
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Frank Madeo
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Dagmar Kratky
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| |
Collapse
|
31
|
Marinozzi MR, Pandolfi L, Malatesta M, Colombo M, Collico V, Lievens PMJ, Tambalo S, Lasconi C, Vurro F, Boschi F, Mannucci S, Sbarbati A, Prosperi D, Calderan L. Innovative approach to safely induce controlled lipolysis by superparamagnetic iron oxide nanoparticles-mediated hyperthermic treatment. Int J Biochem Cell Biol 2017; 93:62-73. [PMID: 29111382 DOI: 10.1016/j.biocel.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
During last years, evidence has been provided on the involvement of overweight and obesity in the pathogenesis and aggravation of several life-threatening diseases. Here, we demonstrate that, under appropriate administration conditions, polyhedral iron oxide nanoparticles are efficiently and safely taken up by 3T3 cell line-derived adipocytes (3T3 adipocytes) in vitro. Since these nanoparticles proved to effectively produce heat when subjected to alternating magnetic field, 3T3 adipocytes were submitted to superparamagnetic iron oxide nanoparticles-mediated hyperthermia treatment (SMHT), with the aim of modulating their lipid content. Notably, the treatment resulted in a significant delipidation persisting for at least 24h, and in the absence of cell death, damage or dedifferentiation. Interestingly, transcript expression of adipose triglyceride lipase (ATGL), a key gene involved in canonical lipolysis, was not modulated upon SMHT, suggesting the involvement of a novel/alternative mechanism in the effective lipolysis observed. By applying the same experimental conditions successfully used for 3T3 adipocytes, SMHT was able to induce delipidation also in primary cultures of human adipose-derived adult stem cells. The success of this pioneering approach in vitro opens promising perspectives for the application of SMHT in vivo as an innovative safe and physiologically mild strategy against obesity, potentially useful in association with balanced diet and healthy lifestyle.
Collapse
Affiliation(s)
- Maria Rosaria Marinozzi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Laura Pandolfi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Manuela Malatesta
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Veronica Collico
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | - Stefano Tambalo
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy; Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Chiara Lasconi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Federica Vurro
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Federico Boschi
- Dipartimento di Informatica, Università di Verona, 37134 Verona, Italy
| | - Silvia Mannucci
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Andrea Sbarbati
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Calderan
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy.
| |
Collapse
|
32
|
Granneman JG, Kimler VA, Zhang H, Ye X, Luo X, Postlethwait JH, Thummel R. Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. eLife 2017; 6. [PMID: 28244868 PMCID: PMC5342826 DOI: 10.7554/elife.21771] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/26/2017] [Indexed: 12/15/2022] Open
Abstract
Perilipin (PLIN) proteins constitute an ancient family important in lipid droplet (LD) formation and triglyceride metabolism. We identified an additional PLIN clade (plin6) that is unique to teleosts and can be traced to the two whole genome duplications that occurred early in vertebrate evolution. Plin6 is highly expressed in skin xanthophores, which mediate red/yellow pigmentation and trafficking, but not in tissues associated with lipid metabolism. Biochemical and immunochemical analyses demonstrate that zebrafish Plin6 protein targets the surface of pigment-containing carotenoid droplets (CD). Protein kinase A (PKA) activation, which mediates CD dispersion in xanthophores, phosphorylates Plin6 on conserved residues. Knockout of plin6 in zebrafish severely impairs the ability of CD to concentrate carotenoids and prevents tight clustering of CD within carotenoid bodies. Ultrastructural and functional analyses indicate that LD and CD are homologous structures, and that Plin6 was functionalized early in vertebrate evolution for concentrating and trafficking pigment. DOI:http://dx.doi.org/10.7554/eLife.21771.001
Collapse
Affiliation(s)
- James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
| | - Vickie A Kimler
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
| | - Huamei Zhang
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
| | - Xiangqun Ye
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
| | - Xixia Luo
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, United States
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, United States.,Department of Biology, University of Oregon, Eugene, United States
| | - Ryan Thummel
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, United States
| |
Collapse
|
33
|
Hansen JS, Krintel C, Hernebring M, Haataja TJK, de Marè S, Wasserstrom S, Kosinska-Eriksson U, Palmgren M, Holm C, Stenkula KG, Jones HA, Lindkvist-Petersson K. Perilipin 1 binds to aquaporin 7 in human adipocytes and controls its mobility via protein kinase A mediated phosphorylation. Metabolism 2016; 65:1731-1742. [PMID: 27832861 DOI: 10.1016/j.metabol.2016.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that dysregulated glycerol metabolism contributes to the pathophysiology of obesity and type 2 diabetes. Glycerol efflux from adipocytes is regulated by the aquaglyceroporin AQP7, which is translocated upon hormone stimulation. Here, we propose a molecular mechanism where the AQP7 mobility in adipocytes is dependent on perilipin 1 and protein kinase A. Biochemical analyses combined with ex vivo studies in human primary adipocytes, demonstrate that perilipin 1 binds to AQP7, and that catecholamine activated protein kinase A phosphorylates the N-terminus of AQP7, thereby reducing complex formation. Together, these findings are indicative of how glycerol release is controlled in adipocytes, and may pave the way for the future design of drugs against human metabolic pathologies.
Collapse
Affiliation(s)
- Jesper S Hansen
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Christian Krintel
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Malin Hernebring
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Tatu J K Haataja
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Sofia de Marè
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Sebastian Wasserstrom
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | | | - Madelene Palmgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Helena A Jones
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | | |
Collapse
|
34
|
Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li JL, Guilherme A, Guntur K, Czech MP, Collins S. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J Clin Invest 2016; 126:1704-16. [PMID: 27018708 DOI: 10.1172/jci83532] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Animals
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- HEK293 Cells
- Humans
- Insulin/genetics
- Insulin/metabolism
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Knockout
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Receptors, Adrenergic, beta/genetics
- Regulatory-Associated Protein of mTOR
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/physiology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Uncoupling Protein 1/biosynthesis
- Uncoupling Protein 1/genetics
Collapse
|
35
|
Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, Ouberai MM, Thiam AR, Patel S, Saudek V, Siniossoglou S, Savage DB. Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3. J Biol Chem 2016; 291:6664-78. [PMID: 26742848 PMCID: PMC4807253 DOI: 10.1074/jbc.m115.691048] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Collapse
Affiliation(s)
- Emily R Rowe
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Michael L Mimmack
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Antonio D Barbosa
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Afreen Haider
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Iona Isaac
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Myriam M Ouberai
- the Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom, and
| | - Abdou Rachid Thiam
- the Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Satish Patel
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David B Savage
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|
36
|
Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, Milne G, Boyd KL, Powers AC, McGuinness OP, Gannon M, Breyer RM. The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology 2016; 157:220-32. [PMID: 26485614 PMCID: PMC4701878 DOI: 10.1210/en.2015-1693] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Animals
- Cell Size
- Crosses, Genetic
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diet, High-Fat/adverse effects
- Insulin Resistance
- Lipid Metabolism
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macrophage Activation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Necrosis
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/immunology
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Panniculitis/etiology
- Panniculitis/immunology
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Weight Gain
Collapse
Affiliation(s)
- Ryan P Ceddia
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - DaeKee Lee
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Matthew F Maulis
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Bethany A Carboneau
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - David W Threadgill
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Greg Poffenberger
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ginger Milne
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kelli L Boyd
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alvin C Powers
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Owen P McGuinness
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maureen Gannon
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Richard M Breyer
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
37
|
Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HLDM, Heijnen CJ, Kavelaars A, Mayor F, Murga C. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 2015. [PMID: 26198359 DOI: 10.1126/scisignal.aaa4374] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Marta Cruces-Sande
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Elisa Lucas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Hanneke L D M Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Federico Mayor
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| | - Cristina Murga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| |
Collapse
|
38
|
Schweiger M, Zechner R. Breaking the Barrier--Chaperone-Mediated Autophagy of Perilipins Regulates the Lipolytic Degradation of Fat. Cell Metab 2015; 22:60-1. [PMID: 26154053 DOI: 10.1016/j.cmet.2015.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triglyceride hydrolysis by cytosolic and lysosomal lipases mobilizes fatty acids from lipid droplet stores. Kaushik and Cuervo (2015) found that chaperone-mediated autophagy removes the protective barrier from the lipid droplet surface, facilitating lipolysis by cytosolic lipases and assembly of autolipophagosomes for subsequent lysosomal lipid degradation.
Collapse
Affiliation(s)
- Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
39
|
Cheng KT, Wang YS, Chou HC, Chang CC, Lee CK, Juan SH. Kinsenoside-mediated lipolysis through an AMPK-dependent pathway in C3H10T1/2 adipocytes: Roles of AMPK and PPARα in the lipolytic effect of kinsenoside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:641-647. [PMID: 26055129 DOI: 10.1016/j.phymed.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/07/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Currently, more than one-third of the global population is overweight or obese, which is a risk factor for major causes of death including cardiovascular disease, numerous cancers, and diabetes. Kinsenoside, a major active component of Anoectochilus formosanus exhibits antihyperglycemic, antihyperliposis, and hepatoprotective effects and can be used to prevent and manage obesity. PURPOSE This study examined the catabolic effects of kinsenoside on lipolysis in adipocytes transformed from C3H10T1/2 cells. STUDY DESIGN/METHODS The lipolytic effect of kinsenoside in C3H10T1/2 adipocytes was evaluated by oil-red O staining and glycerol production. The underlying mechanisms were assessed by Western blots, chromatin immunoprecipitation (IP), Co-IP, EMSA and siRNAs verification. RESULTS We demonstrated that kinsenoside increased both adipose triglyceride lipase (ATGL)-mediated lipolysis, which was upregulated by AMP-activated protein kinase (AMPK) activation, and the hydrolysis of triglycerides to glycerol and fatty acids that require transportation into mitochondria for further β-oxidation. We also demonstrated that kinsenoside increased the phosphorylation of peroxisome proliferator-activated receptor alpha (PPARα) and CRE-binding protein (CREB), and the protein levels of silent information regulator T1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and carnitine palmitoyltransferase I (CPT1) through an AMPK-dependent mechanism. SIRT1 deacetylated PGC-1α, facilitating AMPK-mediated PGC-1α phosphorylation and increasing the interaction of PPARα with its coactivator, PGC-1α. This interaction elevated the expression of CPT1, a shuttle for the mitochondrial transport of fatty acids, in kinsenoside-treated cells. In addition, AMPK-phosphorylation-mediated CREB activation caused kinsenoside-mediated PGC-1α upregulation. CONCLUSION AMPK activation not only elevated ATGL expression for lipolysis but also induced CPT1 expression for further mitochondrial translocation of fatty acids. The results suggested that the mechanism underlying the catabolic effects of kinsenoside on lipolysis and increased CPT1 induction was mediated through an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Shiou Wang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
40
|
Liu P, Li C, Huang J, Ji H. Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1447-1460. [PMID: 24737494 DOI: 10.1007/s10695-014-9939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
N-3 highly unsaturated fatty acids (n-3 HUFA) have been shown to inhibit body fat accumulation in animals. To clarify the mechanism of this fat-lowering effect of n-3 HUFA in grass carp (Ctenopharyngodon idellus), two experiments were conducted. In experiment 1, isolated grass carp mature adipocytes were incubated with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at different concentrations for 6 h. The release of glycerol to the medium was detected, and the expression of the lipolysis-related genes was analyzed. In experiment 2, a 95-day feeding trial was conducted with two diets formulated with either lard oil (as control) or fish oil (supplying n-3 HUFA as treatment) as the main lipid source. The glycerol and free fatty acid (FFA) released from the isolated adipocytes of both groups were detected after the feeding period. The expression of select lipolysis-related genes in adipose tissue was also analyzed. The results from experiment 1 showed that the release of glycerol was significantly increased by DHA and EPA (P < 0.05). Moreover, the expression of lipolysis-related genes, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), tumor necrosis factor α (TNFα) and leptin, was also significantly elevated in the treatment group (P < 0.05). Experiment 2 demonstrated that glycerol and FFA release from the isolated adipocytes were significantly higher in the treatment group compared to the control group (P < 0.05). The expression level of ATGL, HSL, TNFα and leptin in the treatment group was significantly higher than in the control group (P < 0.05). The present results provide novel evidence that n-3 HUFAs could regulate grass carp adipocyte lipolysis in vitro or in vivo, and the effect might be in part associated with their influence on the expression of lipolysis-related genes and lipolysis-related adipokines genes.
Collapse
Affiliation(s)
- Pin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | | | | | | |
Collapse
|
41
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
42
|
Zierler KA, Zechner R, Haemmerle G. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator? Curr Opin Lipidol 2014; 25:102-9. [PMID: 24565921 PMCID: PMC4170181 DOI: 10.1097/mol.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.
Collapse
Affiliation(s)
- Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|
43
|
Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 2013; 55:385-97. [PMID: 24347527 PMCID: PMC3934724 DOI: 10.1194/jlr.m041392] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term cytokine-mediated inflammation is a risk factor for obesity and type 2 diabetes mellitus (T2DM). Our previous studies reveal significant associations between promoter single nucleotide polymorphisms (SNPs) of interleukin (IL)-4 and T2DM, as well as between SNPs in genes encoding IL-4/IL-4 receptor and high density lipoproteins. Our animal study reveals that IL-4 regulates glucose/lipid metabolism by promoting glucose tolerance and inhibiting lipid deposits. The above results strongly suggest the involvement of IL-4 in energy homeostasis. In the present study, we focus on examining the regulatory mechanism of IL-4 to lipid metabolism. Our results show that IL-4 inhibits adipogenesis by downregulating the expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein-α. Additionally, IL-4 promotes lipolysis by enhancing the activity and translocation of hormone sensitive lipase (HSL) in mature adipocytes, which suggests that IL-4 plays a pro-lipolytic role in lipid metabolism by boosting HSL activity. Our results demonstrate that IL-4 harbors pro-lipolysis capacity by inhibiting adipocyte differentiation and lipid accumulation as well as by promoting lipolysis in mature adipocytes to decrease lipid deposits. The above findings uncover the novel roles of IL-4 in lipid metabolism and provide new insights into the interactions among cytokine/immune responses, insulin sensitivity, and metabolism.
Collapse
Affiliation(s)
- Chang-Hui Tsao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Fülöp L, Rajki A, Katona D, Szanda G, Spät A. Extramitochondrial OPA1 and adrenocortical function. Mol Cell Endocrinol 2013; 381:70-9. [PMID: 23906536 DOI: 10.1016/j.mce.2013.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion.
Collapse
Affiliation(s)
- László Fülöp
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary
| | | | | | | | | |
Collapse
|
45
|
Cignarelli A, Giorgino F, Vettor R. Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 2013; 119:139-50. [PMID: 23724947 DOI: 10.3109/13813455.2013.796996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The close link between type 2 diabetes and excess body weight highlights the need to consider the effects on weight of different treatments used for correction of hyperglycaemia. Indeed, specific currently available diabetes therapies can cause weight gain, including insulin and its analogues, sulphonylureas, and thiazolidinediones, while others, such as metformin and the GLP-1 receptor agonists, can promote weight loss. Excess body weight in patients with diabetes is largely due to expansion of adipose tissue, and these drugs could interfere with the mechanisms underlying the expansion and differentiation of adipocyte precursors. Almost all anti-diabetes drugs could also potentially affect adipocyte metabolism directly, by modulating lipogenesis, lipolysis, and fat oxidation. This review will examine the available evidence for specific effects of various anti-diabetes drugs on adipose tissue development and function with the ultimate goal of increasing our understanding of how pharmacological agents can modulate energy balance and body fat.
Collapse
Affiliation(s)
- A Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari "Aldo Moro" , Bari , Italy and
| | | | | |
Collapse
|
46
|
Hashimoto T, Yokokawa T, Endo Y, Iwanaka N, Higashida K, Taguchi S. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2013; 440:43-9. [DOI: 10.1016/j.bbrc.2013.09.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
|
47
|
Macpherson REK, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep 2013; 1:e00084. [PMID: 24303154 PMCID: PMC3831900 DOI: 10.1002/phy2.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/11/2013] [Indexed: 02/06/2023] Open
Abstract
In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation.
Collapse
Affiliation(s)
- Rebecca E K Macpherson
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University St Catharines, Ontario, L2S 3A1, Canada
| | | | | | | |
Collapse
|
48
|
Murugesan S, Goldberg EB, Dou E, Brown WJ. Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 2013; 8:e64950. [PMID: 23741432 PMCID: PMC3669214 DOI: 10.1371/journal.pone.0064950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Members of the Patatin-like Phospholipase Domain containing Protein A (PNPLA) family play key roles in triglyceride hydrolysis, energy metabolism, and lipid droplet (LD) homoeostasis. Here we report the identification of two distinct LD targeting motifs (LTM) for PNPLA family members. Transient transfection of truncated versions of human adipose triglyceride lipase (ATGL, also known as PNPLA2), PNPLA3/adiponutrin, or PNPLA5 (GS2-like) fused to GFP revealed that the C-terminal third of these proteins contains sequences that are sufficient for targeting to LDs. Furthermore, fusing the C-termini of PNPLA3 or PNPLA5 confers LD localization to PNPLA4, which is otherwise cytoplasmic. Analyses of additional mutants in ATGL, PNPLA5, and Brummer Lipase, the Drosophila homolog of mammalian ATGL, identified two different types of LTMs. The first type, in PNPLA5 and Brummer lipase, is a set of loosely conserved basic residues, while the second type, in ATGL, is contained within a stretch of hydrophobic residues. These results show that even closely related members of the PNPLA family employ different molecular motifs to associate with LDs.
Collapse
Affiliation(s)
- Sricharan Murugesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elysa B. Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eda Dou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - William J. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:393-401. [PMID: 23688782 DOI: 10.1016/j.bbadis.2013.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Manige Konige
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hong Wang
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Hashimoto T, Sato K, Iemitsu M. Exercise-inducible factors to activate lipolysis in adipocytes. J Appl Physiol (1985) 2013; 115:260-7. [PMID: 23681914 DOI: 10.1152/japplphysiol.00427.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examined the effects of exercise training on the levels of lipid droplet (LD)-associated and mitochondria-related proteins in diet-induced obese (DIO) rats. Furthermore, we assessed putative factors induced by exercise to activate lipolysis in differentiated 3T3-L1 adipocytes. DIO Wistar male rats (age 20 wk) were divided into sedentary control (SED, n = 7) and exercise training (EX, n = 7) groups. EX animals were subjected to treadmill running (25 m/min, 1 h/day, 5 days/wk) for 6 wk. Epididymal fat was dissected and used for protein analyses. 3T3-L1 adipocytes were incubated with media containing hydrogen peroxide (H2O2), sodium-lactate, caffeine, AICAR, or SNAP (NO donor) for 6 h, or 1 mM H2O2 for 15 min, followed by incubation with normal media for up to 24 h total. Protein expression levels and lipolytic activities were biochemically assayed. Epididymal fat significantly decreased in EX animals compared with SED animals. Levels of cytochrome c oxidase (COx), perilipin, hormone sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) proteins in epididymal fat pads of EX animals were significantly increased compared with those in SED animals. In 3T3-L1 cells, glycerol or fatty acid release was significantly increased by all treatments. Lactate or SNAP significantly increased PGC-1α expression, and H2O2 significantly increased COx protein levels compared with controls. Expression of perilipin, HSL, ATGL, or comparative gene identification (CGI)-58 was significantly increased by all treatments. By increasing lipolytic activity in adipocytes, the exercise-inducible factors are attractive therapeutic effectors against LD-associated metabolic diseases.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Faculty Sport & Health Science, Ritsumeikan University, Shiga, Japan.
| | | | | |
Collapse
|