1
|
Sang X, Xu J, Wang Y, Li J, Xu J, Chen X, Shi X, Wu F. Generation of vascularized pancreatic progenitors through co-differentiation of endoderm and mesoderm from human pluripotent stem cells. Stem Cell Res Ther 2024; 15:502. [PMID: 39719603 DOI: 10.1186/s13287-024-04120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND The simultaneous differentiation of human pluripotent stem cells (hPSCs) into both endodermal and mesodermal lineages is crucial for developing complex, vascularized tissues, yet poses significant challenges. This study explores a method for co-differentiation of mesoderm and endoderm, and their subsequent differentiation into pancreatic progenitors (PP) with endothelial cells (EC). METHODS Two hPSC lines were utilized. By manipulating WNT signaling, we optimized co-differentiation protocols of mesoderm and endoderm through adjusting the concentrations of CHIR99021 and mTeSR1. Subsequently, mesoderm and endoderm were differentiated into vascularized pancreatic progenitors (vPP) by adding VEGFA. The differentiation characteristics and potential of vPPs were analyzed via transcriptome sequencing and functional assays. RESULTS A low-dose CHIR99021 in combination with mTeSR1 yielded approximately 30% mesodermal and 70% endodermal cells. Introduction of VEGFA significantly enhanced EC differentiation without compromising PP formation, increasing the EC proportion to 13.9%. Transcriptomic analyses confirmed the effectiveness of our protocol, showing up-regulation of mesodermal and endothelial markers, alongside enhanced metabolic pathways. Functional assays demonstrated that vPPs could efficiently differentiate into insulin-producing β-cells, as evidenced by increased expression of β-cell markers and insulin secretion. CONCLUSION Our findings provide a robust method for generating vPPs, which holds significant promise for regenerative medicine applications, particularly in diabetes treatment.
Collapse
Affiliation(s)
- Xiaopu Sang
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Junming Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Wang
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jingyi Li
- Biotherapy Center, Shenzhen Third People's Hospital (The Second Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jiasen Xu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
- Biotherapy Center, Shenzhen Third People's Hospital (The Second Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Shi J, Li J, Su W, Xue C, Zhang Y, Gao X. Engineered microenvironments and pancreatic islet-on-chips for screening sugar substitute and antidiabetic compounds. Food Res Int 2024; 196:115084. [PMID: 39614569 DOI: 10.1016/j.foodres.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Recent advancements in the food industry have rekindled interest in the safety of food additives, such as sugar substitutes and food pigments. Consequently, the main purpose of this study was to develop models that can more accurately predict the effects of these additives on the human body. In response to this demand, we have created an innovative pancreas islet-on-a-chip system featuring a concentration gradient generator and a perfusable 3D cell culture array. This setup facilitates the 3D culture of pseudo-islets under stable biochemical and biophysical conditions. When compared to static culture environments, our dynamic environment maintains islet cell viability at over 95 %, resulting in larger cell clusters that exhibit a higher tendency for aggregation up to 30 μm. Furthermore, the expression levels of key factors integral to islet development, namely INS-1, INS-2, and PDX-1, increased by 4.5-fold, 1.9-fold, and 5.8-fold respectively in the dynamic environment. Utilizing this sophisticated pancreas islet-on-a-chip model, we discovered that the consumption of sugar substitutes like erythritol and sucralose for 1 h does not impact insulin secretion levels. In contrast, the administration of glucagon-like peptide 1 (GLP-1), GLP-1 receptor (GLP-1R) agonist exendin-4, curcumin, and a combination therapy group led to a substantial increase in insulin secretion levels (p < 0.01). Such engineered microenvironments and pancreatic islet-on-chips offer a groundbreaking platform for evaluating sugar substitutes and antidiabetic compounds.
Collapse
Affiliation(s)
- Jingyan Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jianing Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Slak Rupnik M, Hara M. Local Dialogues Between the Endocrine and Exocrine Cells in the Pancreas. Diabetes 2024; 73:533-541. [PMID: 38215069 PMCID: PMC10958587 DOI: 10.2337/db23-0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
For many years, it has been taught in medical textbooks that the endocrine and exocrine parts of the pancreas have separate blood supplies that do not mix. Therefore, they have been studied by different scientific communities, and patients with pancreatic disorders are treated by physicians in different medical disciplines, where endocrine and exocrine function are the focus of endocrinologists and gastroenterologists, respectively. The conventional model that every islet in each pancreatic lobule receives a dedicated arterial blood supply was first proposed in 1932, and it has been inherited to date. Recently, in vivo intravital recording of red blood cell flow in mouse islets as well as in situ structural analysis of 3D pancreatic vasculature from hundreds of islets provided evidence for preferentially integrated pancreatic blood flow in six mammalian species. The majority of islets have no association with the arteriole, and there is bidirectional blood exchange between the two segments. Such vascularization may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to a topologically and temporally specific plasma content, which could underlie an adaptive sensory function as well as common pathogeneses of both portions of the organ in pancreatic diseases, including diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Porter JM, Yitayew M, Tabrizian M. Renewable Human Cell Model for Type 1 Diabetes Research: EndoC- βH5/HUVEC Coculture Spheroids. J Diabetes Res 2023; 2023:6610007. [PMID: 38162632 PMCID: PMC10757655 DOI: 10.1155/2023/6610007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
In vitro drug screening for type 1 diabetes therapies has largely been conducted on human organ donor islets for proof of efficacy. While native islets are the ultimate target of these drugs (either in situ or for transplantation), significant benefit can be difficult to ascertain due to the highly heterogeneous nature of individual donors and the overall scarcity of human islets for research. We present an in vitro coculture model based on immortalized insulin-producing beta-cell lines with human endothelial cells in 3D spheroids that aims to recapitulate the islet morphology in an effort towards developing a standardized cell model for in vitro diabetes research. Human insulin-producing immortalized EndoC-βH5 cells are cocultured with human endothelial cells in varying ratios to evaluate 3D cell culture models for type 1 diabetes research. Insulin secretion, metabolic activity, live cell fluorescence staining, and gene expression assays were used to compare the viability and functionality of spheroids composed of 100% beta-cells, 1 : 1 beta-cell/endothelial, and 1 : 3 beta-cell/endothelial. Monoculture and βH5/HUVEC cocultures formed compact spheroids within 7 days, with average diameter ~140 μm. This pilot study indicated that stimulated insulin release from 0 to 20 mM glucose increased from ~8-fold for monoculture and 1 : 1 coculture spheroids to over 20-fold for 1 : 3 EndoC-βH5/HUVEC spheroids. Metabolic activity was also ~12% higher in the 1 : 3 EndoC-βH5/HUVEC group compared to other groups. Stimulating monoculture beta-cell spheroids with 20 mM glucose +1 μg/mL glycine-modified INGAP-P increased the insulin stimulation index ~2-fold compared to glucose alone. Considering their availability and consistent phenotype, EndoC-βH5-based spheroids present a useful 3D cell model for in vitro testing and drug screening applications.
Collapse
Affiliation(s)
- James M. Porter
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Michael Yitayew
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada H3A 1G1
| |
Collapse
|
5
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
6
|
Rizk AA, Dybala MP, Rodriguez KC, Slak Rupnik M, Hara M. Pancreatic regional blood flow links the endocrine and exocrine diseases. J Clin Invest 2023; 133:e166185. [PMID: 37338995 PMCID: PMC10378168 DOI: 10.1172/jci166185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
An increasing number of studies have demonstrated that disease states of the endocrine or exocrine pancreas aggravate one another, which implies bidirectional blood flow between islets and exocrine cells. However, this is inconsistent with the current model of unidirectional blood flow, which is strictly from islets to exocrine tissues. This conventional model was first proposed in 1932, and it has never to our knowledge been revisited to date. Here, large-scale image capture was used to examine the spatial relationship between islets and blood vessels in the following species: human, monkey, pig, rabbit, ferret, and mouse. While some arterioles passed by or traveled through islets, the majority of islets had no association with them. Islets with direct contact with the arteriole were significantly larger in size and fewer in number than those without contact. Unique to the pancreas, capillaries directly branched out from the arterioles and have been labeled as "small arterioles" in past studies. Overall, the arterioles emerged to feed the pancreas regionally, not specifically targeting individual islets. Vascularizing the pancreas in this way may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to changes in the blood levels of glucose, hormones, and other circulating factors.
Collapse
Affiliation(s)
- Adam A. Rizk
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Michael P. Dybala
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Fetal Programming of the Endocrine Pancreas: Impact of a Maternal Low-Protein Diet on Gene Expression in the Perinatal Rat Pancreas. Int J Mol Sci 2022; 23:ijms231911057. [PMID: 36232358 PMCID: PMC9569808 DOI: 10.3390/ijms231911057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy.
Collapse
|
8
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
9
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Zou W, Liu B, Wang Y, Shi F, Pang S. Metformin attenuates high glucose-induced injury in islet microvascular endothelial cells. Bioengineered 2022; 13:4385-4396. [PMID: 35139776 PMCID: PMC8973819 DOI: 10.1080/21655979.2022.2033411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As one of the most frequently prescribed antidiabetic drugs, metformin can lower glucose levels, improve insulin resistance manage body weight. However, the effect of metformin on islet microcirculation remains unclear. In the present study, to explore the effect of metformin on islet endothelial cells and investigated the underlying mechanism, we assessed the effects of metformin on islet endothelial cell survival, proliferation, oxidative stress and apoptosis. Our results suggest that metformin stimulates the proliferation of pancreatic islet endothelial cells and inhibits the apoptosis and oxidative stress caused by high glucose levels. By activating farnesoid X receptor (FXR), metformin increases the expression of vascular endothelial growth factor-A (VEGF-A) and endothelial nitric oxide synthase (eNOS), improves the production of nitric oxide (NO) and decreases the production of ROS. After the inhibition of FXR or VEGF-A, all of the effects disappeared. Thus, metformin appears to regulate islet microvascular endothelial cell (IMEC) proliferation, apoptosis and oxidative stress by activating the FXR/VEGF-A/eNOS pathway. These findings provide a new mechanism underlying the islet-protective effect of metformin.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingkun Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yulu Wang
- Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Fangbin Shi
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuguang Pang
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Michau A, Lafont C, Bargi-Souza P, Kemkem Y, Guillou A, Ravier MA, Bertrand G, Varrault A, Fiordelisio T, Hodson DJ, Mollard P, Schaeffer M. Metabolic Stress Impairs Pericyte Response to Optogenetic Stimulation in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:918733. [PMID: 35813647 PMCID: PMC9259887 DOI: 10.3389/fendo.2022.918733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic islets are highly vascularized micro-organs ensuring whole body glucose homeostasis. Islet vascular cells play an integral part in sustaining adequate insulin release by beta cells. In particular, recent studies have demonstrated that islet pericytes regulate local blood flow velocity and are required for maintenance of beta cell maturity and function. In addition, increased metabolic demand accompanying obesity alters islet pericyte morphology. Here, we sought to explore the effects of metabolic stress on islet pericyte functional response to stimulation in a mouse model of type 2 diabetes, directly in the pancreas in vivo . We found that high fat diet induced islet pericyte hypertrophy without alterations in basal local blood flow. However, optogenetic stimulation of pericyte activity revealed impaired islet vascular responses, despite increased expression of genes encoding proteins directly or indirectly involved in cell contraction. These findings suggest that metabolic stress impinges upon islet pericyte function, which may contribute to beta cell failure during T2D.
Collapse
Affiliation(s)
- Aurélien Michau
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Chrystel Lafont
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Paula Bargi-Souza
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- Department of Physiology and Biophysics of the Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yasmine Kemkem
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Guillou
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Magalie A. Ravier
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Gyslaine Bertrand
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Annie Varrault
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Tatiana Fiordelisio
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David J. Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrice Mollard
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
- *Correspondence: Marie Schaeffer,
| |
Collapse
|
13
|
Assis A, Camargo S, Margalit R, Mitrani E. Creation of a vascular inducing device using mesenchymal stem cells to induce angiogenesis. J Biosci Bioeng 2021; 132:408-416. [PMID: 34326013 DOI: 10.1016/j.jbiosc.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Conventional treatments of peripheral vascular disease and coronary artery disease have partial success but are still limited. Methods to deliver angiogenic factors into ischemic areas using gene, protein and cell therapies are faced with difficult issues such a delivery, effective concentration and duration of action. Tissue engineering offers the possibility of creating a functional self-contained three-dimensional (3D) unit that works as a coordinated biological pump that can secrete a whole range of angiogenic factors. We report a tissue engineering approach using decellularized micro-fragments and mesenchymal stem cells (MSCs) to create a vascular inducing device (VID). Proteomic analysis of the decellularized micro-fragments and of the VIDs reveals a large number of extracellular-matrix (ECM) proteins. Moreover, the VIDs were found to transcribe and secrete a whole repertoire of angiogenic factors in a sustained manner. Furthermore, preliminary results of implantation VIDs into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice indicate formation of vascular network at the site within a week. We propose that those VIDs could serve as a safe, localized, simple and powerful method for the treatment of certain types of vascular diseases.
Collapse
Affiliation(s)
- Assaf Assis
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | - Sandra Camargo
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | | | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel.
| |
Collapse
|
14
|
Joseph X, Akhil V, Arathi A, Mohanan PV. Comprehensive Development in Organ-On-A-Chip Technology. J Pharm Sci 2021; 111:18-31. [PMID: 34324944 DOI: 10.1016/j.xphs.2021.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The expeditious advancement in the organ on chip technology provided a phase change to the conventional in vitro tests used to evaluate absorption, distribution, metabolism, excretion (ADME) studies and toxicity assessments. The demand for an accurate predictive model for assessing toxicity and reducing the potential risk factors became the prime area of any drug delivery process. Researchers around the globe are welcoming the incorporation of organ-on-a-chips for ADME and toxicity evaluation. Organ-on-a-chip (OOC) is an interdisciplinary technology that evolved as a contemporary in vitro model for the pharmacokinetics and pharmacodynamics (PK-PD) studies of a proposed drug candidate in the pre-clinical phases of drug development. The OOC provides a platform that mimics the physiological functions occurring in the human body. The precise flow control systems and the rapid sample processing makes OOC more advanced than the conventional two-dimensional (2D) culture systems. The integration of various organs as in the multi organs-on-a-chip provides more significant ideas about the time and dose dependant effects occurring in the body when a new drug molecule is administered as part of the pre-clinical times. This review outlines the comprehensive development in the organ-on-a-chip technology, various OOC models and its drug development applications, toxicity evaluation and efficacy studies.
Collapse
Affiliation(s)
- X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
15
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
16
|
Šterk M, Križančić Bombek L, Skelin Klemen M, Slak Rupnik M, Marhl M, Stožer A, Gosak M. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity: Insights through multilayer network analysis. PLoS Comput Biol 2021; 17:e1009002. [PMID: 33974632 PMCID: PMC8139480 DOI: 10.1371/journal.pcbi.1009002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | | | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea–ECM, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
17
|
Amin KN, Palanisamy R, Sarada DVL, Ali D, Suzuki T, Ramkumar KM. Effect of Rosolic acid on endothelial dysfunction under ER stress in pancreatic microenvironment. Free Radic Res 2021; 55:698-713. [PMID: 33788639 DOI: 10.1080/10715762.2021.1892090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial cell (EC) dysfunction is the underlying cause for the development of several pathologies, and the interdependency between the pancreatic β-cells and ECs has been established in the pathophysiology of diabetes. ECs release several factors that govern the expression of genes involved in the proliferation, physiology, and survival of the β-cells. Of the known factors that collapse this intricately balanced system, endothelial dysfunction is the crucial condition that manifests as the causative factor for micro and macrovascular diseases. Our earlier studies demonstrated that activation of nuclear factor erythroid-related factor (Nrf2) renders protection to the ECs experiencing ER stress. In this study, using a co-culture system, the crosstalk between pancreatic cells under ER stress and ECs and the effect of a novel Nrf2 activator Rosolic Acid (RA), on the crosstalk was investigated. ECs pre-treated with different concentrations RA and co-cultured with thapsigargin-induced ER stressed pancreatic β-cells showed increased levels of Nrf2 and its downstream targets such as heme oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase-1 (NQO-1), and reduction of ER stress evinced by the decreased levels of glucose-regulated protein (GRP) 78 and C/ERB homologous protein (CHOP). The sensitization of ECs using RA, offered protection to pancreatic cells against ER stress as displayed by increased intracellular insulin and upregulated expression of cell survival and proliferative genes BCl2 and PDX-1. In addition, RA treatment resulted in elevated levels of various angiogenic factors, while inflammatory (TNF-α and IL-1β) and apoptotic markers (CXCL10 and CCL2) decreased. RA treatment normalized the levels of 115 proteins of the 277, which were differentially regulated as revealed by proteomic studies of ER stressed pancreatic β-cells in co-culture conditions. These findings clearly indicate the role of small molecule activators of Nrf2 not only in restoring the functioning of pancreatic cells but also in increasing the cell mass. Further, the study impinges on the strategies that can be developed to balance the pancreatic microenvironment, leading to the restoration of β-cell mass and their normophysiology in diabetic patients.
Collapse
Affiliation(s)
- Karan Naresh Amin
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Rajaguru Palanisamy
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, India
| | - D V L Sarada
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Daoud Ali
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Takayoshi Suzuki
- Division Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
18
|
Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021; 13:239-257. [PMID: 33751396 PMCID: PMC7943334 DOI: 10.1007/s13238-021-00831-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
19
|
Daniel B, Livne A, Cohen G, Kahremany S, Sasson S. Endothelial Cell-Derived Triosephosphate Isomerase Attenuates Insulin Secretion From Pancreatic Beta Cells of Male Rats. Endocrinology 2021; 162:6042346. [PMID: 33341896 DOI: 10.1210/endocr/bqaa234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis that contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. Glucose-stimulated insulin secretion (GSIS) assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass spectroscopic identification of the factor, and characterization of the mechanism of action. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme triosephosphate isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on the TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI-sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex attenuating interactions.
Collapse
Affiliation(s)
- Bareket Daniel
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ariela Livne
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Guy Cohen
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | - Shirin Kahremany
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shlomo Sasson
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
20
|
Cottle L, Gan WJ, Gilroy I, Samra JS, Gill AJ, Loudovaris T, Thomas HE, Hawthorne WJ, Kebede MA, Thorn P. Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia 2021; 64:618-629. [PMID: 33399909 PMCID: PMC7864831 DOI: 10.1007/s00125-020-05345-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/05/2022]
Abstract
AIMS/HYPOTHESIS We hypothesised that human beta cells are structurally and functional polarised with respect to the islet capillaries. We set out to test this using confocal microscopy to map the 3D spatial arrangement of key proteins and live-cell imaging to determine the distribution of insulin granule fusion around the cells. METHODS Human pancreas samples were rapidly fixed and processed using the pancreatic slice technique, which maintains islet structure and architecture. Slices were stained using immunofluorescence for polarity markers (scribble, discs large [Dlg] and partitioning defective 3 homologue [Par3]) and presynaptic markers (liprin, Rab3-interacting protein [RIM2] and piccolo) and imaged using 3D confocal microscopy. Isolated human islets were dispersed and cultured on laminin-511-coated coverslips. Live 3D two-photon microscopy was used on cultured cells to image exocytic granule fusion events upon glucose stimulation. RESULTS Assessment of the distribution of endocrine cells across human islets found that, despite distinct islet-to-islet complexity and variability, including multi-lobular islets, and intermixing of alpha and beta cells, there is still a striking enrichment of alpha cells at the islet mantle. Measures of cell position demonstrate that most beta cells contact islet capillaries. Subcellularly, beta cells consistently position polar determinants, such as Par3, Dlg and scribble, with a basal domain towards the capillaries and apical domain at the opposite face. The capillary interface/vascular face is enriched in presynaptic scaffold proteins, such as liprin, RIM2 and piccolo. Interestingly, enrichment of presynaptic scaffold proteins also occurs where the beta cells contact peri-islet capillaries, suggesting functional interactions. We also observed the same polarisation of synaptic scaffold proteins in islets from type 2 diabetic patients. Consistent with polarised function, isolated beta cells cultured onto laminin-coated coverslips target insulin granule fusion to the coverslip. CONCLUSIONS/INTERPRETATION Structural and functional polarisation is a defining feature of human pancreatic beta cells and plays an important role in the control of insulin secretion.
Collapse
Affiliation(s)
- Louise Cottle
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Wan Jun Gan
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Temasek Life-Science Laboratory, Singapore, Republic of Singapore
| | - Ian Gilroy
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder S Samra
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | | | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
21
|
Chen J, Lippo L, Labella R, Tan SL, Marsden BD, Dustin ML, Ramasamy SK, Kusumbe AP. Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. EMBO J 2021; 40:e105242. [PMID: 33215738 PMCID: PMC7780152 DOI: 10.15252/embj.2020105242] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Age-associated alterations of the hormone-secreting endocrine system cause organ dysfunction and disease states. However, the cell biology of endocrine tissue ageing remains poorly understood. Here, we perform comparative 3D imaging to understand age-related perturbations of the endothelial cell (EC) compartment in endocrine glands. Datasets of a wide range of markers highlight a decline in capillary and artery numbers, but not of perivascular cells in pancreas, testis and thyroid gland, with age in mice and humans. Further, angiogenesis and β-cell expansion in the pancreas are coupled by a distinct age-dependent subset of ECs. While this EC subpopulation supports pancreatic β cells, it declines during ageing concomitant with increased expression of the gap junction protein Gja1. EC-specific ablation of Gja1 restores β-cell expansion in the aged pancreas. These results provide a proof of concept for understanding age-related vascular changes and imply that therapeutic targeting of blood vessels may restore aged endocrine tissue function. This comprehensive data atlas offers over > 1,000 multicolour volumes for exploration and research in endocrinology, ageing, matrix and vascular biology.
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments GroupThe Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Department of ProsthodonticsState Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Luciana Lippo
- Tissue and Tumor Microenvironments GroupThe Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Rossella Labella
- Tissue and Tumor Microenvironments GroupThe Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Sin Lih Tan
- Tissue and Tumor Microenvironments GroupThe Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Brian D Marsden
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNDMUniversity of OxfordOxfordUK
| | - Michael L Dustin
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Saravana K Ramasamy
- Institute of Clinical SciencesImperial College LondonLondonUK
- MRC London Institute of Medical SciencesImperial College LondonLondonUK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments GroupThe Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| |
Collapse
|
22
|
Dybala MP, Gebien LR, Reyna ME, Yu Y, Hara M. Implications of Integrated Pancreatic Microcirculation: Crosstalk between Endocrine and Exocrine Compartments. Diabetes 2020; 69:2566-2574. [PMID: 33148810 PMCID: PMC7679783 DOI: 10.2337/db20-0810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
The endocrine and exocrine pancreas have been studied separately by endocrinologists and gastroenterologists as two organ systems. The pancreatic islet, consisting of 1-2% mass of the whole pancreas, has long been believed to be regulated independently from the surrounding exocrine tissues. Particularly, islet blood flow has been consistently illustrated as one-way flow from arteriole(s) to venule(s) with no integration of the capillary network between the endocrine and exocrine pancreas. It is likely linked to the long-standing dogma that the rodent islet has a mantle of non-β-cells and that the islet is completely separated from the exocrine compartment. A new model of islet microcirculation is built on the basis of analyses of in vivo blood flow measurements in mice and an in situ three-dimensional structure of the capillary network in mice and humans. The deduced integrated blood flow throughout the entire pancreas suggests direct interactions between islet endocrine cells and surrounding cells as well as the bidirectional blood flow between the endocrine and exocrine pancreas, not necessarily a unidirectional blood flow as in a so-called insuloacinar portal system. In this perspective, we discuss how this conceptual transformation could potentially affect our current understanding of the biology, physiology, and pathogenesis of the islet and pancreas.
Collapse
Affiliation(s)
| | - Lisa R Gebien
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Megan E Reyna
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Yolanda Yu
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
23
|
Abstract
BACKGROUND White adipose tissue (WAT) is a candidate transplantation site for islets. However, the mechanism of islet engraftment in WAT has not been fully investigated. In this study, we attempted to clarify the therapeutic effect and mechanism of islet transplantation into visceral WAT. METHODS Two hundred mouse islets were transplanted into epididymal WAT of syngeneic diabetic mice by wrapping islets with the tissue (fat-covered group). Mice that received intraperitoneal and renal subcapsular islet transplantations were used as negative and positive control groups, respectively. RESULTS The transplant efficacy, including improvements in blood glucose and plasma insulin levels and in glucose tolerance tests, of the fat-covered group was superior to the negative control group and almost equal to the positive control group. Vessel density of engrafted islets in the fat-covered group was higher than that in the positive control group. It was speculated that the mechanism of islet engraftment in WAT might consist of trapping islets in WAT, adhesion of islets via a combination of adhesion factors (fibronectin and integrin β1), and promotion of angiogenesis in islets by expression of angiogenic factors induced by adiponectin. CONCLUSIONS Visceral WAT is an important candidate for islet transplantation. Adhesion factors and adiponectin might contribute to islet engraftment into WAT. Further studies to elucidate the detailed mechanism are necessary.
Collapse
|
24
|
Abadpour S, Aizenshtadt A, Olsen PA, Shoji K, Wilson SR, Krauss S, Scholz H. Pancreas-on-a-Chip Technology for Transplantation Applications. Curr Diab Rep 2020; 20:72. [PMID: 33206261 PMCID: PMC7674381 DOI: 10.1007/s11892-020-01357-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human pancreas-on-a-chip (PoC) technology is quickly advancing as a platform for complex in vitro modeling of islet physiology. This review summarizes the current progress and evaluates the possibility of using this technology for clinical islet transplantation. RECENT FINDINGS PoC microfluidic platforms have mainly shown proof of principle for long-term culturing of islets to study islet function in a standardized format. Advancement in microfluidic design by using imaging-compatible biomaterials and biosensor technology might provide a novel future tool for predicting islet transplantation outcome. Progress in combining islets with other tissue types gives a possibility to study diabetic interventions in a minimal equivalent in vitro environment. Although the field of PoC is still in its infancy, considerable progress in the development of functional systems has brought the technology on the verge of a general applicable tool that may be used to study islet quality and to replace animal testing in the development of diabetes interventions.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kayoko Shoji
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Palikuqi B, Nguyen DHT, Li G, Schreiner R, Pellegata AF, Liu Y, Redmond D, Geng F, Lin Y, Gómez-Salinero JM, Yokoyama M, Zumbo P, Zhang T, Kunar B, Witherspoon M, Han T, Tedeschi AM, Scottoni F, Lipkin SM, Dow L, Elemento O, Xiang JZ, Shido K, Spence JR, Zhou QJ, Schwartz RE, De Coppi P, Rabbany SY, Rafii S. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 2020; 585:426-432. [PMID: 32908310 PMCID: PMC7480005 DOI: 10.1038/s41586-020-2712-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration1,2. This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)3 in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens4,5. In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting. The transient reactivation of ETV2 in adult human endothelial cells reprograms these cells to become adaptable vasculogenic endothelia that in three-dimensional matrices self-assemble into vascular networks that can transport blood and physiologically arborize organoids and decellularized tissues.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Duc-Huy T Nguyen
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ge Li
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro F Pellegata
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ying Liu
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus M Gómez-Salinero
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Balvir Kunar
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mavee Witherspoon
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Teng Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso M Tedeschi
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federico Scottoni
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Steven M Lipkin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lukas Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Koji Shido
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Qiao J Zhou
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Dybala MP, Butterfield JK, Hendren-Santiago BK, Hara M. Pancreatic Islets and Gestalt Principles. Diabetes 2020; 69:1864-1874. [PMID: 32669392 PMCID: PMC7458033 DOI: 10.2337/db20-0304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The human brain has inherent methodology to efficiently interpret complex environmental stimuli into understanding. This visual perception is governed by the law of simplicity, which is fundamental to Gestalt theory. First introduced in a seminal article by Wertheimer in 1923, the theory explains how the mind groups similar images and fills in gaps in order to perceive an amenable version of reality. The world we see consists of complex visual scenes, but rarely is the entire picture visible to us. Since it is inefficient for all visual data to be analyzed at once, certain patterns are given higher importance and made to stand out from the rest of the field in our brain. Here we propose that Gestalt theory may explain why rodent islet architecture has historically been seen as having a core-mantle arrangement. By filling in apparent gaps in the non-β-cell lining, the mind interprets it as a "whole" mantle, which may have further led to widely accepted notions regarding islet microcirculation, intra-islet signaling, and islet development. They are largely based on the prevailing stereotypic islet architecture in which an enclosed structure is presumed. Three-dimensional analysis provides more integrated views of islet and pancreatic microcirculation.
Collapse
Affiliation(s)
| | | | | | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
27
|
Dybala MP, Kuznetsov A, Motobu M, Hendren-Santiago BK, Philipson LH, Chervonsky AV, Hara M. Integrated Pancreatic Blood Flow: Bidirectional Microcirculation Between Endocrine and Exocrine Pancreas. Diabetes 2020; 69:1439-1450. [PMID: 32198213 PMCID: PMC7306124 DOI: 10.2337/db19-1034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a highly vascularized endocrine micro-organ. The unique architecture of rodent islets, a so-called core-mantle arrangement seen in two-dimensional images, led researchers to seek functional implications for islet hormone secretion. Three models of islet blood flow were previously proposed, all based on the assumption that islet microcirculation occurs in an enclosed structure. Recent electrophysiological and molecular biological studies using isolated islets also presumed unidirectional flow. Using intravital analysis of the islet microcirculation in mice, we found that islet capillaries were continuously integrated to those in the exocrine pancreas, which made the islet circulation rather open, not self-contained. Similarly in human islets, the capillary structure was integrated with pancreatic microvasculature in its entirety. Thus, islet microcirculation has no relation to islet cytoarchitecture, which explains its well-known variability throughout species. Furthermore, tracking fluorescent-labeled red blood cells at the endocrine-exocrine interface revealed bidirectional blood flow, with similar variability in blood flow speed in both the intra- and extra-islet vasculature. To date, the endocrine and exocrine pancreas have been studied separately by different fields of investigators. We propose that the open circulation model physically links both endocrine and exocrine parts of the pancreas as a single organ through the integrated vascular network.
Collapse
Affiliation(s)
| | | | - Maki Motobu
- Department of Pathology, The University of Chicago, Chicago, IL
| | | | - Louis H Philipson
- Department of Medicine, The University of Chicago, Chicago, IL
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | | | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
28
|
Yang W, Jiang Y, Wang Y, Zhang T, Liu Q, Wang C, Swisher G, Wu N, Chao C, Prasadan K, Gittes GK, Xiao X. Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Res Care 2020; 8:8/1/e000921. [PMID: 32144129 PMCID: PMC7059504 DOI: 10.1136/bmjdrc-2019-000921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Pancreatic beta cells proliferate in response to metabolic requirements during pregnancy, while failure of this response may cause gestational diabetes. A member of the vascular endothelial growth factor family, placental growth factor (PlGF), typically plays a role in metabolic disorder and pathological circumstance. The expression and function of PlGF in the endocrine pancreas have not been reported and are addressed in the current study. RESEARCH DESIGN AND METHODS PlGF levels in beta cells were determined by immunostaining or ELISA in purified beta cells in non-pregnant and pregnant adult mice. An adeno-associated virus (AAV) serotype 8 carrying a shRNA for PlGF under the control of a rat insulin promoter (AAV-rat insulin promoter (RIP)-short hairpin small interfering RNA for PlGF (shPlGF)) was prepared and infused into mouse pancreas through the pancreatic duct to specifically knock down PlGF in beta cells, and its effects on beta-cell growth were determined by beta-cell proliferation, beta-cell mass and insulin release. A macrophage-depleting reagent, clodronate, was coapplied into AAV-treated mice to study crosstalk between beta cells and macrophages. RESULTS PlGF is exclusively produced by beta cells in the adult mouse pancreas. Moreover, PlGF expression in beta cells was significantly increased during pregnancy. Intraductal infusion of AAV-RIP-shPlGF specifically knocked down PlGF in beta cells, resulting in compromised beta-cell proliferation, reduced growth in beta-cell mass and impaired glucose tolerance during pregnancy. Mechanistically, PlGF depletion in beta cells reduced islet infiltration of trophic macrophages, which appeared to be essential for gestational beta-cell growth. CONCLUSIONS Our study suggests that increased expression of PlGF in beta cells may trigger gestational beta-cell growth through recruited macrophages.
Collapse
Affiliation(s)
- Weixia Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Endocrinology, the First Affiliated Hospital of NanChang University, Nanchang, China
| | - Chaoban Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatric Endocrinology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Grant Swisher
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nannan Wu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Chelsea Chao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Troullinaki M, Chen LS, Witt A, Pyrina I, Phieler J, Kourtzelis I, Chmelar J, Sprott D, Gercken B, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Robo4-mediated pancreatic endothelial integrity decreases inflammation and islet destruction in autoimmune diabetes. FASEB J 2020; 34:3336-3346. [PMID: 31916652 DOI: 10.1096/fj.201900125rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
In Type 1 Diabetes Mellitus (T1DM), leukocyte infiltration of the pancreatic islets and the resulting immune-mediated destruction of beta cells precede hyperglycemia and clinical disease symptoms. In this context, the role of the pancreatic endothelium as a barrier for autoimmunity- and inflammation-related destruction of the islets is not well studied. Here, we identified Robo4, expressed on endothelial cells, as a regulator of pancreatic vascular endothelial permeability during autoimmune diabetes. Circulating levels of Robo4 were upregulated in mice subjected to the Multiple Low-Dose Streptozotocin (MLDS) model of diabetes. Upon MLDS induction, Robo4-deficiency resulted in increased pancreatic vascular permeability, leukocyte infiltration to the islets and islet apoptosis, associated with reduced insulin levels and faster diabetes development. On the contrary, in vivo administration of Slit2 in mice modestly delayed the emergence of hyperglycaemia and ameliorated islet inflammation in MLDS-induced diabetes. Thus, Robo4-mediated endothelial barrier integrity reduces insulitis and islet destruction in autoimmune diabetes. Our findings highlight the importance of the endothelium as gatekeeper of pancreatic inflammation during T1DM development and may pave the way for novel Robo4-related therapeutic approaches for autoimmune diabetes.
Collapse
Affiliation(s)
- Maria Troullinaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lan-Sun Chen
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Phieler
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jindrich Chmelar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Jun Y, Lee J, Choi S, Yang JH, Sander M, Chung S, Lee SH. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. SCIENCE ADVANCES 2019; 5:eaax4520. [PMID: 31807701 PMCID: PMC6881167 DOI: 10.1126/sciadv.aax4520] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Native pancreatic islets interact with neighboring cells by establishing three-dimensional (3D) structures, and are surrounded by perfusion at an interstitial flow level. However, flow effects are generally ignored in islet culture models, although cell perfusion is known to improve the cell microenvironment and to mimic in vivo physiology better than static culture systems. Here, we have developed functional islet spheroids using a microfluidic chip that mimics interstitial flow conditions with reduced shear cell damage. Dynamic culture, compared to static culture, enhanced islet health and maintenance of islet endothelial cells, reconstituting the main component of islet extracellular matrix within spheroids. Optimized flow condition allowed localization of secreted soluble factors near spheroids, facilitating diffusion-mediated paracrine interactions within islets, and enabled long-term maintenance of islet morphology and function for a month. The proposed model can aid islet preconditioning before transplantation and has potential applications as an in vitro model for diabetic drug testing.
Collapse
Affiliation(s)
- Yesl Jun
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seongkyun Choi
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- Next & Bio Inc., Seoul National University, Seoul 08826, Republic of Korea
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Park HS, Kim HZ, Park JS, Lee J, Lee SP, Kim H, Ahn CW, Nakaoka Y, Koh GY, Kang S. β-Cell-Derived Angiopoietin-1 Regulates Insulin Secretion and Glucose Homeostasis by Stabilizing the Islet Microenvironment. Diabetes 2019; 68:774-786. [PMID: 30728183 DOI: 10.2337/db18-0864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/26/2019] [Indexed: 11/13/2022]
Abstract
Islets are highly vascularized for prompt insulin secretion. Although angiopoietin-1 (Ang1) is a well-known angiogenic factor, its role in glucose homeostasis remains largely unknown. The objective of this study was to investigate whether and how Ang1 contributes to glucose homeostasis in response to metabolic challenge. We used inducible systemic Ang1 knockout (Ang1sys-/-) and β-cell-specific Ang1 knockout (Ang1β-cell-/-) mice fed a high-fat diet for 24 weeks. Although the degree of insulin sensitivity did not differ between Ang1sys-/- and Ang1sys+/+ mice, serum insulin levels were lower in Ang1sys-/- mice, resulting in significant glucose intolerance. Similar results were observed in Ang1β-cell-/- mice, suggesting a critical role of β-cell-derived Ang1 in glucose homeostasis. There were no differences in β-cell area or vasculature density, but glucose-stimulated insulin secretion was significantly decreased, and PDX-1 expression and GLUT2 localization were altered in Ang1β-cell-/- compared with Ang1β-cell+/+ mice. These effects were associated with less pericyte coverage, disorganized endothelial cell ultrastructure, and enhanced infiltration of inflammatory cells and upregulation of adhesion molecules in the islets of Ang1β-cell-/- mice. In conclusion, β-cell-derived Ang1 regulates insulin secretion and glucose homeostasis by stabilizing the blood vessels in the islet and may be a novel therapeutic target for diabetes treatment in the future.
Collapse
Affiliation(s)
- Ho Seon Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Hak Zoo Kim
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Jong Suk Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Junyeop Lee
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea
| | - Chul Woo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea
- Center for Vascular Research, Institute for Basic Science, Daejon, South Korea
| | - Shinae Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
33
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
34
|
Ceasrine AM, Lin EE, Lumelsky DN, Iyer R, Kuruvilla R. Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature. eLife 2018; 7:39689. [PMID: 30303066 PMCID: PMC6200393 DOI: 10.7554/elife.39689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022] Open
Abstract
A better understanding of processes controlling the development and function of pancreatic islets is critical for diabetes prevention and treatment. Here, we reveal a previously unappreciated function for pancreatic β2-adrenergic receptors (Adrb2) in controlling glucose homeostasis by restricting islet vascular growth during development. Pancreas-specific deletion of Adrb2 results in glucose intolerance and impaired insulin secretion in mice, and unexpectedly, specifically in females. The metabolic phenotypes were recapitulated by Adrb2 deletion from neonatal, but not adult, β-cells. Mechanistically, Adrb2 loss increases production of Vascular Endothelial Growth Factor-A (VEGF-A) in female neonatal β-cells and results in hyper-vascularized islets during development, which in turn, disrupts insulin production and exocytosis. Neonatal correction of islet hyper-vascularization, via VEGF-A receptor blockade, fully rescues functional deficits in glucose homeostasis in adult mutant mice. These findings uncover a regulatory pathway that functions in a sex-specific manner to control glucose metabolism by restraining excessive vascular growth during islet development.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David N Lumelsky
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Radhika Iyer
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
35
|
Expansion of transplanted islets in mice by co-transplantation with adipose tissue-derived mesenchymal stem cells. Heliyon 2018; 4:e00632. [PMID: 29872765 PMCID: PMC5986537 DOI: 10.1016/j.heliyon.2018.e00632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
The shortage of donor islets is a significant obstacle for widespread clinical application of pancreatic islet transplantation. To investigate whether adipose tissue-derived mesenchymal stem cells (ADSCs) induce expansion of transplanted islets, we performed co-transplantation experiments in a mouse model. Streptozotosin (STZ)-induced diabetic mice transplanted with 50 syngeneic islets remained hyperglycemic. However, hyperglycemia was ameliorated gradually when 50 islets were co-transplanted with ADSCs but not separately grafted into the contralateral kidney. Insulin and proinsulin contents of 120-day grafts containing 50 islets co-transplanted with ADSCs were significantly increased compared with those of 50 isolated islets. The Ki67-positive ratios in islets of the naïve pancreas, at 30 and 120 days grafts were 0.23%, 2.12%, and 1.52%, respectively. Ki67-positive cells were predominantly Pdx1+ and insulin+ cells. These results demonstrate that co-transplantation with ADSCs induces proliferation of transplanted islets in mice, suggesting a potential solution for the low efficiency of islet transplantation.
Collapse
|
36
|
Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Rep 2018; 23:1620-1629. [PMID: 29742420 PMCID: PMC8289710 DOI: 10.1016/j.celrep.2018.03.123] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by "self-condensation" culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation.
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, AB, Canada
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
37
|
Suganya N, Mani KP, Sireesh D, Rajaguru P, Vairamani M, Suresh T, Suzuki T, Chatterjee S, Ramkumar KM. Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. J Nutr Biochem 2018; 55:142-156. [PMID: 29455095 DOI: 10.1016/j.jnutbio.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/24/2023]
Abstract
The involvement of endoplasmic reticulum (ER) stress in endothelial dysfunction and diabetes-associated complications has been well documented. Inhibition of ER stress represents a promising therapeutic strategy to attenuate endothelial dysfunction in diabetes. Recent attention has focused on the development of small molecule inhibitors of ER stress to maintain endothelial homeostasis in diabetes. Here we have developed a reliable, robust co-culture system that allows a study on the endothelial cells and pancreatic β-cells crosstalk under ER stress and validated using a known ER stress modulator, quercetin. Furthermore, sensitizing of endothelial cells by quercetin (25 μM) confers protection of pancreatic β-cells against ER stress through nitric oxide (NO∙) signaling. In addition, increased intracellular insulin and NO∙-mediated cyclic 3',5'-guanosine monophosphate (cGMP) levels in pancreatic β-cells further confirmed the mechanism of protection under co-culture system. In addition, the potential protein targets of quercetin against ER stress in the endothelial cells were investigated through proteomic profiling and its phosphoprotein targets through Bioplex analysis. On the whole, the developed in vitro co-culture set up can serve as a platform to study the signaling network between the endothelial and pancreatic β-cells as well as provides a mechanistic insight for the validation of novel ER stress modulators.
Collapse
Affiliation(s)
- Natarajan Suganya
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Krishna Priya Mani
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Palanisamy Rajaguru
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli - 620 024, India
| | | | - Thiruppathi Suresh
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India; Department of Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
38
|
Li C, Yang B, Xu Z, Boivin E, Black M, Huang W, Xu B, Wu P, Zhang B, Li X, Chen K, Wu Y, Rayat GR. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. J Endocrinol 2017; 235:237-249. [PMID: 28931557 DOI: 10.1530/joe-17-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2 Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5-10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Bin Yang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Zhihao Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Xian Li
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kunsong Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulian Wu
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Gina R Rayat
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Aamodt KI, Powers AC. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab 2017; 19 Suppl 1:124-136. [PMID: 28880471 PMCID: PMC5679109 DOI: 10.1111/dom.13031] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
The progressive loss of pancreatic β-cell mass that occurs in both type 1 and type 2 diabetes is a primary factor driving efforts to identify strategies for effectively increasing, enhancing or restoring β-cell mass. While factors that seem to influence β-cell proliferation in specific contexts have been described, reliable stimulation of human β-cell proliferation has remained a challenge. Importantly, β-cells exist in the context of a complex, integrated pancreatic islet microenvironment where they interact with other endocrine cells, vascular endothelial cells, extracellular matrix, neuronal projections and islet macrophages. This review highlights different components of the pancreatic microenvironment, and reviews what is known about how signaling that occurs between β-cells and these other components influences β-cell proliferation. Future efforts to further define the role of the pancreatic islet microenvironment on β-cell proliferation may lead to the development of successful approaches to increase or restore β-cell mass in diabetes.
Collapse
Affiliation(s)
- Kristie I. Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
40
|
Facchinello N, Tarifeño-Saldivia E, Grisan E, Schiavone M, Peron M, Mongera A, Ek O, Schmitner N, Meyer D, Peers B, Tiso N, Argenton F. Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Sci Rep 2017; 7:9605. [PMID: 28851992 PMCID: PMC5575064 DOI: 10.1038/s41598-017-09867-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from β-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on β-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations.
Collapse
Affiliation(s)
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, I-35131, Padova, Italy
| | - Marco Schiavone
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Margherita Peron
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | | | - Olivier Ek
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Nicole Schmitner
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy.
| | | |
Collapse
|
41
|
GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 2017; 474:983-1001. [PMID: 28008135 DOI: 10.1042/bcj20160980] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.
Collapse
|
42
|
Mazier W, Cota D. Islet Endothelial Cell: Friend and Foe. Endocrinology 2017; 158:226-228. [PMID: 28430925 DOI: 10.1210/en.2016-1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Wilfrid Mazier
- INSERM, Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| |
Collapse
|
43
|
Establishment, characterization and long-term culture of human endocrine pancreas-derived microvascular endothelial cells. Cytotherapy 2017; 19:141-152. [DOI: 10.1016/j.jcyt.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
|
44
|
Kragl M, Schubert R, Karsjens H, Otter S, Bartosinska B, Jeruschke K, Weiss J, Chen C, Alsteens D, Kuss O, Speier S, Eberhard D, Müller DJ, Lammert E. The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nat Commun 2016; 7:13560. [PMID: 27995929 PMCID: PMC5187430 DOI: 10.1038/ncomms13560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. Vasculature is denser in soft than in stiff tissues. Kragl et al. suggest a mechanistic link between biomechanical tissue properties and vascularization by showing that integrin-linked kinase reduces the contractile forces of the cell cortex in endocrine pancreatic cells, facilitating their adhesion to blood vessels and enabling pancreatic islet vascularization.
Collapse
Affiliation(s)
- Martin Kragl
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rajib Schubert
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Chunguang Chen
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David Alsteens
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stephan Speier
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Daniel J Müller
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Ni W, Glenn DJ, Gardner DG. Tie-2Cre mediated deletion of the vitamin D receptor gene leads to improved skeletal muscle insulin sensitivity and glucose tolerance. J Steroid Biochem Mol Biol 2016; 164:281-286. [PMID: 26369613 PMCID: PMC4788578 DOI: 10.1016/j.jsbmb.2015.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
A variety of studies have suggested that vitamin D may play a palliative role in improving insulin secretion and glucose tolerance. Endothelial cells of the microcirculation are thought to play an important role in regulating both insulin secretion and insulin sensitivity in target tissues. We have selectively deleted the vitamin D receptor (VDR) gene in endothelial cells of the murine vasculature. These mice demonstrate improved glucose tolerance, improved insulin sensitivity in skeletal muscle, but not in liver, and a reduction in expression and secretion of insulin in the pancreatic islets. Collectively, these data, taken within the context of recent publications in this field, suggest that the endothelial cell VDR plays a tonic inhibitory role in regulating glucose disposal and could prove to be a factor in controlling glucose homeostasis in the intact organism.
Collapse
Affiliation(s)
- Wei Ni
- Diabetes Center, University of California, San Francisco, CA 94143-0540, United States
| | - Denis J Glenn
- Department of Medicine, University of California, San Francisco, CA 94143-0540, United States
| | - David G Gardner
- Department of Medicine, University of California, San Francisco, CA 94143-0540, United States.
| |
Collapse
|
46
|
Shah P, Lueschen N, Ardestani A, Oberholzer J, Olerud J, Carlsson PO, Maedler K. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes. PLoS One 2016; 11:e0161834. [PMID: 27617438 PMCID: PMC5019443 DOI: 10.1371/journal.pone.0161834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. METHODS Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. RESULTS Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN-ɣ and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to hypovascularized islets in response to HFD together with increased apoptosis and reduced β-cell mass. CONCLUSIONS Islet hypervascularization occurs in T2D. A balanced expression of the Ang1/Ang2 system is important for islet physiology. Ang-2 prevents β-cell mass and islet vascular adaptation in response to HFD feeding with no major influence on glucose homeostasis.
Collapse
Affiliation(s)
- Payal Shah
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Navina Lueschen
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Amin Ardestani
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Jose Oberholzer
- Division of Transplantation, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Johan Olerud
- Department of Immunology, Genetics and pathology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical cell biology and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kathrin Maedler
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany,German Center for Diabetes Research (DZD) project partner, University of Bremen, Bremen, Germany,* E-mail:
| |
Collapse
|
47
|
Sant KE, Jacobs HM, Xu J, Borofski KA, Moss LG, Moss JB, Timme-Laragy AR. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model. TOXICS 2016; 4. [PMID: 28393070 PMCID: PMC5380372 DOI: 10.3390/toxics4030020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.
Collapse
Affiliation(s)
- Karilyn E. Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Haydee M. Jacobs
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Jiali Xu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Katrina A. Borofski
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Larry G. Moss
- Duke Molecular Physiology Institute, Endocrine Division, Duke University Medical Center, Durham, NC 27701, USA; (L.G.M.); (J.B.M.)
| | - Jennifer B. Moss
- Duke Molecular Physiology Institute, Endocrine Division, Duke University Medical Center, Durham, NC 27701, USA; (L.G.M.); (J.B.M.)
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
- Correspondence: ; Tel.: +1-413-545-7423
| |
Collapse
|
48
|
Sionov RV, Finesilver G, Sapozhnikov L, Soroker A, Zlotkin-Rivkin E, Saad Y, Kahana M, Bodaker M, Alpert E, Mitrani E. Beta Cells Secrete Significant and Regulated Levels of Insulin for Long Periods when Seeded onto Acellular Micro-Scaffolds. Tissue Eng Part A 2016; 21:2691-702. [PMID: 26416226 DOI: 10.1089/ten.tea.2014.0711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to obtain significant and regulated insulin secretion from human beta cells ex vivo. Long-term culture of human pancreatic islets and attempts at expanding human islet cells normally result in loss of beta-cell phenotype. We propose that to obtain proper ex vivo beta cell function, there is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. We here describe the preparation of endocrine micro-pancreata (EMPs) that are made up of acellular organ-derived micro-scaffolds seeded with human intact or enzymatically dissociated islets. We show that EMPs constructed by seeding whole islets, freshly enzymatically-dissociated islets or even dissociated islets grown first in standard monolayer cultures express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than 3 months in vitro.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Gershon Finesilver
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Lena Sapozhnikov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Avigail Soroker
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Yocheved Saad
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Meygal Kahana
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Matan Bodaker
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Evgenia Alpert
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| |
Collapse
|
49
|
Michau A, Hodson DJ, Fontanaud P, Guillou A, Espinosa-Carrasco G, Molino F, Peters CJ, Robinson IC, Le Tissier P, Mollard P, Schaeffer M. Metabolism Regulates Exposure of Pancreatic Islets to Circulating Molecules In Vivo. Diabetes 2016; 65:463-75. [PMID: 26581596 DOI: 10.2337/db15-1168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cells modulate insulin secretion through rapid sensing of blood glucose and integration of gut-derived signals. Increased insulin demand during pregnancy and obesity alters islet function and mass and leads to gestational diabetes mellitus and type 2 diabetes in predisposed individuals. However, it is unclear how blood-borne factors dynamically access the islets of Langerhans. Thus, understanding the changes in circulating molecule distribution that accompany compensatory β-cell expansion may be key to developing novel antidiabetic therapies. Here, using two-photon microscopy in vivo in mice, we demonstrate that islets are almost instantly exposed to peaks of circulating molecules, which rapidly pervade the tissue before clearance. In addition, both gestation and short-term high-fat-diet feeding decrease molecule extravasation and uptake rates in vivo in islets, independently of β-cell expansion or islet blood flow velocity. Together, these data support a role for islet vascular permeability in shaping β-cell adaptive responses to metabolic demand by modulating the access and sensing of circulating molecules.
Collapse
Affiliation(s)
- Aurélien Michau
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - David J Hodson
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, U.K. Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Pierre Fontanaud
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Anne Guillou
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Gabriel Espinosa-Carrasco
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Lymphocyte Differentiation, Tolerance, and Metabolism Laboratory, Institute for Regenerative Medicine and Biotherapy, U1183, Montpellier, France
| | - François Molino
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Charles Coulomb Laboratory, University of Montpellier, CNRS, UMR-5221, Montpellier, France
| | - Catherine J Peters
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, London, U.K
| | - Iain C Robinson
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, London, U.K
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, U.K
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Marie Schaeffer
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| |
Collapse
|
50
|
Hawthorne WJ. Necessities for a Clinical Islet Program. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:67-88. [PMID: 27586423 DOI: 10.1007/978-3-319-39824-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For more than two decades we have been refining advances in islet cell transplantation as a clinical therapy for patients suffering from type 1 diabetes. A great deal of effort has gone to making this a viable therapy for a broader range of patients with type 1 diabetes. Clinical results have progressively improved, demonstrating clinical outcomes on par with other organ transplants, specifically in terms of insulin independence, graft and patient survival. We are now at the point where islet cell transplantation, in the form of allotransplantation, has become accepted as a clinical therapy in adult patients affected by type 1 diabetes, in particular those suffering from severe hypoglycaemic unawareness. This chapter provides an overview on how this has been undertaken over the years to provide outcomes on par with other organ transplantation results. In particular this chapter focuses on the processes and facilities that are required to establish a clinical islet isolation and transplantation program. It also outlines the very important underpinning processes of selection of the organ donor for islet isolation, the processes of organ donor operation and preservation of the pancreas by various means and the ideal ways to best improve outcomes for human islet cell isolation. Providing these more optimal conditions we can underpin the isolation processes to provide islets for transplantation and as such a safe, effective and feasible therapeutic option for an increasing number of patients suffering from type 1 diabetes with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|