1
|
Ye Z, Huang K, Dai X, Gao D, Gu Y, Qian J, Zhang F, Zhai Q. Light-phase time-restricted feeding disrupts the muscle clock and insulin sensitivity yet potentially induces muscle fiber remodeling in mice. Heliyon 2024; 10:e37475. [PMID: 39328525 PMCID: PMC11425116 DOI: 10.1016/j.heliyon.2024.e37475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle plays a critical role in regulating systemic metabolic homeostasis. It has been demonstrated that time-restricted feeding (TRF) during the rest phase can desynchronize the suprachiasmatic nucleus (SCN) and peripheral clocks, thereby increasing the risk of metabolic diseases. However, the impact of dietary timing on the muscle clock and health remains poorly understood. Here, through the analysis of cycling genes and differentially expressed genes in the skeletal muscle transcriptome, we identified disruptions in muscle diurnal rhythms by 2 weeks of light-phase TRF. Furthermore, compared with ad libitum (AL) feeding mice, 2 weeks of light-phase TRF was found to induce insulin resistance, muscle fiber type remodeling, and changes in the expression of muscle growth-related genes, while both light-phase and dark-phase TRF having a limited impact on bone quality relative to AL mice. In summary, our research reveals that the disruption of the skeletal muscle clock may contribute to the abnormal metabolic phenotype resulting from feeding restricted to the inactive period. Additionally, our study provides a comprehensive omics atlas of the diurnal rhythms in skeletal muscle regulated by dietary timing.
Collapse
Affiliation(s)
- Zhou Ye
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xueqin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dandan Gao
- Wenzhou Medical University, Wenzhou, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Jun Qian
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Feng Zhang
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qiaocheng Zhai
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Dong H, Wang S, Hu C, Wang M, Zhou T, Zhou Y. Neuroprotective Effects of Intermittent Fasting in the Aging Brain. ANNALS OF NUTRITION & METABOLISM 2024; 80:175-185. [PMID: 38631305 DOI: 10.1159/000538782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A major risk factor for neurodegenerative disorders is old age. Nutritional interventions that delay aging, such as calorie restriction (CR) and intermittent fasting (IF), as well as pharmaceuticals that affect the pathways linking nutrition and aging processes, have been developed in recent decades and have been shown to alleviate the effects of aging on the brain. SUMMARY CR is accomplished by alternating periods of ad libitum feeding and fasting. In animal models, IF has been shown to increase lifespan and slow the progression and severity of age-related pathologies such as cardiovascular and neurodegenerative diseases and cancer. According to recent research, dietary changes can help older people with dementia retain brain function. However, the mechanisms underlying the neuroprotective effect of IF on the aging brain and related questions in this area of study (i.e., the potential of IF to treat neurodegenerative disorders) remain to be examined. KEY MESSAGES This review addresses the hypothesis that IF may have translational potential in protecting the aged brain while summarizing the research supporting the putative neuroprotective mechanisms of IF in animal models. Additionally, given the emerging understanding of the connection between aging and dementia, our investigations may offer a fresh perspective on the use of dietary interventions for enhancing brain function and preventing dementia in elderly individuals. Finally, the absence of guidelines regarding the application of IF in patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge of the long-term effects of IF on dementia before it can be widely prescribed. In conclusion, IF may be an ancillary intervention for preserving memory and cognition in elderly individuals.
Collapse
Affiliation(s)
- Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Pharmaceutical and Medical Equipment, Ba Yi Orthopedic Hospital, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
3
|
Han S, Seo KH, Gyu Lee H, Kim H. Effect of Cucumis melo L. peel extract supplemented postbiotics on reprograming gut microbiota and sarcopenia in hindlimb-immobilized mice. Food Res Int 2023; 173:113476. [PMID: 37803799 DOI: 10.1016/j.foodres.2023.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Postbiotics made from lactic acid bacteria may ameliorate sarcopenia via the metabolic reprogramming of gut dysbiosis. This study investigated the anti-sarcopenic effect of postbiotics (WDK) produced from polyphenol-rich melon peel extract (Cucumis melo L. var. makuwa, KEE) and whey with Lentilactobacillus kefiri DH5 (DH5) in C2C12 skeletal muscle cells and hindlimb-immobilized mice. WDK significantly ameliorated palmitate-induced atrophy of C2C12 cells, restoring myotube length and diameter. It also upregulated the expression of myogenic genes including Atrogin-1, Igf-1, and MyoD. Hindlimb-immobilized C57BL/6J mice were randomly divided and orally administered 10 mL/kg body weight of saline (CON), Whey, Whey + DH5 (WD), DH5 + KEE, Whey + DH5 + KEE postbiotic (WDK) for three weeks (n = 10/group). Interestingly, WDK significantly improved muscle function in hindlimb-immobilized mice by restoring both the grip strength and the mass of the soleus muscle, which was closely related to the upregulation of the myoD gene. WDK increased microbial diversity and modulated the distribution of intestinal bacteria, particularly those involved in protein synthesis and the production of butyrate. There was a significant correlation between myogenic biomarkers and butyrate producing gut microbiota. Restoration of muscle mass and function following postbiotic WDK is strongly related to the regulation of myogenic genes by in part remodulating gut microbiota. In conclusion, these findings suggest that polyphenol- and whey-based postbiotics WDK may have potential as an effective manner to combat the progression of sarcopenia.
Collapse
Affiliation(s)
- Sanghoon Han
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon Gyu Lee
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea.
| |
Collapse
|
4
|
Li J, Zhang Y, Yu F, Pan Y, Zhang Z, He Y, Yang H, Zhou P. Proteoglycan Extracted from Ganoderma lucidum Ameliorated Diabetes-Induced Muscle Atrophy via the AMPK/SIRT1 Pathway In Vivo and In Vitro. ACS OMEGA 2023; 8:30359-30373. [PMID: 37636971 PMCID: PMC10448640 DOI: 10.1021/acsomega.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Muscle atrophy often occurs in type 2 diabetes (T2D) and leads to an increase in physical disability and insulin resistance. However, there are very few studies that have investigated potential natural products used for this condition. In this study, we demonstrated that FYGL (Fudan-Yueyang-G. lucidum), a proteoglycan extracted from Ganoderma lucidum, ameliorated muscle atrophy in rat and mouse models of diabetes. Histopathological analysis of muscle revealed that oral administration of FYGL significantly prevented reduction of the cross-sectional area of muscle fibers and overexpression of muscle atrophic factors in diabetic rats and mice. Muscle RNA-seq analysis in vivo indicated that FYGL regulated genes related to myogenesis, muscle atrophy, and oxidative phosphorylation. Also, FYGL activated AMPK in vivo. Furthermore, the underlying molecular mechanisms were studied in palmitate-induced C2C12 muscle cells using immunofluorescence staining and Western blotting, which revealed that FYGL inhibited muscle atrophy by stimulating ATP production and activating the AMPK/SIRT1 pathway, thus promoting oxidative metabolism. This result rationalized the in vivo findings. These results suggest FYGL as a promising functional food ingredient for the prevention of T2D-induced muscle atrophy.
Collapse
Affiliation(s)
- Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ying Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yanna Pan
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Misquitta NS, Ravel-Chapuis A, Jasmin BJ. Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. Hum Mol Genet 2023; 32:551-566. [PMID: 36048859 DOI: 10.1093/hmg/ddac222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.
Collapse
Affiliation(s)
- Naomi S Misquitta
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Hafen PS, Law AS, Matias C, Miller SG, Brault JJ. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1. J Appl Physiol (1985) 2022; 133:1055-1066. [PMID: 36107988 PMCID: PMC9602816 DOI: 10.1152/japplphysiol.00035.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
AMP deaminase 1 (AMPD1; AMP → IMP + NH3) deficiency in skeletal muscle results in an inordinate accumulation of AMP during strenuous exercise, with some but not all studies reporting premature fatigue and reduced work capacity. To further explore these inconsistencies, we investigated the extent to which AMPD1 deficiency impacts skeletal muscle contractile function of different muscles and the [AMP]/AMPK responses to different intensities of fatiguing contractions. To reduce AMPD1 protein, we electroporated either an inhibitory AMPD1-specific miRNA encoding plasmid or a control plasmid, into contralateral EDL and SOL muscles of C57BL/6J mice (n = 48 males, 24 females). After 10 days, isolated muscles were assessed for isometric twitch, tetanic, and repeated fatiguing contraction characteristics using one of four (None, LOW, MOD, and HIGH) duty cycles. AMPD1 knockdown (∼35%) had no effect on twitch force or twitch contraction/relaxation kinetics. However, during maximal tetanic contractions, AMPD1 knockdown impaired both time-to-peak tension (TPT) and half-relaxation time (½ RT) in EDL, but not SOL muscle. In addition, AMPD1 knockdown in EDL exaggerated the AMP response to contractions at LOW (+100%) and MOD (+54%) duty cycles, but not at HIGH duty cycle. This accumulation of AMP was accompanied by increased AMPK phosphorylation (Thr-172; LOW +25%, MOD +34%) and downstream substrate phosphorylation (LOW +15%, MOD +17%). These responses to AMPD1 knockdown were not different between males and females. Our findings demonstrate that AMPD1 plays a role in maintaining skeletal muscle contractile function and regulating the energetic responses associated with repeated contractions in a muscle- but not sex-specific manner.NEW & NOTEWORTHY AMP deaminase 1 (AMPD1) deficiency has been associated with premature muscle fatigue and reduced work capacity, but this finding has been inconsistent. Herein, we report that although AMPD1 knockdown in mouse skeletal muscle does not change maximal isometric force, it negatively impacts muscle function by slowing contraction and relaxation kinetics in EDL muscle but not SOL muscle. Furthermore, AMPD1 knockdown differentially affects the [AMP]/AMPK responses to fatiguing contractions in an intensity-dependent manner in EDL muscle.
Collapse
Affiliation(s)
- Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew S Law
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Catalina Matias
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Spencer G Miller
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Gu L, Zhang S, Li B, Jiang Q, Xu T, Huang Y, Lin D, Xing M, Huang L, Zheng X, Wang F, Chao Z, Sun W. m6A and miRNA jointly regulate the development of breast muscles in duck embryonic stages. Front Vet Sci 2022; 9:933850. [PMID: 36353255 PMCID: PMC9637736 DOI: 10.3389/fvets.2022.933850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant internal mRNA modification and plays a crucial regulatory role in animal growth and development. In recent years, m6A modification has been found to play a key role in skeletal muscles. However, whether m6A modification contributes to embryonic breast muscle development of Pekin ducks has not been explored. To explore the role of m6A in embryonic breast muscle development of ducks, we performed m6A sequencing and miRNA sequencing for the breast muscle of duck embryos on the 19th (E19) and 27th (E27) days. A total of 12,717 m6A peaks were identified at E19, representing a total of 7,438 gene transcripts. A total of 14,703 m6A peaks were identified, which overlapped with the transcripts of 7,753 genes at E27. Comparing E19 and E27, we identified 2,347 differential m6A peaks, which overlapped with 1,605 m6A-modified genes (MMGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that MMGs were enriched in multiple muscle- or fat-related pathways, which was also revealed from our analysis of differentially expressed genes (DEGs). Conjoint analysis of m6A-seq and RNA-seq data showed that pathways related to β-oxidation of fatty acids and skeletal muscle development were significantly enriched, suggesting that m6A modification is involved in the regulation of fat deposition and skeletal muscle development. There were 90 upregulated and 102 downregulated miRNAs identified between the E19 and E27 stages. Through overlapping analysis of genes shared by MMGs and DEGs and the targets of differentially expressed miRNAs (DEMs), we identified six m6A-mRNA-regulated miRNAs. Finally, we found that m6A modification can regulate fat deposition and skeletal muscle development. In conclusion, our results suggest that m6A modification is a key regulator for embryonic breast muscle development and fat deposition of ducks by affecting expressions of mRNAs and miRNAs. This is the first study to comprehensively characterize the m6A patterns in the duck transcriptome. These data provide a solid basis for future work aimed at determining the potential functional roles of m6A modification in adipose deposition and muscle growth.
Collapse
Affiliation(s)
- Lihong Gu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Shunjin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Boling Li
- The Hainan Animal Husbandry Technology Promotion Station, Haikou, China
| | - Qicheng Jiang
- School of Life Science, Hainan University, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Tieshan Xu
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Manping Xing
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Lili Huang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
9
|
Nomikos T, Methenitis S, Panagiotakos DB. The emerging role of skeletal muscle as a modulator of lipid profile the role of exercise and nutrition. Lipids Health Dis 2022; 21:81. [PMID: 36042487 PMCID: PMC9425975 DOI: 10.1186/s12944-022-01692-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The present article aims to discuss the hypothesis that skeletal muscle per se but mostly its muscle fiber composition could be significant determinants of lipid metabolism and that certain exercise modalities may improve metabolic dyslipidemia by favorably affecting skeletal muscle mass, fiber composition and functionality. It discusses the mediating role of nutrition, highlights the lack of knowledge on mechanistic aspects of this relationship and proposes possible experimental directions in this field.
Collapse
Affiliation(s)
- Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece.
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports. Science, National and Kapodistrian University of Athens, Athens, Greece.,Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| |
Collapse
|
10
|
Ravel-Chapuis A, Duchesne E, Jasmin BJ. Pharmacological and exercise-induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. J Physiol 2022; 600:3249-3264. [PMID: 35695045 DOI: 10.1113/jp282725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.,Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Ubaida-Mohien C, Spendiff S, Lyashkov A, Moaddel R, MacMillan NJ, Filion ME, Morais JA, Taivassalo T, Ferrucci L, Hepple RT. Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. eLife 2022; 11:e74335. [PMID: 35404238 PMCID: PMC9090325 DOI: 10.7554/elife.74335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Master athletes (MAs) prove that preserving a high level of physical function up to very late in life is possible, but the mechanisms responsible for their high function remain unclear. Methods We performed muscle biopsies in 15 octogenarian world-class track and field MAs and 14 non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving function in advanced age. Muscle samples were assessed for respiratory compromised fibers, mitochondrial DNA (mtDNA) copy number, and proteomics by liquid-chromatography mass spectrometry. Results MA exhibited markedly better performance on clinical function tests and greater cross-sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, where most of the ~800 differentially represented proteins in MA versus NA pertained to mitochondria structure/function such as electron transport capacity (ETC), cristae formation, mitochondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage-dependent anion channel. There was a substantial overlap of proteins overrepresented in MA versus NA with proteins that decline with aging and that are higher in physically active than sedentary individuals. However, we also found 176 proteins related to mitochondria that are uniquely differentially expressed in MA. Conclusions We conclude that high function in advanced age is associated with preserving mitochondrial structure/function proteins, with underrepresentation of proteins involved in the spliceosome and nuclear pore complex. Whereas many of these differences in MA appear related to their physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms that preserve muscle integrity and function with aging. Funding Funding for this study was provided by operating grants from the Canadian Institutes of Health Research (MOP 84408 to TT and MOP 125986 to RTH). This work was supported in part by the Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Sally Spendiff
- Research Institute, Children's Hospital of Eastern OntarioOttawaCanada
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Norah J MacMillan
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Marie-Eve Filion
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Jose A Morais
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Tanja Taivassalo
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Russell T Hepple
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- Department of Physiology and Functional Genomics, University of FloridaGainesvilleUnited States
| |
Collapse
|
12
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
13
|
Edinburgh RM, Koumanov F, Gonzalez JT. Impact of pre-exercise feeding status on metabolic adaptations to endurance-type exercise training. J Physiol 2022; 600:1327-1338. [PMID: 33428210 PMCID: PMC11497303 DOI: 10.1113/jp280748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 10/25/2024] Open
Abstract
Nutrition and exercise metabolism are vibrant physiological fields, yet at times it feels as if greater progress could be made by better integrating these disciplines. Exercise is advocated for improving metabolic health, in part by increasing peripheral insulin sensitivity and glycaemic control. However, when a modest-to-high carbohydrate load is consumed before and/or during each exercise bout within a training programme, increases in oral glucose insulin sensitivity can be blunted in both men of a healthy weight and those with overweight/obesity. Exercise training-induced adaptation in the energy sensing AMP-activated protein kinase (AMPK) and the insulin-sensitive glucose transporter GLUT4 protein levels are sensitive to pre-exercise feeding status in both healthy individuals and individuals classified as overweight or obese. Increased lipid oxidation may, in part, explain the enhanced adaptive responses to exercise training performed before (i.e. fasted-state exercise) versus after nutrient ingestion. Evidence in individuals with type 2 diabetes currently shows no effect of altering nutrient-exercise timing for measured markers of metabolic health, or greater reductions in glycated haemoglobin (HbA1c) concentrations with exercise performed after versus before nutrient provision. Since the metabolic inflexibility associated with type 2 diabetes diminishes differences in lipid oxidation between the fasted and fed states, it is plausible that pre-exercise feeding status does not alter adaptations to exercise when metabolic flexibility is already compromised. Current evidence suggests restricting carbohydrate intake before and during exercise can enhance some health benefits of exercise, but in order to establish clinical guidelines, further research is needed with hard outcomes and different populations.
Collapse
|
14
|
Akberdin IR, Kiselev IN, Pintus SS, Sharipov RN, Vertyshev AY, Vinogradova OL, Popov DV, Kolpakov FA. A Modular Mathematical Model of Exercise-Induced Changes in Metabolism, Signaling, and Gene Expression in Human Skeletal Muscle. Int J Mol Sci 2021; 22:10353. [PMID: 34638694 PMCID: PMC8508736 DOI: 10.3390/ijms221910353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Sergey S. Pintus
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | | | - Olga L. Vinogradova
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Fedor A. Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| |
Collapse
|
15
|
Wang CC, Chen HJ, Chan DC, Chiu CY, Liu SH, Lan KC. Low-Dose Acrolein, an Endogenous and Exogenous Toxic Molecule, Inhibits Glucose Transport via an Inhibition of Akt-Regulated GLUT4 Signaling in Skeletal Muscle Cells. Int J Mol Sci 2021; 22:ijms22137228. [PMID: 34281282 PMCID: PMC8268984 DOI: 10.3390/ijms22137228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/28/2023] Open
Abstract
Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.
Collapse
Affiliation(s)
- Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan;
| | - Huang-Jen Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei 115, Taiwan;
| | - Shing-Hwa Liu
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan;
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Correspondence: (S.-H.L.); (K.-C.L.)
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (S.-H.L.); (K.-C.L.)
| |
Collapse
|
16
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Furuichi Y, Kawabata Y, Aoki M, Mita Y, Fujii NL, Manabe Y. Excess Glucose Impedes the Proliferation of Skeletal Muscle Satellite Cells Under Adherent Culture Conditions. Front Cell Dev Biol 2021; 9:640399. [PMID: 33732705 PMCID: PMC7957019 DOI: 10.3389/fcell.2021.640399] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Glucose is a major energy source consumed by proliferating mammalian cells. Therefore, in general, proliferating cells have the preference of high glucose contents in extracellular environment. Here, we showed that high glucose concentrations impede the proliferation of satellite cells, which are muscle-specific stem cells, under adherent culture conditions. We found that the proliferation activity of satellite cells was higher in glucose-free DMEM growth medium (low-glucose medium with a glucose concentration of 2 mM) than in standard glucose DMEM (high-glucose medium with a glucose concentration of 19 mM). Satellite cells cultured in the high-glucose medium showed a decreased population of reserve cells, identified by staining for Pax7 expression, suggesting that glucose concentration affects cell fate determination. In conclusion, glucose is a factor that decides the cell fate of skeletal muscle-specific stem cells. Due to this unique feature of satellite cells, hyperglycemia may negatively affect the regenerative capability of skeletal muscle myofibers and thus facilitate sarcopenia.
Collapse
Affiliation(s)
- Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuki Kawabata
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Miho Aoki
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Mita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
18
|
McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M, Gondin J, Toller-Kawahisa JE, Reutelingsperger CP, Chazaud B, Perretti M, Mounier R. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest 2020; 130:1156-1167. [PMID: 32015229 PMCID: PMC7269594 DOI: 10.1172/jci124635] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry and.,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gaëtan Juban
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thibaut Desgeorges
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Marine Theret
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Julien Gondin
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Juliana E Toller-Kawahisa
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Chris P Reutelingsperger
- Department of Biochemistry and.,Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Bénédicte Chazaud
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Rémi Mounier
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
19
|
CARM1 Regulates AMPK Signaling in Skeletal Muscle. iScience 2020; 23:101755. [PMID: 33241200 PMCID: PMC7672286 DOI: 10.1016/j.isci.2020.101755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK. We observed altered interactions between CARM1 and AMPK and its network, including forkhead box protein O1, during muscle disuse. CARM1 methylated AMPK during the early stages of muscle inactivity, whereas CARM1 mKO mitigated progression of denervation-induced atrophy and was accompanied by attenuated phosphorylation of AMPK targets such as unc-51 like autophagy-activating kinase 1Ser555. Lower acetyl-coenzyme A corboxylaseSer79 phosphorylation, as well as reduced peroxisome proliferator-activated receptor-γ coactivator-1α, was also observed in mKO animals following acute administration of the direct AMPK activator MK-8722. Our study suggests that targeting CARM1-AMPK interplay may have broad impacts on neuromuscular health and disease. Role of the arginine methyltransferase CARM1 in muscle biology remains undefined Skeletal muscle-specific removal of CARM1 alters autophagic and atrophic processes CARM1 methylates AMPK and mediates AMPK signaling during neurogenic muscle disuse Targeted pharmacological AMPK stimulation is impacted by CARM1 in skeletal muscle
Collapse
|
20
|
Ayinde KS, Olaoba OT, Ibrahim B, Lei D, Lu Q, Yin X, Adelusi TI. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy. Life Sci 2020; 261:118455. [PMID: 32956662 DOI: 10.1016/j.lfs.2020.118455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic complication of diabetes mellitus (DM) with approximately 30-40% of patients with DM developing nephropathy, and it is the leading cause of end-stage renal diseases and diabetic morbidity. The pathogenesis of DN is primarily associated with irregularities in the metabolism of glucose and lipid leading to hyperglycemia-induced oxidative stress, which has been a major target together with blood pressure regulation in the control of DN progression. However, the regulation of 5' adenosine monophosphate-activated protein kinase (AMPK), a highly conserved protein kinase for maintaining energy balance and cellular growth and repair has been implicated in the development of DM and its complications. Therefore, targeting AMPK pathway has been explored as a therapeutic strategy for the treatment of diabetes and its complication, although most of the mechanisms have not been fully elucidated. In this review, we discuss the structure of AMPK relevant to understanding its allosteric regulation and its role in the pathogenesis and progression of DN. We also identify therapeutic agents that modulate AMPK and its downstream targets with their specific mechanisms of action in the treatment of DN.
Collapse
Affiliation(s)
| | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Boyenle Ibrahim
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
21
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
22
|
Amaral LSDB, Souza CS, Lima HN, Soares TDJ. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med (Maywood) 2020; 245:1142-1154. [PMID: 32486850 PMCID: PMC7400720 DOI: 10.1177/1535370220928986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT Diabetic kidney disease (DKD) is associated with increased mortality in diabetic patients and has a negative impact on public health. The identification of potential therapies that help the management of DKD can contribute to the improvement of health and quality of life of patients. Thus, this paper is timely and relevant because, in addition to presenting a concise review of the pathogenesis and major pathophysiological mechanisms of DKD, it addresses the most recent findings on the impact of exercise training on this disease. Thus, since non-pharmacological interventions have gained increasing attention in the fight against chronic diseases, this paper appears as an important tool to increase knowledge and stimulate innovative research on the impact of exercise on kidney disease.
Collapse
Affiliation(s)
| | - Cláudia Silva Souza
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil
| | | | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia 45029-094, Brazil
| |
Collapse
|
23
|
Coccimiglio IF, Clarke DC. ADP is the dominant controller of AMP-activated protein kinase activity dynamics in skeletal muscle during exercise. PLoS Comput Biol 2020; 16:e1008079. [PMID: 32730244 PMCID: PMC7433884 DOI: 10.1371/journal.pcbi.1008079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/18/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
Exercise training elicits profound metabolic adaptations in skeletal muscle cells. A key molecule in coordinating these adaptations is AMP-activated protein kinase (AMPK), whose activity increases in response to cellular energy demand. AMPK activity dynamics are primarily controlled by the adenine nucleotides ADP and AMP, but how each contributes to its control in skeletal muscle during exercise is unclear. We developed and validated a mathematical model of AMPK signaling dynamics, and then applied global parameter sensitivity analyses with data-informed constraints to predict that AMPK activity dynamics are determined principally by ADP and not AMP. We then used the model to predict the effects of two additional direct-binding activators of AMPK, ZMP and Compound 991, further validating the model and demonstrating its applicability to understanding AMPK pharmacology. The relative effects of direct-binding activators can be understood in terms of four properties, namely their concentrations, binding affinities for AMPK, abilities to enhance AMPK phosphorylation, and the magnitudes of their allosteric activation of AMPK. Despite AMP's favorable values in three of these four properties, ADP is the dominant controller of AMPK activity dynamics in skeletal muscle during exercise by virtue of its higher concentration compared to that of AMP.
Collapse
Affiliation(s)
- Ian F. Coccimiglio
- Department of Biomedical Physiology and Kinesiology and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
| | - David C. Clarke
- Department of Biomedical Physiology and Kinesiology and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
24
|
McCallum ML, Pru CA, Smith AR, Kelp NC, Foretz M, Viollet B, Du M, Pru JK. A functional role for AMPK in female fertility and endometrial regeneration. Reproduction 2020; 156:501-513. [PMID: 30328345 DOI: 10.1530/rep-18-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved heterotrimeric complex that acts as an intracellular energy sensor. Based on recent observations of AMPK expression in all structures of the female reproductive system, we hypothesized that AMPK is functionally required for maintaining fertility in the female. This hypothesis was tested by conditionally ablating the two catalytic alpha subunits of AMPK, Prkaa1 and Prkaa2, using Pgr-cre mice. After confirming the presence of PRKAA1, PRKAA2 and the active phospho-PRKAA1/2 in the gravid uterus by immunohistochemistry, control (Prkaa1/2 fl/fl ) and double conditional knockout mice (Prkaa1/2 d/d ) were placed into a six-month breeding trial. While the first litter size was comparable between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice (P = 0.8619), the size of all subsequent litters was dramatically reduced in Prkaa1/2 d/d female mice (P = 0.0015). All Prkaa1/2 d/d female mice experienced premature reproductive senescence or dystocia by the fourth parity. This phenotype manifested despite no difference in estrous cycle length, ovarian histology in young and old nulliparous or multiparous animals, mid-gestation serum progesterone levels or uterine expression of Esr1 or Pgr between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice suggesting that the hypothalamic-pituitary-ovary axis remained unaffected by PRKAA1/2 deficiency. However, an evaluation of uterine histology from multiparous animals identified extensive endometrial fibrosis and disorganized stromal-glandular architecture indicative of endometritis, a condition that causes subfertility or infertility in most mammals. Interestingly, Prkaa1/2 d/d female mice failed to undergo artificial decidualization. Collectively, these findings suggest that AMPK plays an essential role in endometrial regeneration following parturition and tissue remodeling that accompanies decidualization.
Collapse
Affiliation(s)
- Melissa L McCallum
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Andrea R Smith
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Du
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
25
|
Lambert M, Claeyssen C, Bastide B, Cieniewski‐Bernard C. O-GlcNAcylation as a regulator of the functional and structural properties of the sarcomere in skeletal muscle: An update review. Acta Physiol (Oxf) 2020; 228:e13301. [PMID: 31108020 DOI: 10.1111/apha.13301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Although the O-GlcNAcylation process was discovered in 1984, its potential role in the physiology and physiopathology of skeletal muscle only emerged 20 years later. An increasing number of publications strongly support a key role of O-GlcNAcylation in the modulation of important cellular processes which are essential for skeletal muscle functions. Indeed, over a thousand of O-GlcNAcylated proteins have been identified within skeletal muscle since 2004, which belong to various classes of proteins, including sarcomeric proteins. In this review, we focused on these myofibrillar proteins, including contractile and structural proteins. Because of the modification of motor and regulatory proteins, the regulatory myosin light chain (MLC2) is related to several reports that support a key role of O-GlcNAcylation in the fine modulation of calcium activation parameters of skeletal muscle fibres, depending on muscle phenotype and muscle work. In addition, another key function of O-GlcNAcylation has recently emerged in the regulation of organization and reorganization of the sarcomere. Altogether, this data support a key role of O-GlcNAcylation in the homeostasis of sarcomeric cytoskeleton, known to be disturbed in many related muscle disorders.
Collapse
Affiliation(s)
- Matthias Lambert
- Univ. Lille, EA 7369 ‐ URePSSS ‐ Unité de Recherche Pluridisciplinaire Sport Santé Société Lille France
| | - Charlotte Claeyssen
- Univ. Lille, EA 7369 ‐ URePSSS ‐ Unité de Recherche Pluridisciplinaire Sport Santé Société Lille France
| | - Bruno Bastide
- Univ. Lille, EA 7369 ‐ URePSSS ‐ Unité de Recherche Pluridisciplinaire Sport Santé Société Lille France
| | | |
Collapse
|
26
|
Huang H, Zhao Y, Shang X, Ren H, Zhao Y, Liu X. CAIII expression in skeletal muscle is regulated by Ca2+–CaMKII–MEF2C signaling. Exp Cell Res 2019; 385:111672. [DOI: 10.1016/j.yexcr.2019.111672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
|
27
|
Brinkmann C, Weh‐Gray O, Brixius K, Bloch W, Predel HG, Kreutz T. Effects of exercising before breakfast on the health of T2DM patients—A randomized controlled trial. Scand J Med Sci Sports 2019; 29:1930-1936. [DOI: 10.1111/sms.13543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Brinkmann
- IST University of Applied Sciences Düsseldorf Germany
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | - Olivier Weh‐Gray
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Hans-Georg Predel
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | | |
Collapse
|
28
|
Abstract
Ketogenic diet (KD) is a nutritional regimen characterized by a high-fat and an adequate protein content and a very low carbohydrate level (less than 20 g per day or 5% of total daily energy intake). The insufficient level of carbohydrates forces the body to primarily use fat instead of sugar as a fuel source. Due to its characteristic, KD has often been used to treat metabolic disorders, obesity, cardiovascular disease, and type 2 diabetes. Skeletal muscle constitutes 40% of total body mass and is one of the major sites of glucose disposal. KD is a well-defined approach to induce weight loss, with its role in muscle adaptation and muscle hypertrophy less understood. Considering this lack of knowledge, the aim of this review was to examine the scientific evidence about the effects of KD on muscle hypertrophy. We first described the mechanisms of muscle hypertrophy per se, and secondly, we discussed the characteristics and the metabolic function of KD. Ultimately, we provided the potential mechanism that could explain the influence of KD on skeletal muscle hypertrophy.
Collapse
|
29
|
Duglan D, Lamia KA. Clocking In, Working Out: Circadian Regulation of Exercise Physiology. Trends Endocrinol Metab 2019; 30:347-356. [PMID: 31054802 PMCID: PMC6545246 DOI: 10.1016/j.tem.2019.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
Research over the past century indicates that the daily timing of physical activity impacts on both immediate performance and long-term training efficacy. Recently, several molecular connections between circadian clocks and exercise physiology have been identified. Circadian clocks are protein-based oscillators that enable anticipation of daily environmental cycles. Cell-autonomous clocks are present in almost all cells of the body, and their timing is set by a variety of internal and external signals, including hormones and dietary intake. Improved understanding of the relationship between molecular clocks and exercise will benefit professional athletes and public health guidelines for the general population. We discuss here the role of circadian clocks in exercise, and explore time-of-day effects and the proposed molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Drew Duglan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Wu L, Ran L, Lang H, Zhou M, Yu L, Yi L, Zhu J, Liu L, Mi M. Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499. Nutr Metab (Lond) 2019; 16:27. [PMID: 31073320 PMCID: PMC6498703 DOI: 10.1186/s12986-019-0353-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background Reprogramming of fast-to-slow myofiber switch can improve endurance capacity and alleviate fatigue. Accumulating evidence suggests that a muscle-specific microRNA, miR-499 plays a crucial role in myofiber type transition. In this study, we assessed the effects of natural flavonoid myricetin on exercise endurance and muscle fiber constitution, and further investigated the underlying mechanism of myricetin in vivo and in vitro. Methods A total of 66 six-week-old male Sprague Dawley rats were divided into non-exercise or exercise groups with/without orally administered myricetin (50 or 150 mg/kg) for 2 or 4 weeks. Time-to-exhaustion, blood biochemical parameters, muscle fiber type proportion, the expression of muscle type decision related genes were measured. Mimic/ inhibitor of miR-499 were transfected into cultured L6 myotubes, the expressions of muscle type decision related genes and mitochondrial respiration capacity were investigated. Results Myricetin treatment significantly improved the time-to-exhaustion in trained rats. The enhancement of endurance capacity was associated with an increase of the proportion of slow-twitch myofiber in both soleus and gastrocnemius muscles. Importantly, myricetin treatment amplified the expression of miR-499 and suppressed the expression of Sox6, the down-stream target gene of miR-499, both in vivo and in vitro. Furthermore, inhibition of miR-499 overturned the effects of myricetin on down-regulating Sox6. Conclusions Myricetin promoted the reprogramming of fast-to-slow muscle fiber type switch and reinforced the exercise endurance capacity. The precise mechanisms responsible for the effects of myricetin are not resolved but likely involve regulating miR-499/Sox6 axis.
Collapse
Affiliation(s)
- Luting Wu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Ran
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hedong Lang
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Zhou
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Yu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Long Yi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jundong Zhu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Liu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mantian Mi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Boufroura FZ, Le Bachelier C, Tomkiewicz-Raulet C, Schlemmer D, Benoist JF, Grondin P, Lamotte Y, Mirguet O, Mouillet-Richard S, Bastin J, Djouadi F. A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes. Hum Mol Genet 2019; 27:3417-3433. [PMID: 30007356 DOI: 10.1093/hmg/ddy254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Carnitine palmitoyl transferase 2 (CPT2) deficiency is one of the most common inherited fatty acid oxidation (FAO) defects and represents a prototypical mitochondrial metabolic myopathy. Recent studies have suggested a pivotal role of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle plasticity and mitochondrial homeostasis. Thus, we tested the potential of GSK773, a novel direct AMPK activator, to improve or correct FAO capacities in muscle cells from patients harboring various mutations. We used controls' and patients' myotubes and studied the parameters of FAO metabolism, of mitochondrial quantity and quality and of differentiation. We found that AMPK is constitutively activated in patients' myotubes, which exhibit both reduced FAO and impaired differentiation. GSK773 improves or corrects several metabolic hallmarks of CPT2 deficiency (deficient FAO flux and C16-acylcarnitine accumulation) by upregulating the expression of CPT2 protein. Beneficial effects of GSK773 are also likely due to stimulation of mitochondrial biogenesis and induction of mitochondrial fusion, by decreasing dynamin-related protein 1 and increasing mitofusin 2. GSK773 also induces a shift in myosin heavy chain isoforms toward the slow oxidative type and, therefore, fully corrects the differentiation process. We establish, through small interfering RNA knockdowns and pharmacological approaches, that these GSK773 effects are mediated through peroxisome proliferator-activated receptor gamma co-activator 1-alpha, reactive oxygen species and p38 mitogen-activated protein kinase, all key players of skeletal muscle plasticity. GSK773 recapitulates several important features of skeletal muscle adaptation to exercise. The results show that AMPK activation by GSK773 evokes the slow, oxidative myogenic program and triggers beneficial phenotypic adaptations in FAO-deficient myotubes. Thus, GSK773 might have therapeutic potential for correction of CPT2 deficiency.
Collapse
Affiliation(s)
- Fatima-Zohra Boufroura
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Carole Le Bachelier
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Céline Tomkiewicz-Raulet
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Dimitri Schlemmer
- Service de Biochimie-Hormonologie, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert Debré, Paris, France
| | - Jean-François Benoist
- Service de Biochimie-Hormonologie, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert Debré, Paris, France
| | - Pascal Grondin
- Laboratoires Oncodesign, Centre de Recherches François Hyafil, 91140 Villebon-sur-Yvette, France
| | - Yann Lamotte
- Laboratoires Oncodesign, Centre de Recherches François Hyafil, 91140 Villebon-sur-Yvette, France
| | | | - Sophie Mouillet-Richard
- INSERM UMR-S1147 MEPPOT, Centre Universitaire des Saints-Pères, Université Sorbonne Paris Cité, Paris, France
| | - Jean Bastin
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Fatima Djouadi
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| |
Collapse
|
32
|
Ravel-Chapuis A, Al-Rewashdy A, Bélanger G, Jasmin BJ. Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles. Hum Mol Genet 2019; 27:3361-3376. [PMID: 29982462 DOI: 10.1093/hmg/ddy245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ali Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
34
|
Ubaida-Mohien C, Gonzalez-Freire M, Lyashkov A, Moaddel R, Chia CW, Simonsick EM, Sen R, Ferrucci L. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol 2019; 10:312. [PMID: 30971946 PMCID: PMC6443906 DOI: 10.3389/fphys.2019.00312] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20-87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active). Over 4,000 proteins were quantified, and higher self-reported physical activity was associated with substantial overrepresentation of proteins associated with mitochondria, TCA cycle, structural and contractile muscle, and genome maintenance. Conversely, proteins related to the spliceosome, transcription regulation, immune function, and apoptosis, DNA damage, and senescence were underrepresented with higher self-reported activity. These differences in observed protein expression were related to different levels of physical activity in daily life and not intense competitive exercise. In most instances, differences in protein levels were directly opposite to those reported in the literature observed with aging. These data suggest that being physically active in daily life has strong and biologically detectable beneficial effects on muscle.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
35
|
Shenkman BS, Kozlovskaya IB. Cellular Responses of Human Postural Muscle to Dry Immersion. Front Physiol 2019; 10:187. [PMID: 30914964 PMCID: PMC6421338 DOI: 10.3389/fphys.2019.00187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Support withdrawal has been currently considered as one of the main factors involved in regulation of the human locomotor system. For last decades, several authors, including the authors of the present paper, have revealed afferent mechanisms of support perception and introduced the concept of the support afferentation system. The so-called "dry immersion" model which was developed in Russia allows for suspension of subjects in water providing the simulation of the mechanical support withdrawal. The present review is a summary of data allowing to appreciate the value of the "dry" immersion model for the purposes of studying cellular responses of human postural muscle to gravitational unloading. These studies corroborated our hypothesis that the removal of support afferentation inactivates the slow motor unit pool which leads to selective inactivation, and subsequent atony and atrophy, of muscle fibers expressing the slow isoform of myosin heavy chain (which constitutes the majority of soleus muscle fibers). Fibers that have lost a significant part of cytoskeletal molecules are incapable of effective actomyosin motor mobilization which leads to lower calcium sensitivity and lower range of maximal tension in permeabilized fibers. Support withdrawal also leads to lower efficiency of protective mechanisms (nitric oxide synthase) and decreased activity of AMP-activated protein kinase. Thus, "dry" immersion studies have already contributed considerably to the gravitational physiology of skeletal muscle.
Collapse
Affiliation(s)
- Boris S. Shenkman
- Myology Laboratory, State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, Russia
| | - Inessa B. Kozlovskaya
- Department of Sensory-Motor Physiology and Countermeasures, State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, Russia
| |
Collapse
|
36
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
37
|
Chen HJ, Wang CC, Chan DC, Chiu CY, Yang RS, Liu SH. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J Cachexia Sarcopenia Muscle 2019; 10:165-176. [PMID: 30378754 PMCID: PMC6438343 DOI: 10.1002/jcsm.12362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acrolein is an extremely electrophilic aldehyde. Increased urinary acrolein adducts have been found in type 2 diabetic patients and people with a smoking habit. The increased blood acrolein was shown in patients who received the cancer drug cyclophosphamide. Both diabetes and smoking are risk factors for skeletal muscle wasting or atrophy. Acrolein has been found to induce myotube atrophy in vitro. The in vitro and in vivo effects and mechanisms of acrolein on myogenesis and the in vivo effect of acrolein on muscle wasting still remain unclear. METHODS C2C12 myoblasts were used to assess the effects of low-dose acrolein (0.125-1 μM) on myogenesis in vitro. Mice were exposed daily to acrolein in distilled water by oral administration (2.5 and 5 mg/kg) for 4 weeks with or without glycerol-induced muscle injury to investigate the effects of acrolein on muscle wasting and regeneration. RESULTS Non-cytotoxic-concentration acrolein dose dependently inhibited myogenic differentiation in myoblasts (myotube formation inhibition: 0.5 and 1 μM, 66.25% and 46.25% control, respectively, n = 4, P < 0.05). The protein expression for myogenesis-related signalling molecules (myogenin and phosphorylated Akt: 0.5 and 1 μM, 85.15% and 51.52% control and 62.63% and 56.57% control, respectively, n = 4, P < 0.05) and myosin heavy chain (MHC: 0.5 and 1 μM, 63.64% and 52.53% control, n = 4, P < 0.05) were decreased in acrolein-treated myoblasts. Over-expression of the constitutively active form of Akt in myoblasts during differentiation prevented the inhibitory effects of acrolein (1 μM) on myogenesis (MHC and myogenin protein expression: acrolein with or without constitutively active Akt, 64.65% and 105.21% control and 69.14% and 102.02% control, respectively, n = 5, P < 0.05). Oral administration of acrolein for 4 weeks reduced muscle weights (5 mg/kg/day: 65.52% control, n = 6, P < 0.05) and cross-sectional area of myofibers in soleus muscles (5 mg/kg/day: 79.92% control, n = 6, P < 0.05) with an up-regulation of atrogin-1 and a down-regulation of phosphorylated Akt protein expressions. Acrolein retarded soleus muscle regeneration in a glycerol-induced muscle regeneration mouse model (5 mg/kg/day: 49.29% control, n = 4, P < 0.05). Acrolein exposure reduced muscle endurance during rotarod fatigue performance in mice with or without glycerol-induced muscle injury (5 mg/kg/day without glycerol: 30.43% control, n = 4, P < 0.05). Accumulation of acrolein protein adducts could be detected in the soleus muscles of acrolein-treated mice. CONCLUSIONS Low-dose acrolein significantly inhibited myogenic differentiation in vitro, which might be through inhibition of Akt signalling. Acrolein induced muscle wasting and retarded muscle regeneration in mice. These results suggest that acrolein may be a risk factor for myogenesis and disease-related myopathy.
Collapse
Affiliation(s)
- Huang-Jen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ding-Cheng Chan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Maleki V, Jafari-Vayghan H, Saleh-Ghadimi S, Adibian M, Kheirouri S, Alizadeh M. Effects of Royal jelly on metabolic variables in diabetes mellitus: A systematic review. Complement Ther Med 2019; 43:20-27. [PMID: 30935531 DOI: 10.1016/j.ctim.2018.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most common endocrine disorders in the world. This systematic review was conducted with focus on the current knowledge on the effect of royal jelly on metabolic variables in diabetes mellitus. PubMed, Scopus, Embase, ProQuest and Google Scholar databases were searched from inception until June 2018. All clinical trials and animal studies that evaluated the effects of royal jelly on diabetes mellitus, and were published in English-language journals were eligible. Studies that provided insufficient outcomes were excluded. Out of 522 articles found in the search, only twelve articles were eligible for analysis. Seven studies showed a significant reduction in FBS, and one reported HbA1c decrease following royal jelly supplementation. Although royal jelly supplementation resulted in significant reductions in HOM A-I R in three studies, the findings on insulin levels were controversial. In addition, royal jelly substantially improved serum levels of triglycerides, cholesterol, HDL, LDL, VLDL and Apo-A1 in diabetes mellitus. In addition, royal jelly resulted in a decrease oxidative stress indicators and increase antioxidant enzymes levels. In conclusion, royal jelly could improve glycemic status, lipid profiles and oxidative stress in diabetes mellitus. However, exploring the underlying mechanisms warrants further studies.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Adibian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Okamoto S, Asgar NF, Yokota S, Saito K, Minokoshi Y. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Metabolism 2019; 90:52-68. [PMID: 30359677 DOI: 10.1016/j.metabol.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK), a heterotrimer with α1 or α2 catalytic subunits, acts as an energy sensor and regulates cellular homeostasis. Whereas AMPKα1 is necessary for myogenesis in skeletal muscle, the role of AMPKα2 in myogenic differentiation and energy metabolism-related gene expressions has remained unclear. We here examined the specific roles of AMPKα1 and AMPKα2 in the myogenic differentiation and mitochondria and energy metabolism-related gene expressions in C2C12 cells. MATERIALS AND METHODS Stable C2C12 cell lines expressing a scramble short hairpin RNA (shRNA) or shRNAs specific for AMPKα1 (shAMPKα1), AMPKα2 (shAMPKα2), or both AMPKα1 and AMPKα2 (shPanAMPK) were generated by lentivirus infection. Lentiviruses encoding wild-type AMPKα2 (WT-AMPKα2) or AMPKα2 with a mutated nuclear localization signal (ΔNLS-AMPKα2) were also constructed for introduction into myoblasts. Myogenesis was induced by culture of C2C12 myoblasts for 6 days in differentiation medium. RESULTS The amount of AMPKα2 increased progressively, whereas that of AMPKα1 remained constant, during the differentiation of myoblasts into myotubes. Expression of shPanAMPK or shAMPKα1, but not that of shAMPKα2, attenuated the proliferation of myoblasts as well as the phosphorylation of both acetyl-CoA carboxylase and the autophagy-initiating kinase ULK1 in myotubes. Up-regulation of myogenin mRNA, a marker for the middle stage of myogenesis, was attenuated in differentiating myotubes expressing shPanAMPK or shAMPKα1. In contrast, up-regulation of gene expression for muscle creatine kinase (MCK), a late-stage differentiation marker, as well as for genes related to mitochondrial biogenesis including the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α1 and α4 (PGC-1α1 and PGC-1α4) and mitochondria-specific genes such as cytochrome c were attenuated in myotubes expressing shAMPKα2 or shPanAMPK. The diameter of myotubes expressing shPanAMPK or shAMPKα2 was reduced, whereas that of those expressing shAMPKα1 was increased, compared with myotubes expressing scramble shRNA. A portion of AMPKα2 became localized to the nucleus during myogenic differentiation. The AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) and 2-deoxyglucose (2DG) each induced the nuclear translocation of WT-AMPKα2, but not that of ΔNLS-AMPKα2. Finally, expression of WT-AMPKα2 increased the mRNA abundance of PGC-1α1 and MCK mRNAs as well as cell diameter and tended to increase that of PGC-1α4, whereas that of ΔNLS-AMPKα2 increased only the abundance of MCK mRNA, in myotubes depleted of endogenous AMPKα2. CONCLUSION TAMPKα1 and AMPKα2 have distinct roles in myogenic differentiation of C2C12 cells, with AMPKα1 contributing to the middle stage of myogenesis and AMPKα2 to the late stage. AMPKα2 regulates gene expressions including MCK, PGC-1α1 and PGC-1α4 and mitochondria-specific genes such as cytochrome c during the late stage of differentiation. Furthermore, the nuclear translocation of AMPKα2 is necessary for maintenance of PGC-1α1 mRNA during myogenesis.
Collapse
Affiliation(s)
- Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Nur Farehan Asgar
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kumiko Saito
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
40
|
Vanlieshout TL, Stouth DW, Tajik T, Ljubicic V. Exercise-induced Protein Arginine Methyltransferase Expression in Skeletal Muscle. Med Sci Sports Exerc 2018; 50:447-457. [PMID: 29112628 DOI: 10.1249/mss.0000000000001476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1 [CARM1]), and -5 expression and function during acute, exercise-induced skeletal muscle remodeling in vivo. METHODS C57BL/6 mice were assigned to one of three experimental groups: sedentary, acute bout of exercise, or acute exercise followed by 3 h of recovery. Mice in the exercise groups performed a single bout of treadmill running at 15 m·min for 90 min. Hindlimb muscles were collected, and quantitative real-time polymerase chain reaction and Western blotting were used to examine exercise-induced gene expression. RESULTS The PRMT gene expression and global enzyme activity were muscle-specific, generally being higher (P < 0.05) in slow, oxidative muscle, as compared with faster, more glycolytic tissue. Despite the significant activation of canonical exercise-induced signaling involving AMP-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analyses revealed a significant exercise-evoked myonuclear translocation of PRMT1 before the nuclear accumulation of PGC-1α. Acute physical activity also augmented (P < 0.05) the targeted methyltransferase activities of the PRMT in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is part of the early signals that drive muscle plasticity. Finally, basal PGC-1α asymmetric dimethylarginine status, as well as constitutive interactions between PGC-1α and PRMT1 or CARM1 may contribute to the exercise-induced muscle remodeling process. CONCLUSIONS The present study provides the first evidence that PRMT activity is selectively augmented during the initial activation of exercise-induced skeletal muscle remodeling in vivo. These data support the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity.
Collapse
|
41
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
42
|
Vilchinskaya NA, Krivoi II, Shenkman BS. AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 2018; 19:ijms19113558. [PMID: 30424476 PMCID: PMC6274864 DOI: 10.3390/ijms19113558] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5′ adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors’ own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia.
| |
Collapse
|
43
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
44
|
Wang Y, Ma J, Qiu W, Zhang J, Feng S, Zhou X, Wang X, Jin L, Long K, Liu L, Xiao W, Tang Q, Zhu L, Jiang Y, Li X, Li M. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092837. [PMID: 30235878 PMCID: PMC6163908 DOI: 10.3390/ijms19092837] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid (GAA), an amino acid derivative that is endogenous to animal tissues including muscle and nerve, has been reported to enhance muscular performance. MicroRNA (miRNA) is a post-transcriptional regulator that plays a key role in nutrient-mediated myogenesis. However, the effects of GAA on myogenic differentiation and skeletal muscle growth, and the potential regulatory mechanisms of miRNA in these processes have not been elucidated. In this study, we investigated the effects of GAA on proliferation, differentiation, and growth in C2C12 cells and mice. The results showed that GAA markedly inhibited the proliferation of myoblasts, along with the down-regulation of cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) mRNA expression, and the upregulation of cyclin dependent kinase inhibitor 1A (P21) mRNA expression. We also demonstrated that GAA treatment stimulated myogenic differentiation 1 (MyoD) and myogenin (MyoG) mRNA expression, resulting in an increase in the myotube fusion rate. Meanwhile, GAA supplementation promoted myotube growth through increase in total myosin heavy chain (MyHC) protein level, myotubes thickness and gastrocnemius muscle cross-sectional area. Furthermore, small RNA sequencing revealed that a total of eight miRNAs, including miR-133a-3p and miR-1a-3p cluster, showed differential expression after GAA supplementation. To further study the function of miR-133a-3p and miR-1a-3p in GAA-induced skeletal muscle growth, we transfected miR-133a-3p and miR-1a-3p mimics into myotube, which also induced muscle growth. Through bioinformatics and a dual-luciferase reporter system, the target genes of miR-133a-3p and miR-1a-3p were determined. These two miRNAs were shown to modulate the Akt/mTOR/S6K signaling pathway by restraining target gene expression. Taken together, these findings suggest that GAA supplementation can promote myoblast differentiation and skeletal muscle growth through miR-133a-3p- and miR-1a-3p-induced activation of the AKT/mTOR/S6K signaling pathway.
Collapse
Affiliation(s)
- Yujie Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Wanling Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Siyuan Feng
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xun Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Weihang Xiao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Yanzhi Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
45
|
Voluntary exercise opposes insulin resistance of skeletal muscle glucose transport during liquid fructose ingestion in rats. J Physiol Biochem 2018; 74:455-466. [PMID: 29882093 DOI: 10.1007/s13105-018-0639-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
We have recently reported that male rats given liquid fructose ingestion exhibit features of cardiometabolic abnormalities including non-obese insulin resistance with impaired insulin signaling transduction in skeletal muscle (Rattanavichit Y et al. Am J Physiol Regul Integr Comp Physiol 311: R1200-R1212, 2016). While exercise can attenuate obesity-related risks of cardiometabolic syndrome, the effectiveness and potential mechanism by which exercise modulates non-obese insulin resistance have not been fully studied. The present investigation evaluated whether regular exercise by voluntary wheel running (VWR) can reduce cardiometabolic risks induced by fructose ingestion. Moreover, the potential cellular adaptations following VWR on key signaling proteins known to influence insulin-induced glucose transport in skeletal muscle of fructose-ingested rats were investigated. Male Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) without or with access to running wheel for 6 weeks. We demonstrated that VWR restored insulin-stimulated glucose transport in the soleus muscle by improving the functionality of several signaling proteins, including insulin-stimulated IRβ Tyr1158/Tyr1162/Tyr1163 (82%), IRS-1 Tyr989 (112%), Akt Ser473 (56%), AS160 Thr642 (76%), and AS160 Ser588 (82%). These effects were accompanied by lower insulin-stimulated phosphorylation of IRS-1 Ser307 (37%) and JNK Thr183/Tyr185 (49%), without significant changes in expression of proteins in the renin-angiotensin system. Intriguingly, multiple cardiometabolic abnormalities were not observed in fructose-ingested rats with access to VWR. Collectively, this study demonstrates that the development of cardiometabolic abnormalities as well as insulin resistance of skeletal muscle and defective signaling molecules in rats induced by fructose ingestion could be opposed by VWR.
Collapse
|
46
|
Ko JR, Seo DY, Park SH, Kwak HB, Kim M, Ko KS, Rhee BD, Han J. Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochem Biophys Res Commun 2018; 501:448-453. [PMID: 29730289 DOI: 10.1016/j.bbrc.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Cereblon (CRBN) has been reported as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK). Aerobic exercise training has been shown to increase AMPK, which resulted in glucose regulation in skeletal muscle. However, the expression level of CRBN and its association with the physiological modulation of glucose are still unclear. Male Sprague-Dawley rats (5-week-old, n = 18) were assigned to control, streptozotocin (STZ, 65 mg/kg)-induced diabetic group, and STZ + exercise (STZ + EXE) group with six rats in each group. Rats in the STZ + EXE group exercised by treadmill running (20 m/min, 60 min, 4 times/week) for 8 weeks. Compared with the STZ group, blood glucose was significantly decreased in the STZ + EXE group. The skeletal muscle of rats in the STZ + EXE group showed a significant decrease in CRBN levels and an increase in AMPK, protein kinase B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, fibronectin type III domain-containing protein 5, glucose transporter type 4, superoxide dismutase 1, and uncoupling protein 3 levels. These results suggest that CRBN is a potential regulator of glucose homeostasis in the skeletal muscle. Moreover, our results suggest that aerobic exercise training may provide an important physiological treatment for type 1 diabetes by decreasing CRBN and increasing AMPK signaling in skeletal muscle.
Collapse
Affiliation(s)
- Jeong Rim Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Se Hwan Park
- Department of Physical Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Hyo Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Min Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
47
|
Dial AG, Ng SY, Manta A, Ljubicic V. The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 2018; 29:300-312. [PMID: 29572064 DOI: 10.1016/j.tem.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a primary regulator of cellular metabolism. Recent studies have revealed that AMPK also mediates the maintenance and plasticity of α-motoneurons, the neuromuscular junction, and skeletal muscle. Furthermore, AMPK stimulation by either genetic, pharmacological, or physiological approaches elicits beneficial phenotypic remodeling in neuromuscular disorders (NMDs). Here, we review the role of AMPK as a governor of neuromuscular biology, and present evidence for AMPK as an effective molecular target for therapeutic pursuit in the context of the most prevalent NMDs, including Duchenne muscular dystrophy, spinal muscular atrophy, and myotonic dystrophy type 1. This information may be useful for engineering AMPK-targeted pharmacological- or lifestyle-based strategies to treat disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
48
|
Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ. Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 2018; 124:840-849. [DOI: 10.1152/japplphysiol.00894.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5′-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, β1, β2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5′-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Kara K. Lazauskas
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jose A. Arevalo
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | - Lee E. Brown
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
49
|
Lassiter DG, Nylén C, Sjögren RJO, Chibalin AV, Wallberg-Henriksson H, Näslund E, Krook A, Zierath JR. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle. Diabetologia 2018; 61:424-432. [PMID: 29022062 PMCID: PMC6449061 DOI: 10.1007/s00125-017-4451-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.
Collapse
Affiliation(s)
- David G Lassiter
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Carolina Nylén
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | | | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|