1
|
Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J, Pei Y, Chen B, Zou W. MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans. J Cell Biol 2025; 224:e202403198. [PMID: 39400293 PMCID: PMC11473600 DOI: 10.1083/jcb.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C. elegans. Utilizing this system, we monitored the transcriptional bursting of fasting-induced genes and found that the epidermis responds to fasting by modulating the proportion of actively transcribing nuclei and transcriptional kinetics of individual alleles. Additionally, our findings revealed the essential roles of the transcription factors NHR-49 and HLH-30 in governing the transcriptional kinetics of fasting-induced genes under fasting. Furthermore, we tracked transcriptional dynamics during heat-shock response and ER unfolded protein response and observed rapid changes in the level of nascent transcripts under stress conditions. Collectively, our study provides a foundation for quantitatively investigating how animals spatiotemporally modulate transcription in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Pingping Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yechun Pei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and fibroblast growth factor 21 (FGF21) production, a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Wang S, Xu B, Liang J, Feng Y, Han P, Shen J, Li X, Zheng M, Zhang T, Zhang C, Mi P, Zhang Y, Liu Z, Li S, Yuan D. Spatial Transcriptomic Study Reveals Heterogeneous Metabolic Adaptation and a Role of Pericentral PPARα/CAR/Ces2a Axis During Fasting in Mouse Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405240. [PMID: 39234807 PMCID: PMC11538668 DOI: 10.1002/advs.202405240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Spatial heterogeneity and plasticity of the mammalian liver are critical for systemic metabolic homeostasis in response to fluctuating nutritional conditions. Here, a spatially resolved transcriptomic landscape of mouse livers across fed, fasted and refed states using spatial transcriptomics is generated. This approach elucidated dynamic temporal-spatial gene cascades and how liver zonation-both expression levels and patterns-adapts to shifts in nutritional status. Importantly, the pericentral nuclear receptor Nr1i3 (CAR) as a pivotal regulator of triglyceride metabolism is pinpointed. It is showed that the activation of CAR in the pericentral region is transcriptionally governed by Pparα. During fasting, CAR activation enhances lipolysis by upregulating carboxylesterase 2a, playing a crucial role in maintaining triglyceride homeostasis. These findings lay the foundation for future mechanistic studies of liver metabolic heterogeneity and plasticity in response to nutritional status changes, offering insights into the zonated pathology that emerge during liver disease progression linked to nutritional imbalances.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Penghu Han
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jing Shen
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Mengqi Zheng
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yi Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanShandong250061China
| | - Shiyang Li
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
5
|
Sun J, Zhang Y, Adams JA, Higgins CB, Kelly SC, Zhang H, Cho KY, Johnson UG, Swarts BM, Wada SI, Patti GJ, Shriver LP, Finck BN, Herzog ED, DeBosch BJ. Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock. Cell Rep 2024; 43:114865. [PMID: 39412985 DOI: 10.1016/j.celrep.2024.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Organisms integrate circadian and metabolic signals to optimize substrate selection to survive starvation, yet precisely how this occurs is unclear. Here, we show that hepatocyte Period 1 (Per1) is selectively induced during fasting, and mice lacking hepatocyte Per1 fail to initiate autophagic flux, ketogenesis, and lipid accumulation. Transcriptomic analyses show failed induction of the fasting hepatokine Fgf21 in Per1-deficient mice, and single-nucleus multiome sequencing defines a putative responding hepatocyte subpopulation that fails to induce the chromatin accessibility near the Fgf21 locus. In vivo isotopic tracing and indirect calorimetry demonstrate that hepatocyte Per1-deficient mice fail to transit from oxidation of glucose to fat, which is completely reversible by exogenous FGF21 or by inhibiting pyruvate dehydrogenase. Strikingly, disturbing other core circadian genes does not perturb Per1 induction during fasting. We thus describe Per1 as an important mechanism by which hepatocytes integrate internal circadian rhythm and external nutrition signals to facilitate proper fuel utilization.
Collapse
Affiliation(s)
- Jiameng Sun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua A Adams
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon C Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Y Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ulysses G Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Shun-Ichi Wada
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Gallage S, Ali A, Barragan Avila JE, Seymen N, Ramadori P, Joerke V, Zizmare L, Aicher D, Gopalsamy IK, Fong W, Kosla J, Focaccia E, Li X, Yousuf S, Sijmonsma T, Rahbari M, Kommoss KS, Billeter A, Prokosch S, Rothermel U, Mueller F, Hetzer J, Heide D, Schinkel B, Machauer T, Pichler B, Malek NP, Longerich T, Roth S, Rose AJ, Schwenck J, Trautwein C, Karimi MM, Heikenwalder M. A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1. Cell Metab 2024; 36:1371-1393.e7. [PMID: 38718791 DOI: 10.1016/j.cmet.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.
Collapse
Affiliation(s)
- Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen.
| | - Adnan Ali
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jose Efren Barragan Avila
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nogayhan Seymen
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Denmark Hill, London, UK
| | - Pierluigi Ramadori
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Vera Joerke
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - David Aicher
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Indresh K Gopalsamy
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Winnie Fong
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Jan Kosla
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Enrico Focaccia
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xin Li
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Suhail Yousuf
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharina S Kommoss
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Adrian Billeter
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Rothermel
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian Mueller
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Benjamin Schinkel
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Tim Machauer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Department Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, Universitätsklinikum Heidelberg, Pathologisches Institut, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Adam J Rose
- Nutrient Metabolism and Signalling Laboratory, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Denmark Hill, London, UK
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Fu M, Lu S, Gong L, Zhou Y, Wei F, Duan Z, Xiang R, Gonzalez FJ, Li G. Intermittent fasting shifts the diurnal transcriptome atlas of transcription factors. Mol Cell Biochem 2024:10.1007/s11010-024-04928-y. [PMID: 38528297 DOI: 10.1007/s11010-024-04928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 03/27/2024]
Abstract
Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.
Collapse
Affiliation(s)
- Min Fu
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Siyu Lu
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lijun Gong
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiming Zhou
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Fang Wei
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 41001, Hunan, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guolin Li
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
8
|
Tsuno S, Harada K, Horikoshi M, Mita M, Kitaguchi T, Hirai MY, Matsumoto M, Tsuboi T. Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes. FEBS Open Bio 2024; 14:79-95. [PMID: 38049196 PMCID: PMC10761928 DOI: 10.1002/2211-5463.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.
Collapse
Affiliation(s)
- Saki Tsuno
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Mina Horikoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Marie Mita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Present address:
Biomedical Research InstituteNational Institute of Advanced Industrial Science and TechnologyOsakaJapan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | | | - Mitsuharu Matsumoto
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
9
|
Minciuna I, Gallage S, Heikenwalder M, Zelber-Sagi S, Dufour JF. Intermittent fasting-the future treatment in NASH patients? Hepatology 2023; 78:1290-1305. [PMID: 37057877 DOI: 10.1097/hep.0000000000000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
NASH is one of the leading causes of chronic liver disease with the potential of evolving towards end-stage liver disease and HCC, even in the absence of cirrhosis. Apart from becoming an increasingly prevalent indication for liver transplantation in cirrhotic and HCC patients, its burden on the healthcare system is also exerted by the increased number of noncirrhotic NASH patients. Intermittent fasting has recently gained more interest in the scientific community as a possible treatment approach for different components of metabolic syndrome. Basic science and clinical studies have shown that apart from inducing body weight loss, improving cardiometabolic parameters, namely blood pressure, cholesterol, and triglyceride levels; insulin and glucose metabolism; intermittent fasting can reduce inflammatory markers, endoplasmic reticulum stress, oxidative stress, autophagy, and endothelial dysfunction, as well as modulate gut microbiota. This review aims to further explore the main NASH pathogenetic metabolic drivers on which intermittent fasting can act upon and improve the prognosis of the disease, and summarize the current clinical evidence.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
| | - Mathias Heikenwalder
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
10
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
11
|
Wang J, Zhao X, Zhou R, Wang M, Xiang W, You Z, Li M, Tang R, Zheng J, Li J, Zhu L, Gao J, Li H, Pang R, Zhang A. Gut microbiota and transcriptome dynamics in every-other-day fasting are associated with neuroprotection in rats with spinal cord injury. Front Microbiol 2023; 14:1206909. [PMID: 37577426 PMCID: PMC10417830 DOI: 10.3389/fmicb.2023.1206909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Every-other-day fasting (EODF) is a classical intermittent fasting (IF) mode with neuroprotective effects that promotes motor function recovery after spinal cord injury (SCI) in rats. However, its dynamic effects on the gut microbiota and spinal cord transcriptome remain unknown. Methods In this study, 16S rRNA sequencing and RNA-seq analysis were used to investigate the effects of ad libitum (AL) and EODF dietary modes on the structural characteristics of rat gut microbiota in rats and the spinal cord transcriptome at various time points after SCI induction. Results Our results showed that both dietary modes affected the bacterial community composition in SCI rats, with EODF treatment inducing and suppressing dynamic changes in the abundances of potentially anti-inflammatory and pro-inflammatory bacteria. Furthermore, the differentially expressed genes (DEGs) enriched after EODF intervention in SCI rats were associated with various biological events, including immune inflammatory response, cell differentiation, protein modification, neural growth, and apoptosis. In particular, significant spatiotemporal differences were apparent in the DEGs associated with neuroprotection between the EODF and AL interventions. These DGEs were mainly focused on days 1, 3, and 7 after SCI. The relative abundance of certain genera was significantly correlated with DEGs associated with neuroprotective effects in the EODF-SCI group. Discussion Our results showed that EODF treatment may exert neuroprotective effects by modulating the transcriptome expression profile following SCI in rats. Furthermore, gut microbiota may be partially involved in mediating these effects.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Zhao
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
- Department of Rehabilitation Medicine, The People’s Hospital of Tongliang District, Chongqing, China
| | - Ruihan Zhou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Meiyu Wang
- Rehabilitation and Wellness Care Centre, Tian Fu College of Swufe, Chengdu, China
| | - Wu Xiang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ruiling Tang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jingqi Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhu
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jiaxin Gao
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The People’s Hospital of Tongliang District, Chongqing, China
| | - Anren Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Meadows AM, Han K, Singh K, Murgia A, McNally BD, West JA, Huffstutler RD, Powell-Wiley TM, Baumer Y, Griffin JL, Sack MN. N-arachidonylglycine is a caloric state-dependent circulating metabolite which regulates human CD4 +T cell responsiveness. iScience 2023; 26:106578. [PMID: 37128607 PMCID: PMC10148119 DOI: 10.1016/j.isci.2023.106578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Caloric deprivation interventions such as intermittent fasting and caloric restriction ameliorate metabolic and inflammatory disease. As a human model of caloric deprivation, a 24-h fast blunts innate and adaptive immune cell responsiveness relative to the refed state. Isolated serum at these time points confers these same immunomodulatory effects on transformed cell lines. To identify serum mediators orchestrating this, metabolomic and lipidomic analysis was performed on serum extracted after a 24-h fast and re-feeding. Bioinformatic integration with concurrent peripheral blood mononuclear cells RNA-seq analysis implicated key metabolite-sensing GPCRs in fasting-mediated immunomodulation. The putative GPR18 ligand N-arachidonylglycine (NAGly) was elevated during fasting and attenuated CD4+T cell responsiveness via GPR18 MTORC1 signaling. In parallel, NAGly reduced inflammatory Th1 and Th17 cytokines levels in CD4+T cells isolated from obese subjects, identifying a fasting-responsive metabolic intermediate that may contribute to the regulation of nutrient-level dependent inflammation associated with metabolic disease.
Collapse
Affiliation(s)
- Allison M. Meadows
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Ben D. McNally
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - James A. West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NHLBI, NIH, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NHLBI, NIH, Bethesda, MD, USA
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen, UK
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD, USA
- Corresponding author
| |
Collapse
|
13
|
Iwayama K, Seol J, Tokuyama K. Exercise Timing Matters for Glycogen Metabolism and Accumulated Fat Oxidation over 24 h. Nutrients 2023; 15:1109. [PMID: 36904109 PMCID: PMC10005671 DOI: 10.3390/nu15051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Due to increasingly diverse lifestyles, exercise timings vary between individuals: before breakfast, in the afternoon, or in the evening. The endocrine and autonomic nervous systems, which are associated with metabolic responses to exercise, show diurnal variations. Moreover, physiological responses to exercise differ depending on the timing of the exercise. The postabsorptive state is associated with greater fat oxidation during exercise compared to the postprandial state. The increase in energy expenditure persists during the post-exercise period, known as "Excess Post-exercise Oxygen Consumption". A 24 h evaluation of accumulated energy expenditure and substrate oxidation is required to discuss the role of exercise in weight control. Using a whole-room indirect calorimeter, researchers revealed that exercise performed during the postabsorptive state, but not during the postprandial state, increased accumulated fat oxidation over 24 h. The time course of the carbohydrate pool, as estimated by indirect calorimetry, suggests that glycogen depletion after postabsorptive exercise underlies an increase in accumulated fat oxidation over 24 h. Subsequent studies using 13C magnetic resonance spectroscopy confirmed that the variations in muscle and liver glycogen caused by postabsorptive or postprandial exercise were consistent with indirect calorimetry data. These findings suggest that postabsorptive exercise alone effectively increases 24 h fat oxidation.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, Nara 632-0071, Japan
| | - Jaehoon Seol
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
14
|
Liu MY, Chen SQ. Effects of Low/Medium-Intensity Exercise on Fat Metabolism after a 6-h Fast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15502. [PMID: 36497577 PMCID: PMC9736603 DOI: 10.3390/ijerph192315502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The effects of fasting and different exercise intensities on lipid metabolism were investigated in 12 male students aged 19.9 ± 1.4 years, with maximal oxygen consumption (VO2max) of 50.33 ± 4.0 mL/kg/min, using a counterbalanced design. Each participant ran on a treadmill at 45% and 65% VO2max continuously for 20 min, followed by running at 85% VO2max for 20 min (or until exhaustion) under a fed or fasted state (6 h). The respiratory exchange ratio (RER), blood glucose (BGLU), blood lactate (BLA), and blood triglyceride (TG) were analyzed during exercise. The results showed that the intensity of exercise did not significantly affect the BGLU and TG in the fed state. The levels of both RER and BLA increased as the intensity of exercise increased from low to high (45, 65, and 85% VO2max), and more energy was converted from fat into glucose at a high intensity of exercise. In the fasted state of 6 h, the BGLU level increased parallel to the intensity of exercise. The RER was close to 1.0 at a high intensity of exercise, indicating that more energy was converted from glycogen. At the intensities of 45 and 65% VO2max, the RER and concentration of TG were both lower in the fasted than in the fed state, showing that a higher percentage of energy comes from fat than in the fed state at 45 and 65% VO2max. When running at 85% VO2max, the BGLU concentration was higher in the fasted than in the fed state, indicating that the liver tissues release more BGLU for energy in the fasted state. Therefore, in the fasted state, running at 45% and 65% of VO2max significantly affects lipid metabolism. On the contrary, the higher RER and BGLU concentrations when running at 85% VO2max revealed no significant difference between the two probes. This study suggests that medium- and low-intensity exercise (45 and 65% VO2max) in the fasted state enhances lipid metabolism.
Collapse
Affiliation(s)
- Ming-Yi Liu
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang District, Tainan 710301, Taiwan
| | - Shung-Quan Chen
- Office of Student Affairs, Tainan City Siaying Elementary School, No. 72, Sect. 2, Jhongshan Rd., Siaying District, Tainan 73541, Taiwan
| |
Collapse
|
15
|
Ceylani T, Teker HT, Samgane G, Gurbanov R. Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms. Anal Biochem 2022; 654:114825. [DOI: 10.1016/j.ab.2022.114825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022]
|
16
|
Fougerat A, Schoiswohl G, Polizzi A, Régnier M, Wagner C, Smati S, Fougeray T, Lippi Y, Lasserre F, Raho I, Melin V, Tramunt B, Métivier R, Sommer C, Benhamed F, Alkhoury C, Greulich F, Jouffe C, Emile A, Schupp M, Gourdy P, Dubot P, Levade T, Meynard D, Ellero-Simatos S, Gamet-Payrastre L, Panasyuk G, Uhlenhaut H, Amri EZ, Cruciani-Guglielmacci C, Postic C, Wahli W, Loiseau N, Montagner A, Langin D, Lass A, Guillou H. ATGL-dependent white adipose tissue lipolysis controls hepatocyte PPARα activity. Cell Rep 2022; 39:110910. [PMID: 35675775 DOI: 10.1016/j.celrep.2022.110910] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the β3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria; Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46/II, 8010 Graz, Austria
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sarra Smati
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - Tiffany Fougeray
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Frederic Lasserre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Ilyès Raho
- Université Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Valentine Melin
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Blandine Tramunt
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, INSERM, Toulouse III University - Paul Sabatier (UPS), Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Raphaël Métivier
- Institut de Génétique et Développement de Rennes, Université de Rennes, UMR 6290 CNRS, Rennes, France
| | - Caroline Sommer
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Fadila Benhamed
- Institut Cochin, Université Paris Cité, CNRS, INSERM, F-75014 Paris, France
| | - Chantal Alkhoury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, F-75015 Paris, France
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Céline Jouffe
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Anthony Emile
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Pierre Gourdy
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, INSERM, Toulouse III University - Paul Sabatier (UPS), Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Patricia Dubot
- INSERM U1037, CRCT, Université Paul Sabatier, 31059 Toulouse, France; Laboratoire de Biochimie, CHU Toulouse, Toulouse, France
| | - Thierry Levade
- INSERM U1037, CRCT, Université Paul Sabatier, 31059 Toulouse, France; Laboratoire de Biochimie, CHU Toulouse, Toulouse, France
| | - Delphine Meynard
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Ganna Panasyuk
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, F-75015 Paris, France
| | - Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | | | - Catherine Postic
- Institut Cochin, Université Paris Cité, CNRS, INSERM, F-75014 Paris, France
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; Center for Integrative Genomics, University of Lausanne, Le Génopode, 1015 Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, INSERM, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, INSERM, Toulouse III University - Paul Sabatier (UPS), Toulouse, France; Laboratoire de Biochimie, CHU Toulouse, Toulouse, France; Academic Institute of France (IUF), Paris, France
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
17
|
Reinisch I, Klymiuk I, Michenthaler H, Moyschewitz E, Galhuber M, Krstic J, Domingo M, Zhang F, Karbiener M, Vujić N, Kratky D, Schreiber R, Schupp M, Lenihan-Geels G, Schulz TJ, Malli R, Madl T, Prokesch A. p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Front Genet 2022; 13:913030. [PMID: 35734423 PMCID: PMC9207587 DOI: 10.3389/fgene.2022.913030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ingeborg Klymiuk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Magnus Domingo
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | | | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)- Research Center, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin, Germany
| | - Georgia Lenihan-Geels
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tim J. Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- *Correspondence: Andreas Prokesch,
| |
Collapse
|
18
|
Fan L, Sweet DR, Fan EK, Prosdocimo DA, Madera A, Jiang Z, Padmanabhan R, Haldar SM, Vinayachandran V, Jain MK. Transcription factors KLF15 and PPARδ cooperatively orchestrate genome-wide regulation of lipid metabolism in skeletal muscle. J Biol Chem 2022; 298:101926. [PMID: 35413288 PMCID: PMC9190004 DOI: 10.1016/j.jbc.2022.101926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle dynamically regulates systemic nutrient homeostasis through transcriptional adaptations to physiological cues. In response to changes in the metabolic environment (e.g., alterations in circulating glucose or lipid levels), networks of transcription factors and coregulators are recruited to specific genomic loci to fine-tune homeostatic gene regulation. Elucidating these mechanisms is of particular interest as these gene regulatory pathways can serve as potential targets to treat metabolic disease. The zinc-finger transcription factor Krüppel-like factor 15 (KLF15) is a critical regulator of metabolic homeostasis; however, its genome-wide distribution in skeletal muscle has not been previously identified. Here, we characterize the KLF15 cistrome in vivo in skeletal muscle and find that the majority of KLF15 binding is localized to distal intergenic regions and associated with genes related to circadian rhythmicity and lipid metabolism. We also identify critical interdependence between KLF15 and the nuclear receptor PPARδ in the regulation of lipid metabolic gene programs. We further demonstrate that KLF15 and PPARδ colocalize genome-wide, physically interact, and are dependent on one another to exert their transcriptional effects on target genes. These findings reveal that skeletal muscle KLF15 plays a critical role in metabolic adaptation through its direct actions on target genes and interactions with other nodal transcription factors such as PPARδ.
Collapse
Affiliation(s)
- Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Erica K Fan
- University of Pittsburgh School of Medicine, Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; The Webb Law Firm, Pittsburgh, Pennsylvania, USA
| | - Annmarie Madera
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Zhen Jiang
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Roshan Padmanabhan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA; Department of Medicine, Division of Cardiology, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
19
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
20
|
Goldberg D, Charni-Natan M, Buchshtab N, Bar-Shimon M, Goldstein I. Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes. Nucleic Acids Res 2022; 50:5528-5544. [PMID: 35556130 PMCID: PMC9177981 DOI: 10.1093/nar/gkac358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
During fasting, hepatocytes produce glucose in response to hormonal signals. Glucagon and glucocorticoids are principal fasting hormones that cooperate in regulating glucose production via gluconeogenesis. However, how these hormone signals are integrated and interpreted to a biological output is unknown. Here, we use genome-wide profiling of gene expression, enhancer dynamics and transcription factor (TF) binding in primary mouse hepatocytes to uncover the mode of cooperation between glucagon and glucocorticoids. We found that compared to a single treatment with each hormone, a dual treatment directs hepatocytes to a pro-gluconeogenic gene program by synergistically inducing gluconeogenic genes. The cooperative mechanism driving synergistic gene expression is based on ‘assisted loading’ whereby a glucagon-activated TF (cAMP responsive element binding protein; CREB) leads to enhancer activation which facilitates binding of the glucocorticoid receptor (GR) upon glucocorticoid stimulation. Glucagon does not only activate single enhancers but also activates enhancer clusters, thereby assisting the loading of GR also across enhancer units within the cluster. In summary, we show that cells integrate extracellular signals by an enhancer-specific mechanism: one hormone-activated TF activates enhancers, thereby assisting the loading of a TF stimulated by a second hormone, leading to synergistic gene induction and a tailored transcriptional response to fasting.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Loft A, Schmidt SF, Caratti G, Stifel U, Havelund J, Sekar R, Kwon Y, Sulaj A, Chow KK, Alfaro AJ, Schwarzmayr T, Rittig N, Svart M, Tsokanos FF, Maida A, Blutke A, Feuchtinger A, Møller N, Blüher M, Nawroth P, Szendrödi J, Færgeman NJ, Zeigerer A, Tuckermann J, Herzig S. A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab 2022; 34:473-486.e9. [PMID: 35120589 DOI: 10.1016/j.cmet.2022.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.
Collapse
Affiliation(s)
- Anne Loft
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), SDU, Odense 5230, Denmark
| | - Søren Fisker Schmidt
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), SDU, Odense 5230, Denmark.
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany
| | - Ulrich Stifel
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Yun Kwon
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Alba Sulaj
- German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Kan Kau Chow
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Ana Jimena Alfaro
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University, Hedeager 3, 2nd Floor, 8200 Aarhus N, Denmark
| | - Mads Svart
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University, Hedeager 3, 2nd Floor, 8200 Aarhus N, Denmark
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Niels Møller
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Peter Nawroth
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Szendrödi
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany.
| |
Collapse
|
22
|
Iwayama K, Tanabe Y, Tanji F, Ohnishi T, Takahashi H. Diurnal variations in muscle and liver glycogen differ depending on the timing of exercise. J Physiol Sci 2021; 71:35. [PMID: 34802419 PMCID: PMC10717652 DOI: 10.1186/s12576-021-00821-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
It has been suggested that glycogen functions not only in carbohydrate energy storage, but also as molecular sensors capable of activating lipolysis. This study aimed to compare the variation in liver and muscle glycogen during the day due to different timing of exercise. Nine healthy young men participated in two trials in which they performed a single bout of exercise at 70% of their individual maximal oxygen uptake for 60 min in the post-absorptive (morning) or post-prandial (afternoon) state. Liver and muscles glycogen levels were measured using carbon magnetic resonance spectroscopy (13C MRS). Diurnal variations in liver and muscle glycogen compared to baseline levels were significantly different depending on the timing of exercise. The effect of the timing of exercise on glycogen fluctuation is known to be related to a variety of metabolic signals, and the results of this study will be useful for future research on energy metabolism.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, 80 Tainoshocho, Tenri, Nara, 632-0071, Japan.
| | - Yoko Tanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Fumiya Tanji
- Sport Medical Science Research Institute, Tokai University, Kanagawa, Japan
| | | | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Kitamoto T, Kuo T, Okabe A, Kaneda A, Accili D. An integrative transcriptional logic model of hepatic insulin resistance. Proc Natl Acad Sci U S A 2021; 118:e2102222118. [PMID: 34732569 PMCID: PMC8609333 DOI: 10.1073/pnas.2102222118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a "spreading" of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032;
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Taiyi Kuo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
24
|
Sellers J, Brooks A, Fernando S, Westenberger G, Junkins S, Smith S, Min K, Lawan A. Fasting-Induced Upregulation of MKP-1 Modulates the Hepatic Response to Feeding. Nutrients 2021; 13:nu13113941. [PMID: 34836195 PMCID: PMC8619756 DOI: 10.3390/nu13113941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
The liver plays a key role in whole-body, glucose and lipid homeostasis. Nutritional signals in response to fasting and refeeding regulate hepatic lipid synthesis. It is established that activation of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in response to overnutrition regulates MAPK-dependent pathways that control lipid metabolism in the liver. However, the regulatory mechanisms and the impact of the actions of MKP-1 in hepatic response to fasting remains unclear. We investigated the effect of fasting on the expression of MKP-1 and the impact on hepatic response to feeding. In this study, we demonstrate that fasting stress induced upregulation of hepatic MKP-1 protein levels with a corresponding downregulation of p38 MAPK and JNK phosphorylation in mouse livers. We found that MKP-1-deficient livers are resistant to fasting-induced hepatic steatosis. Hepatic MKP-1 deficiency impaired fasting-induced changes in the levels of key transcription factors involved in the regulation of fatty acid and cholesterol metabolism including Srebf2 and Srebf1c. Mechanistically, MKP-1 negatively regulates Srebf2 expression by attenuating p38 MAPK pathway, suggesting its contribution to the metabolic effects of MKP-1 deficiency in the fasting liver. These findings support the hypothesis that upregulation of MKP-1 is a physiological relevant response and might be beneficial in hepatic lipid utilization during fasting in the liver. Collectively, these data unravel some of the complexity and tissue specific interaction of MKP-1 action in response to changes in nutritional cues, including fasting and excess nutrients
Collapse
Affiliation(s)
- Jacob Sellers
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Abigail Brooks
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Savanie Fernando
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Gabrielle Westenberger
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Sadie Junkins
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Shauri Smith
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
| | - Kisuk Min
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (J.S.); (A.B.); (S.F.); (G.W.); (S.J.); (S.S.)
- Correspondence: ; Tel.: +1-256-824-6264
| |
Collapse
|
25
|
Præstholm SM, Correia CM, Goitea VE, Siersbæk MS, Jørgensen M, Havelund JF, Pedersen TÅ, Færgeman NJ, Grøntved L. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Rep 2021; 37:109938. [PMID: 34731602 DOI: 10.1016/j.celrep.2021.109938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
The transition from a fasted to a fed state is associated with extensive transcriptional remodeling in hepatocytes facilitated by hormonal- and nutritional-regulated transcription factors. Here, we use a liver-specific glucocorticoid receptor (GR) knockout (L-GRKO) model to investigate the temporal hepatic expression of GR target genes in response to feeding. Interestingly, in addition to the well-described fasting-regulated genes, we identify a subset of hepatic feeding-induced genes that requires GR for full expression. This includes Gck, which is important for hepatic glucose uptake, utilization, and storage. We show that insulin and glucocorticoids cooperatively regulate hepatic Gck expression in a direct GR-dependent manner by a 4.6 kb upstream GR binding site operating as a Gck enhancer. L-GRKO blunts preprandial and early postprandial Gck expression, which ultimately affects early postprandial hepatic glucose uptake, phosphorylation, and glycogen storage. Thus, GR is positively involved in feeding-induced gene expression and important for postprandial glucose metabolism in the liver.
Collapse
Affiliation(s)
- Stine M Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Catarina M Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Victor E Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mathilde Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
26
|
Xu S, Liu Y, Hu R, Wang M, Stöhr O, Xiong Y, Chen L, Kang H, Zheng L, Cai S, He L, Wang C, Copps KD, White MF, Miao J. TAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal physiological states. eLife 2021; 10:e57462. [PMID: 34622775 PMCID: PMC8555985 DOI: 10.7554/elife.57462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the mechanisms whereby the liver maintains glucose homeostasis is crucial for the understanding of physiological and pathological states. Here, we show a novel role of hepatic transcriptional co-activator with PDZ-binding motif (TAZ) in the inhibition of glucocorticoid receptor (GR). TAZ is abundantly expressed in pericentral hepatocytes and its expression is markedly reduced by fasting. TAZ interacts via its WW domain with the ligand-binding domain of GR to limit the binding of GR to the GR response element in gluconeogenic gene promoters. Therefore, liver-specific TAZ knockout mice show increases in glucose production and blood glucose concentration. Conversely, the overexpression of TAZ in mouse liver reduces the binding of GR to gluconeogenic gene promoters and glucose production. Thus, our findings demonstrate that hepatic TAZ inhibits GR transactivation of gluconeogenic genes and coordinates gluconeogenesis in response to physiological fasting and feeding.
Collapse
Affiliation(s)
- Simiao Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of the National Clinical Research Center for Metabolic DiseaseWuhanChina
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Yangyang Liu
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ruixiang Hu
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Min Wang
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Yibo Xiong
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Liang Chen
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- College of Science, Northeastern UniversityBostonUnited States
| | - Hong Kang
- Department of Systemic Biology, Harvard Medical SchoolBostonUnited States
| | - Lingyun Zheng
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Songjie Cai
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Li He
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Kyle D Copps
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Morris F White
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
PAQR9 regulates hepatic ketogenesis and fatty acid oxidation during fasting by modulating protein stability of PPARα. Mol Metab 2021; 53:101331. [PMID: 34474167 PMCID: PMC8452888 DOI: 10.1016/j.molmet.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The cycle of feeding and fasting is fundamental to life and closely coordinated with changes of metabolic programs. During extended starvation, ketogenesis coupled with fatty acid oxidation in the liver supplies ketone bodies to extrahepatic tissues as the major form of fuel. In this study, we demonstrated that PAQR9, a member of the progesterone and adipoQ receptor family, has a regulatory role on hepatic ketogenesis. METHODS We analyzed the phenotype of Paqr9-deleted mice. We also used biochemical methods to investigate the interaction of PAQR9 with PPARα and HUWE1, an E3 ubiquitin ligase. RESULTS The expression of Paqr9 was decreased during fasting partly depending on PPARγ. The overall phenotype of the mice was not altered by Paqr9 deletion under normal chow feeding. However, fasting-induced ketogenesis and fatty acid oxidation were attenuated by Paqr9 deletion. Mechanistically, Paqr9 deletion decreased protein stability of PPARα via enhancing its poly-ubiquitination. PAQR9 competed with HUWE1 for interaction with PPARα, thus preventing ubiquitin-mediated degradation of PPARα. CONCLUSION Our study reveals that PAQR9 impacts starvation-mediated metabolic changes in the liver via post-translational regulation of PPARα.
Collapse
|
28
|
Xiao Z, Locasale JW. Epigenomic links from metabolism-methionine and chromatin architecture. Curr Opin Chem Biol 2021; 63:11-18. [PMID: 33667809 PMCID: PMC9889272 DOI: 10.1016/j.cbpa.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.
Collapse
Affiliation(s)
- Zhengtao Xiao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Wu L, Jiao Y, Li Y, Jiang J, Zhao L, Li M, Li B, Yan Z, Chen X, Li X, Lu Y. Hepatic Gadd45β promotes hyperglycemia and glucose intolerance through DNA demethylation of PGC-1α. J Exp Med 2021; 218:e20201475. [PMID: 33688917 PMCID: PMC7953268 DOI: 10.1084/jem.20201475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Although widely used for their potent anti-inflammatory and immunosuppressive properties, the prescription of glucocorticoid analogues (e.g., dexamethasone) has been associated with deleterious glucose metabolism, compromising their long-term therapeutic use. However, the molecular mechanism remains poorly understood. In the present study, through transcriptomic and epigenomic analysis of two mouse models, we identified a growth arrest and DNA damage-inducible β (Gadd45β)-dependent pathway that stimulates hepatic glucose production (HGP). Functional studies showed that overexpression of Gadd45β in vivo or in cultured hepatocytes activates gluconeogenesis and increases HGP. In contrast, liver-specific Gadd45β-knockout mice were resistant to high-fat diet- or steroid-induced hyperglycemia. Of pathophysiological significance, hepatic Gadd45β expression is up-regulated in several mouse models of obesity and diabetic patients. Mechanistically, Gadd45β promotes DNA demethylation of PGC-1α promoter in conjunction with TET1, thereby stimulating PGC-1α expression to promote gluconeogenesis and hyperglycemia. Collectively, these findings unveil an epigenomic signature involving Gadd45β/TET1/DNA demethylation in hepatic glucose metabolism, enabling the identification of pathogenic factors in diabetes.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Korenfeld N, Finkel M, Buchshtab N, Bar-Shimon M, Charni-Natan M, Goldstein I. Fasting Hormones Synergistically Induce Amino Acid Catabolism Genes to Promote Gluconeogenesis. Cell Mol Gastroenterol Hepatol 2021; 12:1021-1036. [PMID: 33957303 PMCID: PMC8346669 DOI: 10.1016/j.jcmgh.2021.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Gluconeogenesis from amino acids (AAs) maintains glucose homeostasis during fasting. Although glucagon is known to regulate AA catabolism, the contribution of other hormones to it and the scope of transcriptional regulation dictating AA catabolism are unknown. We explored the role of the fasting hormones glucagon and glucocorticoids in transcriptional regulation of AA catabolism genes and AA-dependent gluconeogenesis. METHODS We tested the RNA expression of AA catabolism genes and glucose production in primary mouse hepatocytes treated with fasting hormones (glucagon, corticosterone) and feeding hormones (insulin, fibroblast growth factor 19). We analyzed genomic data of chromatin accessibility and chromatin immunoprecipitation in mice and primary mouse hepatocytes. We performed chromatin immunoprecipitation in livers of fasted mice to show binding of cAMP responsive element binding protein (CREB) and the glucocorticoid receptor (GR). RESULTS Fasting induced the expression of 31 genes with various roles in AA catabolism. Of them, 15 were synergistically induced by co-treatment of glucagon and corticosterone. Synergistic gene expression relied on the activity of both CREB and GR and was abolished by treatment with either insulin or fibroblast growth factor 19. Enhancers adjacent to synergistically induced genes became more accessible and were bound by CREB and GR on fasting. Akin to the gene expression pattern, gluconeogenesis from AAs was synergistically induced by glucagon and corticosterone in a CREB- and GR-dependent manner. CONCLUSIONS Transcriptional regulation of AA catabolism genes during fasting is widespread and is driven by glucagon (via CREB) and corticosterone (via GR). Glucose production in hepatocytes is also synergistically augmented, showing that glucagon alone is insufficient in fully activating gluconeogenesis.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Finkel
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
32
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
33
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
|
34
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021; 22:ijms22063179. [PMID: 33804729 PMCID: PMC8003860 DOI: 10.3390/ijms22063179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
35
|
Xu X, Chen Y, Zhu D, Zhao T, Xu R, Wang J, Hu L, Shen X. FX5 as a non-steroidal GR antagonist improved glucose homeostasis in type 2 diabetic mice via GR/HNF4α/miR-122-5p pathway. Aging (Albany NY) 2020; 13:2436-2458. [PMID: 33316780 PMCID: PMC7880398 DOI: 10.18632/aging.202275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by glucose metabolic disorders, and gluconeogenesis inhibiting is a promisingly therapeutic strategy for T2DM. Glucocorticoid receptor (GR) is tightly implicated in the regulation of gluconeogenesis, although the underlying mechanism remains obscure. Here, we discovered that small molecule, 5-chloro-N-[4-chloro-3-(trifluoromethyl)phenyl]thiophene-2-sulfonamide (FX5) as a new non-steroidal GR antagonist efficiently ameliorated glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. The mechanism underlying the suppression of FX5 against gluconeogenesis was highly investigated. FX5 suppressed gluconeogenetic genes G6Pase and PEPCK in mouse primary hepatocytes and liver tissues of T2DM mice. Results of mammalian one-hybrid and transactivation as well as nuclear translocation assays totally evaluated the antagonistic features of FX5 against GR. Moreover, siRNA and overexpression related assays verified that FX5 alleviated gluconeogenesis either directly by antagonizing GR or indirectly through GR/HNF4α/miR122-5p signaling pathway. Our work has presented a new mode for GR antagonist in the regulation of gluconeogenesis, which is expected to highlight the potential of FX5 in the treatment of T2DM.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yidi Chen
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danyang Zhu
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Xu
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihong Hu
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Shen
- Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
36
|
Mo J, Chen J, Zhang B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis 2020; 11:983. [PMID: 33199694 PMCID: PMC7670425 DOI: 10.1038/s41419-020-03195-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Mo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
37
|
Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21207780. [PMID: 33096672 PMCID: PMC7589317 DOI: 10.3390/ijms21207780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A common metabolic condition for living organisms is starvation/fasting, a state that could play systemic-beneficial roles. Complex adaptive responses are activated during fasting to help the organism to maintain energy homeostasis and avoid nutrient stress. Metabolic rearrangements during fasting cause mild oxidative stress in skeletal muscle. The nuclear factor erythroid 2-related factor 2 (Nrf2) controls adaptive responses and remains the major regulator of quenching mechanisms underlying different types of stress. Here, we demonstrate a positive role of fasting as a protective mechanism against oxidative stress in skeletal muscle. In particular, by using in vivo and in vitro models of fasting, we found that typical Nrf2-dependent genes, including those controlling iron (e.g., Ho-1) and glutathione (GSH) metabolism (e.g., Gcl, Gsr) are induced along with increased levels of the glutathione peroxidase 4 (Gpx4), a GSH-dependent antioxidant enzyme. These events are associated with a significant reduction in malondialdehyde, a well-known by-product of lipid peroxidation. Our results suggest that fasting could be a valuable approach to boost the adaptive anti-oxidant responses in skeletal muscle.
Collapse
|
38
|
Alidadi M, Banach M, Guest PC, Bo S, Jamialahmadi T, Sahebkar A. The effect of caloric restriction and fasting on cancer. Semin Cancer Biol 2020; 73:30-44. [PMID: 32977005 DOI: 10.1016/j.semcancer.2020.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most frequent causes of worldwide death and morbidity and is a major public health problem. Although, there are several widely used treatment methods including chemo-, immune- and radiotherapies, these mostly lack sufficient efficiency and induce toxicities in normal surrounding tissues. Thus, finding new approaches to mitigate side effects and potentially accelerate treatment is paramount. In line with this, increasing preclinical evidence indicates that caloric restriction (CR) and fasting might have anticancer effects by reducing tumor progression, enhancing death of cancer cells, and elevating the effectiveness and tolerability of chemo- and radiotherapies. Nonetheless, clinical studies assessing the potential of CR and fasting in cancer are scarce and inconsistent, and more investigations are still required to clarify their effect in different aspects of cancer treatment. In this review, we have summarized the findings of preclinical and clinical studies of CR and fasting with respect to efficacy and on the adverse effects of standard cancer treatments.
Collapse
Affiliation(s)
- Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse. Sci Rep 2020; 10:11956. [PMID: 32686713 PMCID: PMC7371695 DOI: 10.1038/s41598-020-68665-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Maf1−/− mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1−/− mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.
Collapse
|
40
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
41
|
Bhoumik S, Kumar R, Rizvi SI. Time restricted feeding provides a viable alternative to alternate day fasting when evaluated in terms of redox homeostasis in rats. Arch Gerontol Geriatr 2020; 91:104188. [PMID: 32717588 DOI: 10.1016/j.archger.2020.104188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Intermittent fasting (IF) is a non-pharmacological dietary approach for intervening into aging in different organisms. We evaluated the efficacy of time restricted dietary regimen and alternate-day fasting in rats by measuring redox parameters which are frequently used as signature biomarkers of aging. Wistar rats (8 months) were divided into three groups of six rats each. Group I: Control; Group II: Time-restricted feeding (TRF) (fed and fasted at a ratio of 16:8 h respectively) and Group III. Alternate day feeding (ADF) (fed and fasted on alternate days), for a period of 1 month. The biomarkers of antioxidant defense and oxidative stress: FRAP, GSH, PMRS, ROS, AGE, MDA, PCO, AOPP, TNF-α and IL-6, were determined. Our results suggest that, based on predominant aging biomarkers, TRF has a similar effect on rats compared with ADF evaluated in terms of redox homeostasis. Observed results defend our purpose that the ADF and TRF methods are reliable dietary restriction regimens and subsequently improve the metabolic profile and redox homeostasis in rats.
Collapse
Affiliation(s)
- Sukanya Bhoumik
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
42
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China. .,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
43
|
Influence of Long-Term Fasting on Blood Redox Status in Humans. Antioxidants (Basel) 2020; 9:antiox9060496. [PMID: 32517172 PMCID: PMC7346198 DOI: 10.3390/antiox9060496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fasting is increasingly practiced to improve health and general well-being, as well as for its cytoprotective effects. Changes in blood redox status, linked to the development of a variety of metabolic diseases, have been recently documented during calorie restriction and intermittent fasting, but not with long-term fasting (LF). We investigated some parameters of the blood redox profile in 109 subjects before and after a 10-day fasting period. Fasting resulted in a significant reduction in body weight, improved well-being and had a beneficial modulating effect on blood lipids and glucose regulation. We observed that fasting decreased lipid peroxidation (TBARS) and increased total antioxidant capacity (TAC) in plasma, concomitant with a uric acid elevation, known to be associated with fasting and did not cause gout attacks. Reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase in erythrocytes did not show significant changes. In addition, reduction in body weight, waist circumference, and glucose levels were associated to a reduced lipid peroxidation. Similar results were obtained by grouping subjects on the basis of the changes in their GSH levels, showing that a period of 10 days fasting improves blood redox status regardless of GSH status in the blood.
Collapse
|
44
|
Iwayama K, Onishi T, Maruyama K, Takahashi H. Diurnal variation in the glycogen content of the human liver using 13 C MRS. NMR IN BIOMEDICINE 2020; 33:e4289. [PMID: 32157774 DOI: 10.1002/nbm.4289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Glycogen in tissues functions not only as carbohydrate reserves, but also as molecular sensors capable of activating signaling pathways in response to physical activity. While glycogen in the skeletal muscles is mainly a local energy substrate, glycogen in the liver serves as a glucose reserve to maintain normal blood glucose levels in the body, even during the sleep state. The aim of this study is to compare the diurnal variation of glycogen in the muscle and liver of human subjects under normal conditions. The glycogen content was measured in the muscle and liver of 10 young, healthy, male volunteers using 13 C MRS, a non-invasive technique. The subjects remained sedentary, and glycogen concentration was measured six times daily. Experimental meals were provided to achieve individual energy balance, estimated according to the energy requirement guideline for patients from Japan. The largest variation in muscle glycogen compared with 1 h after supper (20:00 on Day 1) was 3.1 ± 8.2 mmol/L (16:00 on Day 2). In the liver, however, the glycogen content decreased by 80.6 ± 40.4 mmol/L through the overnight fasting period (07:00 on Day 2). This study demonstrated that the glycogen content in the liver was significantly lower in the morning, while the glycogen content in the calf muscles underwent minimal diurnal variation. The overnight fast is a characteristic daily condition, in which liver glycogen content is low, whereas muscle glycogen content is relatively unaffected.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Takahiro Onishi
- Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Katsuya Maruyama
- MR Research & Collaboration Department, Siemens Healthcare K.K., Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Sport Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
45
|
Régnier M, Polizzi A, Smati S, Lukowicz C, Fougerat A, Lippi Y, Fouché E, Lasserre F, Naylies C, Bétoulières C, Barquissau V, Mouisel E, Bertrand-Michel J, Batut A, Saati TA, Canlet C, Tremblay-Franco M, Ellero-Simatos S, Langin D, Postic C, Wahli W, Loiseau N, Guillou H, Montagner A. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Sci Rep 2020; 10:6489. [PMID: 32300166 PMCID: PMC7162950 DOI: 10.1038/s41598-020-63579-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/30/2020] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα−/−) and in mice lacking Pparα only in hepatocytes (Pparαhep−/−). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Marion Régnier
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Arnaud Polizzi
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Sarra Smati
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Céline Lukowicz
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Anne Fougerat
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Yannick Lippi
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Edwin Fouché
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Frédéric Lasserre
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Claire Naylies
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Colette Bétoulières
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Metatoul-Lipidomic Facility, MetaboHUB, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Aurélie Batut
- Metatoul-Lipidomic Facility, MetaboHUB, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Talal Al Saati
- Service d'Histopathologie Expérimentale Unité INSERM/UPS/ENVT-US006/CREFRE Inserm, CHU Purpan, 31024, Toulouse, cedex 3, France
| | - Cécile Canlet
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France.,Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France
| | - Walter Wahli
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang, Singapore.,Center for Integrative Genomics, Université de Lausanne, Le Génopode, Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Hervé Guillou
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.
| | - Alexandra Montagner
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
46
|
Geng X, Guo J, Zhang L, Sun J, Zang X, Qiao Z, Xu C. Differential Proteomic Analysis of Chinese Giant Salamander Liver in Response to Fasting. Front Physiol 2020; 11:208. [PMID: 32256382 PMCID: PMC7093600 DOI: 10.3389/fphys.2020.00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Chinese giant salamander Andrias davidianus has strong tolerance to starvation. Fasting triggers a complex array of adaptive metabolic responses, a process in which the liver plays a central role. Here, a high-throughput proteomic analysis was carried out on liver samples obtained from adult A. davidianus after 3, 7, and 11 months of fasting. As a result, the expression levels of 364 proteins were significantly changed in the fasted liver. Functional analysis demonstrated that the expression levels of key proteins involved in fatty acid oxidation, tricarboxylic acid cycle, gluconeogenesis, ketogenesis, amino acid oxidation, urea cycle, and antioxidant systems were increased in the fasted liver, especially at 7 and 11 months after fasting. In contrast, the expression levels of vital proteins involved in pentose phosphate pathway and protein synthesis were decreased after fasting. We also found that fasting not only activated fatty acid oxidation and ketogenesis-related transcription factors PPARA and PPARGC1A, but also activated gluconeogenesis-related transcription factors FOXO1, HNF4A, and KLF15. This study confirms the central role of lipid and acetyl-CoA metabolism in A. davidianus liver in response to fasting at the protein level and provides insights into the molecular mechanisms underlying the metabolic response of A. davidianus liver to fasting.
Collapse
Affiliation(s)
- Xiaofang Geng
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Lu Zhang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jiyao Sun
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
47
|
Posner DC, Lin H, Meigs JB, Kolaczyk ED, Dupuis J. Convex combination sequence kernel association test for rare-variant studies. Genet Epidemiol 2020; 44:352-367. [PMID: 32100372 DOI: 10.1002/gepi.22287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
We propose a novel variant set test for rare-variant association studies, which leverages multiple single-nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 - 6 and has greater power than SKAT(-O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000 ). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome-wide significant associations between fasting glucose and 4-kb windows of rare variants ( p < 1 0 - 7 ) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 - 5 ) and within CPLX1 ( p = 5.3 × 1 0 - 5 ). These two genes were previously reported to be involved in obesity-mediated insulin resistance and glucose-induced insulin secretion by pancreatic beta-cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.
Collapse
Affiliation(s)
- Daniel C Posner
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Honghuang Lin
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts.,Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - James B Meigs
- Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric D Kolaczyk
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts
| |
Collapse
|
48
|
Kadkhoda G, Zarkesh M, Saidpour A, Oghaz MH, Hedayati M, Khalaj A. Association of dietary intake of fruit and green vegetables with PTEN and P53 mRNA gene expression in visceral and subcutaneous adipose tissues of obese and non-obese adults. Gene 2020; 733:144353. [PMID: 31978509 DOI: 10.1016/j.gene.2020.144353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The present study investigates the association of dietary intake of fruit and green Vegetables with PTEN and P53 mRNA gene expression in visceral (VAT) and subcutaneous adipose tissues (SAT) of obese and non-obese adults. METHODS VAT and SAT were obtained from 151 individuals, aged ~40 years, who had undergone elective abdominal surgery. The participants were grouped according to their body mass index (BMI), as obese (BMI > 30 kg/m2) and non-obese (BMI = 18.5-30 kg/m2). Dietary intakes were obtained using a valid and reliable food-frequency questionnaire (FFQ). Real-time PCR was carried out for PTEN and P53 mRNA expressions. Associations between expression levels and dietary parameters were analyzed. RESULTS P53 mRNA expression of obese participants was significantly higher than the non-obese, only in VAT (p < 0.001). After adjusting for total energy intake, age and BMI, fruit intake was inversely associated with P53 gene expression in both VAT (β = -0.38, P = 0.01) and SAT (β = -0.35, P = 0.03) among non-obese participants. Furthermore, fruit consumption was inversely associated with P53 gene expression in obese individuals, only in VAT (β = -0.21, P = 0.05). More so, intake of green vegetables in obese subjects was negatively associated with P53 gene expression in VAT (β = -0.27, P = 0.01) and SAT (β = -0.28, P < 0.001). On the other hand, after adjustment for total energy intake, age and BMI, a positive association was observed between fruit intake and PTEN in VAT (β = 0.27, P = 0.01) and SAT (β = 0.34, P < 0.001) among obese participants. In addition, dietary consumption of fruits in non-obese individuals was negatively associated withPTEN expression in SAT (β = -0.48, P < 0.001). CONCLUSION Dietary intake of fruit and green vegetables was associated with P53 gene expression in VAT and SAT of obese participants, suggesting their protective role in regulating P53 mRNA expression in adipose tissue. Furthermore, higher fruit intake was inversely associated with PTEN mRNA levels in non-obese participants, implying the anti-adipogenic role of PTEN gene expression.
Collapse
Affiliation(s)
- Golnoosh Kadkhoda
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atoosa Saidpour
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Hajizadeh Oghaz
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Khalaj
- Tehran Obesity Treatment Center, Department of Surgery, Shahed University, Tehran, Iran.
| |
Collapse
|
49
|
Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P. Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Rep 2019; 25:3299-3314.e6. [PMID: 30566858 DOI: 10.1016/j.celrep.2018.11.077] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/08/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The circadian clock operates as intrinsic time-keeping machinery to preserve homeostasis in response to the changing environment. While food is a known zeitgeber for clocks in peripheral tissues, it remains unclear how lack of food influences clock function. We demonstrate that the transcriptional response to fasting operates through molecular mechanisms that are distinct from time-restricted feeding regimens. First, fasting affects core clock genes and proteins, resulting in blunted rhythmicity of BMAL1 and REV-ERBα both in liver and skeletal muscle. Second, fasting induces a switch in temporal gene expression through dedicated fasting-sensitive transcription factors such as GR, CREB, FOXO, TFEB, and PPARs. Third, the rhythmic genomic response to fasting is sustainable by prolonged fasting and reversible by refeeding. Thus, fasting imposes specialized dynamics of transcriptional coordination between the clock and nutrient-sensitive pathways, thereby achieving a switch to fasting-specific temporal gene regulation.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yu Liu
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Nunzia Pastore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
50
|
Barretto SA, Lasserre F, Fougerat A, Smith L, Fougeray T, Lukowicz C, Polizzi A, Smati S, Régnier M, Naylies C, Bétoulières C, Lippi Y, Guillou H, Loiseau N, Gamet-Payrastre L, Mselli-Lakhal L, Ellero-Simatos S. Gene Expression Profiling Reveals that PXR Activation Inhibits Hepatic PPARα Activity and Decreases FGF21 Secretion in Male C57Bl6/J Mice. Int J Mol Sci 2019; 20:ijms20153767. [PMID: 31374856 PMCID: PMC6696478 DOI: 10.3390/ijms20153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023] Open
Abstract
The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Frédéric Lasserre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Anne Fougerat
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Lorraine Smith
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Tiffany Fougeray
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Céline Lukowicz
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Arnaud Polizzi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sarra Smati
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Marion Régnier
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Claire Naylies
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Colette Bétoulières
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Yannick Lippi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laurence Gamet-Payrastre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laila Mselli-Lakhal
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sandrine Ellero-Simatos
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France.
| |
Collapse
|