1
|
Hackney BC, Pyles JA, Grossman ED. A quantitative comparison of atlas parcellations on the human superior temporal sulcus. Brain Res 2024; 1842:149119. [PMID: 38986829 DOI: 10.1016/j.brainres.2024.149119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The superior temporal sulcus (STS) has a functional topography that has been difficult to characterize through traditional approaches. Automated atlas parcellations may be one solution while also being beneficial for both dimensional reduction and standardizing regions of interest, but they yield very different boundary definitions along the STS. Here we evaluate how well machine learning classifiers can correctly identify six social cognitive tasks from STS activation patterns dimensionally reduced using four popular atlases (Glasser et al., 2016; Gordon et al., 2016; Power et al., 2011 as projected onto the surface by Arslan et al., 2018; Schaefer et al., 2018). Functional data was summarized within each STS parcel in one of four ways, then subjected to leave-one-subject-out cross-validation SVM classification. We found that the classifiers could readily label conditions when data was parcellated using any of the four atlases, evidence that dimensional reduction to parcels did not compromise functional fingerprints. Mean activation for the social conditions was the most effective metric for classification in the right STS, whereas all the metrics classified equally well in the left STS. Interestingly, even atlases constructed from random parcellation schemes (null atlases) classified the conditions with high accuracy. We therefore conclude that the complex activation maps on the STS are readily differentiated at a coarse granular level, despite a strict topography having not yet been identified. Further work is required to identify what features have greatest potential to improve the utility of atlases in replacing functional localizers.
Collapse
Affiliation(s)
- Brandon C Hackney
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States.
| | - John A Pyles
- Department of Psychology, Center for Human Neuroscience, University of Washington, 119 Guthrie Hall, Seattle, WA 98195, United States
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States
| |
Collapse
|
2
|
Lago S, Zago S, Bambini V, Arcara G. Pre-Stimulus Activity of Left and Right TPJ in Linguistic Predictive Processing: A MEG Study. Brain Sci 2024; 14:1014. [PMID: 39452027 PMCID: PMC11505736 DOI: 10.3390/brainsci14101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The left and right temporoparietal junctions (TPJs) are two brain areas involved in several brain networks, largely studied for their diverse roles, from attentional orientation to theory of mind and, recently, predictive processing. In predictive processing, one crucial concept is prior precision, that is, the reliability of the predictions of incoming stimuli. This has been linked with modulations of alpha power as measured with electrophysiological techniques, but TPJs have seldom been studied in this framework. METHODS The present article investigates, using magnetoencephalography, whether spontaneous oscillations in pre-stimulus alpha power in the left and right TPJs can modulate brain responses during a linguistic task that requires predictive processing in literal and non-literal sentences. RESULTS Overall, results show that pre-stimulus alpha power in the rTPJ was associated with post-stimulus responses only in the left superior temporal gyrus, while lTPJ pre-stimulus alpha power was associated with post-stimulus activity in Broca's area, left middle temporal gyrus, and left superior temporal gyrus. CONCLUSIONS We conclude that both the right and left TPJs have a role in linguistic prediction, involving a network of core language regions, with differences across brain areas and linguistic conditions that can be parsimoniously explained in the context of predictive processing.
Collapse
Affiliation(s)
- Sara Lago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
| | - Valentina Bambini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy;
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| |
Collapse
|
3
|
Sazhin D, Wyngaarden JB, Dennison JB, Zaff O, Fareri D, McCloskey MS, Alloy LB, Jarcho JM, Smith DV. Trait reward sensitivity modulates connectivity with the temporoparietal junction and Anterior Insula during strategic decision making. Biol Psychol 2024; 192:108857. [PMID: 39209102 PMCID: PMC11464178 DOI: 10.1016/j.biopsycho.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Many decisions happen in social contexts such as negotiations, yet little is understood about how people balance fairness versus selfishness. Past investigations found that activation in brain areas involved in executive function and reward processing was associated with people offering less with no threat of rejection from their partner, compared to offering more when there was a threat of rejection. However, it remains unclear how trait reward sensitivity may modulate activation and connectivity patterns in these situations. To address this gap, we used task-based fMRI to examine the relation between reward sensitivity and the neural correlates of bargaining choices. Participants (N = 54) completed the Sensitivity to Punishment (SP)/Sensitivity to Reward (SR) Questionnaire and the Behavioral Inhibition System/Behavioral Activation System scales. Participants performed the Ultimatum and Dictator Games as proposers and exhibited strategic decisions by being fair when there was a threat of rejection, but being selfish when there was not a threat of rejection. We found that strategic decisions evoked activation in the Inferior Frontal Gyrus (IFG) and the Anterior Insula (AI). Next, we found elevated IFG connectivity with the Temporoparietal junction (TPJ) during strategic decisions. Finally, we explored whether trait reward sensitivity modulated brain responses while making strategic decisions. We found that people who scored lower in reward sensitivity made less strategic choices when they exhibited higher AI-Angular Gyrus connectivity. Taken together, our results demonstrate how trait reward sensitivity modulates neural responses to strategic decisions, potentially underscoring the importance of this factor within social and decision neuroscience.
Collapse
Affiliation(s)
- Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - James B Wyngaarden
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jeff B Dennison
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Ori Zaff
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Dominic Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY, USA
| | - Michael S McCloskey
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lauren B Alloy
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Johanna M Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
5
|
Hartmann H, Orlando EM, Borja K, Keysers C, Gazzola V. Cognitive control: exploring the causal role of the rTPJ in empathy for pain mediated by contextual information. Soc Cogn Affect Neurosci 2024; 19:nsae057. [PMID: 39238215 DOI: 10.1093/scan/nsae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Empathy determines our emotional and social lives. Research has recognized the role of the right temporoparietal junction (rTPJ) in social cognition; however, there is less direct causal evidence for its involvement in empathic responses to pain, which is typically attributed to simulation mechanisms. Given the rTPJ's role in processing false beliefs and contextual information during social scenarios, we hypothesized that empathic responses to another person's pain depend on the rTPJ if participants are given information about people's intentions, engaging mentalizing mechanisms alongside simulative ones. Participants viewed videos of an actress freely showing or suppressing pain caused by an electric shock while receiving 6 Hz repetitive transcranial magnetic stimulation (rTMS) over the rTPJ or sham vertex stimulation. Active rTMS had no significant effect on participants' ratings depending on the pain expression, although participants rated the actress's pain as lower during rTPJ perturbation. In contrast, rTMS accelerated response times for providing ratings during pain suppression. We also found that participants perceived the actress's pain as more intense when they knew she would suppress it rather than show it. These results suggest an involvement of the rTPJ in attributing pain to others and provide new insights into people's behavior in judging others' pain when it is concealed.
Collapse
Affiliation(s)
- Helena Hartmann
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam 1105 BA, The Netherlands
- Clinical Neurosciences, Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen 45147, Germany
| | - Egle M Orlando
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam 1105 BA, The Netherlands
- Department of General Psychology, University of Padua, Padua 35131, Italy
| | - Karina Borja
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam 1105 BA, The Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam 1105 BA, The Netherlands
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam 1105 BA, The Netherlands
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| |
Collapse
|
6
|
Suzuki C, Ikeda Y, Tateno A, Okubo Y, Fukayama H, Suzuki H. Tramadol Effects on Brain Activity During Cognitive and Emotional Empathy for Pain: A Randomized Controlled Study. THE JOURNAL OF PAIN 2024:104672. [PMID: 39245196 DOI: 10.1016/j.jpain.2024.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Pain is perceived not only by personal experience but also vicariously. Pain empathy is the ability to share and understand other's intentions and emotions in their painful conditions, which can be divided into cognitive and emotional empathy. It remains unclear how centrally acting analgesics would modulate brain activity related to pain empathy and which component of pain empathy would be altered by analgesics. In this study, we examined the effects of the analgesic tramadol on the brain activity for pain empathy in healthy adults. We used 2 tasks to assess brain activity for pain empathy. In experiment 1, we used a well-established picture-based pain empathy task involving passive observation of other's pain. In experiment 2, we developed a novel pain empathy task to assess brain activity during cognitive and emotional empathy for pain separately in a single task. We conducted a double-blind, placebo-controlled within-subject crossover study with functional magnetic resonance imaging for 33 participants in experiment 1 and 31 participants in experiment 2, respectively. In experiment 1, we found that tramadol decreased activation in the supramarginal gyrus during observation of other's pain compared with placebo. Supramarginal gyrus activation correlated negatively with the thermal pain threshold. In experiment 2, we found that tramadol decreased activation in angular gyrus in cognitive empathy for pain compared with placebo but did not change brain activity in emotional empathy for pain. PERSPECTIVE: Centrally acting analgesics such as tramadol may have not only analgesic effects on self-experienced pain but also on the complex neural processing of pain empathy.
Collapse
Affiliation(s)
- Chihiro Suzuki
- Department of Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Tokyo Metropolitan Center for Oral Health of Persons with Disabilities, Tokyo, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Haruhisa Fukayama
- Department of Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Yamamoto E, Hirokawa M, Nunez E, Hakuno Y, Sekine K, Miyahara S, Suzuki K, Minagawa Y. Neural and Physiological Correlates of Prosocial Behavior: Temporoparietal Junction Activity in 3-year-old Children. J Cogn Neurosci 2024; 36:1977-1994. [PMID: 38820551 DOI: 10.1162/jocn_a_02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Although the development of prosocial behavior has been widely studied from the behavioral aspect, the neural mechanisms underlying prosocial behavior in the early stages of development remain unclear. Therefore, this study investigated the neural mechanisms underlying the emergence of prosocial behavior in 3-year-old children. Brain activity in the medial pFC and right TPJ (rTPJ) and facial expression activity, which are related to the ability to infer others' mental states (mentalizing), during the observation of prosocial and antisocial scenes were measured using functional near-infrared spectroscopy and electromyography, respectively. Subsequently, the children's helping and comforting behaviors toward an experimenter were assessed to examine prosocial behavioral tendencies. A correlation analysis revealed that the children who showed stronger activity levels in the rTPJ while observing prosocial scenes had more immediate helping behaviors toward others than those who did not show stronger response levels. Moreover, the amount of facial expression activity correlated with prosocial behavior, including both helping and comforting behaviors. These results suggest that the development of mentalizing ability and the social evaluation of others' actions, mediated by the rTPJ, contribute to the emergence of prosocial behavior.
Collapse
|
8
|
Watanabe RGS, Thais MERDO, Marmentini EL, Freitas TG, Wolf P, Lin K. Theory of mind in epilepsy. Epilepsy Behav 2024; 158:109910. [PMID: 38959746 DOI: 10.1016/j.yebeh.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Epilepsy is characterized by recurrent, chronic, and unprovoked seizures. Epilepsy has a significant negative impact on a patient's quality of life even if seizures are well controlled. In addition to the distress caused by seizures, patients with epilepsy (PwE) may suffer from cognitive impairment with serious social consequences such as poor interpersonal relationships, loss of employment, and reduced social networks. Pathological changes and functional connectivity abnormalities observed in PwE can disrupt the neural network responsible for the theory of mind. Theory of mind is the ability to attribute mental states to other people (intentions, beliefs, and emotions). It is a complex aspect of social cognition and includes cognitive and affective constructs. In recent years, numerous studies have assessed the relationship between social cognition, including the theory of mind, in PwE, and suggested impairment in this domain. Interventions targeting the theory of mind can be potentially helpful in improving the quality of life of PwE.
Collapse
Affiliation(s)
- Rafael Gustavo Sato Watanabe
- Medical Sciences Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, UFSC, Florianópolis, SC, Brazil.
| | | | | | - Tatiana Goes Freitas
- Medical Sciences Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Peter Wolf
- Medical Sciences Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, UFSC, Florianópolis, SC, Brazil; Danish Epilepsy Centre, Dianalund, Denmark
| | - Katia Lin
- Medical Sciences Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, UFSC, Florianópolis, SC, Brazil; Centre for Applied Neurosciences, UFSC, SC, Brazil
| |
Collapse
|
9
|
Vavra P, Galván EP, Sanfey AG. Moral decision-making in context: Behavioral and neural processes underlying allocations based on need, merit, and equality. Cortex 2024; 177:53-67. [PMID: 38838559 DOI: 10.1016/j.cortex.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 06/07/2024]
Abstract
How to fairly allocate goods is a key issue of social decision-making. Extensive research demonstrates that people do not selfishly maximize their own benefits, but instead also consider how others are affected. However, most accounts of the psychological processes underlying fairness-related behavior implicitly assume that assessments of fairness are somewhat stable. In this paper, we present results of a novel task, the Re-Allocation Game, in which two players receive an allocation determined by the computer and, on half of the trials, one player has the subsequent possibility to change this allocation. Importantly, prior to the receipt of the allocation, players were shown either their respective financial situations, their respective performance on a previous simple task, or random information, while being scanned using functional neuroimaging. As expected, our results demonstrate when given the opportunity, participants allocated on average almost half the money to anonymous others. However, our findings further show that participants used the provided information in a dynamic manner, revealing the underlying principle based on which people re-allocate money - namely based on merit, need, or equality - switches dynamically. On the neural level, we identified activity in the right and left dorsolateral prefrontal cortices related to context-independent inequity and context-dependent fairness information respectively when viewing the computer-generated allocations. At the same time, activity in the temporoparietal and precuneus represented these different types of fairness-related information in adjacent and partially overlapping clusters. Finally, we observed that the activity pattern in the precuneus and putamen was most clearly related to participants' subsequent re-allocation decisions. Together, our findings suggest that participants judge an allocation as fair or unfair using a network associated with cognitive control and theory-of-mind, while dynamically switching between what might constitute a fair allocation in a particular context.
Collapse
Affiliation(s)
- Peter Vavra
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Elijah P Galván
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alan G Sanfey
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
10
|
Zhang P, Feng S, Zhang Q, Chen Y, Liu Y, Liu T, Bai X, Yin J. Online chasing action recruits both mirror neuron and mentalizing systems: A pilot fNIRS study. Acta Psychol (Amst) 2024; 248:104363. [PMID: 38905953 DOI: 10.1016/j.actpsy.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Engaging in chasing, where an actor actively pursues a target, is considered a crucial activity for the development of social skills. Previous studies have focused predominantly on understanding the neural correlates of chasing from an observer's perspective, but the neural mechanisms underlying the real-time implementation of chasing action remain poorly understood. To gain deeper insights into this phenomenon, the current study employed functional near-infrared spectroscopy (fNIRS) techniques and a novel interactive game. In this interactive game, participants (N = 29) were tasked to engage in chasing behavior by controlling an on-screen character using a gamepad, with the goal of catching a virtual partner. To specifically examine the brain activations associated with the interactive nature of chasing, we included two additional interactive actions: following action of following the path of a virtual partner and free action of moving without a specific pursuit goal. The results revealed that chasing and following actions elicited activation in a broad and overlapping network of brain regions, including the temporoparietal junction (TPJ), medial prefrontal cortex (mPFC), premotor cortex (PMC), primary somatosensory cortex (SI), and primary motor cortex (M1). Crucially, these regions were found to be modulated by the type of interaction, with greater activation and functional connectivity during the chasing interaction than during the following and free interactions. These findings suggested that both the MNS, encompassing regions such as the PMC, M1 and SI, and the mentalizing system (MS), involving the TPJ and mPFC, contribute to the execution of online chasing actions. Thus, the present study represents an initial step toward future investigations into the roles of MNS and MS in real-time chasing interactions.
Collapse
Affiliation(s)
- Peng Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Shuyuan Feng
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Qihan Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yixin Chen
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yu Liu
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai, China
| | - Xuejun Bai
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Jun Yin
- Department of Psychology, Ningbo University, Ningbo, China.
| |
Collapse
|
11
|
Carollo A, Esposito G. Hyperscanning literature after two decades of neuroscientific research: A scientometric review. Neuroscience 2024; 551:345-354. [PMID: 38866073 DOI: 10.1016/j.neuroscience.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Hyperscanning, a neuroimaging approach introduced in 2002 for simultaneously recording the brain activity of multiple participants, has significantly contributed to our understanding of social interactions. Nevertheless, the existing literature requires systematic organization to advance our knowledge. This study, after two decades of hyperscanning research, aims to identify the primary thematic domains and the most influential documents in the field. We conducted a scientometric analysis to examine co-citation patterns quantitatively, using a sample of 548 documents retrieved from Scopus and their 32,022 cited references. Our analysis revealed ten major thematic domains in hyperscanning research, with the most impactful document authored by Czeszumski and colleagues in 2020. Notably, while hyperscanning was initially developed for functional magnetic resonance imaging (fMRI), our findings indicate a substantial influence of research conducted using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). The introduction of fNIRS and advancements in EEG methods have enabled the implementation of more ecologically valid experiments for investigating social interactions. The study also highlights the need for more research that combines multi-brain neural stimulation with neuroimaging techniques to understand the causal role played by interpersonal neural synchrony in social interactions.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
12
|
Wang LS, Chang YC, Liou S, Weng MH, Chen DY, Kung CC. When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology 2024; 61:e14560. [PMID: 38469655 DOI: 10.1111/psyp.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Unselfishness is admired, especially when collaborations between groups of various scales are urgently needed. However, its neural mechanisms remain elusive. In a tri-MRI dyad-hyperscanning experiment involving 26 groups, each containing 4 participants as two rotating pairs in a coordination game, we sought to achieve reciprocity, or "winning in turn by the two interacting players," as the precursor to unselfishness. Due to its critical role in social processing, the right temporal-parietal junction (rTPJ) was the seed for both time domain (connectivity) and frequency domain (i.e., coherence) analyses. For the former, negative connectivity between the rTPJ and the mentalizing network areas (e.g., the right inferior parietal lobule, rIPL) was identified, and such connectivity was further negatively correlated with the individual's final gain, supporting our task design that "rewarded" the reciprocal participants. For the latter, cerebral coherences of the rTPJs emerged between the interacting pairs (i.e., within-group interacting pairs), and the coupling between the rTPJ and the right superior temporal gyrus (rSTG) between the players who were not interacting with each other (i.e., within-group noninteracting pairs). These coherences reinforce the hypotheses that the rTPJ-rTPJ coupling tracks the collaboration processes and the rTPJ-rSTG coupling for the emergence of decontextualized shared meaning. Our results underpin two social roles (inferring others' behavior and interpreting social outcomes) subserved by the rTPJ-related network and highlight its interaction with other-self/other-concerning brain areas in reaching co-benefits among unselfish players.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Yi-Cing Chang
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Ming-Hung Weng
- Department of Economics, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| |
Collapse
|
13
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
14
|
Ptak R, Bourgeois A. Disengagement of attention with spatial neglect: A systematic review of behavioral and anatomical findings. Neurosci Biobehav Rev 2024; 160:105622. [PMID: 38490498 DOI: 10.1016/j.neubiorev.2024.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The present review examined the consequences of focal brain injury on spatial attention studied with cueing paradigms, with a particular focus on the disengagement deficit, which refers to the abnormal slowing of reactions following an ipsilesional cue. Our review supports the established notion that the disengagement deficit is a functional marker of spatial neglect and is particularly pronounced when elicited by peripheral cues. Recent research has revealed that this deficit critically depends on cues that have task-relevant characteristics or are associated with negative reinforcement. Attentional capture by task-relevant cues is contingent on damage to the right temporo-parietal junction (TPJ) and is modulated by functional connections between the TPJ and the right insular cortex. Furthermore, damage to the dorsal premotor or prefrontal cortex (dPMC/dPFC) reduces the effect of task-relevant cues. These findings support an interactive model of the disengagement deficit, involving the right TPJ, the insula, and the dPMC/dPFC. These interconnected regions play a crucial role in regulating and adapting spatial attention to changing intrinsic values of stimuli in the environment.
Collapse
Affiliation(s)
- Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; University of Applied Sciences and Arts of Western Switzerland, School of Health Sciences, Avenue de Champel 47, Geneva 1206, Switzerland
| |
Collapse
|
15
|
Bo K, Kraynak TE, Kwon M, Sun M, Gianaros PJ, Wager TD. A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nat Neurosci 2024; 27:975-987. [PMID: 38519748 DOI: 10.1038/s41593-024-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Cognitive reappraisal is fundamental to cognitive therapies and everyday emotion regulation. Analyses using Bayes factors and an axiomatic systems identification approach identified four reappraisal-related components encompassing distributed neural activity patterns across two independent functional magnetic resonance imaging (fMRI) studies (n = 182 and n = 176): (1) an anterior prefrontal system selectively involved in cognitive reappraisal; (2) a fronto-parietal-insular system engaged by both reappraisal and emotion generation, demonstrating a general role in appraisal; (3) a largely subcortical system activated during negative emotion generation but unaffected by reappraisal, including amygdala, hypothalamus and periaqueductal gray; and (4) a posterior cortical system of negative emotion-related regions downregulated by reappraisal. These systems covaried with individual differences in reappraisal success and were differentially related to neurotransmitter binding maps, implicating cannabinoid and serotonin systems in reappraisal. These findings challenge 'limbic'-centric models of reappraisal and provide new systems-level targets for assessing and enhancing emotion regulation.
Collapse
Affiliation(s)
- Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijin Kwon
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
16
|
Studler M, Gianotti LRR, Lobmaier J, Maric A, Knoch D. Human Prosocial Preferences Are Related to Slow-Wave Activity in Sleep. J Neurosci 2024; 44:e0885232024. [PMID: 38467433 PMCID: PMC11007317 DOI: 10.1523/jneurosci.0885-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Prosocial behavior is crucial for the smooth functioning of the society. Yet, individuals differ vastly in the propensity to behave prosocially. Here, we try to explain these individual differences under normal sleep conditions without any experimental modulation of sleep. Using a portable high-density EEG, we measured the sleep data in 54 healthy adults (28 females) during a normal night's sleep at the participants' homes. To capture prosocial preferences, participants played an incentivized public goods game in which they faced real monetary consequences. The whole-brain analyses showed that a higher relative slow-wave activity (SWA, an indicator of sleep depth) in a cluster of electrodes over the right temporoparietal junction (TPJ) was associated with increased prosocial preferences. Source localization and current source density analyses further support these findings. Recent sleep deprivation studies imply that sleeping enough makes us more prosocial; the present findings suggest that it is not only sleep duration, but particularly sufficient sleep depth in the TPJ that is positively related to prosociality. Because the TPJ plays a central role in social cognitive functions, we speculate that sleep depth in the TPJ, as reflected by relative SWA, might serve as a dispositional indicator of social cognition ability, which is reflected in prosocial preferences. These findings contribute to the emerging framework explaining the link between sleep and prosocial behavior by shedding light on the underlying mechanisms.
Collapse
Affiliation(s)
- Mirjam Studler
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Janek Lobmaier
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
17
|
Meredith WJ, Silvers JA. Experience-dependent neurodevelopment of self-regulation in adolescence. Dev Cogn Neurosci 2024; 66:101356. [PMID: 38364507 PMCID: PMC10878838 DOI: 10.1016/j.dcn.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Adolescence is a period of rapid biobehavioral change, characterized in part by increased neural maturation and sensitivity to one's environment. In this review, we aim to demonstrate that self-regulation skills are tuned by adolescents' social, cultural, and socioeconomic contexts. We discuss adjacent literatures that demonstrate the importance of experience-dependent learning for adolescent development: environmental contextual influences and training paradigms that aim to improve regulation skills. We first highlight changes in prominent limbic and cortical regions-like the amygdala and medial prefrontal cortex-as well as structural and functional connectivity between these areas that are associated with adolescents' regulation skills. Next, we consider how puberty, the hallmark developmental milestone in adolescence, helps instantiate these biobehavioral adaptations. We then survey the existing literature demonstrating the ways in which cultural, socioeconomic, and interpersonal contexts drive behavioral and neural adaptation for self-regulation. Finally, we highlight promising results from regulation training paradigms that suggest training may be especially efficacious for adolescent samples. In our conclusion, we highlight some exciting frontiers in human self-regulation research as well as recommendations for improving the methodological implementation of developmental neuroimaging studies and training paradigms.
Collapse
Affiliation(s)
- Wesley J Meredith
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA.
| | - Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA
| |
Collapse
|
18
|
Zhao Q, Zhao W, Lu C, Du H, Chi P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci Biobehav Rev 2024; 158:105565. [PMID: 38295965 DOI: 10.1016/j.neubiorev.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
In recent years, researchers have used hyperscanning techniques to explore how brains interact during various human activities. These studies have revealed a phenomenon called interpersonal neural synchronization (INS), but little research has focused on the overall effect of INS in close relationships. To address this gap, this study aims to synthesize and analyze the existing literature on INS during social interactions in close relationships. We conducted a meta-analysis of 17 functional near-infrared spectroscopy (fNIRS) hyperscanning studies involving 1149 dyads participants, including romantic couples and parent-child dyads. The results revealed robust and consistent INS in the frontal, temporal, and parietal regions of the brain and found similar INS patterns in couples and parent-child studies, providing solid empirical evidence for the attachment theory. Moreover, the age of children and brain areas were significant predictors of the effect size in parent-child research. The developmental stage of children and the mismatched development of brain structures might be the crucial factors for the difference in neural performance in social and cognitive behaviors in parent-child dyads.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongfei Du
- Department of Psychology, Beijing Normal University at Zhuhai, Zhuhai 519087, Guangdong, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China.
| | - Peilian Chi
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China.
| |
Collapse
|
19
|
Bas LM, Roberts ID, Hutcherson C, Tusche A. A neurocomputational account of the link between social perception and social action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560256. [PMID: 37873074 PMCID: PMC10592872 DOI: 10.1101/2023.10.02.560256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
People selectively help others based on perceptions of their merit or need. Here, we develop a neurocomputational account of how these social perceptions translate into social choice. Using a novel fMRI social perception task, we show that both merit and need perceptions recruited the brain's social inference network. A behavioral computational model identified two non-exclusive mechanisms underlying variance in social perceptions: a consistent tendency to perceive others as meritorious/needy (bias) and a propensity to sample and integrate normative evidence distinguishing high from low merit/need in other people (sensitivity). Variance in people's merit (but not need) bias and sensitivity independently predicted distinct aspects of altruism in a social choice task completed months later. An individual's merit bias predicted context-independent variance in people's overall other-regard during altruistic choice, biasing people towards prosocial actions. An individual's merit sensitivity predicted context-sensitive discrimination in generosity towards high and low merit recipients by influencing other-regard and self-regard during altruistic decision-making. This context-sensitive perception-action link was associated with activation in the right temporoparietal junction. Together, these findings point towards stable, biologically based individual differences in perceptual processes related to abstract social concepts like merit, and suggest that these differences may have important behavioral implications for an individual's tendency toward favoritism or discrimination in social settings.
Collapse
|
20
|
Wang J, Yang J, Yang Z, Gao W, Zhang H, Ji K, Klugah-Brown B, Yuan J, Biswal BB. Boosting interpersonal emotion regulation through facial imitation: functional neuroimaging foundations. Cereb Cortex 2024; 34:bhad402. [PMID: 37943770 DOI: 10.1093/cercor/bhad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
Empathic function, which is primarily manifested by facial imitation, is believed to play a pivotal role in interpersonal emotion regulation for mood reinstatement. To explore this association and its neural substrates, we performed a questionnaire survey (study l) to identify the relationship between empathy and interpersonal emotion regulation; and a task-mode fMRI study (study 2) to explore how facial imitation, as a fundamental component of empathic processes, promotes the interpersonal emotion regulation effect. Study 1 showed that affective empathy was positively correlated with interpersonal emotion regulation. Study 2 showed smaller negative emotions in facial imitation interpersonal emotion regulation (subjects imitated experimenter's smile while followed the interpersonal emotion regulation guidance) than in normal interpersonal emotion regulation (subjects followed the interpersonal emotion regulation guidance) and Watch conditions. Mirror neural system (e.g. inferior frontal gyrus and inferior parietal lobe) and empathy network exhibited greater activations in facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation condition. Moreover, facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation exhibited increased functional coupling from mirror neural system to empathic and affective networks during interpersonal emotion regulation. Furthermore, the connectivity of the right orbital inferior frontal gyrus-rolandic operculum lobe mediated the association between the accuracy of facial imitation and the interpersonal emotion regulation effect. These results show that the interpersonal emotion regulation effect can be enhanced by the target's facial imitation through increased functional coupling from mirror neural system to empathic and affective neural networks.
Collapse
Affiliation(s)
- Jiazheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jiemin Yang
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610041, China
| | - Zhenzhen Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Gao
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610041, China
| | - HeMing Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Katherine Ji
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - JiaJin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610041, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
21
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
22
|
Brindley SR, Skyberg AM, Graves AJ, Connelly JJ, Puglia MH, Morris JP. Functional brain connectivity during social attention predicts individual differences in social skill. Soc Cogn Affect Neurosci 2023; 18:nsad055. [PMID: 37930994 PMCID: PMC10630402 DOI: 10.1093/scan/nsad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Social attention involves selectively attending to and encoding socially relevant information. We investigated the neural systems underlying the wide range of variability in both social attention ability and social experience in a neurotypical sample. Participants performed a selective social attention task, while undergoing fMRI and completed self-report measures of social functioning. Using connectome-based predictive modeling, we demonstrated that individual differences in whole-brain functional connectivity patterns during selective attention to faces predicted task performance. Individuals with more cerebellar-occipital connectivity performed better on the social attention task, suggesting more efficient social information processing. Then, we estimated latent communities of autistic and socially anxious traits using exploratory graph analysis to decompose heterogeneity in social functioning between individuals. Connectivity strength within the identified social attention network was associated with social skills, such that more temporal-parietal connectivity predicted fewer challenges with social communication and interaction. These findings demonstrate that individual differences in functional connectivity strength during a selective social attention task are related to varying levels of self-reported social skill.
Collapse
Affiliation(s)
- Samantha R Brindley
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Amalia M Skyberg
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Andrew J Graves
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Jessica J Connelly
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | | | - James P Morris
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
- University of Virginia Department of Neurology, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Bellucci G, Park SQ. Neurocomputational mechanisms of biased impression formation in lonely individuals. Commun Biol 2023; 6:1118. [PMID: 37923876 PMCID: PMC10624906 DOI: 10.1038/s42003-023-05429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Social impressions are fundamental in our daily interactions with other people but forming accurate impressions of our social partners can be biased to different extents. Loneliness has previously been suggested to induce biases that hinder the formation of accurate impressions of others for successful social bonding. Here, we demonstrated that despite counterfactual evidence, negative first impressions bias information weighting, leading to less favorable trustworthiness beliefs. Lonely individuals did not only have more negative expectations of others' social behavior, but they also manifested a stronger weighting bias. Reduced orbitofrontal cortex (OFC) activity was associated with a stronger weighting bias in lonelier individuals and mediated the relationship between loneliness and this weighting bias. Importantly, stronger coupling between OFC and temporoparietal junction compensated for such effects, promoting more positive trustworthiness beliefs especially in lonelier individuals. These findings bear potential for future basic and clinical investigations on social cognition and the development of clinical symptoms linked to loneliness.
Collapse
Affiliation(s)
- Gabriele Bellucci
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, UK.
- Department of Psychology I, University of Lübeck, Lübeck, Germany.
| | - Soyoung Q Park
- Department of Psychology I, University of Lübeck, Lübeck, Germany
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany
- Deutsches Zentrum für Diabetes, 85764, Neuherberg, Germany
| |
Collapse
|
24
|
Andrews K, Lloyd CS, Densmore M, Kearney BE, Harricharan S, McKinnon MC, Théberge J, Jetly R, Lanius RA. 'I am afraid you will see the stain on my soul': Direct gaze neural processing in individuals with PTSD after moral injury recall. Soc Cogn Affect Neurosci 2023; 18:nsad053. [PMID: 37897804 PMCID: PMC10612569 DOI: 10.1093/scan/nsad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Direct eye contact is essential to understanding others' thoughts and feelings in social interactions. However, those with post-traumatic stress disorder (PTSD) and exposure to moral injury (MI) may exhibit altered theory-of-mind (ToM)/mentalizing processes and experience shame which precludes one's capacity for direct eye contact. We investigated blood oxygenation level-dependent (BOLD) responses associated with direct vs averted gaze using a virtual reality paradigm in individuals with PTSD (n = 28) relative to healthy controls (n = 18) following recall of a MI vs a neutral memory. Associations between BOLD responses and clinical symptomatology were also assessed. After MI recall, individuals with PTSD showed greater activation in the right temporoparietal junction as compared to controls (T = 4.83; pFDR < 0.001; k = 237) during direct gaze. No significant activation occurred during direct gaze after neutral memory recall. Further, a significant positive correlation was found between feelings of distress and right medial superior frontal gyrus activation in individuals with PTSD (T = 5.03; pFDR = 0.049; k = 123). These findings suggest that direct gaze after MI recall prompts compensatory ToM/mentalizing processing. Implications for future interventions aimed at mitigating the effects of PTSD on social functioning are discussed.
Collapse
Affiliation(s)
- Krysta Andrews
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Chantelle S Lloyd
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Breanne E Kearney
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Sherain Harricharan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, ON K1A 0S2, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ruth A Lanius
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
- Department of Psychiatry, Western University, London, ON N6C 0A7, Canada
- Imaging Division, Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
Pei R, Courtney AL, Ferguson I, Brennan C, Zaki J. A neural signature of social support mitigates negative emotion. Sci Rep 2023; 13:17293. [PMID: 37828064 PMCID: PMC10570303 DOI: 10.1038/s41598-023-43273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Social support can mitigate the impact of distressing events. Such stress buffering elicits activity in many brain regions, but it remains unclear (1) whether this activity constitutes a stable brain signature, and (2) whether brain activity can predict buffering across people. Here, we developed a neural signature that predicted social buffering of negative emotion in response to real life stressors. During neuroimaging, participants (n = 95) responded to stressful autobiographical memories either naturally, or by imagining a conversation with a peer. Using supervised dimensionality reduction and machine learning techniques, we identified a spatio-temporal neural signature that distinguished between these two trials. Activation of this signature was associated with less negative affect across trials, and people who most activated the signature reported more supportive social connections and lower loneliness outside the lab. Together, this work provides a behaviorally relevant neurophysiological marker for social support that underlies stress buffering.
Collapse
Affiliation(s)
- Rui Pei
- Department of Psychology, Stanford University, Stanford, USA.
| | | | - Ian Ferguson
- Department of Psychology, Stanford University, Stanford, USA
| | | | - Jamil Zaki
- Department of Psychology, Stanford University, Stanford, USA.
| |
Collapse
|
26
|
Siddiqui M, Pinti P, Brigadoi S, Lloyd-Fox S, Elwell CE, Johnson MH, Tachtsidis I, Jones EJH. Using multi-modal neuroimaging to characterise social brain specialisation in infants. eLife 2023; 12:e84122. [PMID: 37818944 PMCID: PMC10624424 DOI: 10.7554/elife.84122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The specialised regional functionality of the mature human cortex partly emerges through experience-dependent specialisation during early development. Our existing understanding of functional specialisation in the infant brain is based on evidence from unitary imaging modalities and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemodynamic activation, giving an incomplete picture. We speculate that functional specialisation will be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orchestrated physiological response. To enable researchers to track this process through development, we develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), metabolic rate, and oxygenated blood supply (broadband near-infrared spectroscopy) in the awake infant. In 4- to 7-month-old infants, we use these new tools to show that social processing is accompanied by spatially and temporally specific increases in coupled activation in the temporal-parietal junction, a core hub region of the adult social brain. During non-social processing, coupled activation decreased in the same region, indicating specificity to social processing. Coupling was strongest with high-frequency brain activity (beta and gamma), consistent with the greater energetic requirements and more localised action of high-frequency brain activity. The development of simultaneous multimodal neural measures will enable future researchers to open new vistas in understanding functional specialisation of the brain.
Collapse
Affiliation(s)
- Maheen Siddiqui
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Paola Pinti
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Sabrina Brigadoi
- Department of Development and Social Psychology, University of PadovaPadovaItaly
- Department of Information Engineering, University of PadovaPadovaItaly
| | - Sarah Lloyd-Fox
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Mark H Johnson
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Emily JH Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Hayne L, Grant T, Hirshfield L, Carter RM. Friend or foe: classifying collaborative interactions using fNIRS. FRONTIERS IN NEUROERGONOMICS 2023; 4:1265105. [PMID: 38234488 PMCID: PMC10790908 DOI: 10.3389/fnrgo.2023.1265105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 01/19/2024]
Abstract
To succeed, effective teams depend on both cooperative and competitive interactions between individual teammates. Depending on the context, cooperation and competition can amplify or neutralize a team's problem solving ability. Therefore, to assess successful collaborative problem solving, it is first crucial to distinguish competitive from cooperative interactions. We investigate the feasibility of using lightweight brain sensors to distinguish cooperative from competitive interactions in pairs of participants (N=84) playing a decision-making game involving uncertain outcomes. We measured brain activity using functional near-infrared spectroscopy (fNIRS) from social, motor, and executive areas during game play alone and in competition or cooperation with another participant. To distinguish competitive, cooperative, and alone conditions, we then trained support vector classifiers using combinations of features extracted from fNIRS data. We find that features from social areas of the brain outperform other features for discriminating competitive, cooperative, and alone conditions in cross-validation. Comparing the competitive and alone conditions, social features yield a 5% improvement over motor and executive features. Social features show promise as means of distinguishing competitive and cooperative environments in problem solving settings. Using fNIRS data provides a real-time measure of subjective experience in an ecologically valid environment. These results have the potential to inform intelligent team monitoring to provide better real-time feedback and improve team outcomes in naturalistic settings.
Collapse
Affiliation(s)
- Lucas Hayne
- Computer Science, University of Colorado, Boulder, CO, United States
| | - Trevor Grant
- Computer Science, University of Colorado, Boulder, CO, United States
| | - Leanne Hirshfield
- Computer Science, University of Colorado, Boulder, CO, United States
| | - R. McKell Carter
- Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
28
|
Feng L, Wu D, Ma S, Dong L, Yue Y, Li T, Tang Y, Ye Z, Mao G. Resting-state functional connectivity of the cerebellum-cerebrum in older women with depressive symptoms. BMC Psychiatry 2023; 23:732. [PMID: 37817133 PMCID: PMC10566116 DOI: 10.1186/s12888-023-05232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Although there has been much neurobiological research on major depressive disorder, research on the neurological function of depressive symptoms (DS) or subclinical depression is still scarce, especially in older women with DS. OBJECTIVES Resting-state functional magnetic resonance imaging (rs-fMRI) was used to compare functional connectivity (FC) between the cerebellum and cerebral in older women with DS and normal controls (NC), to explore unique changes in cerebellar FC in older women with DS. METHODS In all, 16 older women with DS and 17 NC were recruited. All subjects completed rs-fMRI. The 26 sub-regions of the cerebellum divided by the AAL3 map were used as regions of interest (ROI) to analyze the difference in FC strength of cerebellar seeds from other cerebral regions between the two groups. Finally, partial correlation analysis between abnormal FC strength and Geriatric Depression Scale (GDS) score and Reminiscence Functions Scale (RFS) score in the DS group. RESULTS Compared with NC group, the DS group showed significantly reduced FC between Crus I, II and the left frontoparietal region, and reduced FC between Crus I and the left temporal gyrus. Reduced FC between right insula (INS), right rolandic operculum (ROL), right precentral gyrus (PreCG) and the Lobule IX, X. Moreover, the negative FC between Crus I, II, Lobule IX and visual regions was reduced in the DS group. The DS group correlation analysis showed a positive correlation between the left Crus I and the right cuneus (CUN) FC and GDS. In addition, the abnormal FC strength correlated with the scores in different dimensions of the RFS, such as the negative FC between the Crus I and the left middle temporal gyrus (MTG) was positively associated with intimacy maintenance, and so on. CONCLUSION Older women with DS have anomalous FC between the cerebellum and several regions of the cerebrum, which may be related to the neuropathophysiological mechanism of DS in the DS group.
Collapse
Affiliation(s)
- Lanling Feng
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Wu
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shaolun Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchuan Yue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixun Tang
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixiang Ye
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoju Mao
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Denny BT, Jungles ML, Goodson PN, Dicker EE, Chavez J, Jones JS, Lopez RB. Unpacking reappraisal: a systematic review of fMRI studies of distancing and reinterpretation. Soc Cogn Affect Neurosci 2023; 18:nsad050. [PMID: 37757486 PMCID: PMC10561539 DOI: 10.1093/scan/nsad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, a substantial volume of work has examined the neural mechanisms of cognitive reappraisal. Distancing and reinterpretation are two frequently used tactics through which reappraisal can be implemented. Theoretical frameworks and prior evidence have suggested that the specific tactic through which one employs reappraisal entails differential neural and psychological mechanisms. Thus, we were motivated to assess the neural mechanisms of this distinction by examining the overlap and differentiation exhibited by the neural correlates of distancing (specifically via objective appraisal) and reinterpretation. We analyzed 32 published functional magnetic resonance imaging (fMRI) studies in healthy adults using multilevel kernel density analysis. Results showed that distancing relative to reinterpretation uniquely recruited right bilateral dorsolateral PFC (DLPFC) and left posterior parietal cortex, previously associated with mentalizing, selective attention and working memory. Reinterpretation relative to distancing uniquely recruited left bilateral ventrolateral PFC (VLPFC), previously associated with response selection and inhibition. Further, distancing relative to reinterpretation was associated with greater prevalence of bilateral amygdala attenuation during reappraisal. Finally, a behavioral meta-analysis showed efficacy for both reappraisal tactics. These results are consistent with prior theoretical models for the functional neural architecture of reappraisal via distancing and reinterpretation and suggest potential future applications in region-of-interest specification and neural network analysis in studies focusing on specific reappraisal tactics.
Collapse
Affiliation(s)
- Bryan T Denny
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Mallory L Jungles
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Pauline N Goodson
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Eva E Dicker
- Department of Psychology, Seattle University, Seattle, WA 98122, USA
| | - Julia Chavez
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Jenna S Jones
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Richard B Lopez
- Department of Psychological & Cognitive Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
30
|
Li Y, Zhou F, Li R, Gu J, He J. Exploring the correlation between genetic transcription and multi-temporal developmental autism spectrum disorder using resting-state functional magnetic resonance imaging. Front Neurosci 2023; 17:1219753. [PMID: 37456995 PMCID: PMC10339831 DOI: 10.3389/fnins.2023.1219753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The present investigation aimed to explore the neurodevelopmental trajectory of autism spectrum disorder (ASD) by identifying the changes in brain function and gene expression associated with the disorder. Previous studies have indicated that ASD is a highly inherited neurodevelopmental disorder of the brain that displays symptom heterogeneity across different developmental periods. However, the transcriptomic changes underlying these developmental differences remain largely unknown. Methods To address this gap in knowledge, our study employed resting-state functional magnetic resonance imaging (rs-fMRI) data from a large sample of male participants across four representative age groups to stratify the abnormal changes in brain function associated with ASD. Partial least square regression (PLSr) was utilized to identify unique changes in gene expression in brain regions characterized by aberrant functioning in ASD. Results Our results revealed that ASD exhibits distinctive developmental trajectories in crucial brain regions such as the default mode network (DMN), temporal lobe, and prefrontal lobes during critical periods of neurodevelopment when compared to the control group. These changes were also associated with genes primarily located in synaptic tissues. Discussion The findings of this study suggest that the neurobiology of ASD is uniquely heterogeneous across different ages and may be accompanied by distinct molecular mechanisms related to gene expression.
Collapse
|
31
|
Doheny MM, Lighthall NR. Social cognitive neuroscience in the digital age. Front Hum Neurosci 2023; 17:1168788. [PMID: 37323935 PMCID: PMC10265515 DOI: 10.3389/fnhum.2023.1168788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Human interactions are increasingly taking place from a distance through methods of remote interpersonal communication like video chatting and social media. While remote interpersonal communication has existed for millennia-with the first postal system arising in ∼2400 B.C.-accelerated advances in technology and the recent global COVID-19 pandemic have led to a dramatic increase in remote interpersonal communication use in daily life. Remote interpersonal communication presents a challenge to the field of social-cognitive neuroscience, as researchers seek to understand the implications of various types of remote interpersonal communication for the "social brain." The present paper reviews our current understanding of the social-cognitive neural network and summarizes critical differences between the neural correlates of social cognition in remote vs. face-to-face interactions. In particular, empirical and theoretical work is reviewed that highlight disparities in the neural mechanisms of social perception, evaluation of social stimuli, human motivation, evaluation of social reward, and theory of mind. Potential impacts of remote interpersonal communication on the development of the brain's social-cognitive network are also discussed. Finally, this review closes with future directions for research on social-cognitive neuroscience in our digital technology-connected world and outlines a neural model for social cognition in the context of remote interpersonal communication. For the field of social-cognitive neuroscience to advance alongside of the ever-evolving society, it is crucial for researchers to acknowledge the implications and concepts suggested for future research in this review.
Collapse
Affiliation(s)
- Margaret M. Doheny
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| | | |
Collapse
|
32
|
Leipold S, Abrams DA, Karraker S, Phillips JM, Menon V. Aberrant Emotional Prosody Circuitry Predicts Social Communication Impairments in Children With Autism. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:531-541. [PMID: 36635147 PMCID: PMC10973204 DOI: 10.1016/j.bpsc.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Emotional prosody provides acoustical cues that reflect a communication partner's emotional state and is crucial for successful social interactions. Many children with autism have deficits in recognizing emotions from voices; however, the neural basis for these impairments is unknown. We examined brain circuit features underlying emotional prosody processing deficits and their relationship to clinical symptoms of autism. METHODS We used an event-related functional magnetic resonance imaging task to measure neural activity and connectivity during processing of sad and happy emotional prosody and neutral speech in 22 children with autism and 21 matched control children (7-12 years old). We employed functional connectivity analyses to test competing theoretical accounts that attribute emotional prosody impairments to either sensory processing deficits in auditory cortex or theory of mind deficits instantiated in the temporoparietal junction (TPJ). RESULTS Children with autism showed specific behavioral impairments for recognizing emotions from voices. They also showed aberrant functional connectivity between voice-sensitive auditory cortex and the bilateral TPJ during emotional prosody processing. Neural activity in the bilateral TPJ during processing of both sad and happy emotional prosody stimuli was associated with social communication impairments in children with autism. In contrast, activity and decoding of emotional prosody in auditory cortex was comparable between autism and control groups and did not predict social communication impairments. CONCLUSIONS Our findings support a social-cognitive deficit model of autism by identifying a role for TPJ dysfunction during emotional prosody processing. Our study underscores the importance of tuning in to vocal-emotional cues for building social connections in children with autism.
Collapse
Affiliation(s)
- Simon Leipold
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Daniel A Abrams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Shelby Karraker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; Stanford Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|
33
|
Wang Z, Nan T, Goerlich KS, Li Y, Aleman A, Luo Y, Xu P. Neurocomputational mechanisms underlying fear-biased adaptation learning in changing environments. PLoS Biol 2023; 21:e3001724. [PMID: 37126501 PMCID: PMC10174591 DOI: 10.1371/journal.pbio.3001724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/11/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Humans are able to adapt to the fast-changing world by estimating statistical regularities of the environment. Although fear can profoundly impact adaptive behaviors, the computational and neural mechanisms underlying this phenomenon remain elusive. Here, we conducted a behavioral experiment (n = 21) and a functional magnetic resonance imaging experiment (n = 37) with a novel cue-biased adaptation learning task, during which we simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) and environmental volatility (frequent/infrequent reversals of reward probabilities). Across 2 experiments, computational modeling consistently revealed a higher learning rate for the environment with frequent versus infrequent reversals following neutral cues. In contrast, this flexible adjustment was absent in the environment with fearful cues, suggesting a suppressive role of fear in adaptation to environmental volatility. This suppressive effect was underpinned by activity of the ventral striatum, hippocampus, and dorsal anterior cingulate cortex (dACC) as well as increased functional connectivity between the dACC and temporal-parietal junction (TPJ) for fear with environmental volatility. Dynamic causal modeling identified that the driving effect was located in the TPJ and was associated with dACC activation, suggesting that the suppression of fear on adaptive behaviors occurs at the early stage of bottom-up processing. These findings provide a neuro-computational account of how fear interferes with adaptation to volatility during dynamic environments.
Collapse
Affiliation(s)
- Zhihao Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- CNRS-Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Tian Nan
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
| | - Katharina S Goerlich
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yiman Li
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - André Aleman
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuejia Luo
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
34
|
Smith E, Xiao Y, Xie H, Manwaring SS, Farmer C, Thompson L, D'Souza P, Thurm A, Redcay E. Posterior superior temporal cortex connectivity is related to social communication in toddlers. Infant Behav Dev 2023; 71:101831. [PMID: 37012188 PMCID: PMC10330088 DOI: 10.1016/j.infbeh.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The second year of life is a time when social communication skills typically develop, but this growth may be slower in toddlers with language delay. In the current study, we examined how brain functional connectivity is related to social communication abilities in a sample of 12-24 month-old toddlers including those with typical development (TD) and those with language delays (LD). We used an a-priori, seed-based approach to identify regions forming a functional network with the left posterior superior temporal cortex (LpSTC), a region associated with language and social communication in older children and adults. Social communication and language abilities were assessed using the Communication and Symbolic Behavior Scales (CSBS) and Mullen Scales of Early Learning. We found a significant association between concurrent CSBS scores and functional connectivity between the LpSTC and the right posterior superior temporal cortex (RpSTC), with greater connectivity between these regions associated with better social communication abilities. However, functional connectivity was not related to rate of change or language outcomes at 36 months of age. These data suggest an early marker of low communication abilities may be decreased connectivity between the left and right pSTC. Future longitudinal studies should test whether this neurobiological feature is predictive of later social or communication impairments.
Collapse
Affiliation(s)
- Elizabeth Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Psychology, University of Maryland, USA
| | - Hua Xie
- Department of Psychology, University of Maryland, USA
| | - Stacy S Manwaring
- Department of Communication Sciences and Disorders, University of Utah, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Washington State University, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | | |
Collapse
|
35
|
Hirsch J, Zhang X, Noah JA, Bhattacharya A. Neural mechanisms for emotional contagion and spontaneous mimicry of live facial expressions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210472. [PMID: 36871593 PMCID: PMC9985973 DOI: 10.1098/rstb.2021.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 03/07/2023] Open
Abstract
Viewing a live facial expression typically elicits a similar expression by the observer (facial mimicry) that is associated with a concordant emotional experience (emotional contagion). The model of embodied emotion proposes that emotional contagion and facial mimicry are functionally linked although the neural underpinnings are not known. To address this knowledge gap, we employed a live two-person paradigm (n = 20 dyads) using functional near-infrared spectroscopy during live emotive face-processing while also measuring eye-tracking, facial classifications and ratings of emotion. One dyadic partner, 'Movie Watcher', was instructed to emote natural facial expressions while viewing evocative short movie clips. The other dyadic partner, 'Face Watcher', viewed the Movie Watcher's face. Task and rest blocks were implemented by timed epochs of clear and opaque glass that separated partners. Dyadic roles were alternated during the experiment. Mean cross-partner correlations of facial expressions (r = 0.36 ± 0.11 s.e.m.) and mean cross-partner affect ratings (r = 0.67 ± 0.04) were consistent with facial mimicry and emotional contagion, respectively. Neural correlates of emotional contagion based on covariates of partner affect ratings included angular and supramarginal gyri, whereas neural correlates of the live facial action units included motor cortex and ventral face-processing areas. Findings suggest distinct neural components for facial mimicry and emotional contagion. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, PO Box 208091, New Haven, CT 06520, USA
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - J. Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
36
|
Ogawa K, Matsuyama Y. Heterogeneity of social cognition between visual perspective-taking and theory of mind in the temporo-parietal junction. Neurosci Lett 2023; 807:137267. [PMID: 37094640 DOI: 10.1016/j.neulet.2023.137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Visual perspective taking (VPT), particularly level 2 VPT (VPT2), which allows an individual to understand that the same object can be seen differently by others, is related to the theory of mind (ToM), because both functions require a decoupled representation from oneself. Although previous neuroimaging studies have shown that VPT and ToM activate the temporo-parietal junction (TPJ), it is unclear whether common neural substrates are involved in VPT and ToM. To clarify this point, we directly compared the TPJ activation patterns of individual participants performing VPT2 and ToM tasks using functional magnetic resonance imaging and within-subjects design. A whole-brain analysis revealed that VPT2 and ToM activated overlapping areas in the posterior part of the TPJ. In addition, we found that both the peak coordinates and activated regions for ToM were located significantly more anteriorly and dorsally within the bilateral TPJ than those measured during the VPT2 task. We further confirmed that these activity areas were spatially distinct from the nearby extrastriate body area (EBA), visual motion area (MT+), and the posterior superior temporal sulcus (pSTS) using independent localizer scans. Our findings revealed that VPT2 and ToM have gradient representations, indicating the functional heterogeneity of social cognition within the TPJ.
Collapse
Affiliation(s)
- Kenji Ogawa
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University.
| | - Yuiko Matsuyama
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University
| |
Collapse
|
37
|
van de Groep S, Sweijen SW, de Water E, Crone EA. Temporal discounting for self and friends in adolescence: A fMRI study. Dev Cogn Neurosci 2023; 60:101204. [PMID: 36736019 PMCID: PMC9918426 DOI: 10.1016/j.dcn.2023.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Adolescence is characterized by impulsivity but also by increased importance of friendships. This study took the novel perspective of testing temporal discounting in a fMRI task where choices could affect outcomes for 96 adolescents (aged 10-20-years) themselves and their best friend. Decisions either benefitted themselves (i.e., the Self Immediate - Self Delay' condition) or their friend (i.e., 'Friend Immediate - Friend Delay' condition); or juxtaposed rewards for themselves and their friends (i.e., the 'Self Immediate - Friend Delay' or 'Friend Immediate - Self Delay' conditions). We observed that younger adolescents were more impulsive; and all participants were more impulsive when this was associated with an immediate benefit for friends. Individual differences analyses revealed increased activity in the subgenual anterior cingulate cortex extending in the ventral striatum for immediate relative to delayed reward choices for self. Temporal choices were associated with activity in the prefrontal cortex, parietal cortex, insula, and ventral striatum, but only activity in the right inferior parietal lobe was associated with age. Finally, temporal delay choices for friends relative to self were associated with increased activity in the temporo-parietal junction and precuneus. Overall, this study shows a unique role of the social context in adolescents' temporal decision making.
Collapse
Affiliation(s)
- Suzanne van de Groep
- Erasmus SYNC Lab, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Brain and Development Research Center, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands.
| | - Sophie W Sweijen
- Erasmus SYNC Lab, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Brain and Development Research Center, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands
| | - Erik de Water
- Great Lakes Neurobehavioral Center, Edina, MN, United States
| | - Eveline A Crone
- Erasmus SYNC Lab, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Brain and Development Research Center, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands
| |
Collapse
|
38
|
Santavirta S, Karjalainen T, Nazari-Farsani S, Hudson M, Putkinen V, Seppälä K, Sun L, Glerean E, Hirvonen J, Karlsson HK, Nummenmaa L. Functional organization of social perception in the human brain. Neuroimage 2023; 272:120025. [PMID: 36958619 PMCID: PMC10112277 DOI: 10.1016/j.neuroimage.2023.120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Humans rapidly extract diverse and complex information from ongoing social interactions, but the perceptual and neural organization of the different aspects of social perception remains unresolved. We showed short movie clips with rich social content to 97 healthy participants while their haemodynamic brain activity was measured with fMRI. The clips were annotated moment-to-moment for a large set of social features and 45 of the features were evaluated reliably between annotators. Cluster analysis of the social features revealed that 13 dimensions were sufficient for describing the social perceptual space. Three different analysis methods were used to map the social perceptual processes in the human brain. Regression analysis mapped regional neural response profiles for different social dimensions. Multivariate pattern analysis then established the spatial specificity of the responses and intersubject correlation analysis connected social perceptual processing with neural synchronization. The results revealed a gradient in the processing of social information in the brain. Posterior temporal and occipital regions were broadly tuned to most social dimensions and the classifier revealed that these responses showed spatial specificity for social dimensions; in contrast Heschl gyri and parietal areas were also broadly associated with different social signals, yet the spatial patterns of responses did not differentiate social dimensions. Frontal and subcortical regions responded only to a limited number of social dimensions and the spatial response patterns did not differentiate social dimension. Altogether these results highlight the distributed nature of social processing in the brain.
Collapse
Affiliation(s)
- Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Tomi Karjalainen
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sanaz Nazari-Farsani
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Matthew Hudson
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; School of Psychology, University of Plymouth, Plymouth, United Kingdom
| | - Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Kerttu Seppälä
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland; Medical Imaging Center, Department of Radiology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Henry K Karlsson
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Jiang Y, McDonald KR, Pearson JM, Platt ML. Neuronal mechanisms of dynamic strategic competition. RESEARCH SQUARE 2023:rs.3.rs-2524549. [PMID: 36993358 PMCID: PMC10055525 DOI: 10.21203/rs.3.rs-2524549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Competitive social interactions, as in chess or poker, often involve multiple moves and countermoves deployed tactically within a broader strategic plan. Such maneuvers are supported by mentalizing or theory-of-mind-reasoning about the beliefs, plans, and goals of an opponent. The neuronal mechanisms underlying strategic competition remain largely unknown. To address this gap, we studied humans and monkeys playing a virtual soccer game featuring continuous competitive interactions. Humans and monkeys deployed similar tactics within broadly identical strategies, which featured unpredictable trajectories and precise timing for kickers, and responsiveness to opponents for goalies. We used Gaussian Process (GP) classification to decompose continuous gameplay into a series of discrete decisions predicated on the evolving states of self and opponent. We extracted relevant model parameters as regressors for neuronal activity in macaque mid-superior temporal sulcus (mSTS), the putative homolog of human temporo-parietal junction (TPJ), an area selectively engaged during strategic social interactions. We discovered two spatially-segregated populations of mSTS neurons that signaled actions of self and opponent, sensitivities to state changes, and previous and current trial outcomes. Inactivating mSTS reduced kicker unpredictability and impaired goalie responsiveness. These findings demonstrate mSTS neurons multiplex information about the current states of self and opponent as well as history of previous interactions to support ongoing strategic competition, consistent with hemodynamic activity found in human TPJ.
Collapse
Affiliation(s)
- Yaoguang Jiang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsey R. McDonald
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
| | - John M. Pearson
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
40
|
Giorgobiani T, Binkofski F. TPJ in speech and praxis: Comment on "Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function" by Doricchi et al. Phys Life Rev 2023; 44:4-5. [PMID: 36455474 DOI: 10.1016/j.plrev.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Tamar Giorgobiani
- Faculty of Psychology and Educational Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia.
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, University Hospital RWTH Aachen, Aachen, Germany; Institute for Neuroscience and Medicine (INM-4), Research Center Jülich GmbH, Jülich, Germany
| |
Collapse
|
41
|
Balconi M, Angioletti L, Cassioli F. Hyperscanning EEG Paradigm Applied to Remote vs. Face-To-Face Learning in Managerial Contexts: Which Is Better? Brain Sci 2023; 13:brainsci13020356. [PMID: 36831899 PMCID: PMC9954592 DOI: 10.3390/brainsci13020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
We propose a hyperscanning research design, where electroencephalographic (EEG) data were collected on an instructor and teams of learners. We compared neurophysiological measures within the frequency domain (delta, theta, alpha, and beta EEG bands) in the two conditions: face-to-face and remote settings. Data collection was carried out using wearable EEG systems. Conversational analysis was previously applied to detect comparable EEG time blocks and semantic topics. The digitalization of training can be considered a challenge but also a chance for organizations. However, if not carefully addressed, it might constitute a criticality. Limited research explored how remote, as opposed to face-to-face, training affects cognitive, (such as memory and attention), affective, and social processes in workgroups. Data showed an alpha desynchronization and, conversely, a theta and beta synchronization for the face-to-face condition. Moreover, trainees showed different patterns for beta power depending on the setting condition, with significantly increased power spectral density (PSD) in the face-to-face condition. These results highlight the relevance of neurophysiological measures in testing the e-learning process, in relation to the emotional engagement, memory encoding, and attentional processing.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Correspondence: ; Tel.: +39-2-7234-5929
| | - Federico Cassioli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
42
|
Li Y, Luo X, Wang K, Li X. Persuader-receiver neural coupling underlies persuasive messaging and predicts persuasion outcome. Cereb Cortex 2023:7005168. [PMID: 36702485 DOI: 10.1093/cercor/bhad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 12/29/2023] [Indexed: 01/28/2023] Open
Abstract
Opportunities to persuade and be persuaded are ubiquitous. What interpersonal neural pathway in real-world settings determining successful information propagation in naturalistic two-person persuasion scenarios? Hereby, we extended prior research on a naturalistic dyadic persuasion paradigm (NDP) using dual-fNIRS protocol simultaneously measured the neural activity from persuader-receiver dyads while they engaged in a modified "Arctic Survival Task." Investigating whether neural coupling between persuaders and receivers underpinning of persuading and predict persuasion outcomes (i.e., receiver's compliance). Broadly, we indicated that the persuasive arguments increase neural coupling significantly compared to non-persuasive arguments in the left superior temporal gyrus-superior frontal gyrus and superior frontal gyrus-inferior frontal gyrus. G-causality indices further revealed the coupling directionality of information flows between the persuader and receiver. Critically, the neural coupling could be a better predictor of persuasion outcomes relative to traditional self-report measures. Eventually, temporal dynamics neural coupling incorporating video recording revealed neural coupling marked the micro-level processes in response to persuading messages and possibly reflecting the time that persuasion might occurs. The initial case of the arguments with targeted views is valuable as the first step in encouraging the receiver's compliance. Our investigation represented an innovative interpersonal approach toward comprehending the neuroscience and psychology underlying complex and true persuasion.
Collapse
Affiliation(s)
- Yangzhuo Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaoxiao Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Keying Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.,Shanghai Changning Mental Health Center, Shanghai 200062, China.,Institute of Wisdom in China, East China Normal University, Shanghai 200062, China
| |
Collapse
|
43
|
Action Observation Network Activity Related to Object-Directed and Socially-Directed Actions in Adolescents. J Neurosci 2023; 43:125-141. [PMID: 36347621 PMCID: PMC9838701 DOI: 10.1523/jneurosci.1602-20.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022] Open
Abstract
The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.
Collapse
|
44
|
Wang LS, Cheng JT, Hsu IJ, Liou S, Kung CC, Chen DY, Weng MH. Distinct cerebral coherence in task-based fMRI hyperscanning: cooperation versus competition. Cereb Cortex 2022; 33:421-433. [PMID: 35266996 DOI: 10.1093/cercor/bhac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/17/2023] Open
Abstract
This study features an functional magnetic resonance imaging (fMRI) hyperscanning experiment from 2 sites, 305 km apart. The experiment contains 2 conditions: the dyad collaborated to win and then split the reward in the cooperation condition, whereas the winner took all the reward in the competition condition, thereby resulting in dynamic strategic interactions. To calculate the cerebral coherence in such jittered event-related fMRI tasks, we first iteratively estimated the feedback-related blood oxygenation level-dependent responses of each trial, using 8 finite impulse response functions (16 s) and then concatenated the beta volume series. With the right temporal-parietal junction (rTPJ) as the seed, the interpersonal connected brain areas were separately identified: the right superior temporal gyrus (rSTG) (cooperation) and the left precuneus (lPrecuneus) (competition), both peaking at the designated frequency bin (1/16 s = 0.0625 Hz), but not in permuted pairs. In addition, the extended coherence analyses on shorter and longer concatenated volumes verified that only in the optimal trial frequency did the rTPJ-rSTG and rTPJ-lPrecuneus couplings peak. In sum, our approach both showcases a flexible analysis method that widens the applicability of interpersonal coherence in the rapid event-related fMRI hyperscanning and reveals a context-based inter-brain coupling between interacting pairs during cooperation and during competition.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), No. 1, University Road, Tainan City 701, Taiwan
| | - Jen-Tang Cheng
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| | - I-Jeng Hsu
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), No. 1, University Road, Tainan City 701, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, NCKU, No. 1, University Road, Tainan City 701, Taiwan.,Mind Research and Imaging (MRI) Center, No. 1, University Road, Tainan City 701, Taiwan
| | - Der-Yow Chen
- Department of Psychology, NCKU, No. 1, University Road, Tainan City 701, Taiwan.,Mind Research and Imaging (MRI) Center, No. 1, University Road, Tainan City 701, Taiwan
| | - Ming-Hung Weng
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
45
|
Hou Y, Zhang D, Gan X, Hu Y. Group polarization calls for group-level brain communication. Neuroimage 2022; 264:119739. [PMID: 36356821 DOI: 10.1016/j.neuroimage.2022.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group of people shows the shift towards extreme of decision-making as opposed to individuals. Previous studies have revealed two directions of group polarization, i.e., risky shift and cautious shift, but how group of brains drive these shifts remains unknown. In the current study, we arranged risk advantage and disadvantage situations to elicit group polarization of risky shift and cautious shift respectively, and examined the averaged inter-brain synchronization (ABS) among participant triads during group decision making versus individual decision making. The elicited group polarizations were accompanied by the enhanced ABS at bilateral prefrontal areas and left temporoparietal junction (TPJ). Specifically, the TPJ ABS was equivalent in risky shift and cautious shift, and based on machine learning analyses, could predict the extent of group polarization; for two shifts, it negatively correlated with negative emotion. However, the right prefrontal ABS was stronger in risky shift than in cautious shift, and the same area showed the larger brain deactivation in former shift, indicating weaker executive control. For the left prefrontal ABS, only the equivalent ABS was found for two shifts. In sum, group polarization of risky shift and cautious shift calls for inter-brain communication at the group level, and the former shift is with deactivation and more brain synchronization. Our study suggests emotional and cognitive adjustment in decision making of the group compared with individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dingning Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaorong Gan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
46
|
Hirsch J, Zhang X, Noah JA, Dravida S, Naples A, Tiede M, Wolf JM, McPartland JC. Neural correlates of eye contact and social function in autism spectrum disorder. PLoS One 2022; 17:e0265798. [PMID: 36350848 PMCID: PMC9645655 DOI: 10.1371/journal.pone.0265798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Reluctance to make eye contact during natural interactions is a central diagnostic criterion for autism spectrum disorder (ASD). However, the underlying neural correlates for eye contacts in ASD are unknown, and diagnostic biomarkers are active areas of investigation. Here, neuroimaging, eye-tracking, and pupillometry data were acquired simultaneously using two-person functional near-infrared spectroscopy (fNIRS) during live "in-person" eye-to-eye contact and eye-gaze at a video face for typically-developed (TD) and participants with ASD to identify the neural correlates of live eye-to-eye contact in both groups. Comparisons between ASD and TD showed decreased right dorsal-parietal activity and increased right ventral temporal-parietal activity for ASD during live eye-to-eye contact (p≤0.05, FDR-corrected) and reduced cross-brain coherence consistent with atypical neural systems for live eye contact. Hypoactivity of right dorsal-parietal regions during eye contact in ASD was further associated with gold standard measures of social performance by the correlation of neural responses and individual measures of: ADOS-2, Autism Diagnostic Observation Schedule, 2nd Edition (r = -0.76, -0.92 and -0.77); and SRS-2, Social Responsiveness Scale, Second Edition (r = -0.58). The findings indicate that as categorized social ability decreases, neural responses to real eye-contact in the right dorsal parietal region also decrease consistent with a neural correlate for social characteristics in ASD.
Collapse
Affiliation(s)
- Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States of America
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States of America
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Haskins Laboratories, New Haven, CT, United States of America
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - J. Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - Swethasri Dravida
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States of America
| | - Adam Naples
- Yale Child Study Center, New Haven, CT, United States of America
| | - Mark Tiede
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Haskins Laboratories, New Haven, CT, United States of America
| | - Julie M. Wolf
- Yale Child Study Center, New Haven, CT, United States of America
| | | |
Collapse
|
47
|
Subramaniam A, Liu S, Lochhead L, Appelbaum LG. A systematic review of transcranial direct current stimulation on eye movements and associated psychological function. Rev Neurosci 2022; 34:349-364. [PMID: 36310385 DOI: 10.1515/revneuro-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Abstract
The last decades have seen a rise in the use of transcranial direct current stimulation (tDCS) approaches to modulate brain activity and associated behavior. Concurrently, eye tracking (ET) technology has improved to allow more precise quantitative measurement of gaze behavior, offering a window into the mechanisms of vision and cognition. When combined, tDCS and ET provide a powerful system to probe brain function and measure the impact on visual function, leading to an increasing number of studies that utilize these techniques together. The current pre-registered, systematic review seeks to describe the literature that integrates these approaches with the goal of changing brain activity with tDCS and measuring associated changes in eye movements with ET. The literature search identified 26 articles that combined ET and tDCS in a probe-and-measure model and are systematically reviewed here. All studies implemented controlled interventional designs to address topics related to oculomotor control, cognitive processing, emotion regulation, or cravings in healthy volunteers and patient populations. Across these studies, active stimulation typically led to changes in the number, duration, and timing of fixations compared to control stimulation. Notably, half the studies addressed emotion regulation, each showing hypothesized effects of tDCS on ET metrics, while tDCS targeting the frontal cortex was widely used and also generally produced expected modulation of ET. This review reveals promising evidence of the impact of tDCS on eye movements and associated psychological function, offering a framework for effective designs with recommendations for future studies.
Collapse
Affiliation(s)
- Ashwin Subramaniam
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Sicong Liu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liam Lochhead
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
48
|
Golec-Staśkiewicz K, Pluta A, Wojciechowski J, Okruszek Ł, Haman M, Wysocka J, Wolak T. Does the TPJ fit it all? Representational similarity analysis of different forms of mentalizing. Soc Neurosci 2022; 17:428-440. [DOI: 10.1080/17470919.2022.2138536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Jakub Wojciechowski
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Łukasz Okruszek
- Social Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Haman
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Joanna Wysocka
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Tomasz Wolak
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
49
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
50
|
Sipes BS, Jakary A, Li Y, Max JE, Yang TT, Tymofiyeva O. Resting state brain subnetwork relates to prosociality and compassion in adolescents. Front Psychol 2022; 13:1012745. [PMID: 36337478 PMCID: PMC9632179 DOI: 10.3389/fpsyg.2022.1012745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Adolescence is a crucial time for social development, especially for helping (prosocial) and compassionate behaviors; yet brain networks involved in adolescent prosociality and compassion currently remain underexplored. Here, we sought to evaluate a recently proposed domain-general developmental (Do-GooD) network model of prosocial cognition by relating adolescent functional and structural brain networks with prosocial and compassionate disposition. We acquired resting state fMRI and diffusion MRI from 95 adolescents (ages 14–19 years; 46 males; 49 females) along with self-report questionnaires assessing prosociality and compassion. We then applied the Network-Based Statistic (NBS) to inductively investigate whether there is a significant subnetwork related to prosociality and compassion while controlling for age and sex. Based on the Do-GooD model, we expected that this subnetwork would involve connectivity to the ventromedial prefrontal cortex (VMPFC) from three domain-general networks, the default mode network (DMN), the salience network, and the control network, as well as from the DMN to the mirror neuron systems. NBS revealed a significant functional (but not structural) subnetwork related to prosociality and compassion connecting 31 regions (p = 0.02), showing DMN and DLPFC connectivity to the VMPFC; DMN connectivity to mirror neuron systems; and connectivity between the DMN and cerebellum. These findings largely support and extend the Do-GooD model of prosocial cognition in adolescents by further illuminating network-based relationships that have the potential to advance our understanding of brain mechanisms of prosociality.
Collapse
Affiliation(s)
- Benjamin S. Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Rady Children’s Hospital San Diego, San Diego, CA, United States
| | - Tony T. Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Olga Tymofiyeva,
| |
Collapse
|