1
|
Cruciani F, Aparo A, Brusini L, Combi C, Storti SF, Giugno R, Menegaz G, Boscolo Galazzo I. Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's Disease. J Biomed Inform 2024; 149:104569. [PMID: 38104851 DOI: 10.1016/j.jbi.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations. Ways to overcome these limitations while reducing the number of traits aim at conveying genetic information at the gene level and capturing the integrated genetic effects of a set of genetic variants, rather than looking at each SNP individually. Their associations with brain IDPs are still largely unexplored in the current literature, though they can uncover new potential genetic determinants for brain modulations in the AD continuum. In this work, we explored an explainable multivariate model to analyze the genetic basis of the grey matter modulations, relying on the AD Neuroimaging Initiative (ADNI) phase 3 dataset. Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Resonance were considered to describe the imaging phenotypes. At the same time the genetic counterpart was represented by gene variant scores extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, transcriptomic analysis was carried on to assess the expression of the resulting genes in the main brain structures as a form of validation. Results highlighted meaningful genotype-phenotype interactionsas defined by three latent components showing a significant difference in the projection scores between patients and controls. Among the significant associations, the model highlighted EPHX1 and BCAS1 gene variant scores involved in neurodegenerative and myelination processes, hence relevant for AD. In particular, the first was associated with decreased subcortical volumes and the second with decreasedtemporal lobe thickness. Noteworthy, BCAS1 is particularly expressed in the dentate gyrus. Overall, the proposed approach allowed capturing genotype-phenotype interactions in a restricted study cohort that was confirmed by transcriptomic analysis, offering insights into the underlying mechanisms of neurodegeneration in AD in line with previous findings and suggesting new potential disease biomarkers.
Collapse
Affiliation(s)
- Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | - Antonino Aparo
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Carlo Combi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Silvia F Storti
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
2
|
Ikanga J, Patel SS, Roberts BR, Schwinne M, Hickle S, Verberk IMW, Epenge E, Gikelekele G, Tshengele N, Kavugho I, Mampunza S, Yarasheski KE, Teunissen CE, Stringer A, Levey A, Alonso A. Association of plasma biomarkers with cognitive function in persons with dementia and cognitively healthy in the Democratic Republic of Congo. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12496. [PMID: 37954546 PMCID: PMC10632676 DOI: 10.1002/dad2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023]
Abstract
Introduction This study investigates whether plasma biomarkers (Aβ42/40 and p-tau 181), APS, as well as apolipoprotein E (APOE) proteotype predict cognitive deficits in elderly adults from the Democratic Republic of Congo. Methods Forty-four with possible AD (pAD) and 41 healthy control (HC) subjects were screened using CSID and AQ, underwent cognitive assessment with the African Neuropsychology Battery (ANB), and provided blood samples for plasma Aβ42, Aβ40, Aβ42/40, and APOE proteotype. Linear and logistic regression were used to evaluate the associations of plasma biomarkers with ANB tests and the ability of biomarkers to predict cognitive status. Results Patients with pAD had significantly lower plasma Aβ42/40 levels, higher APS, and higher prevalence of APOE E4 allele compared to HC. Groups did not differ in levels of Aβ40, Aβ42, or P-tau 181. Results showed that Aβ42/40 ratio and APS were significantly associated with African Naming Test (ANT), African List Memory Test (ALMT), and African Visuospatial Memory Test (AVMT) scores, while the presence of APOE E4 allele was associated with ANT, ALMT, AVMT, and APT scores. P-tau 181 did not show any significant associations while adjusting for age, education, and gender. APS showed the highest area under the curve (AUC) value (AUC = 0.78, 95% confidence interval [CI]: 0.68-0.88) followed by Aβ42/40 (AUC = 0.75, 95% CI: 0.66-0.86) and APOE E4 (AUC = 0.69 (CI 0.57-0.81) in discriminating pAD from HC. Discussion These results demonstrate associations between select plasma biomarker of AD pathology (Aβ42/40), APS, and APOE E4 allele) and ANB test scores and the ability of these biomarkers to differentiate pAD from cognitively normal SSA individuals, consistent with findings reported in other settings.
Collapse
Affiliation(s)
- Jean Ikanga
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | - Saranya Sundaram Patel
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Blaine R. Roberts
- Department of BiochemistryDepartment of neurologySchool of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Megan Schwinne
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Sabrina Hickle
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Inge M. W. Verberk
- Neurochemistry laboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, NeurodegenerationAmsterdam University Medical Centers, Vrije UniversitietAmsterdamThe Netherlands
| | - Emmanuel Epenge
- Department of neurologyUniversity of KinshasaKinshasaDemocratic Republic of Congo
| | - Guy Gikelekele
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | - Nathan Tshengele
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | | | - Samuel Mampunza
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | | | - Charlotte E. Teunissen
- Neurochemistry laboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, NeurodegenerationAmsterdam University Medical Centers, Vrije UniversitietAmsterdamThe Netherlands
| | - Anthony Stringer
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan Levey
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Gupta S, Jinka SKA, Khanal S, Bhavnani N, Almashhori F, Lallo J, Mathias A, Al-Rhayyel Y, Herman D, Holden JG, Fleming SM, Raman P. Cognitive dysfunction and increased phosphorylated tau are associated with reduced O-GlcNAc signaling in an aging mouse model of metabolic syndrome. J Neurosci Res 2023; 101:1324-1344. [PMID: 37031439 DOI: 10.1002/jnr.25196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by hyperglycemia, obesity, and hyperlipidemia, can increase the risk of developing late-onset dementia. Recent studies in patients and mouse models suggest a putative link between hyperphosphorylated tau, a component of Alzheimer's disease-related dementia (ADRD) pathology, and cerebral glucose hypometabolism. Impaired glucose metabolism reduces glucose flux through the hexosamine metabolic pathway triggering attenuated O-linked N-acetylglucosamine (O-GlcNAc) protein modification. The goal of the current study was to investigate the link between cognitive function, tau pathology, and O-GlcNAc signaling in an aging mouse model of MetS, agouti KKAy+/- . Male and female C57BL/6, non-agouti KKAy-/- , and agouti KKAy+/- mice were aged 12-18 months on standard chow diet. Body weight, blood glucose, total cholesterol, and triglyceride were measured to confirm the MetS phenotype. Cognition, sensorimotor function, and emotional reactivity were assessed for each genotype followed by plasma and brain tissue collection for biochemical and molecular analyses. Body weight, blood glucose, total cholesterol, and triglyceride levels were significantly elevated in agouti KKAy+/- mice versus C57BL/6 controls and non-agouti KKAy-/- . Behaviorally, agouti KKAy+/- revealed impairments in sensorimotor and cognitive function versus age-matched C57BL/6 and non-agouti KKAy-/- mice. Immunoblotting demonstrated increased phosphorylated tau accompanied with reduced O-GlcNAc protein expression in hippocampal-associated dorsal midbrain of female agouti KKAy+/- versus C57BL/6 control mice. Together, these data demonstrate that impaired cognitive function and AD-related pathology are associated with reduced O-GlcNAc signaling in aging MetS KKAy+/- mice. Overall, our study suggests that interaction of tau pathology with O-GlcNAc signaling may contribute to MetS-induced cognitive dysfunction in aging.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Sanjay K A Jinka
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Fayez Almashhori
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Yasmine Al-Rhayyel
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Danielle Herman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John G Holden
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sheila M Fleming
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
4
|
Kong C, Yang EJ, Shin J, Park J, Kim SH, Park SW, Chang WS, Lee CH, Kim H, Kim HS, Chang JW. Enhanced delivery of a low dose of aducanumab via FUS in 5×FAD mice, an AD model. Transl Neurodegener 2022; 11:57. [PMID: 36575534 PMCID: PMC9793531 DOI: 10.1186/s40035-022-00333-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aducanumab (Adu), which is a human IgG1 monoclonal antibody that targets oligomer and fibril forms of beta-amyloid, has been reported to reduce amyloid pathology and improve impaired cognition after administration of a high dose (10 mg/kg) of the drug in Alzheimer's disease (AD) clinical trials. The purpose of this study was to investigate the effects of a lower dose of Adu (3 mg/kg) with enhanced delivery via focused ultrasound (FUS) in an AD mouse model. METHODS The FUS with microbubbles opened the blood-brain barrier (BBB) of the hippocampus for the delivery of Adu. The combined therapy of FUS and Adu was performed three times in total and each treatment was performed biweekly. Y-maze test, Brdu labeling, and immunohistochemical experimental methods were employed in this study. In addition, RNA sequencing and ingenuity pathway analysis were employed to investigate gene expression profiles in the hippocampi of experimental animals. RESULTS The FUS-mediated BBB opening markedly increased the delivery of Adu into the brain by approximately 8.1 times in the brains. The combined treatment induced significantly less cognitive decline and decreased the level of amyloid plaques in the hippocampi of the 5×FAD mice compared with Adu or FUS alone. Combined treatment with FUS and Adu activated phagocytic microglia and increased the number of astrocytes associated with amyloid plaques in the hippocampi of 5×FAD mice. Furthermore, RNA sequencing identified that 4 enriched canonical pathways including phagosome formation, neuroinflammation signaling, CREB signaling and reelin signaling were altered in the hippocami of 5×FAD mice receiving the combined treatment. CONCLUSION In conclusion, the enhanced delivery of a low dose of Adu (3 mg/kg) via FUS decreases amyloid deposits and attenuates cognitive function deficits. FUS-mediated BBB opening increases adult hippocampal neurogenesis as well as drug delivery. We present an AD treatment strategy through the synergistic effect of the combined therapy of FUS and Adu.
Collapse
Affiliation(s)
- Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Si-Hyun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Chang-Han Lee
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
| | - Hye-Sun Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Bundang Hospital, Seoul National University College of Medicine, Bundang-Gu, Sungnam, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Correia SC, Alves MG, Oliveira PF, Casadesus G, LaManna J, Perry G, Moreira PI. Hypoxic Preconditioning Averts Sporadic Alzheimer's Disease-Like Phenotype in Rats: A Focus on Mitochondria. Antioxid Redox Signal 2022; 37:739-757. [PMID: 35316086 DOI: 10.1089/ars.2019.8007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Brief episodes of sublethal hypoxia reprogram brain response to face possible subsequent lethal stimuli by triggering adaptive and prosurvival events-a phenomenon denominated hypoxic preconditioning (HP). To date, the potential therapeutic implications of HP to forestall sporadic Alzheimer's disease (sAD) pathology remain unexplored. Using a well-established protocol of HP and focusing on hippocampus as a first brain region affected in AD, this study was undertaken to investigate the potential protective effects of HP in a sAD rat model induced by the intracerebroventricular (icv) administration of streptozotocin (STZ) and to uncover the mitochondrial adaptations underlying this nonpharmacological strategy. Results: HP prevented the memory and learning deficits as well as tau pathology in the icvSTZ rat model. HP also attenuated icvSTZ-related reactive astrogliosis, as noted by increased glial fibrillary acidic protein immunoreactivity and myo-inositol levels. Notably, HP abrogated the icvSTZ-related impaired energy metabolism and oxidative damage. Particularly, HP averted increased lactate, glutamate, and succinate levels, and decreased mitochondrial respiratory chain function and mitochondrial DNA content. Concerning mitochondrial adaptations underlying HP-triggered tolerance to icvSTZ, preconditioned hippocampal mitochondria displayed an enhanced complex II-energized mitochondrial respiration, which resulted from a coordinated interaction between mitochondrial biogenesis and fusion-fission. Mitochondrial biogenesis was stimulated immediately after HP, whereas in a latter phase mitochondrial fusion-fission events are modulated favoring the generation of elongated mitochondria. Innovation and Conclusion: Overall, these results demonstrate for the first time that HP prevents the sAD-like phenotype, in part, by targeting mitochondria emerging as a preventive strategy in the context of AD. Antioxid. Redox Signal. 37, 739-757.
Collapse
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, and University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Joseph LaManna
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, and University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Guan H, Wang C, Tao D. MRI-based Alzheimer's disease prediction via distilling the knowledge in multi-modal data. Neuroimage 2021; 244:118586. [PMID: 34563678 DOI: 10.1016/j.neuroimage.2021.118586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimer's disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fusion of multi-modal data can effectively improve the prediction accuracy, their applications are largely restricted by the limited availability or high cost of multi-modal data. Building an effective prediction model using only magnetic resonance imaging (MRI) remains a challenging research topic. In this work, we propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction. In contrast to existing distillation algorithms, the proposed multi-instance probabilities demonstrate a superior capability of representing the complicated atrophy distributions, and can guide the MRI-based network to better explore the input MRI. To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information. Experiments demonstrate the advantage of our framework, suggesting its potentials in the data-limited clinical settings.
Collapse
Affiliation(s)
- Hao Guan
- School of Computer Science, The University of Sydney, Australia
| | - Chaoyue Wang
- School of Computer Science, The University of Sydney, Australia.
| | - Dacheng Tao
- School of Computer Science, The University of Sydney, Australia; JD Explore Academy, China.
| |
Collapse
|
7
|
A missense variant in SHARPIN mediates Alzheimer's disease-specific brain damages. Transl Psychiatry 2021; 11:590. [PMID: 34785643 PMCID: PMC8595886 DOI: 10.1038/s41398-021-01680-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023] Open
Abstract
Established genetic risk factors for Alzheimer's disease (AD) account for only a portion of AD heritability. The aim of this study was to identify novel associations between genetic variants and AD-specific brain atrophy. We conducted genome-wide association studies for brain magnetic resonance imaging measures of hippocampal volume and entorhinal cortical thickness in 2643 Koreans meeting the clinical criteria for AD (n = 209), mild cognitive impairment (n = 1449) or normal cognition (n = 985). A missense variant, rs77359862 (R274W), in the SHANK-associated RH Domain Interactor (SHARPIN) gene was associated with entorhinal cortical thickness (p = 5.0 × 10-9) and hippocampal volume (p = 5.1 × 10-12). It revealed an increased risk of developing AD in the mediation analyses. This variant was also associated with amyloid-β accumulation (p = 0.03) and measures of memory (p = 1.0 × 10-4) and executive function (p = 0.04). We also found significant association of other SHARPIN variants with hippocampal volume in the Alzheimer's Disease Neuroimaging Initiative (rs3417062, p = 4.1 × 10-6) and AddNeuroMed (rs138412600, p = 5.9 × 10-5) cohorts. Further, molecular dynamics simulations and co-immunoprecipitation indicated that the variant significantly reduced the binding of linear ubiquitination assembly complex proteins, SHPARIN and HOIL-1 Interacting Protein (HOIP), altering the downstream NF-κB signaling pathway. These findings suggest that SHARPIN plays an important role in the pathogenesis of AD.
Collapse
|
8
|
Yao W, Chen H, Sheng X, Zhao H, Xu Y, Bai F. Core-Centered Connection Abnormalities Associated with Pathological Features Mediate the Progress of Cognitive Impairments in Alzheimer's Disease Spectrum Patients. J Alzheimers Dis 2021; 82:1499-1511. [PMID: 34180417 DOI: 10.3233/jad-210481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal default mode network (DMN) was associated with the progress of Alzheimer's disease (AD). Rather than treat the DMN as a unitary network, it can be further divided into three subsystems with different functions. OBJECTIVE It remains unclear the interactions of DMN subsystems associated with the progress of cognitive impairments and AD pathological features. METHODS This study has recruited 187 participants, including test data and verification data. Firstly, an imaging analysis approach was utilized to investigate disease-related differences in the interactions of DMN subsystems in test data (n = 149), including 42 cognitively normal subjects, 43 early mild cognitive impairment (EMCI), 32 late mild cognitive impairment (LMCI), and 32 AD patients. Brain-behavior-pathological relationships regarding to the interactions among DMN subsystems were then further examined. Secondly, DMN subsystems abnormalities for classifying AD spectrum population in the independent verification data (n = 38). RESULTS This study found that the impaired cognition relates to disturbances in the interactions between DMN subsystems but preferentially in core subsystem, and the abnormal regulatory processes of core subsystem were significantly associated with the levels of cerebrospinal fluid Aβ and tau in AD-spectrum patients. Meantime, the nonlinear relationship between dysfunctional core subsystem and impaired cognition was observed as one progresses through the stages of MCI to AD. Importantly, this classification presented a higher sensitivity and specificity dependent on the core-centered connection abnormalities. CONCLUSION The abnormal interaction patterns of DMN subsystems at an early stage of AD appeared and presented as core-centered connection abnormalities, which were the potential neuroimaging features for monitoring the development of AD.
Collapse
Affiliation(s)
- Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
9
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
10
|
Williams BD, Pendleton N, Chandola T. Does the association between cognition and education differ between older adults with gradual or rapid trajectories of cognitive decline? NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2021; 29:1-21. [PMID: 33683174 DOI: 10.1080/13825585.2021.1889958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Education is associated with improved baseline cognitive performance in older adults, but the association with maintenance of cognitive function is less clear. Education may be associated with different types of active cognitive reserve in those following different cognitive trajectories. We used data on n = 5642 adults aged >60 from the English Longitudinal Study of Aging (ELSA) over 5 waves (8 years). We used growth mixture models to test if the association between educational attainment and rate of change in verbal fluency or immediate recall varied by latent class trajectory. For recall, 91.5% (n = 5164) of participants were in a gradual decline class and 8.5% (n = 478) in a rapid decline class. For fluency, 90.0% (n = 4907) were in a gradual decline class and 10.0% (n = 561) were in a rapid decline class. Educational attainment was associated with improved baseline performance for both verbal fluency and recall. In the rapidly declining classes, educational attainment was not associated with rate of change for either outcome. In the verbal fluency gradual decline class, education was associated with higher (an additional 0.05-0.38 words per 2 years) or degree level education (an additional 0.04-0.42 words per 2 years) when compared to those with no formal qualifications. We identified no evidence of a protective effect of education against rapid cognitive decline. There was some evidence of active cognitive reserve for verbal fluency but not recall, which may reflect a small degree of domain-specific protection against age-related cognitive decline.
Collapse
Affiliation(s)
| | - Neil Pendleton
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, UK
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Tarani Chandola
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Stojić-Vukanić Z, Hadžibegović S, Nicole O, Nacka-Aleksić M, Leštarević S, Leposavić G. CD8+ T Cell-Mediated Mechanisms Contribute to the Progression of Neurocognitive Impairment in Both Multiple Sclerosis and Alzheimer's Disease? Front Immunol 2020; 11:566225. [PMID: 33329528 PMCID: PMC7710704 DOI: 10.3389/fimmu.2020.566225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Neurocognitive impairment (NCI) is one of the most relevant clinical manifestations of multiple sclerosis (MS). The profile of NCI and the structural and functional changes in the brain structures relevant for cognition in MS share some similarities to those in Alzheimer's disease (AD), the most common cause of neurocognitive disorders. Additionally, despite clear etiopathological differences between MS and AD, an accumulation of effector/memory CD8+ T cells and CD8+ tissue-resident memory T (Trm) cells in cognitively relevant brain structures of MS/AD patients, and higher frequency of effector/memory CD8+ T cells re-expressing CD45RA (TEMRA) with high capacity to secrete cytotoxic molecules and proinflammatory cytokines in their blood, were found. Thus, an active pathogenetic role of CD8+ T cells in the progression of MS and AD may be assumed. In this mini-review, findings supporting the putative role of CD8+ T cells in the pathogenesis of MS and AD are displayed, and putative mechanisms underlying their pathogenetic action are discussed. A special effort was made to identify the gaps in the current knowledge about the role of CD8+ T cells in the development of NCI to "catalyze" translational research leading to new feasible therapeutic interventions.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Senka Hadžibegović
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Sanja Leštarević
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
12
|
Hahn A, Strandberg TO, Stomrud E, Nilsson M, van Westen D, Palmqvist S, Ossenkoppele R, Hansson O. Association Between Earliest Amyloid Uptake and Functional Connectivity in Cognitively Unimpaired Elderly. Cereb Cortex 2020; 29:2173-2182. [PMID: 30877785 PMCID: PMC6458901 DOI: 10.1093/cercor/bhz020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β (Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that exhibited normal global Aβ PET levels. [18F]Flutemetamol uptake in regions known to accumulate Aβ fibrils early in preclinical AD (i.e., mainly certain parts of the default-mode network) was positively associated with dynamic but not static functional connectivity (r = 0.77). Dynamic functional connectivity was further related to better cognitive performance (r = 0.21–0.72). No significant associations were found for Aβ uptake with gray matter volume or white matter diffusivity. The findings demonstrate that the earliest accumulation of Aβ fibrils is associated with increased functional connectivity, which occurs before any structural alterations. The enhanced functional connectivity may reflect a compensatory mechanism to maintain high cognitive performance in the presence of increasing amyloid accumulation during the earliest phases of AD.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Tor O Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Markus Nilsson
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Sweden.,Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden.,Department of Neurology, Skåne University Hospital, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden.,Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, HV, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| |
Collapse
|
13
|
Ginsenoside Compound K Induces Adult Hippocampal Proliferation and Survival of Newly Generated Cells in Young and Elderly Mice. Biomolecules 2020; 10:biom10030484. [PMID: 32210026 PMCID: PMC7175218 DOI: 10.3390/biom10030484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment can be associated with reduced adult hippocampal neurogenesis, and it may contribute to age-associated neurodegenerative diseases such as Alzheimer’s (AD). Compound K (CK) is produced from the protopanaxadiol (PPD)-type ginsenosides Rb1, Rb2, and Rc by intestinal microbial conversion. Although CK has been reported as an inducing effector for neuroprotection and improved cognition in hippocampus, its effect on adult neurogenesis has not been explored yet. Here, we investigated the effect of CK on hippocampal neurogenesis in both young (2 months) and elderly (24 months) mice. CK treatment increased the number of cells co-labeled with 5-ethynyl-2′-deoxyuridine (EdU) and proliferating cell nuclear antigen (PCNA); also, Ki67, specific markers for progenitor cells, was more expressed, thus enhancing the generation of new cells and progenitor cells in the dentate gyrus of both young and elderly mice. Moreover, CK treatment increased the number of cells co-labeled with EdU and NeuN, a specific marker for mature neuron in the dentate gyrus, suggesting that newly generated cells survived and differentiated into mature neurons at both ages. These findings demonstrate that CK increases adult hippocampal neurogenesis, which may be beneficial against neurodegenerative disorders such as AD.
Collapse
|
14
|
Cacciaglia R, Molinuevo JL, Falcón C, Arenaza-Urquijo EM, Sánchez-Benavides G, Brugulat-Serrat A, Blennow K, Zetterberg H, Gispert JD. APOE-ε4 Shapes the Cerebral Organization in Cognitively Intact Individuals as Reflected by Structural Gray Matter Networks. Cereb Cortex 2020; 30:4110-4120. [PMID: 32163130 PMCID: PMC7264689 DOI: 10.1093/cercor/bhaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Gray matter networks (GMn) provide essential information on the intrinsic organization of the brain and appear to be disrupted in Alzheimer’s disease (AD). Apolipoprotein E (APOE)-ε4 represents the major genetic risk factor for AD, yet the association between APOE-ε4 and GMn has remained unexplored. Here, we determine the impact of APOE-ε4 on GMn in a large sample of cognitively unimpaired individuals, which was enriched for the genetic risk of AD. We used independent component analysis to retrieve sources of structural covariance and analyzed APOE group differences within and between networks. Analyses were repeated in a subsample of amyloid-negative subjects. Compared with noncarriers and heterozygotes, APOE-ε4 homozygotes showed increased covariance in one network including primarily right-lateralized, parietal, inferior frontal, as well as inferior and middle temporal regions, which mirrored the formerly described AD-signature. This result was confirmed in a subsample of amyloid-negative individuals. APOE-ε4 carriers showed reduced covariance between two networks encompassing frontal and temporal regions, which constitute preferential target of amyloid deposition. Our data indicate that, in asymptomatic individuals, APOE-ε4 shapes the cerebral organization in a way that recapitulates focal morphometric alterations observed in AD patients, even in absence of amyloid pathology. This suggests that structural vulnerability in neuronal networks associated with APOE-ε4 may be an early event in AD pathogenesis, possibly upstream of amyloid deposition.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain.,Global Brain Health Institute, University of California San Francisco, San Francisco, CA 94115, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden.,UK Dementia Research Institute at UCL, WC1E 6BT London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | | |
Collapse
|
15
|
Shin SJ, Jeong YO, Jeon SG, Kim S, Lee SK, Nam Y, Park YH, Kim D, Lee YS, Choi HS, Kim JI, Kim JJ, Moon M. Jowiseungchungtang Inhibits Amyloid-β Aggregation and Amyloid-β-Mediated Pathology in 5XFAD Mice. Int J Mol Sci 2018; 19:E4026. [PMID: 30551564 PMCID: PMC6321192 DOI: 10.3390/ijms19124026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-β (Aβ) peptides in the brain is considered to be the major pathology of AD, inhibition of Aβ aggregation could be an effective strategy for AD treatment. Jowiseungchungtang (JWS) is a traditional oriental herbal formulation that has been shown to improve cognitive function in patients or animal models with dementia. However, there are no reports examining the effects of JWS on Aβ aggregation. Thus, we investigated whether JWS could protect against both Aβ aggregates and Aβ-mediated pathology such as neuroinflammation, neurodegeneration, and impaired adult neurogenesis in 5 five familial Alzheimer's disease mutations (5XFAD) mice, an animal model for AD. In an in vitro thioflavin T assay, JWS showed a remarkable anti-Aβ aggregation effect. Histochemical analysis indicated that JWS had inhibitory effects on Aβ aggregation, Aβ-induced pathologies, and improved adult hippocampal neurogenesis in vivo. Taken together, these results suggest the therapeutic possibility of JWS for AD targeting Aβ aggregation, Aβ-mediated neurodegeneration, and impaired adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Yu-On Jeong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Seong-Kyung Lee
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Dabi Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea.
| | - Youn Seok Lee
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Hong Seok Choi
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Korea.
| | - Jwa-Jin Kim
- Department of Biomedical Science, Jungwon University, Geosan, Chungbuk 28024, Korea.
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon 35015, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| |
Collapse
|
16
|
Berger M, Terrando N, Smith SK, Browndyke JN, Newman MF, Mathew JP. Neurocognitive Function after Cardiac Surgery: From Phenotypes to Mechanisms. Anesthesiology 2018; 129:829-851. [PMID: 29621031 PMCID: PMC6148379 DOI: 10.1097/aln.0000000000002194] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For half a century, it has been known that some patients experience neurocognitive dysfunction after cardiac surgery; however, defining its incidence, course, and causes remains challenging and controversial. Various terms have been used to describe neurocognitive dysfunction at different times after cardiac surgery, ranging from "postoperative delirium" to "postoperative cognitive dysfunction or decline." Delirium is a clinical diagnosis included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Postoperative cognitive dysfunction is not included in the DSM-5 and has been heterogeneously defined, though a recent international nomenclature effort has proposed standardized definitions for it. Here, the authors discuss pathophysiologic mechanisms that may underlie these complications, review the literature on methods to prevent them, and discuss novel approaches to understand their etiology that may lead to novel treatment strategies. Future studies should measure both delirium and postoperative cognitive dysfunction to help clarify the relationship between these important postoperative complications.
Collapse
Affiliation(s)
- Miles Berger
- Assistant Professor, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Niccolò Terrando
- Assistant Professor, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - S. Kendall Smith
- Critical Care Fellow, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Jeffrey N. Browndyke
- Assistant Professor, Division of Geriatric Behavioral Health, Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Mark F. Newman
- Merel H. Harmel Professor of Anesthesiology, and President of the Private Diagnostic Clinic, Duke University Medical Center, Durham, NC
| | - Joseph P. Mathew
- Jerry Reves, MD Professor and Chair, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
17
|
Santangelo R, Cecchetti G, Bernasconi MP, Cardamone R, Barbieri A, Pinto P, Passerini G, Scomazzoni F, Comi G, Magnani G. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease. J Alzheimers Dis 2018; 60:183-200. [PMID: 28826180 DOI: 10.3233/jad-170186] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.
Collapse
Affiliation(s)
- Roberto Santangelo
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giordano Cecchetti
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Maria Paola Bernasconi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Rosalinda Cardamone
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Alessandra Barbieri
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Patrizia Pinto
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | - Francesco Scomazzoni
- Department of Neuroradiology, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| |
Collapse
|
18
|
Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease. Neurobiol Aging 2017; 59:98-106. [PMID: 28866021 DOI: 10.1016/j.neurobiolaging.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 11/21/2022]
Abstract
Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD.
Collapse
|
19
|
Sulaimany S, Khansari M, Zarrineh P, Daianu M, Jahanshad N, Thompson PM, Masoudi-Nejad A. Predicting brain network changes in Alzheimer's disease with link prediction algorithms. MOLECULAR BIOSYSTEMS 2017; 13:725-735. [PMID: 28197591 PMCID: PMC6167930 DOI: 10.1039/c6mb00815a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Link prediction is a promising research area for modeling various types of networks and has mainly focused on predicting missing links. Link prediction methods may be valuable for describing brain connectivity, as it changes in Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Here, we analyzed 3-tesla whole-brain diffusion-weighted images from 202 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) - 50 healthy controls, 72 with earlyMCI (eMCI) and 38 with lateMCI (lMCI) and 42 AD patients. We introduce a novel approach for Mixed Link Prediction (MLP) to test and define the percent of predictability of each heightened stage of dementia from its previous, less impaired stage, in the simplest case. Using well-known link prediction algorithms as the core of MLP, we propose a new approach that predicts stages of cognitive impairment by simultaneously adding and removing links in the brain networks of elderly individuals. We found that the optimal algorithm, called "Adamic and Adar", had the best fit and most accurately predicted the stages of AD from their previous stage. When compared to the other link prediction algorithms, that mainly only predict the added links, our proposed approach can more inclusively simulate the brain changes during disease by both adding and removing links of the network. Our results are also in line with computational neuroimaging and clinical findings and can be improved for better results.
Collapse
Affiliation(s)
- Sadegh Sulaimany
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Mohammad Khansari
- Department of New Sciences and Technologies (FNST), University of Tehran, Tehran, Iran
| | - Peyman Zarrineh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Madelaine Daianu
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Yang C, Sun X, Tao W, Li X, Zhang J, Jia J, Chen K, Zhang Z. Multistage Grading of Amnestic Mild Cognitive Impairment: The Associated Brain Gray Matter Volume and Cognitive Behavior Characterization. Front Aging Neurosci 2017; 8:332. [PMID: 28119601 PMCID: PMC5222841 DOI: 10.3389/fnagi.2016.00332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 12/22/2016] [Indexed: 01/19/2023] Open
Abstract
Background and Purpose: It is well known that there is a wide range of different pathological stages related to Alzheimer's disease (AD) among patients with amnestic mild cognitive impairment (aMCI). Further refinement of the stages based on neuropsychological and neuroimaging methods is important for earlier disease detection, as well as for the development and evaluation of disease-modifying interventions. Materials and Methods: In this cross-sectional study, 125 aMCI patients were classified into declined progressively three stages of mild, moderate and severe, utilizing the extreme groups approach (EGA) based on their memory function. Fifty-two patients, in addition to 24 cognitively normal subjects, were included in further structural MRI analyses. Characteristics of cognitive functions and brain structures across these newly defined stages were explored through general linear models. Results: Almost all the non-memory cognitive functions showed progressive decline as memory function deteriorated. In addition, medial structures including the right hippocampus, right lingual and left fusiform gyrus, presented with greater gray matter (GM) atrophy during the later stages of aMCI (corrected p < 0.05). Correlations were found between GM volume of the lingual gyrus and processing speed (r = 0.419, p = 0.003) and between the fusiform gyrus and general cognitive function (r = 0.281, p = 0.046). Moreover, both cognitive function and GM volume presented non-linear trajectories over stages of aMCI. Conclusion: Our study characterized the cognitive profiles along with the degree of episodic memory impairment, and these three stages of aMCI showed non-linear progressive decline in cognitive functions and GM volumes.
Collapse
Affiliation(s)
- Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China
| | - Xuan Sun
- Department of Geriatric Neurology, Chinese PLA General Hospital Beijing, China
| | - Wuhai Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China
| | - Jianjun Jia
- Department of Geriatric Neurology, Chinese PLA General Hospital Beijing, China
| | - Kewei Chen
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China; Banner Alzheimer's InstitutePhoenix, AZ, USA
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal UniversityBeijing, China
| |
Collapse
|
21
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
22
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
23
|
Bauckneht M, Picco A, Nobili F, Morbelli S. Amyloid positron emission tomography and cognitive reserve. World J Radiol 2015; 7:475-483. [PMID: 26753062 PMCID: PMC4697121 DOI: 10.4329/wjr.v7.i12.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by a non-linear progressive course and several aspects influence the relationship between cerebral amount of AD pathology and the clinical expression of the disease. Brain cognitive reserve (CR) refers to the hypothesized capacity of an adult brain to cope with brain damage in order to minimize symptomatology. CR phenomenon contributed to explain the disjunction between the degree of neurodegeneration and the clinical phenotype of AD. The possibility to track brain amyloidosis (Aβ) in vivo has huge relevance for AD diagnosis and new therapeutic approaches. The clinical repercussions of positron emission tomography (PET)-assessed Aβ load are certainly mediated by CR thus potentially hampering the prognostic meaning of amyloid PET in selected groups of patients. Similarly, amyloid PET and cerebrospinal fluid amyloidosis biomarkers have recently provided new evidence for CR. The present review discusses the concept of CR in the framework of available neuroimaging studies and specifically deals with the reciprocal influences between amyloid PET and CR in AD patients and with the potential consequent interventional strategies for AD.
Collapse
|
24
|
Fernández-Ruiz J, Moro MA, Martínez-Orgado J. Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics 2015; 12:793-806. [PMID: 26260390 PMCID: PMC4604192 DOI: 10.1007/s13311-015-0381-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems. One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells. These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells). This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer's disease, Parkinson's disease, Huntington's chorea, and amyotrophic lateral sclerosis. This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression, despite the fact that the few clinical trials conducted so far with these medicines have failed to demonstrate beneficial effects.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María A Moro
- Departamento de Farmacología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | | |
Collapse
|
25
|
Frings L, Hellwig S, Spehl TS, Bormann T, Buchert R, Vach W, Minkova L, Heimbach B, Klöppel S, Meyer PT. Asymmetries of amyloid-β burden and neuronal dysfunction are positively correlated in Alzheimer's disease. Brain 2015; 138:3089-99. [PMID: 26280595 DOI: 10.1093/brain/awv229] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023] Open
Abstract
Clinical Alzheimer's disease affects both cerebral hemispheres to a similar degree in clinically typical cases. However, in atypical variants like logopenic progressive aphasia, neurodegeneration often presents asymmetrically. Yet, no in vivo imaging study has investigated whether lateralized neurodegeneration corresponds to lateralized amyloid-β burden. Therefore, using combined (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose positron emission tomography, we explored whether asymmetric amyloid-β deposition in Alzheimer's disease is associated with asymmetric hypometabolism and clinical symptoms. From our database of patients who underwent positron emission tomography with both (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose (n = 132), we included all amyloid-positive patients with prodromal or mild-to-moderate Alzheimer's disease (n = 69). The relationship between (11)C-Pittsburgh compound B binding potential and (18)F-fluorodeoxyglucose uptake was assessed in atlas-based regions of interest covering the entire cerebral cortex. Lateralizations of amyloid-β and hypometabolism were tested for associations with each other and with type and severity of cognitive symptoms. Positive correlations between asymmetries of Pittsburgh compound B binding potential and hypometabolism were detected in 6 of 25 regions (angular gyrus, middle frontal gyrus, middle occipital gyrus, superior parietal gyrus, inferior and middle temporal gyrus), i.e. hypometabolism was more pronounced on the side of greater amyloid-β deposition (range: r = 0.41 to 0.53, all P < 0.001). Stronger leftward asymmetry of amyloid-β deposition was associated with more severe language impairment (P < 0.05), and stronger rightward asymmetry with more severe visuospatial impairment (at trend level, P = 0.073). Similarly, patients with predominance of language deficits showed more left-lateralized amyloid-β burden and hypometabolism than patients with predominant visuospatial impairment and vice versa in several cortical regions. Associations between amyloid-β deposition and hypometabolism or cognitive impairment were predominantly observed in brain regions with high amyloid-β load. The relationship between asymmetries of amyloid-β deposition and hypometabolism in cortical regions with high amyloid-β load is in line with the detrimental effect of amyloid-β burden on neuronal function. Asymmetries were also concordant with lateralized cognitive symptoms, indicating their clinical relevance.
Collapse
Affiliation(s)
- Lars Frings
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany
| | - Sabine Hellwig
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany
| | - Timo S Spehl
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany
| | - Tobias Bormann
- 4 Department of Neurology, University Medical Centre, Freiburg, Germany
| | - Ralph Buchert
- 5 Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Germany
| | - Werner Vach
- 6 Centre for Medical Biometry and Medical Informatics, University Medical Centre, Freiburg, Germany
| | - Lora Minkova
- 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany 7 Freiburg Brain Imaging, University Medical Centre Freiburg, Germany
| | - Bernhard Heimbach
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany
| | - Stefan Klöppel
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany 7 Freiburg Brain Imaging, University Medical Centre Freiburg, Germany
| | - Philipp T Meyer
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany
| |
Collapse
|
26
|
Wolf D, Fischer FU, Scheurich A, Fellgiebel A. Non-Linear Association between Cerebral Amyloid Deposition and White Matter Microstructure in Cognitively Healthy Older Adults. J Alzheimers Dis 2015; 47:117-27. [DOI: 10.3233/jad-150049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
A novel tacrine-dihydropyridine hybrid (-)SCR1693 induces tau dephosphorylation and inhibits Aβ generation in cells. Eur J Pharmacol 2015; 754:134-9. [PMID: 25732864 DOI: 10.1016/j.ejphar.2015.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
AChE inhibitors are the first choice for the treatment of Alzheimer׳s disease (AD), but they could only delay the progression of cognitive and behavioral dysfunction, and fail to reverse neuronal damage. Calcium channel blockers have been identified to have protective effect on neurons. Thus, therapy targeting both AChE and calcium channels is supposed to be more effective in AD treatment. In the present study, we explored the effect of a synthesized juxtaposition of an AChE inhibitor and a Calcium channel blocker (named (-)SCR1693) on tau phosphophorylation and Aβ generation. The results showed that: (1) Compared with higher concentrations, (-)SCR1693 incubation in low concentrations such as 0.4, 2, 4μM for 24h did not affect the cell viability of HEK293/tau (HEK293 cells stably transfected with human tau40) and N2a/APP (N2a cells stably transfected with human APP) cells; (2) long-term treatment of cells with (-)SCR1693 (0.4, 2, 5μM) (24h) induced tau dephosphorylation and reduced the total tau level in HEK293/tau cells. Short-term treatment (6h) also resulted in tau dephosphorylation, but did not reduce the total tau level; and (3) (-)SCR1693 (0.4, 2, 4μM) incubation inhibited Aβ generation and release dramatically in N2a/APP cells. We conclude that the novel tacrine-dihydropyridine hybrid (-)SCR1693 in low concentrations could reduce total and phosphorylated tau levels, inhibit the generation and release of Aβ in cells. Thus, (-)SCR1693 may be a potential candidate for effectively treating AD.
Collapse
|
28
|
Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin) Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer's Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682014. [PMID: 25389443 PMCID: PMC4217361 DOI: 10.1155/2014/682014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Introduction. Converging evidence suggests that PDE-4 (phosphodiesterase subtype 4) plays a crucial role in regulating cognition via the PDE-4-cAMP cascade signaling involving phosphorylated cAMP response element binding protein (CREB). Objective. The primary endpoint was to examine the neurocognitive effects of extract Sceletium tortuosum (Zembrin) and to assess the safety and tolerability of Zembrin in cognitively healthy control subjects.
Method. We chose the randomized double-blind placebo-controlled cross-over design in our study. We randomized normal healthy subjects (total n = 21) to receive either 25 mg capsule Zembrin or placebo capsule once daily for 3 weeks, in a randomized placebo-controlled 3-week cross-over design. We administered battery of neuropsychological tests: CNS Vital Signs and Hamilton depression rating scale (HAM-D) at baseline and regular intervals and monitored side effects with treatment emergent adverse events scale. Results. 21 subjects (mean age: 54.6 years ± 6.0 yrs; male/female ratio: 9/12) entered the study. Zembrin at 25 mg daily dosage significantly improved cognitive set flexibility (P < 0.032) and executive function (P < 0.022), compared with the placebo group. Positive changes in mood and sleep were found. Zembrin was well tolerated. Conclusion. The promising cognitive enhancing effects of Zembrin likely implicate the PDE-4-cAMP-CREB cascade, a novel drug target in the potential treatment of early Alzheimer's dementia. This trial is registered with ClinicalTrials.gov NCT01805518.
Collapse
|
29
|
Ashbrook DG, Williams RW, Lu L, Stein JL, Hibar DP, Nichols TE, Medland SE, Thompson PM, Hager R. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease. BMC Genomics 2014; 15:850. [PMID: 25280473 PMCID: PMC4192369 DOI: 10.1186/1471-2164-15-850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. RESULTS We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. CONCLUSIONS We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng X, Zhang X, Kang A, Ran C, Wang G, Hao H. Thinking outside the brain for cognitive improvement: Is peripheral immunomodulation on the way? Neuropharmacology 2014; 96:94-104. [PMID: 24978103 DOI: 10.1016/j.neuropharm.2014.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is a devastating condition commonly observed with normal aging and neurodegenerative disorders such as Alzheimer's Disease (AD). Although major efforts to prevent or slow down cognitive decline are largely focused within the central nervous system (CNS), it has become clear that signals from the systemic milieu are closely associated with the dysfunctional brain. In particular, the bidirectional crosstalk between the CNS and peripheral immune system plays a decisive role in shaping neuronal survival and function via neuroimmune, neuroendocrinal and bioenergetic mechanisms. Importantly, it is emerging that some neuroprotective and cognition-strengthening drugs may work by targeting the brain-periphery interactions, which could be intriguingly achieved without entering the CNS. We describe here how recent advances in dissecting cognitive deficits from a systems-perspective have contributed to a non-neurocentric understanding of its pathogenesis and treatment strategy. We also discuss the therapeutic and diagnostic implications of these exciting progresses and consider some key issues in the clinical translation. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Xiao Zheng
- Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing 210029, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueli Zhang
- Zhong Da Hospital, Southeast University, Nanjing 210009, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chongzhao Ran
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston 02129, United States
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Braskie MN, Thompson PM. A focus on structural brain imaging in the Alzheimer's disease neuroimaging initiative. Biol Psychiatry 2014; 75:527-33. [PMID: 24367935 PMCID: PMC4019004 DOI: 10.1016/j.biopsych.2013.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023]
Abstract
In recent years, numerous laboratories and consortia have used neuroimaging to evaluate the risk for and progression of Alzheimer's disease (AD). The Alzheimer's Disease Neuroimaging Initiative is a longitudinal, multicenter study that is evaluating a range of biomarkers for use in diagnosis of AD, prediction of patient outcomes, and clinical trials. These biomarkers include brain metrics derived from magnetic resonance imaging (MRI) and positron emission tomography scans as well as metrics derived from blood and cerebrospinal fluid. We focus on Alzheimer's Disease Neuroimaging Initiative studies published between 2011 and March 2013 for which structural MRI was a major outcome measure. Our main goal was to review key articles offering insights into progression of AD and the relationships of structural MRI measures to cognition and to other biomarkers in AD. In Supplement 1, we also discuss genetic and environmental risk factors for AD and exciting new analysis tools for the efficient evaluation of large-scale structural MRI data sets such as the Alzheimer's Disease Neuroimaging Initiative data.
Collapse
Affiliation(s)
- Meredith N Braskie
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California; Department of Neurology, University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California; Department of Neurology, University of Southern California, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California; Department of Radiology, University of Southern California, Los Angeles, California; Department of Pediatrics, University of Southern California, Los Angeles, California; Department of Ophthalmology, University of Southern California, Los Angeles, California; Keck School of Medicine, and Viterbi School of Engineering, University of Southern California, Los Angeles, California.
| |
Collapse
|