1
|
Khalaf F, Barayan D, Saldanha S, Jeschke MG. Metabolaging: a new geroscience perspective linking aging pathologies and metabolic dysfunction. Metabolism 2025; 166:156158. [PMID: 39947519 DOI: 10.1016/j.metabol.2025.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
With age, our metabolic systems undergo significant alterations, which can lead to a cascade of adverse effects that are implicated in both metabolic disorders, such as diabetes, and in the body's ability to respond to acute stress and trauma. To elucidate the metabolic imbalances arising from aging, we introduce the concept of "metabolaging." This framework encompasses the broad spectrum of metabolic disruptions associated with the hallmarks of aging, including the functional decline of key metabolically active organs, like the adipose tissue. By examining how these organs interact with essential nutrient-sensing pathways, "metabolaging" provides a more comprehensive view of the systemic metabolic imbalances that occur with age. This concept extends to understanding how age-related metabolic disturbances can influence the response to acute stressors, like burn injuries, highlighting the interplay between metabolic dysfunction and the ability to handle severe physiological challenges. Finally, we propose potential interventions that hold promise in mitigating the effects of metabolaging and its downstream consequences.
Collapse
Affiliation(s)
- Fadi Khalaf
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dalia Barayan
- David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sean Saldanha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Dai Q, Zhao S, Li J, Li N, Wang A, Gao Z, Fan Y. Integration of single-cell and bulk transcriptomics reveals β-hydroxybutyrylation-related signatures in primary open-angle glaucoma. Exp Eye Res 2025; 254:110272. [PMID: 39922523 DOI: 10.1016/j.exer.2025.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/29/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The pathophysiology of primary open-angle glaucoma (POAG), the most prevalent glaucoma type, is poorly understood. Although it is well known that epigenetic factors affect the progression of POAG, the impact of β-hydroxybutyrylation (Kbhb) on POAG remains unknown. Based on POAG-related datasets (GSE27276, GSE4316, and GSE231749) retrieved from the Gene Expression Omnibus (GEO) database, four biomarkers (FABP5, GLS, PDLIM1, and TAGLN) with a diagnostic value for POAG were identified by combining differential expression analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. Immune infiltration analysis demonstrated significant differences in the infiltration abundances of 10 immune cells between POAG and controls, including regulatory T cells, monocytes, and macrophages, with notable positive correlations between TAGLN expression and these immune cells. Subsequently, single-cell analysis revealed that GLS, PDLIM1, and TAGLN were higher expressed in chondrocytes, smooth muscle cells, and endothelial cells. In addition, in vitro cellular experiments and animal models revealed that the TAGLN expression trend was consistent with the data from GSE27276 and GSE4316. In conclusion, TAGLN may play an important role in understanding of the molecular mechanisms of POAG and exploration of therapeutic targets.
Collapse
Affiliation(s)
- Qing Dai
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Sijie Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ning Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aiqin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ziqing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Yuchen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Mi P, Cao X, Feng H, Wang H. Association of blood cadmium levels with epigenetic age acceleration in U.S. adults aged > 50 years. Front Public Health 2025; 13:1504830. [PMID: 40302773 PMCID: PMC12037496 DOI: 10.3389/fpubh.2025.1504830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Objectives DNA methylation (DNAm) is a sensitive biomarker of aging-related processes, and novel epigenetic-based "clocks" can estimate accelerated biological aging. Cadmium (Cd) can alter cellular processes that promote aging and disrupt global methylation patterns. However, few studies have investigated the association between blood Cd and accelerated aging. We aimed to investigate the association between blood Cd and four DNAm-based epigenetic age accelerations in individuals over 50 in the United States, using data from the National Health and Nutrition Examination Survey (NHANES). Methods DNAm-epigenetic biomarkers and blood Cd data from the NHANES database (1999-2002) were retrieved for this study. We evaluated four epigenetic ages: HorvathAge, HannumAge, PhenoAge, and GrimAge. Age acceleration was calculated by extracting the residuals from the regression of chronological age on each epigenetic age measure. We used weighted linear regression models and subgroup analyses to investigate the associations between blood Cd levels and these age accelerations, adjusting for potential confounding factors. Results Higher blood Cd levels (≥0.5 μg/dl) were significantly associated with increased age acceleration for PhenoAge (β = 1.37, P = 0.017) and GrimAge (β = 1.31, P = 0.003) in adjusted models. A significant association was also observed for HannumAge (β = 0.94, P = 0.016), although this association was not significant for continuous Cd levels (P = 0.111). No significant associations were found for HorvathAge. Subgroup analyses indicated consistent associations across demographic and lifestyle subgroups, with no significant interactions. Conclusions In this study, after adjusting for confounders, blood Cd levels were positively associated with PhenoAge acceleration and GrimAge acceleration in people over 50 in the United States. These results may be useful in proposing interventions in environmental exposures to slow the aging process and prevent age-related diseases.
Collapse
Affiliation(s)
- Panpan Mi
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xu Cao
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Haixia Feng
- Department of Tuberculosis, Shandong Public Health Clinical Center, Jinan, Shandong, China
| | - Huijie Wang
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Michel M, Heidary M, Mechri A, Da Silva K, Gorse M, Dixon V, von Grafenstein K, Bianchi C, Hego C, Rampanou A, Lamy C, Kamal M, Le Tourneau C, Séné M, Bièche I, Reyes C, Gentien D, Stern MH, Lantz O, Cabel L, Pierga JY, Bidard FC, Azencott CA, Proudhon C. Noninvasive Multicancer Detection Using DNA Hypomethylation of LINE-1 Retrotransposons. Clin Cancer Res 2025; 31:1275-1291. [PMID: 39620930 PMCID: PMC11959274 DOI: 10.1158/1078-0432.ccr-24-2669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 04/02/2025]
Abstract
PURPOSE The detection of ctDNA, which allows noninvasive tumor molecular profiling and disease follow-up, promises optimal and individualized management of patients with cancer. However, detecting small fractions of tumor DNA released when the tumor burden is reduced remains a challenge. EXPERIMENTAL DESIGN We implemented a new, highly sensitive strategy to detect bp resolution methylation patterns from plasma DNA and assessed the potential of hypomethylation of long interspersed nuclear element-1 retrotransposons as a noninvasive multicancer detection biomarker. The Detection of Long Interspersed Nuclear Element Altered Methylation ON plasma DNA method targets 30 to 40,000 young long interspersed nuclear element-1 retrotransposons scattered throughout the genome, covering about 100,000 CpG sites and is based on a reference-free analysis pipeline. RESULTS Resulting machine learning-based classifiers showed powerful correct classification rates discriminating healthy and tumor plasmas from six types of cancers (colorectal, breast, lung, ovarian, and gastric cancers and uveal melanoma, including localized stages) in two independent cohorts (AUC = 88%-100%, N = 747). The Detection of Long Interspersed Nuclear Element Altered Methylation ON plasma DNA method can also be used to perform copy number alteration analysis that improves cancer detection. CONCLUSIONS This should lead to the development of more efficient noninvasive diagnostic tests adapted to all patients with cancer, based on the universality of these factors. See related commentary by Szymanski et al., p. 1179.
Collapse
Affiliation(s)
- Marc Michel
- Inserm U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
- CBIO-Center for Computational Biology, Mines Paris, PSL Research University, Paris, France
- INSERM U900, Institut Curie, PSL Research University, Paris, France
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Maryam Heidary
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Anissa Mechri
- Inserm U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Kévin Da Silva
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Marine Gorse
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Victoria Dixon
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Klaus von Grafenstein
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Caroline Hego
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Aurore Rampanou
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Constance Lamy
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | | - Mathieu Séné
- Pharmacogenomics Unit, Genetics Department, Institut Curie, Paris, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Genetics Department, Institut Curie, Paris, France
| | - Cécile Reyes
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, PSL Research University, Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Inserm U830, Institut Curie, PSL Research University, Paris, France
| | - Olivier Lantz
- Inserm U932, Institut Curie, PSL Research University, Paris, France
- Laboratory of Clinical Immunology, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Jean-Yves Pierga
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France
- Université Paris Cité, Paris, France
| | - François-Clément Bidard
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France
- UVSQ, Université Paris-Saclay, Saint Cloud, France
| | - Chloé-Agathe Azencott
- CBIO-Center for Computational Biology, Mines Paris, PSL Research University, Paris, France
- INSERM U900, Institut Curie, PSL Research University, Paris, France
| | - Charlotte Proudhon
- Inserm U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
5
|
Izquierdo AG, Lorenzo PM, Costa-Fraga N, Primo-Martin D, Rodriguez-Carnero G, Nicoletti CF, Martínez JA, Casanueva FF, de Luis D, Diaz-Lagares A, Crujeiras AB. Epigenetic Aging Acceleration in Obesity Is Slowed Down by Nutritional Ketosis Following Very Low-Calorie Ketogenic Diet (VLCKD): A New Perspective to Reverse Biological Age. Nutrients 2025; 17:1060. [PMID: 40292468 PMCID: PMC11945372 DOI: 10.3390/nu17061060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Epigenetic clocks have emerged as a tool to quantify biological age, providing a more accurate estimate of an individual's health status than chronological age, helping to identify risk factors for accelerated aging and evaluating the reversibility of therapeutic strategies. This study aimed to evaluate the potential association between epigenetic acceleration of biological age and obesity, as well as to determine whether nutritional interventions for body weight loss could slow down this acceleration. Methods: Biological age was estimated using three epigenetic clocks (Horvath (Hv), Hannum (Hn), and Levine (Lv)) based on the leukocyte methylome analysis of individuals with normal weight (n = 20), obesity (n = 24), and patients with obesity following a VLCKD (n = 10). We analyzed differences in biological age estimates, the relationship between age acceleration and obesity, and the impact of VLCKD. Correlations were assessed between age acceleration, BMI, and various metabolic parameters. Results: Analysis of the epigenetic clocks revealed an acceleration of biological age in individuals with obesity (Hv = +3.4(2.5), Hn = +5.7(3.2), Lv = +3.9(2.7)) compared to a slight deceleration in individuals with normal weight. This epigenetic acceleration correlated with BMI (p < 0.0001). Interestingly, patients with obesity following a VLCKD showed a deceleration in estimated biological age, both in nutritional ketosis (Hv = -3.3(4.0), Hn = -6.3(5.3), Lv = -8.8(4.5)) and at endpoint (Hv = -1.1(4.3), Hn = -7.4(5.6), Lv = -8.2(5.3)). Relevantly, this slowdown in age is associated with BMI (p < 0.0001), ketonemia (p ≤ 0.001), and metabolic parameters (p < 0.05). Conclusions: Our findings highlight the applicability of epigenetic clocks to monitor obesity-related biological aging in precision medicine and show the potential efficacy of the VLCKD in slowing obesity-related epigenetic aging.
Collapse
Affiliation(s)
- Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (P.M.L.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| | - Paula M. Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (P.M.L.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Universidad de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (N.C.-F.); (A.D.-L.)
- CIBER de Cancer (CIBERonc), 28029 Madrid, Spain
| | - David Primo-Martin
- Center of Investigation of Endocrinology and Nutrition, Department of Endocrinology and Investigation, Medicine School, Hospital Clinico Universitario, University of Valladolid, 47011 Valladolid, Spain; (D.P.-M.); (D.d.L.)
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (P.M.L.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| | - Carolina F. Nicoletti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - J. Alfredo Martínez
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madríd, Spain; (J.A.M.)
- Centre of Medicine and Endocrinology, University of Valladolid, 47002 Valladolid, Spain
| | - Felipe F. Casanueva
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (P.M.L.); (G.R.-C.); (F.F.C.)
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Department of Endocrinology and Investigation, Medicine School, Hospital Clinico Universitario, University of Valladolid, 47011 Valladolid, Spain; (D.P.-M.); (D.d.L.)
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Universidad de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (N.C.-F.); (A.D.-L.)
- CIBER de Cancer (CIBERonc), 28029 Madrid, Spain
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (P.M.L.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| |
Collapse
|
6
|
Ma W, Wang W, Zhao L, Fan J, Liu L, Huang L, Peng B, Wang J, Xu B, Liu H, Wu D, Zheng Z. Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain. Bone Res 2025; 13:35. [PMID: 40075068 PMCID: PMC11903667 DOI: 10.1038/s41413-025-00416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Aging is a pivotal risk factor for intervertebral disc degeneration (IVDD) and chronic low back pain (LBP). The restoration of aging nucleus pulposus cells (NPCs) to a youthful epigenetic state is crucial for IVDD treatment, but remains a formidable challenge. Here, we proposed a strategy to partially reprogram and reinstate youthful epigenetics of senescent NPCs by delivering a plasmid carrier that expressed pluripotency-associated genes (Oct4, Klf4 and Sox2) in Cavin2-modified exosomes (OKS@M-Exo) for treatment of IVDD and alleviating LBP. The functional OKS@M-Exo efficaciously alleviated senescence markers (p16INK4a, p21CIP1 and p53), reduced DNA damage and H4K20me3 expression, as well as restored proliferation ability and metabolic balance in senescent NPCs, as validated through in vitro experiments. In a rat model of IVDD, OKS@M-Exo maintained intervertebral disc height, nucleus pulposus hydration and tissue structure, effectively ameliorated IVDD via decreasing the senescence markers. Additionally, OKS@M-Exo reduced nociceptive behavior and downregulated nociception markers, indicating its efficiency in alleviating LBP. The transcriptome sequencing analysis also demonstrated that OKS@M-Exo could decrease the expression of age-related pathways and restore cell proliferation. Collectively, reprogramming by the OKS@M-Exo to restore youthful epigenetics of senescent NPCs may hold promise as a therapeutic platform to treat IVDD.
Collapse
Affiliation(s)
- Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baogan Peng
- Department of Orthopedics, The Third Medical Centre of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baoshan Xu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 30021l, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Dermitzakis I, Kyriakoudi SA, Chatzianagnosti S, Chatzi D, Vakirlis E, Meditskou S, Manthou ME, Theotokis P. Epigenetics in Skin Homeostasis and Ageing. EPIGENOMES 2025; 9:3. [PMID: 39846570 PMCID: PMC11755608 DOI: 10.3390/epigenomes9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence. The dynamic nature of the skin, characterized by constant cellular turnover and responsiveness to environmental stimuli, requires precise gene activity control. This control is largely mediated by epigenetic modifications such as DNA methylation, histone modification, and regulation by non-coding RNAs. The present review endeavours to provide a comprehensive exploration and elucidation of the role of epigenetic mechanisms in regulating skin homeostasis and ageing. By integrating our current knowledge of epigenetic modifications with the latest advancements in dermatological research, we can gain a deeper comprehension of the complex regulatory networks that govern skin biology. Understanding these mechanisms also presents promising avenues for therapeutic interventions aimed at improving skin health and mitigating age-related skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Sofia Chatzianagnosti
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece;
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| |
Collapse
|
9
|
Kim S, Halvorsen C, Potter C, Faul J. Does volunteering reduce epigenetic age acceleration among retired and working older adults? Results from the Health and Retirement Study. Soc Sci Med 2025; 364:117501. [PMID: 39579436 PMCID: PMC11720946 DOI: 10.1016/j.socscimed.2024.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES The current study aims to explore the relationship between the frequency of volunteering and biological aging, as measured by epigenetic age acceleration. It also investigates whether this relationship differs between retired and working older adults. Understanding this connection could inform interventions promoting healthy aging and reducing age-related chronic health conditions. METHOD Data were derived from the Health and Retirement Study (HRS), including pre-treatment covariates (2012), volunteer frequency and work status (2014), and five DNA methylation measures (2016) (N = 2,605). Generalized linear models were estimated to examine the relationship between volunteering and epigenetic age acceleration, stratified by retirement status. The analyses adjusted for relevant covariates and utilized energy balancing weights to account for selection into volunteering. RESULTS Findings show that volunteering, especially for 1-49 h per year and 200+ hours per year, was linked to less epigenetic age acceleration, with significant effects on DNA methylation measures PhenoAge, GrimAge, and DunedinPACE clocks. Among retired individuals, moderate volunteering was significantly associated with decelerated epigenetic age acceleration, indicating greater benefits for retirees compared to working individuals. CONCLUSIONS The study found that frequent volunteering may lead to decelerated epigenetic aging, potentially offering a public health intervention to enhance health and quality of life among older adults. Further research is needed to confirm these findings and to understand how volunteering might differentially impact retired and working individuals. Such insights could guide the development of targeted strategies to promote healthy aging and address age-related health disparities.
Collapse
Affiliation(s)
- Seoyoun Kim
- Department of Sociology, Texas State University, USA; Institute for Social Research, University of Michigan, USA.
| | - Cal Halvorsen
- Brown School of Social Work, Washington University St. Louis, USA
| | - Claire Potter
- Irish Clinical Academic Training (ICAT), Queen's University Belfast, UK
| | - Jessica Faul
- Institute for Social Research, University of Michigan, USA
| |
Collapse
|
10
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
11
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
12
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
14
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Zhao S, Dai Q, Rao Z, Li J, Wang A, Gao Z, Fan Y. Identification of Optic Nerve-Related Biomarkers in Primary Open-Angle Glaucoma Based on Comprehensive Bioinformatics and Mendelian Randomization. Transl Vis Sci Technol 2024; 13:21. [PMID: 39133496 PMCID: PMC11323985 DOI: 10.1167/tvst.13.8.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Glaucoma is the primary cause of permanent vision loss worldwide. However, the pathogenesis of primary open-angle glaucoma (POAG), the main type of glaucoma, has not yet been completely understood. Methods In our study, the POAG cohorts were obtained from the Gene Expression Omnibus (GEO) database (GSE45570). Biomarkers with diagnostic utility for POAG were identified through combining differentially expressed analysis, enrichment analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. The regulatory networks (including a competing endogenous RNA (ceRNA) regulatory network and a small molecule compounds-mRNA network) were created. In addition, the Mendelian randomization (MR) analysis was used to identify exposures causally associated with POAG. Finally, the expression of the biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). Results The Gene Ontology (GO) items that the differentially expressed genes (DEGs) between POAG and control groups enriched were relevant to light stimulation and DNA methylation. A total of three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) were identified, which had diagnostic value for POAG patients. Besides, the ceRNA regulatory network contained 88 nodes and 93 edges, and a small molecule compounds-mRNA network included 66 nodes and 76 edges. The MR results indicated a causal association between DNA methylation GrimAge acceleration and POAG. Additionally, the results of RT-qPCR revealed that the expression trend of RAB8A was consistent with that of GSE45570. Conclusions Taken together, this study provides three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) for the diagnosis of POAG, providing scientifically valuable insights for further studies of POAG. Translational Relevance Discovering biomarkers that possess diagnostic significance for POAG has the potential to offer new insights into the pathogenesis of POAG and present novel objectives for clinical intervention.
Collapse
Affiliation(s)
- Sijie Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Qing Dai
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zixuan Rao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Bengbu Medical University, Bengbu, Anhui, China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aiqin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ziqing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yuchen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
18
|
Shim HS, Iaconelli J, Shang X, Li J, Lan ZD, Jiang S, Nutsch K, Beyer BA, Lairson LL, Boutin AT, Bollong MJ, Schultz PG, DePinho RA. TERT activation targets DNA methylation and multiple aging hallmarks. Cell 2024; 187:4030-4042.e13. [PMID: 38908367 PMCID: PMC11552617 DOI: 10.1016/j.cell.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/24/2024]
Abstract
Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.
Collapse
Affiliation(s)
- Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng D Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam T Boutin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Laubach ZM, Bozack A, Aris IM, Slopen N, Tiemeier H, Hivert MF, Cardenas A, Perng W. Maternal prenatal social experiences and offspring epigenetic age acceleration from birth to mid-childhood. Ann Epidemiol 2024; 90:28-34. [PMID: 37839726 PMCID: PMC10842218 DOI: 10.1016/j.annepidem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Investigate associations of maternal social experiences with offspring epigenetic age acceleration (EAA) from birth through mid-childhood among 205 mother-offspring dyads of minoritized racial and ethnic groups. METHODS We used linear regression to examine associations of maternal experiences of racial bias or discrimination (0 = none, 1-2 = intermediate, or 3+ = high), social support (tertile 1 = low, 2 = intermediate, 3 = high), and socioeconomic status index (tertile 1 = low, 2 = intermediate, 3 = high) during the prenatal period with offspring EAA according to Horvath's Pan-Tissue, Horvath's Skin and Blood, and Intrinsic EAA clocks at birth, 3 years, and 7 years. RESULTS In comparison to children of women who did not experience any racial bias or discrimination, those whose mothers reported highest levels of racial bias or discrimination had lower Pan-Tissue clock EAA in early (-0.50 years; 90% CI: -0.91, -0.09) and mid-childhood (-0.75 years; -1.41, -0.08). We observed similar associations for the Skin and Blood clock and Intrinsic EAA. Maternal experiences of discrimination were not associated with Pan-Tissue EAA at birth. Neither maternal social support nor socioeconomic status predicted offspring EAA. CONCLUSIONS Children whose mothers experienced higher racial bias or discrimination exhibited slower EAA. Future studies are warranted to confirm these findings and establish associations of early-life EAA with long-term health outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EBIO), University of Colorado Boulder
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA; Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD Center), Department of Epidemiology, Colorado School of Public Health, Aurora, CO.
| |
Collapse
|
21
|
Lozupone M, Solfrizzi V, Sardone R, Dibello V, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Panza F. The epigenetics of frailty. Epigenomics 2024; 16:189-202. [PMID: 38112012 DOI: 10.2217/epi-2023-0279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The conceptual change of frailty, from a physical to a biopsychosocial phenotype, expanded the field of frailty, including social and behavioral domains with critical interaction between different frailty models. Environmental exposures - including physical exercise, psychosocial factors and diet - may play a role in the frailty pathophysiology. Complex underlying mechanisms involve the progressive interactions of genetics with epigenetics and of multimorbidity with environmental factors. Here we review the literature on possible mechanisms explaining the association between epigenetic hallmarks (i.e., global DNA methylation, DNA methylation age acceleration and microRNAs) and frailty, considered as biomarkers of aging. Frailty could be considered the result of environmental epigenetic factors on biological aging, caused by conflicting DNA methylation age and chronological age.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Vittorio Dibello
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fabio Castellana
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Francesco Panza
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
Gopu V, Camacho FR, Toma R, Torres PJ, Cai Y, Krishnan S, Rajagopal S, Tily H, Vuyisich M, Banavar G. An accurate aging clock developed from large-scale gut microbiome and human gene expression data. iScience 2024; 27:108538. [PMID: 38230258 PMCID: PMC10790003 DOI: 10.1016/j.isci.2023.108538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/18/2021] [Accepted: 11/20/2023] [Indexed: 01/18/2024] Open
Abstract
Accurate measurement of the biological markers of the aging process could provide an "aging clock" measuring predicted longevity and enable the quantification of the effects of specific lifestyle choices on healthy aging. Using machine learning techniques, we demonstrate that chronological age can be predicted accurately from (1) the expression level of human genes in capillary blood and (2) the expression level of microbial genes in stool samples. The latter uses a very large metatranscriptomic dataset, stool samples from 90,303 individuals, which arguably results in a higher quality microbiome-aging model than prior work. Our analysis suggests associations between biological age and lifestyle/health factors, e.g., people on a paleo diet or with IBS tend to have higher model-predicted ages and people on a vegetarian diet tend to have lower model-predicted ages. We delineate the key pathways of systems-level biological decline based on the age-specific features of our model.
Collapse
Affiliation(s)
- Vishakh Gopu
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | | | - Ryan Toma
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | - Pedro J. Torres
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | - Ying Cai
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | - Subha Krishnan
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | | | - Hal Tily
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | - Momchilo Vuyisich
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| | - Guruduth Banavar
- Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA
| |
Collapse
|
23
|
Rong Y, Liu SH, Tang MZ, Wu ZH, Ma GR, Li XF, Cai H. Analysis of the potential biological value of pyruvate dehydrogenase E1 subunit β in human cancer. World J Gastrointest Oncol 2024; 16:144-181. [PMID: 38292838 PMCID: PMC10824119 DOI: 10.4251/wjgo.v16.i1.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The pyruvate dehydrogenase E1 subunit β (PDHB) gene which regulates energy metabolism is located in mitochondria. However, few studies have elucidated the role and mechanism of PDHB in different cancers. AIM To comprehensive pan-cancer analysis of PDHB was performed based on bioinformatics approaches to explore its tumor diagnostic and prognostic value and tumor immune relevance in cancer. In vitro experiments were performed to examine the biological regulation of PDHB in liver cancer. METHODS Pan-cancer data related to PDHB were obtained from the Cancer Genome Atlas (TCGA) database. Analysis of the gene expression profiles of PDHB was based on TCGA and Genotype Tissue Expression Dataset databases. Cox regression analysis and Kaplan-Meier methods were used to assess the correlation between PDHB expression and survival prognosis in cancer patients. The correlation between PDHB and receiver operating characteristic diagnostic curve, clinicopathological staging, somatic mutation, tumor mutation burden (TMB), microsatellite instability (MSI), DNA methylation, and drug susceptibility in pan-cancer was also analyzed. Various algorithms were used to analyze the correlation between PDHB and immune cell infiltration and tumor chemotaxis environment, as well as the co-expression analysis of PDHB and immune checkpoint (ICP) genes. The expression and functional phenotype of PDHB in single tumor cells were studied by single-cell sequencing, and the functional enrichment analysis of PDHB-related genes was performed. The study also validated the level of mRNA or protein expression of PDHB in several cancers. Finally, in vitro experiments verified the regulatory effect of PDHB on the proliferation, migration, and invasion of liver cancer. RESULTS PDHB was significantly and differently expressed in most cancers. PDHB was significantly associated with prognosis in patients with a wide range of cancers, including kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, breast invasive carcinoma, and brain lower grade glioma. In some cancers, PDHB expression was clearly associated with gene mutations, clinicopathological stages, and expression of TMB, MSI, and ICP genes. The expression of PDHB was closely related to the infiltration of multiple immune cells in the immune microenvironment and the regulation of tumor chemotaxis environment. In addition, single-cell sequencing results showed that PDHB correlated with different biological phenotypes of multiple cancer single cells. This study further demonstrated that down-regulation of PDHB expression inhibited the proliferation, migration, and invasion functions of hepatoma cells. CONCLUSION As a member of pan-cancer, PDHB may be a novel cancer marker with potential value in diagnosing cancer, predicting prognosis, and in targeted therapy.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Zhi-Hang Wu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Guo-Rong Ma
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
24
|
Prosz A, Pipek O, Börcsök J, Palla G, Szallasi Z, Spisak S, Csabai I. Biologically informed deep learning for explainable epigenetic clocks. Sci Rep 2024; 14:1306. [PMID: 38225268 PMCID: PMC10789766 DOI: 10.1038/s41598-023-50495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Ageing is often characterised by progressive accumulation of damage, and it is one of the most important risk factors for chronic disease development. Epigenetic mechanisms including DNA methylation could functionally contribute to organismal aging, however the key functions and biological processes may govern ageing are still not understood. Although age predictors called epigenetic clocks can accurately estimate the biological age of an individual based on cellular DNA methylation, their models have limited ability to explain the prediction algorithm behind and underlying key biological processes controlling ageing. Here we present XAI-AGE, a biologically informed, explainable deep neural network model for accurate biological age prediction across multiple tissue types. We show that XAI-AGE outperforms the first-generation age predictors and achieves similar results to deep learning-based models, while opening up the possibility to infer biologically meaningful insights of the activity of pathways and other abstract biological processes directly from the model.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gergely Palla
- Department of Biological Physics, ELTE Eötvös Loránd University, Budapest, Hungary
- Health Services Management Training Centre, Semmelweis University, Budapest, Hungary
| | | | - Sandor Spisak
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
25
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
26
|
Abudahab S, Slattum PW, Price ET, McClay JL. Epigenetic regulation of drug metabolism in aging: utilizing epigenetics to optimize geriatric pharmacotherapy. Pharmacogenomics 2024; 25:41-54. [PMID: 38126340 PMCID: PMC10794944 DOI: 10.2217/pgs-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
We explore the relationship between epigenetic aging and drug metabolism. We review current evidence for changes in drug metabolism in normal aging, followed by a description of how epigenetic modifications associated with age can regulate the expression and functionality of genes. In particular, we focus on the role of epigenome-wide studies of human and mouse liver in understanding these age-related processes with respect to xenobiotic processing. We highlight genes encoding drug metabolizing enzymes and transporters revealed to be affected by epigenetic aging in these studies. We conclude that substantial evidence exists for epigenetic aging impacting drug metabolism and transport genes, but more work is needed. We further highlight the promise of pharmacoepigenetics applied to enhancing drug safety in older adults.
Collapse
Affiliation(s)
- Sara Abudahab
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Center on Aging, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T Price
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
28
|
Poser M, Sing KEA, Ebert T, Ziebolz D, Schmalz G. The rosetta stone of successful ageing: does oral health have a role? Biogerontology 2023; 24:867-888. [PMID: 37421489 PMCID: PMC10615965 DOI: 10.1007/s10522-023-10047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Ageing is an inevitable aspect of life and thus successful ageing is an important focus of recent scientific efforts. The biological process of ageing is mediated through the interaction of genes with environmental factors, increasing the body's susceptibility to insults. Elucidating this process will increase our ability to prevent and treat age-related disease and consequently extend life expectancy. Notably, centenarians offer a unique perspective on the phenomenon of ageing. Current research highlights several age-associated alterations on the genetic, epigenetic and proteomic level. Consequently, nutrient sensing and mitochondrial function are altered, resulting in inflammation and exhaustion of regenerative ability.Oral health, an important contributor to overall health, remains underexplored in the context of extreme longevity. Good masticatory function ensures sufficient nutrient uptake, reducing morbidity and mortality in old age. The relationship between periodontal disease and systemic inflammatory pathologies is well established. Diabetes, rheumatoid arthritis and cardiovascular disease are among the most significant disease burdens influenced by inflammatory oral health conditions. Evidence suggests that the interaction is bi-directional, impacting progression, severity and mortality. Current models of ageing and longevity neglect an important factor in overall health and well-being, a gap that this review intends to illustrate and inspire avenues for future research.
Collapse
Affiliation(s)
- Maximilian Poser
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
| | - Katie E A Sing
- Department of Medicine, Royal Devon and Exeter Hospital, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| |
Collapse
|
29
|
He X, Hu W, Zhang Y, Chen M, Ding Y, Yang H, He F, Gu Q, Shi Q. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett 2023; 28:88. [PMID: 37891477 PMCID: PMC10612178 DOI: 10.1186/s11658-023-00501-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.
Collapse
Affiliation(s)
- Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Wei Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China
| | - Mimi Chen
- Department of Orthopedics, Children Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yicheng Ding
- Xuzhou Medical University, 209 Copper Mountain Road, Xuzhou, 221004, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China.
| |
Collapse
|
30
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
31
|
Shayota BJ. Downstream Assays for Variant Resolution: Epigenetics, RNA Sequnncing, and Metabolomics. Pediatr Clin North Am 2023; 70:929-936. [PMID: 37704351 DOI: 10.1016/j.pcl.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
As the availability of advanced molecular testing like whole exome and genome sequencing expands, it comes with the added complication of interpreting inconclusive results, including determining the relevance of variants of uncertain significance or failing to find a variant in an otherwise suspected specific genetic disorder. This complication necessitates the use of alternative testing methods to gather more information in support of, or against, a particular genetic diagnosis. Therefore, new genome-wide approaches, including DNA epigenetic testing, RNA sequencing, and metabolomics, are increasingly being used to increase the diagnostic yield when used in conjunction with more conventional genetic tests.
Collapse
Affiliation(s)
- Brian J Shayota
- University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT, USA.
| |
Collapse
|
32
|
Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet Insights 2023; 16:25168657231199893. [PMID: 37720354 PMCID: PMC10504848 DOI: 10.1177/25168657231199893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background Alterations in DNA methylation play an important role in cancer development and progression. Dietary nutrients and lifestyle behaviors can influence DNA methylation patterns and thereby modulate cancer risk. Introduction To comprehensively review available evidence on how dietary and lifestyle factors impact DNA methylation and contribute to carcinogenesis through epigenetic mechanisms. Materials and methods A literature search was conducted using PubMed to identify relevant studies published between 2005 and 2022 that examined relationships between dietary/lifestyle factors and DNA methylation in cancer. Studies investigating the effects of dietary components (eg, micronutrients, phytochemicals), physical activity, smoking, and obesity on global and gene-specific DNA methylation changes in animal and human cancer models were included. Data on specific dietary/lifestyle exposures, cancer types, DNA methylation targets and underlying mechanisms were extracted. Results Multiple dietary and lifestyle factors were found to influence DNA methylation patterns through effects on DNA methyltransferase activity, methyl donor availability, and generation of oxidative stress. Altered methylation of specific genes regulating cell proliferation, apoptosis, and inflammation were linked to cancer development and progression. Conclusion Dietary and lifestyle interventions aimed at modulating DNA methylation have potential for both cancer prevention and treatment through epigenetic mechanisms. Further research is needed to identify actionable targets for nutrition and lifestyle-based epigenetic therapies.
Collapse
Affiliation(s)
- Mohsen Maleknia
- Noorgene Genetic & Clinical Laboratory, Molecular Research Center, Ahvaz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasmina Katebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Jones JD, Martinez S, Gonzalez I, Odom GJ, Comer SD. No evidence of accelerated epigenetic aging among black heroin users: A case vs control analysis. ADDICTION NEUROSCIENCE 2023; 7:100096. [PMID: 37388854 PMCID: PMC10305791 DOI: 10.1016/j.addicn.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study sought to assess the association between illicit opioid use and accelerated epigenetic aging (A.K.A. DNAm Age) among people of African ancestry who use heroin. DNA was obtained from participants with opioid use disorder (OUD) who confirmed heroin as their primary drug of choice. Clinical inventories of drug use included: the Addiction Severity Index (ASI) Drug-Composite Score (range: 0-1), and Drug Abuse Screening Test (DAST-10; range: 0-10). A control group of participants of African ancestry who did not use heroin was recruited and matched to heroin users on sex, age, socioeconomic level, and smoking status. Methylation data were assessed in an epigenetic clock to determined and compare Epigenetic Age to Chronological Age (i.e., age acceleration or deceleration). Data were obtained from 32 controls [mean age 36.3 (±7.5) years] and 64 heroin users [mean age 48.1 (±6.6) years]. The experimental group used heroin for an average of 18.1 (±10.6) years, reported use of 6.4 (±6.1) bags of heroin/day, with a mean DAST-10 score of 7.0 (±2.6) and ASI Score of 0.33 (±0.19). Mean age acceleration for heroin users [+0.56 (± 9.5) years] was significantly (p< 0.05) lower than controls [+5.19 (± 9.1) years]. This study did not find evidence that heroin use causes epigenetic age acceleration.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ingrid Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Sandra D. Comer
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
34
|
Shen X, Gao X, Luo Y, Xu Q, Fan Y, Hong S, Huang Z, Liu X, Wang Q, Chen Z, Wang D, Lu L, Wu C, Liang H, Wang L. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. NATURE AGING 2023; 3:965-981. [PMID: 37429951 DOI: 10.1038/s43587-023-00453-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Laboratory Animal Center, Zhejiang University, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| |
Collapse
|
35
|
Blechter B, Cardenas A, Shi J, Wong JYY, Hu W, Rahman ML, Breeze C, Downward GS, Portengen L, Zhang Y, Ning B, Ji BT, Cawthon R, Li J, Yang K, Bozack A, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Household air pollution and epigenetic aging in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 178:108041. [PMID: 37354880 PMCID: PMC11812304 DOI: 10.1016/j.envint.2023.108041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA methylation-based biomarker of aging, has been shown to be highly correlated with biological processes underlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and EAA. METHODS We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constituents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks defined as the residuals resulting from regressing each clock on chronological age. We used generalized estimating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, while accounting for repeated-measurements and confounders. RESULTS We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) exposure, respectively. 5-MC (ng/m3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure. CONCLUSIONS Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, is associated with GrimAge EAA, a biomarker of mortality.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Junming Shi
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
36
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
37
|
Kim HS, Jang S, Kim J. Genome-Wide Integrative Transcriptional Profiling Identifies Age-Associated Signatures in Dogs. Genes (Basel) 2023; 14:1131. [PMID: 37372311 DOI: 10.3390/genes14061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mammals experience similar stages of embryonic development, birth, infancy, youth, adolescence, maturity, and senescence. While embryonic developmental processes have been extensively researched, many molecular mechanisms regulating the different life stages after birth, such as aging, remain unresolved. We investigated the conserved and global molecular transitions in transcriptional remodeling with age in dogs of 15 breeds, which revealed that genes underlying hormone level regulation and developmental programs were differentially regulated during aging. Subsequently, we show that the candidate genes associated with tumorigenesis also exhibit age-dependent DNA methylation patterns, which might have contributed to the tumor state through inhibiting the plasticity of cell differentiation processes during aging, and ultimately suggesting the molecular events that link the processes of aging and cancer. These results highlight that the rate of age-related transcriptional remodeling is influenced not only by the lifespan, but also by the timing of critical physiological milestones.
Collapse
Affiliation(s)
- Hyun Seung Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
38
|
Adeodato CSR, Soares-Lima SC, Batista PV, Fagundes MCN, Camuzi D, Tavares SJO, Pinto LFR, Scelza MFZ. Interleukin 6 and Interleukin 1β hypomethylation and overexpression are common features of apical periodontitis: a case-control study with gingival tissue as control. Arch Oral Biol 2023; 150:105694. [PMID: 37043986 DOI: 10.1016/j.archoralbio.2023.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVES Apical periodontitis is a periradicular tissue disorder that usually arises from infection by microorganisms in the root canal system resulting in local bone resorption. This usually involves the dysregulation of inflammatory mediators, which can be mediated by epigenetic mechanisms. Thus, the objective of this study was to evaluate Interleukin 6 (IL6) and Interleukin 1β (IL1β) and DNA methylation and gene expression levels in apical periodontitis. METHODS Gene expression was analyzed in 60 participants using quantitative polymerase chain reaction, while the methylation levels of IL6 and IL1β promoters were analyzed in 72 patients using pyrosequencing. All statistical analyzes were performed using the GraphPad Prism software version 8.0. The p value was considered statistically significant when < 0.05. RESULTS A significantly higher IL6 and IL1β expression levels were observed in cases relative to controls (fold-changes of 27.4 and 11.43, respectively, and p < 0.0001). By comparing the same groups, lower promoter methylation levels were observed for both genes in cases (methylation percentage delta relative to controls of -24.57% and -16.02%, respectively, and p < 0.0001). A significant inverse correlation between gene expression and promoter methylation was observed for both IL6 (p = 0.0002) and IL1β (p = 0.001). Neither IL6 expression nor promoter methylation were significantly associated with cases' age, smoking history, alcohol consumption history or sex. For IL1β, alcoholic cases showed lower methylation level relative to non-alcoholic cases (p = 0.01), while females showed higher methylation levels relative to males (p = 0.03). CONCLUSIONS Our data suggest a role for DNA methylation in IL6 and IL1β upregulation in apical periodontitis.
Collapse
Affiliation(s)
- Caroline Sousa Ribeiro Adeodato
- Post-graduation Program in Dentistry of Fluminense Federal University (UFF), Mario Santos Braga Street, no 28, 24020-140 Niteroi, RJ, Brazil
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program of National Cancer Institute (INCA), André Cavalcante Street, no 37, 20231-050 Rio de Janeiro, Brazil
| | - Paula Vieira Batista
- Molecular Carcinogenesis Program of National Cancer Institute (INCA), André Cavalcante Street, no 37, 20231-050 Rio de Janeiro, Brazil
| | - Marina Chianello Nicolau Fagundes
- Molecular Carcinogenesis Program of National Cancer Institute (INCA), André Cavalcante Street, no 37, 20231-050 Rio de Janeiro, Brazil
| | - Diego Camuzi
- Molecular Carcinogenesis Program of National Cancer Institute (INCA), André Cavalcante Street, no 37, 20231-050 Rio de Janeiro, Brazil
| | - Sandro Junio Oliveira Tavares
- Post-graduation Program in Dentistry of Fluminense Federal University (UFF), Mario Santos Braga Street, no 28, 24020-140 Niteroi, RJ, Brazil
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program of National Cancer Institute (INCA), André Cavalcante Street, no 37, 20231-050 Rio de Janeiro, Brazil; Biochemistry Department, Biology Institute, State University of Rio de Janeiro, Boulevard 28 de Setembro, 87 - Vila Isabel, 20511-010 Rio de Janeiro, Brazil
| | - Miriam Fatima Zaccaro Scelza
- Endodontics Department, Faculty of Dentistry, Fluminense Federal University (UFF), Mario Santos Braga Street, no 28, 24020-140 Niteroi, RJ, Brazil.
| |
Collapse
|
39
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
40
|
Li S, Liu Z, Zhang J, Li L. Links between telomere dysfunction and hallmarks of aging. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503617. [PMID: 37188431 DOI: 10.1016/j.mrgentox.2023.503617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Aging is characterized by the gradual loss of physiological integrity, leading to impaired function and increased risk of death. This deterioration is the main risk factor for the great majority of chronic diseases, which account for most of the morbidity, death and medical expenses. The hallmarks of aging comprise diverse molecular mechanisms and cell systems, which are interrelated and coordinated to drive the aging process. This review focuses on telomere to analyze the interrelationships between telomere dysfunction and other aging hallmarks and their relative contributions to the initiation and progression of age-related diseases (such as neurodegeneration, cardiovascular disease, and cancer), which will contribute to determine drug targets, improve human health in the aging process with minimal side effects and provide information for the prevention and treatment of age-related diseases.
Collapse
|
41
|
Hao SW, Li TR, Han C, Han Y, Cai YN. Associations Between Levels of Peripheral NCAPH2 Promoter Methylation and Different Stages of Alzheimer's Disease: A Cross-Sectional Study. J Alzheimers Dis 2023; 92:899-909. [PMID: 36806511 DOI: 10.3233/jad-221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Several studies have examined NCAPH2 methylation in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), but little is known of NCAPH2 methylation in subjective cognitive decline (SCD). OBJECTIVE To examine whether methylation of peripheral NCAPH2 are differentially changed at various phases of AD, and whether it could serve as a diagnostic biomarker for SCD. METHODS A total of 40 AD patients, 52 aMCI patients, 148 SCD patients, and 193 cognitively normal controls (NCs) were recruited in the current case-control study. Besides, 54 cognitively normal individuals have received amyloid positron emission tomography (amyloid PET) scans. Using bisulfite pyrosequencing method, we measured blood DNA methylation in the NCAPH2 gene promoter. RESULTS The main outcomes were: 1) For SCD, there was no significant difference between SCD and NC regarding NCAPH2 methylation; 2) For aMCI, NCAPH2 methylation at CpG2 were significantly lower in aMCI compared with NC and SCD in the entire population and male subgroup; 3) For AD, NCAPH2 methylation at CpG1 were significantly lower in AD compared with NC among females; 4) A relationship with apolipoprotein E (APOE) ɛ4 status was shown. Receiver operating characteristic (ROC) analysis by combining NCAPH2 methylation, age, education, and APOEɛ4 status could distinguish between patients with aMCI (area under the curve (AUC): 0.742) and AD (AUC: 0.873) from NCs. CONCLUSION NCAPH2 methylation levels were altered at the aMCI and AD stage and may be convenient and cost-effective biomarkers of AD and aMCI.
Collapse
Affiliation(s)
- Shu-Wen Hao
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Tao-Ran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Decoupling of mRNA and Protein Expression in Aging Brains Reveals the Age-Dependent Adaptation of Specific Gene Subsets. Cells 2023; 12:cells12040615. [PMID: 36831282 PMCID: PMC9954025 DOI: 10.3390/cells12040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
During aging, changes in gene expression are associated with a decline in physical and cognitive abilities. Here, we investigate the connection between changes in mRNA and protein expression in the brain by comparing the transcriptome and proteome of the mouse cortex during aging. Our transcriptomic analysis revealed that aging mainly triggers gene activation in the cortex. We showed that an increase in mRNA expression correlates with protein expression, specifically in the anterior cingulate cortex, where we also observed an increase in cortical thickness during aging. Genes exhibiting an aging-dependent increase of mRNA and protein levels are involved in sensory perception and immune functions. Our proteomic analysis also identified changes in protein abundance in the aging cortex and highlighted a subset of proteins that were differentially enriched but exhibited stable mRNA levels during aging, implying the contribution of aging-related post- transcriptional and post-translational mechanisms. These specific genes were associated with general biological processes such as translation, ribosome assembly and protein degradation, and also important brain functions related to neuroplasticity. By decoupling mRNA and protein expression, we have thus characterized distinct subsets of genes that differentially adjust to cellular aging in the cerebral cortex.
Collapse
|
43
|
Abstract
Aging is associated with increased mutational burden in every tissue studied. Occasionally, fitness-increasing mutations will arise, leading to stem cell clonal expansion. This process occurs in several tissues but has been best studied in blood. Clonal hematopoiesis is associated with an increased risk of blood cancers, such as acute myeloid leukemia, which result if additional cooperating mutations occur. Surprisingly, it is also associated with an increased risk of nonmalignant diseases, such as atherosclerotic cardiovascular disease. This may be due to enhanced inflammation in mutated innate immune cells, which could be targeted clinically with anti-inflammatory drugs. Recent studies have uncovered other factors that predict poor outcomes in patients with clonal hematopoiesis, such as size of the mutant clone, mutated driver genes, and epigenetic aging. Though clonality is inevitable and largely a function of time, recent work has shown that inherited genetic variation can also influence this process. Clonal hematopoiesis provides a paradigm for understanding how age-related changes in tissue stem cell composition and function influence human health.
Collapse
Affiliation(s)
- Herra Ahmad
- Department of Pathology, Stanford University, Stanford, California, USA; .,Department of Cardiology, Charité Universitätsmedizin, Berlin, Germany
| | - Nikolaus Jahn
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, California, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
44
|
Foster CA, Barker-Kamps M, Goering M, Patki A, Tiwari HK, Mrug S. Epigenetic age acceleration correlates with BMI in young adults. Aging (Albany NY) 2023; 15:513-523. [PMID: 36656735 PMCID: PMC9925674 DOI: 10.18632/aging.204492] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Obesity increases the risk of Type 2 diabetes, cardiovascular disease, several types of cancer, and other age-related disorders. Among older adults, obesity is also related to epigenetic age, typically measured with DNA methylation (DNAm). Because less is known about obesity and epigenetic aging earlier in the lifespan, this study examined the relationship between obesity and DNAm in young adulthood and whether these relationships vary by sex. METHODS A cross-sectional community sample of 290 healthy young adults (mean age 27.39 years, 60% female; 80% African American, 18% White) had their BMI and waist circumference measured. Four epigenetic age estimators were derived from salivary DNA: Hannum DNAm, Horvath DNAm, Phenoage DNAm, and GrimAge DNAm. Sociodemographic covariates included age, sex, race, parental education, and income-to-needs ratio. RESULTS After adjusting for covariates, higher BMI and waist were associated with higher DNAm PhenoAge in both sexes, with a stronger effect on BMI in males (β = 0.35, p < .001) compared to females (β = 0.13, p = .002). Higher waist, but not BMI, was associated with higher Horvath DNA methylation age. Both BMI and waist circumference were associated with higher Hannum DNAm age in men but not in women. Neither BMI nor waist circumference were related to GrimAge. DISCUSSION This study extends prior research by linking obesity with accelerated epigenetic aging in young adulthood, replicating the associations across two measures of obesity and four indices of salivary epigenetic aging. The results add to evidence that higher BMI accelerates aging early in the lifespan.
Collapse
Affiliation(s)
- Christy Anne Foster
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Malcolm Barker-Kamps
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marlon Goering
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amit Patki
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hemant K. Tiwari
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sylvie Mrug
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
45
|
Abstract
Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.
Collapse
Affiliation(s)
- Jie Wen
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Tingyu Pan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Hongyan Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
| | - Jinhua Liu
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Zhiyou Cai, Department of Neurology, Chongqing General Hospital, 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China. Tel/Fax: +86-23-63515796/+86-23-63515796, E-mail:
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Bin Zhao, Department and Institute of Neurology, Guangdong Medical University, Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, 57 Renmin Road, Zhanjiang, Guangdong 524001, China. Tel/Fax: +86-759-2386949/+86-13902501596, E-mail: /
| |
Collapse
|
46
|
Deryabin PI, Borodkina AV. Epigenetic clocks provide clues to the mystery of uterine ageing. Hum Reprod Update 2022; 29:259-271. [PMID: 36515535 DOI: 10.1093/humupd/dmac042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rising maternal ages and age-related fertility decline are a global challenge for modern reproductive medicine. Clinicians and researchers pay specific attention to ovarian ageing and hormonal insufficiency in this regard. However, uterine ageing is often left out of the picture, with the majority of reproductive clinicians being close to unanimous on the absence of age-related functional decline in the uterine tissues. Therefore, most existing techniques to treat an age-related decline in implantation rates are based primarily on hormonal supplementation and oocyte donation. Solving the issue of uterine ageing might lead to an adjustment to these methods. OBJECTIVE AND RATIONALE A focus on uterine ageing and the possibility of slowing it emerged with the development of the information theory of ageing, which identifies genomic instability and erosion of the epigenetic landscape as important drivers of age-related decline in the functionality of most cells and tissues. Age-related smoothing of this landscape and a decline in tissue function can be assessed by measuring the ticking of epigenetic clocks. Within this review, we explore whether the uterus experiences age-related alterations using this elegant approach. We analyse existing data on epigenetic clocks in the endometrium, highlight approaches to improve the accuracy of the clocks in this cycling tissue, speculate on the endometrial pathologies whose progression might be predicted by the altered speed of epigenetic clocks and discuss the possibilities of slowing down the ticking of these clocks. SEARCH METHODS Data for this review were identified by searches of Medline, PubMed and Google Scholar. References from relevant articles using the search terms 'ageing', 'maternal age', 'female reproduction', 'uterus', 'endometrium', 'implantation', 'decidualization', 'epigenetic clock', 'biological age', 'DNA methylation', 'fertility' and 'infertility' were selected. A total of 95 articles published in English between 1985 and 2022 were included, six of which describe the use of the epigenetic clock to evaluate uterine/endometrium ageing. OUTCOMES Application of the Horvath and DNAm PhenoAge epigenetic clocks demonstrated a poor correlation with chronological age in the endometrium. Several approaches were suggested to enhance the predictive power of epigenetic clocks for the endometrium. The first was to increase the number of samples in the training dataset, as for the Zang clock, or to use more sophisticated clock-building algorithms, as for the AltumAge clock. The second method is to adjust the clocks according to the dynamic nature of the endometrium. Using either approach revealed a strong correlation with chronological age in the endometrium, providing solid evidence for age-related functional decline in this tissue. Furthermore, age acceleration/deceleration, as estimated by epigenetic clocks, might be a promising tool to predict or to gain insights into the origin of various endometrial pathologies, including recurrent implantation failure, cancer and endometriosis. Finally, there are several strategies to slow down or even reverse epigenetic clocks that might be applied to reduce the risk of age-related uterine impairments. WIDER IMPLICATIONS The uterine factor should be considered, along with ovarian issues, to correct for the decline in female fertility with age. Epigenetic clocks can be tested to gain a deeper understanding of various endometrial disorders.
Collapse
Affiliation(s)
- Pavel I Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Aleksandra V Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
47
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
49
|
Kim HY, Shin CH, Lee YA, Shin CH, Kim GH, Ko JM. Deciphering Epigenetic Backgrounds in a Korean Cohort with Beckwith-Wiedemann Syndrome. Ann Lab Med 2022; 42:668-677. [PMID: 35765875 PMCID: PMC9277041 DOI: 10.3343/alm.2022.42.6.668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is a congenital overgrowth disorder caused by genetic or epigenetic alterations at two imprinting centers (ICs) in the 11p15.5 region. Delineation of the molecular defects is important for prognosis and predicting familial recurrence. We evaluated epigenetic alterations and potential epigenotype–phenotype correlations in Korean children with BWS. Methods Forty children with BWS with proven genetic or epigenetic defects in the 11p15.5 region were included. The phenotype was scored using the BWS consensus scoring system. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), bisulfite pyrosequencing, a single-nucleotide polymorphism microarray, and CDKN1C sequencing were used for confirmative diagnosis. Results Patients met the criteria for genetic testing, with a mean clinical score of 5.4±2.0. Methylation alterations were consistent between MS-MLPA and bisulfite pyrosequencing in all patients. Twenty-six patients (65.0%) had IC2 loss of methylation (IC2-LoM), 11 (27.5%) had paternal uniparental disomy (patUPD), and one (2.5%) had IC1 gain of methylation. Macroglossia and external ear anomalies were more common in IC2-LoM than in patUPD, and lateralized overgrowth was more common in patUPD than in IC2-LoM (all P<0.05). Methylation levels at IC2 were inversely correlated with birth weight standard deviation score (r=–0.476, P=0.014) and clinical score (r=–0.520, P=0.006) in the IC2-LoM group. Conclusions Comprehensive molecular analysis of the 11p15.5 region revealed epigenotype–phenotype correlations in our BWS cohort. Bisulfite pyrosequencing can help clarify epigenotypes. Methylation levels were correlated with fetal growth and clinical severity in patients with BWS.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Rare Disease Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Fuggle NR, Laskou F, Harvey NC, Dennison EM. A review of epigenetics and its association with ageing of muscle and bone. Maturitas 2022; 165:12-17. [PMID: 35841774 DOI: 10.1016/j.maturitas.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
Abstract
Ageing is defined as the 'increasing frailty of an organism with time that reduces the ability of that organism to deal with stress'. It has been suggested that epigenetics may underlie the observation that some individuals appear to age faster than others. Epigenetics is the study of changes which occur in an organism due to changes in expression of the genetic code rather than changes to the genetic code itself; that is, epigenetic mechanisms impact upon the function of DNA without changing the DNA sequence. It is important to recognise that epigenetic changes, in contrast to genetic changes, can vary according to different cell types and therefore can demonstrate significant tissue-specificity. There are different types of epigenetic mechanisms: histone modification, non-coding RNAs and DNA methylation. Epigenetic clocks have been developed using statistical techniques to identify the optimal combination of CpG sites (from methylation arrays) to correlate with chronological age. This review considers how epigenetic factors may affect rates of ageing of muscle and bone and provides an overview of current understanding in this area. We discuss studies using first-generation epigenetic clocks, as well as the second-generation iterations, which appear to show stronger associations with the ageing muscle phenotype. We also review epigenome-wide association studies that have been performed in various tissues examining relationships with osteoporosis and fracture. It is hoped that an understanding of this area will lead to interventions that might prevent or reduce rates of musculoskeletal ageing in later life.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - F Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - E M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|