1
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
2
|
Ding R, Huang L, Yan K, Sun Z, Duan J. New insight into air pollution-related cardiovascular disease: an adverse outcome pathway framework of PM2.5-associated vascular calcification. Cardiovasc Res 2024; 120:699-707. [PMID: 38636937 DOI: 10.1093/cvr/cvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite the air quality has been generally improved in recent years, ambient fine particulate matter (PM2.5), a major contributor to air pollution, remains one of the major threats to public health. Vascular calcification is a systematic pathology associated with an increased risk of cardiovascular disease. Although the epidemiological evidence has uncovered the association between PM2.5 exposure and vascular calcification, little is known about the underlying mechanisms. The adverse outcome pathway (AOP) concept offers a comprehensive interpretation of all of the findings obtained by toxicological and epidemiological studies. In this review, reactive oxygen species generation was identified as the molecular initiating event (MIE), which targeted subsequent key events (KEs) such as oxidative stress, inflammation, endoplasmic reticulum stress, and autophagy, from the cellular to the tissue/organ level. These KEs eventually led to the adverse outcome, namely increased incidence of vascular calcification and atherosclerosis morbidity. To the best of our knowledge, this is the first AOP framework devoted to PM2.5-associated vascular calcification, which benefits future investigations by identifying current limitations and latent biomarkers.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| |
Collapse
|
3
|
Zhao CN, Xu Z, Wang P, Liu J, Wang R, Pan HF, Bao F. Associations between air pollutants and acute exacerbation of drug-resistant tuberculosis: evidence from a prospective cohort study. BMC Infect Dis 2024; 24:121. [PMID: 38262983 PMCID: PMC10807089 DOI: 10.1186/s12879-024-09011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Short-term exposure to air pollution may trigger symptoms of drug-resistant tuberculosis (DR-TB) through stimulating lung tissue, damaging tracheobronchial mucosa, the key anti-mycobacterium T cell immune function, and production and release of inflammatory cytokines. OBJECTIVE To investigate the association between acute exacerbations of DR-TB and short-term residential exposure to air pollutants (PM10, PM2.5, SO2, NO2, CO and O3) based on a large prospective cohort in Anhui Province, China. METHOD Patients were derived from a prospective cohort study of DR-TB in Anhui Province. All DR-TB patients underwent drug-susceptibility testing and prefecture-level reference laboratories confirmed their microbiologies. The case-crossover design was performed to evaluate the association between the risk of acute exacerbations of DR-TB and short-term residential exposure to air pollution. RESULTS Short-term NO2 exposure was significantly related to an elevated risk of first-time outpatient visit due to acute exacerbations of DR-TB(relative risk:1.159, 95% confidence interval:1.011 ~ 1.329). Stratification analyses revealed that the relationship between the risk of acute exacerbations and NO2 exposure was stronger in the elderly (age ≥ 65) DR-TB patients, and in individuals with a history of TB treatment. CONCLUSIONS NO2 Exposure was significantly associated with an elevated risk of acute exacerbation of DR-TB in Anhui Province, China.
Collapse
Affiliation(s)
- Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, 230032, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, 230032, Hefei, Anhui, China
| | - Jie Liu
- Department of Tuberculosis Control, Tuberculosis Control Institute of Anhui Province, 397 Jixi Road, 230022, Hefei, Anhui, China
| | - Rong Wang
- Department of Tuberculosis Control, Tuberculosis Control Institute of Anhui Province, 397 Jixi Road, 230022, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, 230032, Hefei, Anhui, China.
| | - Fangjin Bao
- Department of Tuberculosis Control, Tuberculosis Control Institute of Anhui Province, 397 Jixi Road, 230022, Hefei, Anhui, China.
| |
Collapse
|
4
|
Gałuszka-Bulaga A, Tkacz K, Węglarczyk K, Siedlar M, Baran J. Air pollution induces pyroptosis of human monocytes through activation of inflammasomes and Caspase-3-dependent pathways. J Inflamm (Lond) 2023; 20:26. [PMID: 37563611 PMCID: PMC10416410 DOI: 10.1186/s12950-023-00353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
According to the World Health Organization (WHO), air pollution is one of the most serious threats for our planet. Despite a growing public awareness of the harmful effects of air pollution on human health, the specific influence of particulate matter (PM) on human immune cells remains poorly understood. In this study, we investigated the effect of PM on peripheral blood monocytes in vitro. Monocytes from healthy donors (HD) were exposed to two types of PM: NIST (SRM 1648a, standard urban particulate matter from the US National Institute for Standards and Technology) and LAP (SRM 1648a with the organic fraction removed). The exposure to PM-induced mitochondrial ROS production followed by the decrease of mitochondrial membrane potential and activation of apoptotic protease activating factor 1 (Apaf-1), Caspase-9, and Caspase-3, leading to the cleavage of Gasdermin E (GSDME), and initiation of pyroptosis. Further analysis showed a simultaneous PM-dependent activation of inflammasomes, including NLRP3 (nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3) and Caspase-1, followed by cleavage of Gasdermin D (GSDMD) and secretion of IL-1β. These observations suggest that PM-treated monocytes die by pyroptosis activated by two parallel signaling pathways, related to the inorganic and organic PM components. The release of IL-1β and expression of danger-associated molecular patterns (DAMPs) by pyroptotic cells further activated the remnant viable monocytes to produce inflammatory cytokines (TNF-α, IL-6, IL-8) and protected them from death induced by the second challenge with PM.In summary, our report shows that PM exposure significantly impacts monocyte function and induces their death by pyroptosis. Our observations indicate that the composition of PM plays a crucial role in this process-the inorganic fraction of PM is responsible for the induction of the Caspase-3-dependent pyroptotic pathway. At the same time, the canonical inflammasome path is activated by the organic components of PM, including LPS (Lipopolysaccharide/endotoxin). PM-induced pyroptosis of human monocytes. Particulate matter (PM) treatment affects monocytes viability already after 15 min of their exposure to NIST or LAP in vitro. The remnant viable monocytes in response to danger-associated molecular patterns (DAMPs) release pro-inflammatory cytokines and activate Th1 and Th17 cells. The mechanism of PM-induced cell death includes the increase of reactive oxygen species (ROS) production followed by collapse of mitochondrial membrane potential (ΔΨm), activation of Apaf-1, Caspase-9 and Caspase-3, leading to activation of Caspase-3-dependent pyroptotic pathway, where Caspase-3 cleaves Gasdermin E (GSDME) to produce a N-terminal fragment responsible for the switch from apoptosis to pyroptosis. At the same time, PM activates the canonical inflammasome pathway, where activated Caspase-1 cleaves the cytosolic Gasdermin D (GSDMD) to produce N-terminal domain allowing IL-1β secretion. As a result, PM-treated monocytes die by pyroptosis activated by two parallel pathways-Caspase-3-dependent pathway related to the inorganic fraction of PM and the canonical inflammasome pathway dependent on the organic components of PM.
Collapse
Affiliation(s)
- Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka Street 265, 30-663 Krakow, Poland
| | - Karolina Tkacz
- Department of Clinical Immunology, University Children’s Hospital, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka Street 265, 30-663 Krakow, Poland
- Department of Clinical Immunology, University Children’s Hospital, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka Street 265, 30-663 Krakow, Poland
- Department of Clinical Immunology, University Children’s Hospital, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka Street 265, 30-663 Krakow, Poland
- Department of Clinical Immunology, University Children’s Hospital, Krakow, Poland
| |
Collapse
|
5
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
6
|
Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun 2022; 5:100177. [PMID: 36561540 PMCID: PMC9763510 DOI: 10.1016/j.jtauto.2022.100177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nearly a quarter of the total number of deaths in the world are caused by unhealthy living or working environments. Therefore, we consider it significant to introduce the effect of a widely distributed component of air/water/food-source contaminants, polycyclic aromatic hydrocarbons (PAHs), on the human body, especially on immunity in this review. PAHs are a large class of organic compounds containing two or more benzene rings. PAH exposure could occur in most people through breath, smoke, food, and direct skin contact, resulting in both cellular immunosuppression and humoral immunosuppression. PAHs usually lead to the exacerbation of autoimmune diseases by regulating the balance of T helper cell 17 and regulatory T cells, and promoting type 2 immunity. However, the receptor of PAHs, aryl hydrocarbon receptor (AhR), appears to exhibit duality in the immune response, which seems to explain some seemingly opposite experimental results. In addition, PAH exposure was also able to exacerbate allergic reactions and regulate monocytes to a certain extent. The specific regulation mechanisms of immune system include the assistance of AhR, the activation of the CYP-ROS axis, the recruitment of intracellular calcium, and some epigenetic mechanisms. This review aims to summarize our current understanding on the impact of PAHs in the immune system and some related diseases such as cancer, autoimmune diseases (rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), and allergic diseases (asthma and atopic dermatitis). Finally, we also propose future research directions for the prevention or treatment on environmental induced diseases.
Collapse
Affiliation(s)
- Yang-yiyi Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, 210042, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Li CH, Tsai ML, Chiou HY(C, Lin YC, Liao WT, Hung CH. Role of Macrophages in Air Pollution Exposure Related Asthma. Int J Mol Sci 2022; 23:ijms232012337. [PMID: 36293195 PMCID: PMC9603963 DOI: 10.3390/ijms232012337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction, bronchial hyper-responsiveness, and airway inflammation. The chronic inflammation of the airway is mediated by many cell types, cytokines, chemokines, and inflammatory mediators. Research suggests that exposure to air pollution has a negative impact on asthma outcomes in adult and pediatric populations. Air pollution is one of the greatest environmental risks to health, and it impacts the lungs' innate and adaptive defense systems. A major pollutant in the air is particulate matter (PM), a complex component composed of elemental carbon and heavy metals. According to the WHO, 99% of people live in air pollution where air quality levels are lower than the WHO air quality guidelines. This suggests that the effect of air pollution exposure on asthma is a crucial health issue worldwide. Macrophages are essential in recognizing and processing any inhaled foreign material, such as PM. Alveolar macrophages are one of the predominant cell types that process and remove inhaled PM by secreting proinflammatory mediators from the lung. This review focuses on macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants in asthma.
Collapse
Affiliation(s)
- Chung-Hsiang Li
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying (Clair) Chiou
- Teaching and Research Center of Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| |
Collapse
|
9
|
Integrative analysis to explore the biological association between environmental skin diseases and ambient particulate matter. Sci Rep 2022; 12:9750. [PMID: 35697899 PMCID: PMC9192598 DOI: 10.1038/s41598-022-13001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Although numerous experimental studies have suggested a significant association between ambient particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM and environmental skin diseases is not clearly understood. Here, we aimed to explore the association between PM and skin diseases through biological big data analysis. Differential gene expression profiles associated with PM and environmental skin diseases were retrieved from public genome databases. The co-expression among them was analyzed using a text-mining-based network analysis software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate their relationships using public genome data. We found that changes in upstream regulators and inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a literature-based co-expression analysis and experimental validation not only improves the reliability of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced dermal toxicity that can be applied to screen the relationship between other chemicals and adverse effects.
Collapse
|
10
|
Park J, Lee KH, Kim H, Woo J, Heo J, Lee CH, Yi SM, Yoo CG. The impact of organic extracts of seasonal PM 2.5 on primary human lung epithelial cells and their chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59868-59880. [PMID: 34148195 PMCID: PMC8541986 DOI: 10.1007/s11356-021-14850-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 05/13/2023]
Abstract
Lung epithelial cells serve as the first line of defense against various inhaled pollutant particles. To investigate the adverse health effects of organic components of fine particulate matter (PM2.5) collected in Seoul, South Korea, we selected 12 PM2.5 samples from May 2016 to January 2017 and evaluated the effects of organic compounds of PM2.5 on inflammation, cellular aging, and macroautophagy in human lung epithelial cells isolated directly from healthy donors. Organic extracts of PM2.5 specifically induced neutrophilic chemokine and interleukin-8 expression via extracellular signal-regulated kinase activation. Moreover, PM2.5 significantly increased the expression of aging markers (p16, p21, and p27) and activated macroautophagy. Average mass concentrations of organic and elemental carbon had no significant correlations with PM2.5 effects. However, polycyclic aromatic hydrocarbons and n-alkanes were the most relevant components of PM2.5 that correlated with neutrophilic inflammation. Vegetative detritus and residential bituminous coal combustion sources strongly correlated with neutrophilic inflammation, aging, and macroautophagy activation. These data suggest that the chemical composition of PM2.5 is important for determining the adverse health effects of PM2.5. Our study provides encouraging evidence to regulate the harmful components of PM2.5 in Seoul.
Collapse
Affiliation(s)
- Jieun Park
- Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Hyewon Kim
- Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Korea.
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Nunez Y, Boehme AK, Li M, Goldsmith J, Weisskopf MG, Re DB, Navas-Acien A, van Donkelaar A, Martin RV, Kioumourtzoglou MA. Parkinson's disease aggravation in association with fine particle components in New York State. ENVIRONMENTAL RESEARCH 2021; 201:111554. [PMID: 34181919 PMCID: PMC8478789 DOI: 10.1016/j.envres.2021.111554] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Long-term exposure to fine particulate matter (PM2.5) has been associated with neurodegenerative diseases, including disease aggravation in Parkinson's disease (PD), but associations with specific PM2.5 components have not been evaluated. OBJECTIVE To characterize the association between specific PM2.5 components and PD first hospitalization, a surrogate for disease aggravation. METHODS We obtained data on hospitalizations from the New York Department of Health Statewide Planning and Research Cooperative System (2000-2014) to calculate annual first PD hospitalization counts in New York State per county. We used well-validated prediction models at 1 km2 resolution to estimate county level population-weighted annual black carbon (BC), organic matter (OM), nitrate, sulfate, sea salt (SS), and soil particle concentrations. We then used a multi-pollutant mixed quasi-Poisson model with county-specific random intercepts to estimate rate ratios (RR) of one-year exposure to each PM2.5 component and PD disease aggravation. We evaluated potential nonlinear exposure-outcome relationships using penalized splines and accounted for potential confounders. RESULTS We observed a total of 197,545 PD first hospitalizations in NYS from 2000 to 2014. The annual average count per county was 212 first hospitalizations. The RR (95% confidence interval) for PD aggravation was 1.06 (1.03, 1.10) per one standard deviation (SD) increase in nitrate concentrations and 1.06 (1.04, 1.09) for the corresponding increase in OM concentrations. We also found a nonlinear inverse association between PD aggravation and BC at concentrations above the 96th percentile. We found a marginal association with SS and no association with sulfate or soil exposure. CONCLUSION In this study, we detected associations between the PM2.5 components OM and nitrate with PD disease aggravation. Our findings support that PM2.5 adverse effects on PD may vary by particle composition.
Collapse
Affiliation(s)
- Yanelli Nunez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Amelia K Boehme
- Department of Epidemiology and Neurology, Columbia University, New York, NY, USA
| | - Maggie Li
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | | |
Collapse
|
12
|
Pang Y, Huang W, Luo XS, Chen Q, Zhao Z, Tang M, Hong Y, Chen J, Li H. In-vitro human lung cell injuries induced by urban PM 2.5 during a severe air pollution episode: Variations associated with particle components. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111406. [PMID: 33007542 DOI: 10.1016/j.ecoenv.2020.111406] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 05/20/2023]
Abstract
Environmental air pollutants pose significant threats to public health, especially the toxicity and diseases caused by the atmospheric fine particulate matters (PM2.5). Since the health risks vary with both the concentrations and compositions of PM2.5 which are determined by aerosol sources, how are their toxic effects relevant to the pollution level becomes an important issue, such as the haze episodes covering clean and polluted days. With the transition from non-pollution to pollution stage, daily PM2.5 samples were collected from both the urban and industrial areas of Nanjing city, eastern China, covering a typical haze event in autumn-winter. Their unpropitious effects on human lung epithelial cells (A549) were compared by in vitro toxicity assays and chemical component analysis. Both air levels and cytotoxic effects of PM2.5 varied with the transition of haze event. Although the concentration of PM2.5 in air is of course the highest in pollution stage driven by local stable meteorological condition, unit mass of them posed higher toxicity (lower cell viability and higher IL-6) but induced lower cell oxidative (evidences of ROS and NQO1 mRNA expression) and inflammatory cytokine TNF-α responses than those particles during non-pollution stage. These patterns were explained by the metals and water-soluble components decreased with the haze development. Non-soluble particulate carbonaceous aerosol compositions might play a significant role in inducing cytotoxicity. Moreover, the regional pattern of episode pollution weakened the spatial variation within a city scale. Since the haze development intensified both the quantity and toxicity of PM2.5 in air, the health risks of overall aerosol exposure were synthetically amplified during haze weather, so the increased air particles with higher toxic components from fuel combustion sources should be key targets of pollution control.
Collapse
Affiliation(s)
- Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qi Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
13
|
PM2.5 compromises antiviral immunity in influenza infection by inhibiting activation of NLRP3 inflammasome and expression of interferon-β. Mol Immunol 2020; 125:178-186. [PMID: 32717666 DOI: 10.1016/j.molimm.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
PM2.5, a major component of air pollutants, has caused severe health problems. It has been reported that PM2.5 index is closely associated with severity of influenza A virus (IAV) infection. However, the underlying mechanisms have not been addressed. NLRP3 inflammasome and type I interferon signaling regulate host defense against influenza infection. The present study investigated the potential effects of air pollutants on host defense against influenza infection in vitro and in vivo. In this study, different concentrations of PM2.5 were pre-exposed to macrophages and mice before IAV infection to assess the negative effects of air pollutants in virus infection. We found that exposure to PM2.5 deteriorated influenza virus infection via compromising innate immune responses manifested by a decrease IL-1β and IFN-β production in vitro. Meanwhile, mice exposed with PM2.5 were susceptible to PR8 virus infection due to down-regulation of IL-1β and IFN-β. Mechanistically, PM 2.5 exposure suppressed the NLRP3 inflammasome activation and the AHR-TIPARP signaling pathway, by which compromised the anti-influenza immunity. Thus, our study revealed that PM2.5 could alter macrophage inflammatory responses by suppressing LPS-induced activation of NLRP3 inflammasome and expression of IFN-β during influenza infection. These findings provided us new insights in understanding that PM2.5 combining with influenza infection could enhance the severity of pneumonia.
Collapse
|
14
|
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med 2020; 151:56-68. [PMID: 32007522 DOI: 10.1016/j.freeradbiomed.2020.01.179] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
A well-functioning immune system is vital for a healthy body. Inadequate and excessive immune responses underlie diverse pathologies such as serious infections, metastatic malignancies and auto-immune conditions. Therefore, understanding the effects of ambient pollutants on the immune system is vital to understanding how pollution causes disease, and how that pathology could be abrogated. The immune system itself consists of multiple types of immune cell that act together to generate (or fail to generate) immune responses and in this article we review evidence of how air pollutants can affect different immune cell types such as particle-clearing macrophages, inflammatory neutrophils, dendritic cells that orchestrate adaptive immune responses and lymphocytes that enact those responses. Common themes that emerge are of the capacity of air pollutants to stimulate pro-inflammatory immune responses across multiple classes of immune cell. Air pollution can enhance T helper lymphocyte type 2 (Th2) and T helper lymphocyte type 17 (Th17) adaptive immune responses, as seen in allergy and asthma, and dysregulate anti-viral immune responses. The clinical effects of air pollution, in particular the known association between elevated ambient pollution and exacerbations of asthma and chronic obstructive pulmonary disease (COPD), are consistent with these identified immunological mechanisms. Further to this, as inhaled air pollution deposits primarily on the respiratory mucosa this review focuses on mechanisms of respiratory disease. However, as discussed in the article, air pollution also affects the wider immune system for example in the neonate and gastrointestinal tract. Whilst the many identified actions of air pollution on the immune system are notably diverse, immunological research does suggest potential strategies to ameliorate such effects, for example with vitamin D supplementation. An in-depth understanding of the immunological effects of ambient pollutants should hopefully yield new ideas on how to reduce the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Drew A Glencross
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Nuria Camiña
- MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Catherine M Hawrylowicz
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Paul E Pfeffer
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
15
|
Wing SE, Larson TV, Hudda N, Boonyarattaphan S, Fruin S, Ritz B. Preterm Birth among Infants Exposed to in Utero Ultrafine Particles from Aircraft Emissions. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47002. [PMID: 32238012 PMCID: PMC7228090 DOI: 10.1289/ehp5732] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Ambient air pollution is a known risk factor for adverse birth outcomes, but the role of ultrafine particles (UFPs) is not well understood. Aircraft-origin UFPs adversely affect air quality over large residential areas downwind of airports, but their reproductive health burden remains uninvestigated. OBJECTIVES This analysis evaluated whether UFPs from jet aircraft emissions are associated with increased rates of preterm birth (PTB) among pregnant mothers living downwind of Los Angeles International Airport (LAX). METHODS This population-based study used birth records, provided by the California Department of Public Health, to ascertain birth outcomes and a novel, validated geospatial UFP dispersion model approach to estimate in utero exposures. All mothers who gave birth from 2008 to 2016 while living within 15km of LAX were included in this analysis (N=174,186; including 15,134 PTBs). RESULTS In utero exposure to aircraft-origin UFPs was positively associated with PTB. The odds ratio (OR) per interquartile range (IQR) increase [9,200 particles per cubic centimeter (cc)] relative UFP exposure was 1.04 [95% confidence interval (CI): 1.02, 1.06]. When comparing the fourth quartile of UFP exposure to the first quartile, the OR for PTB was 1.14 (95% CI: 1.08, 1.20), adjusting for maternal demographic characteristics, exposure to traffic-related air pollution, and airport-related noise. CONCLUSION Our results suggest that emissions from aircraft play an etiologic role in PTBs, independent of noise and traffic-related air pollution exposures. These findings are of public health concern because UFP exposures downwind of airfields are common and may affect large, densely populated residential areas. https://doi.org/10.1289/EHP5732.
Collapse
Affiliation(s)
- Sam E. Wing
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy V. Larson
- Departments of Civil & Environmental Engineering and Occupational & Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - Neelakshi Hudda
- Department of Civil & Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sarunporn Boonyarattaphan
- Departments of Civil & Environmental Engineering and Occupational & Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - Scott Fruin
- Division of Environmental Health, University of Southern California, Los Angeles, California, USA
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Kim JB, Prunicki M, Haddad F, Dant C, Sampath V, Patel R, Smith E, Akdis C, Balmes J, Snyder MP, Wu JC, Nadeau KC. Cumulative Lifetime Burden of Cardiovascular Disease From Early Exposure to Air Pollution. J Am Heart Assoc 2020; 9:e014944. [PMID: 32174249 PMCID: PMC7335506 DOI: 10.1161/jaha.119.014944] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The disease burden associated with air pollution continues to grow. The World Health Organization (WHO) estimates ≈7 million people worldwide die yearly from exposure to polluted air, half of which-3.3 million-are attributable to cardiovascular disease (CVD), greater than from major modifiable CVD risks including smoking, hypertension, hyperlipidemia, and diabetes mellitus. This serious and growing health threat is attributed to increasing urbanization of the world's populations with consequent exposure to polluted air. Especially vulnerable are the elderly, patients with pre-existing CVD, and children. The cumulative lifetime burden in children is particularly of concern because their rapidly developing cardiopulmonary systems are more susceptible to damage and they spend more time outdoors and therefore inhale more pollutants. World Health Organization estimates that 93% of the world's children aged <15 years-1.8 billion children-breathe air that puts their health and development at risk. Here, we present growing scientific evidence, including from our own group, that chronic exposure to air pollution early in life is directly linked to development of major CVD risks, including obesity, hypertension, and metabolic disorders. In this review, we surveyed the literature for current knowledge of how pollution exposure early in life adversely impacts cardiovascular phenotypes, and lay the foundation for early intervention and other strategies that can help prevent this damage. We also discuss the need for better guidelines and additional research to validate exposure metrics and interventions that will ultimately help healthcare providers reduce the growing burden of CVD from pollution.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular MedicineDepartment of MedicineStanford UniversityStanfordCA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Francois Haddad
- Division of Cardiovascular MedicineDepartment of MedicineStanford UniversityStanfordCA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Christopher Dant
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Rushali Patel
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Eric Smith
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Cezmi Akdis
- Swiss Institute for Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - John Balmes
- Department of MedicineUniversity of California San Francisco and Division of Environmental Health SciencesSchool of Public HealthUniversity of California BerkeleyCA
| | - Michael P. Snyder
- Department of Genetics and Center for Genomics and Personalized MedicineStanford UniversityStanfordCA
| | - Joseph C. Wu
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| |
Collapse
|
17
|
Gao R, Sang N. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113390. [PMID: 31706768 DOI: 10.1016/j.envpol.2019.113390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
With increasingly severe air pollution, the aggravated health risks of particulate matter, especially ultrafine particles, are emerging as an urgent and sensitive topic. Considering the heterogeneity and complexity of ultrafine particles, there is insufficient evidence about their toxic effects and possible molecular mechanisms. To address this question, we analyzed the emission characteristics of quasi-ultrafine particles collected during winter in a typical coal-burning city, Taiyuan, and confirmed their contribution to lung cancer cell adhesion and metastasis. For the specific mechanism, we revealed that the endocytosis of quasi-ultrafine particles stimulated the release of HMGB1, induced NFκB-facilitated proinflammatory cytokine production through the interaction of HMGB1 with RAGE, and resulted in cancer-endothelial cell adhesion. These findings remind us of the potential effects of anthropogenic quasi-ultrafine particle pollution and provide a theoretical reference for the mitigation of tumorigenesis in a severe particulate matter contaminated environment.
Collapse
Affiliation(s)
- Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China.
| |
Collapse
|
18
|
Chen Q, Luo XS, Chen Y, Zhao Z, Hong Y, Pang Y, Huang W, Wang Y, Jin L. Seasonally varied cytotoxicity of organic components in PM 2.5 from urban and industrial areas of a Chinese megacity. CHEMOSPHERE 2019; 230:424-431. [PMID: 31112865 DOI: 10.1016/j.chemosphere.2019.04.226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
The atmospheric fine particulate matters (PM2.5) induce significant negative effects on human health, such as in the form of oxidative stress and pro-inflammatory response. Organic pollutants are important harmful and toxic compositions in PM2.5, risks of which usually show temporal and spatial variations. To investigate the toxic effects of airborne organic pollutants on human lung epithelial cells A549, the PM2.5 samples were collected monthly from both urban and industrial areas during a whole year in Nanjing, eastern China. After exposure to organic components extracted from these PM2.5, the cell viability, lactate dehydrogenase content, oxidative stress index level and inflammatory factor expression level were measured. Supported by the concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, results showed that, organic components of PM2.5 from cold season (winter and spring) typically influenced cell membrane, cell oxidation and inflammatory damage, while the urban samples of warm season (summer and autumn) impacted cell viability more prominently. Spatially, the toxicity of samples from industrial sources was generally stronger than that from urban source, but urban samples induced much stronger damage to cell membranes than industrial one. The correlations between the PAHs, n-alkanes contents and toxicity parameters indicated that, the airborne organic components derived from motor vehicle exhaust and coal combustion were possibly the key toxic sources.
Collapse
Affiliation(s)
- Qi Chen
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi Wang
- Jiangsu Meteorological Observatory, Nanjing, 210008, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
19
|
Ahmadi Z, Moradabadi A, Abdollahdokht D, Mehrabani M, Nematollahi MH. Association of environmental exposure with hematological and oxidative stress alteration in gasoline station attendants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20411-20417. [PMID: 31102212 DOI: 10.1007/s11356-019-05412-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Gasoline station attendants spend a great deal of their time in the direct exposure to noxious substances such as benzene and byproducts of gasoline combustion. Such occupational exposure increases the risk of oxidative stress. This study aimed to evaluate hematological and biochemical alterations among petrol station workers. Forty gas station attendants and 39 non-attendants were recruited as exposed and control subjects, respectively. Plasma samples were evaluated for hemoglobin, hematocrit, and red blood cell count via the Sysmex KX-21 analyzer. Then, oxidized hemoglobin, methemoglobin, and hemichrome were measured spectrophotometrically. Moreover, serum antioxidant capacity and protein oxidation were evaluated. The means ± SD of hemoglobin (16.76 ± 0.14 g/dl vs 15.25 ± 0.14 g/dl), hematocrit (49.11 ± 0.36% vs 45.37 ± 0.31%), RBC count (5.85 ± 0.06 mil/μl vs 5.33 ± 0.06 mil/μl), Met-HB (1.07 ± 0.07 g/dl vs 0.39 ± 0.04 g/dl), and hemichrome (0.80 ± 0.07 g/dl vs 0.37 ± 0.02 g/dl) in the exposed group were significantly greater than the control group (P < 0.001). The results of the independent-sample t test illustrated that the FRAP test value in the exposed group (0.23 ± 0.01 mM) was significantly lower than the control group (0.34 ± 0.01 mM), while the value of the plasma protein carbonyl test in the exposed group (7.47 ± 0.33 mmol/mg protein) was meaningfully greater than the control group (5.81 ± 0.19 mmol/mg protein) (P < 0.001). In conclusion, gas station attendants suffer from higher levels of oxidative stress, and they need to take antioxidants in order to minimize the effects of oxidative stress.
Collapse
Affiliation(s)
- Zahed Ahmadi
- Department of Occupational Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Moradabadi
- Hematology and blood banking, arak University of Medical Sciences, Arak, Iran
| | - Danial Abdollahdokht
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Abstract
Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.
Collapse
|
21
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
22
|
O'Driscoll CA, Mezrich JD. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front Immunol 2018; 9:2833. [PMID: 30574142 PMCID: PMC6291477 DOI: 10.3389/fimmu.2018.02833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
This review examines the current literature on the effects of atmospheric particulate matter (PM) on autoimmune disease and proposes a new role for the aryl hydrocarbon receptor (AHR) as a modulator of T cells in PM-mediated autoimmune disease. There is a significant body of literature regarding the strong epidemiologic correlations between PM exposures and worsened autoimmune diseases. Genetic predispositions account for 30% of all autoimmune disease leaving environmental factors as major contributors. Increases in incidence and prevalence of autoimmune disease have occurred concurrently with an increase in air pollution. Currently, atmospheric PM is considered to be the greatest environmental health risk worldwide. Atmospheric PM is a complex heterogeneous mixture composed of diverse adsorbed organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and dioxins, among others. Exposure to atmospheric PM has been shown to aggravate several autoimmune diseases. Despite strong correlations between exposure to atmospheric PM and worsened autoimmune disease, the mechanisms underlying aggravated disease are largely unknown. The AHR is a ligand activated transcription factor that responds to endogenous and exogenous ligands including toxicants present in PM, such as PAHs and dioxins. A few studies have investigated the effects of atmospheric PM on AHR activation and immune function and demonstrated that atmospheric PM can activate the AHR, change cytokine expression, and alter T cell differentiation. Several studies have found that the AHR modulates the balance between regulatory and effector T cell functions and drives T cell differentiation in vitro and in vivo using murine models of autoimmune disease. However, there are very few studies on the role of AHR in PM-mediated autoimmune disease. The AHR plays a critical role in the balance of effector and regulatory T cells and in autoimmune disease. With increased incidence and prevalence of autoimmune disease occurring concurrently with increases in air pollution, potential mechanisms that drive inflammatory and exacerbated disease need to be elucidated. This review focuses on the AHR as a potential mechanistic target for modulating T cell responses associated with PM-mediated autoimmune disease providing the most up-to-date literature on the role of AHR in autoreactive T cell function and autoimmune disease.
Collapse
Affiliation(s)
- Chelsea A. O'Driscoll
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua D. Mezrich
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, Shatalova ES, Kleinman MT, Black KL, Holler E. Coarse particulate matter (PM 2.5-10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Sci Rep 2018; 8:5708. [PMID: 29632393 PMCID: PMC5890281 DOI: 10.1038/s41598-018-23885-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Air pollution is linked to brain inflammation, which accelerates tumorigenesis and neurodegeneration. The molecular mechanisms that connect air pollution with brain pathology are largely unknown but seem to depend on the chemical composition of airborne particulate matter (PM). We sourced ambient PM from Riverside, California, and selectively exposed rats to coarse (PM2.5–10: 2.5–10 µm), fine (PM<2.5: <2.5 µm), or ultrafine particles (UFPM: <0.15 µm). We characterized each PM type via atomic emission spectroscopy and detected nickel, cobalt and zinc within them. We then exposed rats separately to each PM type for short (2 weeks), intermediate (1–3 months) and long durations (1 year). All three metals accumulated in rat brains during intermediate-length PM exposures. Via RNAseq analysis we then determined that intermediate-length PM2.5–10 exposures triggered the expression of the early growth response gene 2 (EGR2), genes encoding inflammatory cytokine pathways (IL13-Rα1 and IL-16) and the oncogene RAC1. Gene upregulation occurred only in brains of rats exposed to PM2.5–10 and correlated with cerebral nickel accumulation. We hypothesize that the expression of inflammation and oncogenesis-related genes is triggered by the combinatorial exposure to certain metals and toxins in Los Angeles Basin PM2.5–10.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | | | - Michael T Kleinman
- Department of Community and Environmental Medicine Air Pollution Health Effects Laboratory, University of California, Irvine, 92697, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.,Institut für Biophysik und Physikalische Biochemie der Universität Regensburg, Regensburg, 93040, Germany
| |
Collapse
|
24
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
25
|
Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q, Zhou Y, Zhao Z, Cao J. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM 2.5 in the Beijing-Tianjin-Hebei region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1075-1084. [PMID: 28922714 DOI: 10.1016/j.envpol.2017.08.099] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 05/25/2023]
Abstract
The chemical composition of PM2.5 and cellular effects from exposure to fine aerosol extracts were studied for samples collected in Beijing, Tianjin, Shijiazhuang, and Hengshui, China in winter 2015. Effects of priority polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) in PM2.5 on cell cultures were a major focus of the study. Total quantified PAHs and OPAHs at Shijiazhuang and Hengshui were higher than at Beijing and Tianjin, and benz(a)anthracene, chrysene and 1,8-naphthalic anhydride were the most abundant species. Exposure to PM2.5 extracts caused a concentration-dependent decline in cell viability and a dose-dependent increase in nitric oxide production. Two cytokines, tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), also increased when A549 test cells were exposed to PM2.5 extracts. PAHs and OPAHs in PM2.5 can potentially cause cell damage and induce cytotoxicity and pro-inflammatory responses: benzo(a)anthracene-7,12-dione was highly correlated with NO production, dibenz(a,h)anthracene and 1,4-chrysenequinone were correlated with TNF-α production, and 1-naphthaldehyde was significantly correlated with IL-6 production. The study provides a new approach for evaluating relationships between air-quality and cell toxicity with respect to specific chemicals.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Division of Atmosphere Sciences, Desert Research Institute, Reno, NV89512, United States
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yaqing Zhou
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuzi Zhao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Jayaraj RL, Rodriguez EA, Wang Y, Block ML. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis. Curr Environ Health Rep 2017; 4:166-179. [PMID: 28444645 DOI: 10.1007/s40572-017-0142-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. RECENT FINDINGS The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.
Collapse
Affiliation(s)
- Richard L Jayaraj
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eric A Rodriguez
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yi Wang
- Department of Environmental Health, Indiana University Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radic Res 2017; 51:413-427. [PMID: 28372523 DOI: 10.1080/10715762.2017.1315114] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.
Collapse
Affiliation(s)
- Aya Umeno
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| | - Vasudevanpillai Biju
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan.,b Laboratory of Molecular Photonics, Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita Ward, Sapporo , Japan
| | - Yasukazu Yoshida
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| |
Collapse
|
28
|
Woodward NC, Levine MC, Haghani A, Shirmohammadi F, Saffari A, Sioutas C, Morgan TE, Finch CE. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J Neuroinflammation 2017; 14:84. [PMID: 28410596 PMCID: PMC5391610 DOI: 10.1186/s12974-017-0858-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/05/2022] Open
Abstract
Background Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. Methods To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003–1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. Results SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. Conclusions These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Morgan C Levine
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Noth EM, Lurmann F, Northcross A, Perrino C, Vaughn D, Hammond SK. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons and Elemental Carbon in Bakersfield, California. AIR QUALITY, ATMOSPHERE, & HEALTH 2016; 9:899-908. [PMID: 28083077 PMCID: PMC5221703 DOI: 10.1007/s11869-016-0399-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/21/2016] [Indexed: 05/23/2023]
Abstract
Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap we measured wintertime PAH concentrations during 2010-2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during 4 time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R2=0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010-2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations.
Collapse
Affiliation(s)
- Elizabeth M. Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall #7360, Berkeley, CA 94720-7360 USA
| | - Fred Lurmann
- Sonoma Technology, Inc., 1455 N. McDowell Blvd., Petaluma, CA 94954-6503
| | - Amanda Northcross
- Milken Institute School of Public Health, George Washington University, 950 New Hampshire Ave, NW 7th Floor, Washington, DC 20052
| | - Charles Perrino
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall #7360, Berkeley, CA 94720-7360 USA
| | - David Vaughn
- Sonoma Technology, Inc., 1455 N. McDowell Blvd., Petaluma, CA 94954-6503
| | - S. Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall #7360, Berkeley, CA 94720-7360 USA
| |
Collapse
|
30
|
Li R, Qiu X, Xu F, Lin Y, Fang Y, Zhu T. Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM 2.5) on Hepatocyte Insulin Resistance in Vitro. ACS OMEGA 2016; 1:736-743. [PMID: 30023489 PMCID: PMC6044713 DOI: 10.1021/acsomega.6b00135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 05/21/2023]
Abstract
Fine particulate matter (PM2.5) pollution poses significant health risks worldwide, including metabolic syndrome-related diseases with the characteristic feature of insulin resistance. However, the mechanism and influencing factors of this effect are poorly understood. In this serial in vitro study, we aimed at testing the hypothesis that macrophage-mediated effects of PM2.5 on hepatic insulin resistance depend on its chemical composition. Mouse macrophages were exposed to PM2.5 that had been collected during summer or winter in Beijing, which represented different compositions of PM2.5. Thereafter, hepatocytes were treated with macrophage-conditioned medium (CM). PM2.5 induced interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 expression and secretion in macrophages, particularly after winter PM2.5 exposure. Correspondingly, winter CM weakened hepatocellular insulin-stimulated glucose consumption. Further investigation revealed that the normal insulin pathway was suppressed in winter CM-treated hepatocytes, with increased phosphorylation of insulin receptor substrate 1 at serine residue 307 (Ser307) and decreased phosphorylation of protein kinase B (PKB/AKT) and forkhead box transcription factor O1 (FoxO1). Moreover, c-Jun N-terminal kinase, a key moderator of the sensitivity response to insulin stimulation, was activated in hepatocytes treated with winter CM. Although further studies are warranted, this preliminary study suggested an association between PM composition and insulin resistance, thus contributing to our understanding of the systemic toxicity of PM2.5.
Collapse
Affiliation(s)
- Ran Li
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School
of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xinghua Qiu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- E-mail:
| | - Fanfan Xu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yan Lin
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanhua Fang
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Van Den Heuvel R, Den Hond E, Govarts E, Colles A, Koppen G, Staelens J, Mampaey M, Janssen N, Schoeters G. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B). ENVIRONMENTAL RESEARCH 2016; 149:48-56. [PMID: 27177354 DOI: 10.1016/j.envres.2016.04.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses.
Collapse
Affiliation(s)
- Rosette Van Den Heuvel
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Jeroen Staelens
- Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp, Belgium.
| | - Maja Mampaey
- LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels, Belgium.
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven, The Netherlands.
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium; University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp, Belgium.
| |
Collapse
|
32
|
Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:809-824. [PMID: 27038213 DOI: 10.1016/j.envpol.2016.03.050] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sijun Dong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hongou Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
33
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
34
|
Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:250-260. [PMID: 26093079 DOI: 10.1016/j.envpol.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
During the last few years, the induction of toxicological mechanisms by atmospheric ultrafine particles (UFP) has become one of the most studied topics in toxicology and a subject of huge debates. Fine particles (FP) and UFP collected at urban and rural sites in Lebanon were studied for their chemical composition and toxicological effects. UFP were found more enriched in trace elements, secondary inorganic ions, total carbon and organic compounds than FP. For toxicological analysis, BEAS-2B cells were exposed for 24, 48 and 72 h to increasing concentrations of FP, water-UFP suspension (UFPw) and UFP organic extract (UFPorg). Our findings showed that UFP caused earlier alterations of mitochondrial metabolism and membrane integrity from the lowest concentrations. Moreover, a significant induction of CYP1A1, CYP1B1 and AhRR genes expression was showed after cells exposure to UFPorg and to a lesser extent to UFPw and FP samples.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon
| | - Zeina Dagher
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Perrine Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Adam Hachimi
- Micropolluants Technologie, 4 Rue de Bort Les Orgues, 57070 Saint Julien Les Metz, France
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France.
| |
Collapse
|
35
|
Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury. PLoS One 2015; 10:e0137273. [PMID: 26332044 PMCID: PMC4557939 DOI: 10.1371/journal.pone.0137273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 08/16/2015] [Indexed: 11/19/2022] Open
Abstract
Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.
Collapse
|
36
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
37
|
Li J. Environmental fine particular matter and airway epithelium cell stress. CURRENT PULMONOLOGY REPORTS 2015. [DOI: 10.1007/s13665-015-0116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
38
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
39
|
van Berlo D, Hullmann M, Schins RPF. Toxicology of ambient particulate matter. ACTA ACUST UNITED AC 2015; 101:165-217. [PMID: 22945570 DOI: 10.1007/978-3-7643-8340-4_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that inhalation exposure to particulate matter (PM) can lead to or exacerbate various diseases, which are not limited to the lung but extend to the cardiovascular system and possibly other organs and tissues. Epidemiological studies have provided strong evidence for associations with chronic obstructive pulmonary disease (COPD), asthma, bronchitis and cardiovascular disease, while the evidence for a link with lung cancer is less strong. Novel research has provided first hints that exposure to PM might lead to diabetes and central nervous system (CNS) pathology. In the current review, an overview is presented of the toxicological basis for adverse health effects that have been linked to PM inhalation. Oxidative stress and inflammation are discussed as central processes driving adverse effects; in addition, profibrotic and allergic processes are implicated in PM-related diseases. Effects of PM on key cell types considered as regulators of inflammatory, fibrotic and allergic mechanisms are described.
Collapse
Affiliation(s)
- Damiën van Berlo
- Particle Research, Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
40
|
Van Winkle LS, Bein K, Anderson D, Pinkerton KE, Tablin F, Wilson D, Wexler AS. Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol Sci 2014; 143:349-59. [PMID: 25389146 DOI: 10.1093/toxsci/kfu230] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) exposure contributes to respiratory diseases and cardiopulmonary mortality. PM toxicity is related to sources and composition, such as abundance of polycyclic aromatic hydrocarbons (PAHs). We exposed adult male BALB/c mice, via oropharyngeal aspiration, to a range of doses of PM2.5 collected during the winter in downtown Sacramento near a major freeway interchange (SacPM). Two preparation methods (spin-down and multi-solvent extraction) were tested to remove particles from collection filters. Three doses were analyzed 24 h after treatment for (1) leukocytes and total protein in bronchoalveolar lavage fluid (BALF), (2) airway-specific and whole lobe expression of PAH-sensitive genes (CYP1B1 and CYP1A1) and IL-1 b, (3) lung histology, and (4) platelet function. Both extraction methods stimulated biological responses, but the spin-down method was more robust at producing IL-1 b and CYP1B1 gene responses and the multi-solvent extraction induced whole lung CYP1A1. Neutrophils in the BALF were increased 5- to 10-fold at the mid and high dose for both preparations. Histopathology scores indicated dose-dependent responses and increased pathology associated with spin-down-derived PM exposure. In microdissected airways, spin-down PM increased CYP1B1 gene expression significantly, but multi-solvent extracted PM did not. Platelet responses to the physiological agonist thrombin were approximately twice as potent in the spin-down preparation as in the multi-solvent extract. We conclude (1) the method of filter extraction can influence the degree of biological response, (2) for SacPM the minimal effective dose is 27.5-50 µg based on neutrophil recruitment, and (3) P450s are upregulated differently in airways and lung parenchyma in response to PAH-containing PM.
Collapse
Affiliation(s)
- Laura S Van Winkle
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Keith Bein
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Donald Anderson
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Kent E Pinkerton
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Fern Tablin
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Dennis Wilson
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Anthony S Wexler
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| |
Collapse
|
41
|
Marinković N, Pasalić D, Potocki S. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons' biotransformation and atherosclerosis. Biochem Med (Zagreb) 2013; 23:255-65. [PMID: 24266295 PMCID: PMC3900076 DOI: 10.11613/bm.2013.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment.
Collapse
|
42
|
Michael S, Montag M, Dott W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 183:19-29. [PMID: 23462618 DOI: 10.1016/j.envpol.2013.01.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 05/19/2023]
Abstract
The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers.
Collapse
Affiliation(s)
- S Michael
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Human Technology Centre, RWTH Aachen University, Theaterplatz 14, 52056 Aachen, Germany.
| | | | | |
Collapse
|
43
|
Courtois A, Prouillac C, Baudrimont I, Ohayon-Courtes C, Freund-Michel V, Dubois M, Lisbonne-Autissier M, Marthan R, Savineau JP, Muller B. Characterization of the components of urban particulate matter mediating impairment of nitric oxide-dependent relaxation in intrapulmonary arteries. J Appl Toxicol 2013; 34:667-74. [PMID: 23881823 DOI: 10.1002/jat.2909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/17/2013] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
Abstract
We have previously shown that exposure to urban particulate matter (UPM) impairs endothelial nitric oxide (NO) bioactivity in intrapulmonary arteries. As UPM is composed of heterogeneous constituents, the aim of this study was to clarify the class of pollutants responsible for such effect. Extracts (aqueous, acidic or organic) were prepared from SRM1648, an UPM sample collected in St. Louis (MO, USA). The metal composition of extracts as well as endotoxin content was determined. The effects of each extract, metal mixture and endotoxin were evaluated on endothelium-dependent relaxation to acetylcholine (reflecting endothelial NO production) in rat isolated intrapulmonary arteries. Aqueous or organic SRM1648 pretreatment altered acetylcholine-induced relaxation, similar to that induced by native SRM1648. Organic extract induced similar attenuation of acetylcholine relaxation than organic-treated SRM1648, whereas aqueous extract had no effect. Acidic pretreatment, which impoverished metal and endotoxin content of SRM1648, prevented the impairment of acetylcholine-induced relaxation. However, neither the acidic extract enriched in metals, nor a metal mixture representative of SRM1648 content, modified acetylcholine relaxation, while endotoxin impaired it. Polymyxin B, which chelates endotoxin, prevented SRM1648-induced decrease in relaxation to acetylcholine. It is concluded that SRM1648-induced impairment of endothelial NO-dependent relaxation in intrapulmonary arteries unlikely involved a soluble factor released by vascular cells during UPM exposure, but rather an organic extractible and acidic-sensitive constituents of UPM. Endotoxin, but not metals, may be responsible for UPM-induced impairment of endothelial NO-dependent relaxation.
Collapse
Affiliation(s)
- Arnaud Courtois
- Université Bordeaux Segalen, Bordeaux, F-33076, France; Inserm, U1045, Centre de Recherche Cardio-Thoracique, Bordeaux, F-33076, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tablin F, den Hartigh LJ, Aung HH, Lame MW, Kleeman MJ, Ham W, Norris JW, Pombo M, Wilson DW. Seasonal influences on CAPs exposures: differential responses in platelet activation, serum cytokines and xenobiotic gene expression. Inhal Toxicol 2012; 24:506-17. [PMID: 22746400 DOI: 10.3109/08958378.2012.695815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests a role for a systemic pro-coagulant state in the pathogenesis of cardiac dysfunction subsequent to inhalation of airborne particulate matter (PM). We evaluated platelet activation, systemic cytokines and pulmonary gene expression in mice exposed to concentrated ambient particulate matter (CAPs) in the summer of 2008 (S08) and winter of 2009 (W09) from the San Joaquin Valley of California, a region with severe PM pollution episodes. Additionally, we characterized the PM from both exposures including organic compounds, metals, and polycyclic aromatic hydrocarbons. Mice were exposed to an average of 39.01 μg/m(3) of CAPs in the winter and 21.7 μg/m3 CAPs in the summer, in a size range less than 2.5 μm for 6 h/day for 5 days per week for 2 weeks. Platelets were analyzed by flow cytometry for relative size, shape, CD41, P-selectin and lysosomal associated membrane protein-1 (LAMP-1) expression. Platelets from W09 CAPs-exposed animals had a greater response to thrombin stimulation than platelets from S08 CAPs-exposed animals. Serum cytokines were analyzed by bead based immunologic assays. W09 CAPs-exposed mice had elevations in IL-2, MIP-1α, and TNFα. Laser capture microdissection (LCM) of pulmonary vasculature, parenchyma and airways all showed increases in CYP1a1 gene expression. Pulmonary vasculature showed increased expression of ICAM-1 and Nox-2. Our findings demonstrate that W09 CAPs exposure generated a greater systemic pro-inflammatory and pro-coagulant response to inhalation of environmentally derived fine and ultrafine PM. Changes in platelet responsiveness to agonists, seen in both exposures, strongly suggests a role for platelet activation in the cardiovascular and respiratory effects of particulate air pollution.
Collapse
Affiliation(s)
- Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
46
|
VIEIRA RODOLFODEPAULA, TOLEDO ALESSANDRACHOQUETA, SILVA LUCASBOGAZ, ALMEIDA FRANCINEMARIA, DAMACENO-RODRIGUES NILSAREGINA, CALDINI ELIAGARCIA, SANTOS ANGELABATISTAGOMES, RIVERO DOLORESHELENA, HIZUME DEBORAHCAMARGO, LOPES FERNANDADEGOBBITENÓRIOQUIRINOSANTOS, OLIVO CLARICEROSA, CASTRO-FARIA-NETO HUGOCAIRE, MARTINS MILTONARRUDA, SALDIVA PAULOHILÁRIONASCIMENTO, DOLHNIKOFF MARISA. Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution. Med Sci Sports Exerc 2012; 44:1227-34. [PMID: 22297803 DOI: 10.1249/mss.0b013e31824b2877] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
48
|
Why is particulate matter produced by wildfires toxic to lung macrophages? Toxicol Appl Pharmacol 2011; 257:182-8. [PMID: 21945489 DOI: 10.1016/j.taap.2011.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/16/2011] [Accepted: 09/04/2011] [Indexed: 01/21/2023]
Abstract
The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-κB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and "normal" PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin.
Collapse
|
49
|
Steenhof M, Gosens I, Strak M, Godri KJ, Hoek G, Cassee FR, Mudway IS, Kelly FJ, Harrison RM, Lebret E, Brunekreef B, Janssen NAH, Pieters RHH. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential--the RAPTES project. Part Fibre Toxicol 2011; 8:26. [PMID: 21888644 PMCID: PMC3180259 DOI: 10.1186/1743-8977-8-26] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/02/2011] [Indexed: 01/25/2023] Open
Abstract
Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro.
Collapse
Affiliation(s)
- Maaike Steenhof
- Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol 2011; 2011:487074. [PMID: 21860622 PMCID: PMC3155788 DOI: 10.1155/2011/487074] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/10/2011] [Accepted: 06/30/2011] [Indexed: 12/11/2022] Open
Abstract
Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM(2.5), PM < 2.5 μm) and ultrafine (PM(0.1), PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact.
Collapse
Affiliation(s)
- Maura Lodovici
- Department of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|