1
|
Wāng Y. Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. ENVIRONMENT INTERNATIONAL 2025; 195:109193. [PMID: 39721566 DOI: 10.1016/j.envint.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Fine particulate matter (PM2.5) is increasingly recognized for its detrimental effects on human health, with substantial evidence linking exposure to various forms of cell death and dysfunction across multiple organ systems. This review examines key cell death mechanisms triggered by PM2.5, including PANoptosis, necroptosis, autophagy, and ferroptosis, while other forms such as oncosis, paraptosis, and cuprotosis remain unreported in relation to PM2.5 exposure. Mitochondria, endoplasmic reticulum, and lysosomes emerge as pivotal organelles in the disruption of cellular homeostasis, with mitochondrial dysfunction particularly implicated in metabolic dysregulation and the activation of pro-apoptotic pathways. Although PM2.5 primarily affects the nucleus, cytoskeleton, mitochondria, endoplasmic reticulum, and lysosomes, other organelles like ribosomes, Golgi apparatus, and peroxisomes have received limited attention. Interactions between these organelles, such as endoplasmic reticulum-associated mitochondrial membranes, lysosome-associated mitophagy, and mitochondria-nuclei retro-signaling may significantly contribute to the cytotoxic effects of PM2.5. The mechanisms of PM2.5 toxicity, encompassing oxidative stress, inflammatory responses, and metabolic imbalances, are described in detail. Notably, PM2.5 activates the NLRP3 inflammasome, amplifying inflammatory responses and contributing to chronic diseases. Furthermore, PM2.5 exposure disrupts genetic and epigenetic regulation, often resulting in cell cycle arrest and exacerbating cellular damage. The composition, concentration, and seasonal variability of PM2.5 modulate these effects, underscoring the complexity of PM2.5-induced cellular dysfunction. Despite significant advances in understanding these pathways, further research is required to elucidate the long-term effects of chronic PM2.5 exposure, the role of epigenetic regulation, and potential strategies to mitigate its harmful impact on human health.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Zhang J, Chu H, Li R, Liu C. Fine particulate matter and osteoporosis: evidence, mechanisms, and emerging perspectives. Toxicol Sci 2024; 202:157-166. [PMID: 39222007 DOI: 10.1093/toxsci/kfae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Air pollution, particularly fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5), has been recognized for its adverse effects on multiple organs beyond the lungs. Among these, the bone began to garner significant attention. This review covers epidemiological, animal, and cell studies on PM2.5 exposure and bone health as well as studies on PM2.5-induced diseases with skeletal complications. Emerging evidence from epidemiological studies indicates a positive association between PM2.5 exposure and the incidence of osteoporosis and fractures, along with a negative association with bone mineral density. Experimental studies have demonstrated that PM2.5 can disrupt the metabolic balance between osteoclasts and osteoblasts through inflammatory responses, oxidative stress, and endocrine disruption, thereby triggering bone loss and osteoporosis. Additionally, this review proposes a secondary mechanism by which PM2.5 may impair bone homeostasis via pathological alterations in other organs, offering new perspectives on the complex interactions between environmental pollutants and bone health. In conclusion, this contemporary review underscores the often-overlooked risk factors of PM2.5 in terms of its adverse effects on bone and elucidates the mechanisms of both primary and secondary toxicity. Further attention should be given to exploring the molecular mechanisms of PM2.5-induced bone impairment and developing effective intervention strategies.
Collapse
Affiliation(s)
- Jiyang Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Hanshu Chu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang L, Xu F, Yang Y, Yang L, Wu Q, Sun H, An Z, Li J, Wu H, Song J, Wu W. PM 2.5 exposure upregulates pro-inflammatory protein expression in human microglial cells via oxidant stress and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116386. [PMID: 38657455 DOI: 10.1016/j.ecoenv.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Li JL, Tan Y, Wang QL, Li CX, Hong JC, Wang HJ, Wu Y, Ni DC, Peng XW. Mechanism through which the hsa-circ_0000992- hsa- miR- 936-AKT3 regulatory network promotes the PM 2.5-induced inflammatory response in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115778. [PMID: 38147774 DOI: 10.1016/j.ecoenv.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Studies have shown that fine particulate matter (PM2.5) remains a significant problem in developing countries and plays a critical role in the onset and progression of respiratory illnesses. Circular RNAs (circRNAs) are involved in many pathophysiological processes,but their relationship to PM2.5 pollution is largely unexplored. OBJECTIVES To elucidate the functional role of hsa_circ_0000992 in PM2.5-induced inflammation in a human bronchial epithelial cell line (16HBE) and to clarify whether the competing endogenous RNA (ceRNA) mechanism is involved in the interrelationships between hsa_circ_0000992 and hsa-miR-936 and the inflammatory signaling pathways. METHODS Detection of inflammatory factors in 16HBE cells exposed to PM2.5 by RT-qPCR and ELISA.High throughput sequencing and bioinformatics analysis methods were used to screen circRNA.The bioinformatics analysis method western blotting and dual-luciferase reporter gene system were used to verify mechanisms associated with circRNA. RESULTS PM2.5 cause inflammation in the 16HBE cells. High throughput sequencing and RT-qPCR result revealed that the expression of hsa_circ_0000992 was markedly up-regulated in 16HBE exposed to PM2.5. The binding sites between hsa_circ_0000992 and hsa-miR-936 was confirmed by dual-luciferase reporter gene system.Western blotting and RT-qPCR showed that hsa_circ_0000992 can interact with hsa-miR-936 to regulate AKT serine/threonine kinase 3(AKT3),thereby activating the PI3K/AKT pathway and ultimately promoting the expression of interleukin (IL)- 1β and IL-8. CONCLUSION PM2.5 can induce the inflammatory response in 16HBE cells by activating the PI3K/AKT pathway. The expression of hsa_circ_0000992 increased when PM2.5 stimulated 16HBE cells,and the circRNA could then regulate the inflammatory response.Hsa_circ_0000992 regulates the hsa-miR-936/AKT3 axis through the ceRNA mechanism,thereby activating the PI3K/AKT signaling pathway,increasing the expression of cellular inflammatory factors,and promoting PM2.5-induced respiratory inflammation.
Collapse
Affiliation(s)
- Jing Lin Li
- Nanning Center for Disease Control and Prevention, Nanning 530021, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Qiu Ling Wang
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Cai Xia Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jin Chang Hong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hong Jie Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yi Wu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - De Chun Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Xiao Wu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
5
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton KE, Ashwood P. Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. J Neuroinflammation 2023; 20:252. [PMID: 37919762 PMCID: PMC10621097 DOI: 10.1186/s12974-023-02930-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm at an average concentration of 176 ± 45 μg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppressive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA, 01075, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California at Davis, Davis, CA, 95616, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA.
| |
Collapse
|
6
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton K, Ashwood P. Characterizing the Neuroimmune Environment of Offspring in a Novel Model of Maternal Allergic Asthma and Particulate Matter Exposure. RESEARCH SQUARE 2023:rs.3.rs-3140415. [PMID: 37503062 PMCID: PMC10371118 DOI: 10.21203/rs.3.rs-3140415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by the presence of decreased social interactions and an increase in stereotyped and repetitive behaviors. Epidemiology studies suggest that cases of ASD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with ASD. Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders including ASD. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were primed for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA or phosphate buffered saline (PBS) for 1 hour. Following the 1-hour exposure, pregnant females were then exposed to UIS or clean air for 4 hours. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), IL-2, IL-13, and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely interferon gamma (IFNγ) and IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
|
7
|
Mathys T, Souza FTD, Barcellos DDS, Molderez I. The relationship among air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:158933. [PMID: 36179850 PMCID: PMC9514957 DOI: 10.1016/j.scitotenv.2022.158933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/01/2023]
Abstract
In great metropoles, there is a need for a better understanding of the spread of COVID-19 in an outdoor context with environmental parameters. Many studies on this topic have been carried out worldwide. However, there is conflicting evidence regarding the influence of environmental variables on the transmission, hospitalizations and deaths from COVID-19, even though there are plausible scientific explanations that support this, especially air quality and meteorological factors. Different urban contexts, methodological approaches and even the limitations of ecological studies are some possible explanations for this issue. That is why methodological experimentations in different regions of the world are important so that scientific knowledge can advance in this aspect. This research analyses the relationship between air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. We use a data mining approach that is capable of extracting patterns in large databases with diverse taxonomies. Data on air pollution, meteorological, and epidemiological variables were processed in time series for the multivariate analysis and the classification based on association. The environmental variables associated with COVID-19-related deaths, cases and hospitalization were PM2.5, O3, NO2, black carbon, radiation, air pressure, wind speed, dew point, temperature and precipitation. These environmental variables combined with epidemiological factors were able to predict intervals of hospitalization, cases and deaths from COVID-19. These findings confirm the influence of meteorological and air quality variables in the Brussels region on deaths and cases of COVID-19 and can guide public policies and provide useful insights for high-level governmental decision-making concerning COVID-19. However, it is necessary to consider intrinsic elements of this study that may have influenced our results, such as the use of air quality aggregated data, ecological fallacy, focus on acute effects in the time-series study, the underreporting of COVID-19, and the lack of behavioral factors.
Collapse
Affiliation(s)
- Timo Mathys
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| | - Fábio Teodoro de Souza
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium; Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Ingrid Molderez
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| |
Collapse
|
8
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
9
|
Gu Y, Xu H, Feng R, Cheng Y, Han B, Ho KF, Wang Z, He Y, Qu L, Ho SSH, Sun J, Shen Z, Cao J. Associations of personal exposure to domestic heating and cooking fuel emissions and epidemiological effects on rural residents in the Fenwei Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159217. [PMID: 36206913 DOI: 10.1016/j.scitotenv.2022.159217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Solid fuel combustion for domestic heating in northern China in the wintertime is of great environmental and health concern. This study assesses personal exposure to particulate matter with different aerodynamic diameters and multiple gaseous pollutants from 123 rural residents in Yuncheng, the Fenwei Plain. The subjects are divided into groups based on the unique energy source applied, including biomass, coal, and electricity/no heating activities. The health effects of the exposures are expressed with four urinary biomarkers. The personal exposure levels to three different aerodynamic particle sizes (i.e., PM10, PM2.5, and PM1) of the electricity/no heating group are 5.1 % -12 % lower than those of the coal group. In addition, the exposure levels are 25 %-40 % lower for carbon monoxide (CO) and 10.8 %-20.3 % lower for ozone (O3) in the electricity/no heating group than the other two fuel groups. C-reactive protein (CRP) in the urine of the participants in biomass and coal groups is significantly higher than that in the electricity/no heating group, consistent with the observations on other biomarkers. Increases in 8-hydroxy-2 deoxyguanosine (8-OHdG), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) are observed for the exposures to higher concentrations of air pollutants. For instance, PMs and nitrogen dioxide (NO2) show significant impacts on positive correlations with 8-OHdG and IL-8, while O3 positively correlates with CRP. PM1 exhibits higher effects on the biomarkers than the gaseous pollutants, especially on VEGF and IL-8. The study indicates that excessive use of traditional domestic solid fuels could pose severe health effects on rural residents. The promotion of using clean energy is urgently needed in the rural areas of northern China.
Collapse
Affiliation(s)
- Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin Fai Ho
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexuan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yansu He
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
10
|
Zahedi A, Hassanvand MS, Jaafarzadeh N, Ghadiri A, Shamsipour M, Dehcheshmeh MG. Increased allergic and asthmatic risks in children residing in industrial areas by surveying the pre-inflammatory (IgE, IL-4 and IL-13) biomarkers. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:609-615. [PMID: 36406593 PMCID: PMC9672297 DOI: 10.1007/s40201-021-00646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/16/2023]
Abstract
Toxic metal(loid)s can lead to high damages on human. This work was conducted to investigate the levels of metal(loid)s in PM2.5 and a total of 123 male children's (aged 6-9 years) blood chosen from different areas in Ahvaz and their association with the pre-inflammatory (Immunoglobulin E and cytokines: IgE, IL-4 and IL-13) responses in serum cells. Six metal(loid)s (arsenic, cadmium, chromium, mercury, nickel and lead) in three regions including industrial (Padad), vehicle traffic (Golestan) and reference (Kianpars) areas were studied. Results showed the concentrations of As, Cr, Cd, Ni and Hg in the ambient air of industrial area (Padad) (P < 0.001), and Pb in vehicle traffic area (Golestan) were higher (p < 0.001). Moreover, the mean levels of IgE (mean = 146.44 pg/200landa, P < 0.003), IL-4 (mean = 548.23 pg/200landa, P < 0.001) and IL-13 (mean = 53.21 pg/200landa, P < 0.001) in Padad were higher than Golestan and Kianpars. Our results suggest that living in industrial areas leads to accelerated synthesis of IgE, IL-4 and IL-13 in blood. The spatial distribution of children's serum IgE, IL-4 and IL-13 concentrations showed an abnormal increase of 240 to 400 pg/200landa for IgE, 950 to 1400 pg/200landa for IL-4 and 90 to 128 pg/200landa for IL-13. Our results indicate children in the industrial area are prone to asthma, allergy, miRNA mutation, and other chronic diseases.
Collapse
Affiliation(s)
- Amir Zahedi
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Sadegh Hassanvand
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61355-179 Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Pardo M, Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Schneider E, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Karg E, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Shalit T, Gröger T, Rüger CP, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Zimmermann R, Rudich Y. Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. ENVIRONMENT INTERNATIONAL 2022; 166:107366. [PMID: 35763991 DOI: 10.1016/j.envint.2022.107366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with β-pinene SOA (SOAβPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAβPin-SP mostly contained oxygenated aliphatic compounds from β-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAβPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the β-pinene-derived SOA.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany; Institute for Environmental Studies, Faculty of Science, Charles University, Albertov 6, CZE-12800 Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Daniela Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Tamara Kanashova
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| |
Collapse
|
12
|
Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118767. [PMID: 34974087 DOI: 10.1016/j.envpol.2021.118767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Incomplete combustion processes in diesel engines produce particulate matter (PM) that significantly contributes to air pollution. Currently, there remains a knowledge gap in relation to the physical and chemical characteristics and also the biological reactivity of the PM emitted from old- and new-generation diesel vehicles. In this study, the emissions from a Euro 3 diesel vehicle were compared to those from a Euro 6 car during the regeneration of a diesel particulate filter (DPF). Different driving cycles were used to collect two types of diesel exhaust particles (DEPs). The particle size distribution was monitored using an engine exhaust particle sizer spectrometer and an electrical low-pressure impactor. Although the Euro 6 vehicle emitted particulates only during DPF regeneration that primarily occurs for a few minutes at high speeds, such emissions are characterized by a higher number of ultrafine particles (<0.1 μm) compared to those from the Euro 3 diesel vehicle. The emitted particles possess different characteristics. For example, Euro 6 DEPs exhibit a lower PAH content than do Euro 3 samples; however, they are enriched in metals that were poorly detected or undetected in Euro 3 emissions. The biological effects of the two DEPs were investigated in human bronchial BEAS-2B cells exposed to 50 μg/mL of PM (corresponding to 5.2 μg/cm2), and the results revealed that Euro 3 DEPs activated the typical inflammatory and pro-carcinogenic pathways induced by combustion-derived particles, while Euro 6 DEPs were less effective in regard to activating such biological responses. Although further investigations are required, it is evident that the different in vitro effects elicited by Euro 3 and Euro 6 DEPs can be correlated with the variable chemical compositions (metals and PAHs) of the emitted particles that play a pivotal role in the inflammatory and carcinogenic potential of airborne PM.
Collapse
Affiliation(s)
- Alessandra Zerboni
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Tommaso Rossi
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Cristiana Rizzi
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Marco Priola
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Simone Casadei
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Paride Mantecca
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| |
Collapse
|
13
|
Ji X, Li C, Zhu X, Yu W, Cai Y, Zhu X, Lu L, Qian Q, Hu Y, Zhu X, Wang H. Methylcobalamin Alleviates Neuronal Apoptosis and Cognitive Decline Induced by PM2.5 Exposure in Mice. J Alzheimers Dis 2022; 86:1783-1796. [DOI: 10.3233/jad-215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Fine particulate matter (particulate matter 2.5, PM2.5) is considered one of the harmful factors to neuronal functions. Apoptosis is one of the mechanisms of neuronal injury induced by PM2.5. Methylcobalamine (MeCbl) has been shown to have anti-apoptotic and neuroprotective effects. Objective: The current work tried to explore the neuroprotective effects and mechanisms that MeCbl protects mice against cognitive impairment and neuronal apoptosis induced by chronic real-time PM2.5 exposure. Methods: Twenty-four 6-week-old male C57BL/6 mice were exposed to ambient PM2.5 and fed with MeCbl for 6 months. Morris water maze was used to evaluate the changes of spatial learning and memory ability in mice. PC12 cells and primary hippocampal neurons were applied as the in vitro model. Cell viability, cellular reactive oxygen species (ROS) and the expressions of apoptosis-related proteins were examined. And cells were stained with JC-1 and mitochondrial membrane potential was evaluated. Results: In C57BL/6 mice, MeCbl supplementation alleviated cognitive impairment and apoptosis-related protein expression induced by PM2.5 exposure. In in vitro cell model, MeCbl supplementation could effectively rescued the downregulation of cell viability induced by PM2.5, and inhibited the increased levels of ROS, cellular apoptosis, and the expressions of apoptosis related proteins related to PM2.5 treatment, which may be associated with modulation of mitochondrial function. Conclusion: MeCbl treatment alleviated cognitive impairment and neuronal apoptosis induced by PM2.5 both in vivo and in vitro. The mechanism for the neuroprotective effects of MeCbl may at least partially dependent on the regulation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Xintong Ji
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Chenxia Li
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xiaozheng Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Wenlei Yu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yanyu Cai
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xinyi Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Linjie Lu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Qiwei Qian
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| |
Collapse
|
14
|
Rahmatinia T, Kermani M, Farzadkia M, Jonidi Jafari A, Delbandi AA, Rashidi N, Fanaei F. The effect of PM 2.5-related hazards on biomarkers of bronchial epithelial cells (A549) inflammation in Karaj and Fardis cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2172-2182. [PMID: 34363174 DOI: 10.1007/s11356-021-15723-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Fine particles (especially PM2.5 particles) in ambient air can cause irreversible effects on human health. In the present study, seasonal variations in toxicity PM2.5 (cell viability and release of pro-inflammatory cytokines) were exposed human lung cells (A549) to concentrations of PM2.5 samples in summer (sPM2.5) and winter (wPM2.5) seasons. Cells were separately exposed to three concentrations of PM2.5 (25, 50, and 100 μg/mL) and three times (12 h, 1 and 2 days). We evaluated cell viability by MTT assay [3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide] and liberation of pro-inflammatory cytokines (interleukin-6 and interleukin-8) by the ELISA method. The toxicological results of this study showed that increasing the concentration of PM2.5 particulates and contact time with it reduces cell viability and increases inflammatory responses. Seasonal cytotoxicity of PM2.5 particles in high-traffic areas at summer season compared to winter season was lower. The lowest percent of viability at 2 days of exposure and 100 μg/mL exposure in the winter sample was observed. Also, PM2.5 particles were influential in the amount of interleukins 8 and 6. The average release level of IL-6 and IL-8 in the cold season (winter) and the enormous exposure time and concentrations (2 days-100 μg/mL) was much higher than in the hot season (summer). These values were twice as high for winter PM2.5 samples as for summer samples. The compounds in PM2.5 at different seasons can cause some biological effects. The samples' chemical characteristics in two seasons displayed that the PMs were diverse in chemical properties. In general, heavy metals and polycyclic aromatic hydrocarbons were more in the winter samples. However, the samples of wPM2.5 had a lower mass quota of metals such as aluminum, iron, copper, zinc, and magnesium. Concentrations of chromium, cadmium, arsenic, mercury, nickel, and lead were more significant in the sample of wPM2.5.
Collapse
Affiliation(s)
- Tahereh Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zahedi A, Hassanvand MS, Jaafarzadeh N, Ghadiri A, Shamsipour M, Dehcheshmeh MG. Effect of ambient air PM 2.5-bound heavy metals on blood metal(loid)s and children's asthma and allergy pro-inflammatory (IgE, IL-4 and IL-13) biomarkers. J Trace Elem Med Biol 2021; 68:126826. [PMID: 34371327 DOI: 10.1016/j.jtemb.2021.126826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigated the concentrations of metals in fine particulate matter PM2.5 in the outdoor air around the home sites of 123 male children from Ahvaz, average age 7.56, along with their blood samples to measure pro-inflammatory responses (Immunoglobulin E and cytokines: IgE, IL-4 and IL-13). METHODS We measured 6 metals (As, Cd, Cr, Hg, Ni and Pb) in three Ahvaz's regions including industrial (Padad), vehicle traffic (Golestan) and control (Kianpars). RESULTS The higher concentrations of metals in the Padad as the industrial ambient air i.e., arsenic, cadmium, chromium, mercury and nickel coincided with the higher concentrations of those metals in exposed children (P < 0.05) versus the controls. Children in Golestan, the high traffic air pollution area had the highest lead concentrations (p < 0.05). Also a significant association was shown in Padad between blood arsenic and IgE (β = 26.59, P < 0.001), IL-4 (β = 172.1, P < 0.001) and IL-13 (β = 14.84, P < 0.001), blood chromium and IgE (β = 10.38, P < 0.001), IL-4 (β = 75.27, P < 0.001) and IL-13 (β = 5.27, P < 0.001) and blood mercury and IgE (β = 13.11, P < 0.001), IL-4 (β = 108.09, P < 0.001) and IL-13 (β = 7.96, P < 0.001) and blood lead and IgE(β = 0.92, P = 0.025), IL-4(β = 7.16, P < 0.001) and IL-13(β = 0.58, P = 0.003). However, no significant relation was found for Cadmium, Nickel in blood with IgE, IL-4 and IL-13 levels. Moreover, children from industrial areas showed significantly higher concentrations of IgE (mean = 146.44 pg/200landa, P < 0.001), IL-4 (mean = 548.23 pg/200landa, P < 0.001) and IL-13 (mean = 52.93 pg/200landa, P < 0.001) versus Golestan and Kianpars. CONCLUSION Children residing in an industrial area with high concentrations of metals in PM2.5 had high metals in blood and high production of IgE, IL-4 and IL-13, reflecting an immune dysregulation and brisk inflammatory responses.
Collapse
Affiliation(s)
- Amir Zahedi
- Student Research Committee, Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Hassanvand
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61355-179, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ata Ghadiri
- Department of Immunology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Hu L, Deng WJ, Ying GG, Hong H. Environmental perspective of COVID-19: Atmospheric and wastewater environment in relation to pandemic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112297. [PMID: 33991934 PMCID: PMC8086803 DOI: 10.1016/j.ecoenv.2021.112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 05/18/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major challenge to health systems worldwide. Recently, numbers of epidemiological studies have illustrated that climate conditions and air pollutants are associated with the COVID-19 confirmed cases worldwide. Researches also suggested that the SARS-CoV-2 could be detected in fecal and wastewater samples. These findings provided the possibility of preventing and controlling the COVID-19 pandemic from an environmental perspective. With this review, the main purpose is to summarize the relationship between the atmospheric and wastewater environment and COVID-19. In terms of the atmospheric environment, the evidence of the relationship between atmospheric environment (climate factors and air pollution) and COVID-19 is growing, but currently available data and results are various. It is necessary to comprehensively analyze their associations to provide constructive suggestions in responding to the pandemic. Recently, large numbers of studies have shown the widespread presence of this virus in wastewater and the feasibility of wastewater surveillance when the pandemic is ongoing. Therefore, there is an urgent need to clarify the occurrence and implication of viruses in wastewater and to understand the potential of wastewater-based epidemiology of pandemic. Overall, environmental perspective-based COVID-19 studies can provide new insight into pandemic prevention and control, and minimizes the economic cost for COVID-19 in areas with a large outbreak or a low economic level.
Collapse
Affiliation(s)
- Lixin Hu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Boudjema J, Lima B, Grare C, Alleman LY, Rousset D, Perdrix E, Achour D, Anthérieu S, Platel A, Nesslany F, Leroyer A, Nisse C, Lo Guidice JM, Garçon G. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NANOIMPACT 2021; 23:100346. [PMID: 35559847 DOI: 10.1016/j.impact.2021.100346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.
Collapse
Affiliation(s)
- J Boudjema
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Action Santé Travail, Aix-Noulette, France
| | - B Lima
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Y Alleman
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Rousset
- Institut National de Recherche et de Sécurité (INRS), Department of Pollutant Metrology, 54500 Vandœuvre-lès-Nancy, France
| | - E Perdrix
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - S Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - F Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Leroyer
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Nisse
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - J-M Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
18
|
Niu X, Jones T, BéruBé K, Chuang HC, Sun J, Ho KF. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144391. [PMID: 33429274 DOI: 10.1016/j.scitotenv.2020.144391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Indoor air pollution sources with emissions of fine particles (PM2.5), including environmental tobacco smoke (ETS) and incense smoke (IS) deteriorate indoor air quality and may cause respiratory diseases in humans. This study characterized the emission factors (EFs) of five types of tobacco and incense in Hong Kong using an environmental chamber. Human alveolar epithelial cells (A549) were exposed to PM2.5 collected from different indoor sources to determine their cytotoxicity. The PM2.5 EF of ETS (109.7±36.5 mg/g) was higher than IS (97.1±87.3 mg/g). The EFs of total polycyclic aromatic hydrocarbons (PAHs) and carbonyls for IS were higher than ETS, and these two combustion sources showed similar distributions of individual PAHs and carbonyls. Oxidative damage and inflammatory responses (i.e. DNA damage, 8-hydroxy-desoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6)) of A549 cells was triggered by exposure to PM2.5 generated from ETS and IS. Different indoor sources showed different responses to oxidative stress and inflammations due to the accumulation effects of mixed organic compounds. High molecular weight PAHs from incense combustion showed higher correlations with DNA damage markers, and most of the PAHs from indoor sources demonstrated significant correlations with inflammation. Exposure to anthropogenic produced combustion emissions such as ETS and IS results in significant risks (e.g. lung cancer) to the alveolar epithelium within the distal human respiratory tract, of which incense emissions posed a higher cytotoxicity.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tim Jones
- School of Earth and Ocean Sciences, Cardiff University, Museum Avenue, Cardiff CF10 3YE, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Feng R, Xu H, He K, Wang Z, Han B, Lei R, Ho KF, Niu X, Sun J, Zhang B, Liu P, Shen Z. Effects of domestic solid fuel combustion emissions on the biomarkers of homemakers in rural areas of the Fenwei Plain, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112104. [PMID: 33677381 DOI: 10.1016/j.ecoenv.2021.112104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The health effects of heavy solid fuel use in winter in rural China are of concern. The effects of air pollution resulting from domestic solid fuel combustion in rural households on rural homemakers' biomarkers were revealed in this study. METHODS In total, 75 female homemakers from rural areas of Guanzhong Basin, the Fenwei Plain, People's Republic of China, were randomly selected and divided into three groups (biomass users, coal users, and nonusers of solid fuel user [control group]). The differences in biological indicators, including 8-hydrox-2'-deoxyguanosine (8-OHdG), interlukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in urine samples as well as blood pressure (BP, including systolic BP [SBP] and diastolic BP [DBP]) and heart rate (HR) among the groups in winter and summer were investigated using statistical analysis. RESULTS IL-6, 8-OHdG, HR, SBP, and DBP were significantly higher in winter than in summer (P < 0.05) owing to the poor air quality resulted from the excessive use of solid fuels in winter. Significant seasonal differences in 8-OHdG were observed for both coal and biomass users. After the influence of confounders was removed, only IL-6 levels in the urine of solid fuel users were significantly higher than that of the control group. CONCLUSIONS IL-6 is a sensitive biomarker representing inflammatory responses to particulate matter emitted through household solid fuel combustion. Locally, excessive use of solid fuels in winter posed serious PM2.5 pollution in this area and adverse effects on inflammatory biomarkers in these rural homemakers and induced DNA damage related to oxidative stress.
Collapse
Affiliation(s)
- Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Kailai He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zexuan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ronghui Lei
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Kin Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Pingping Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Ain NU, Qamar SUR. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 2021; 21:505-516. [PMID: 33886046 DOI: 10.1007/s12012-021-09652-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
Collapse
Affiliation(s)
- Noor Ul Ain
- Departmetnt of Environmental Sciences, Fatima Jinnah Women University, The Mall Road, Kachari Chowk, Rawalpindi, 46000, Pakistan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Safi Ur Rehman Qamar
- Integrated Genomics, Cellular, Developmental, and Biotechnology Laboratory (IGCDBL), University of Agriculture, Faisalabad, Punjab, 38000, Pakistan.
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
21
|
Ibrahim MA, Ramadan HH, Mohammed RN. Evidence that Ginkgo Biloba could use in the influenza and coronavirus COVID-19 infections. J Basic Clin Physiol Pharmacol 2021; 32:131-143. [PMID: 33594843 DOI: 10.1515/jbcpp-2020-0310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/02/2021] [Indexed: 12/28/2022]
Abstract
Coronavirus COVID-19 pandemic invades the world. Public health evaluates the incidence of infections and death, which should be reduced and need desperately quarantines for infected individuals. This article review refers to the roles of Ginkgo Biloba to reduce the risk of infection in the respiratory tract, the details on the epidemiology of corona COVID-19 and influenza, and it highlights how the Ginko Biloba could have been used as a novel treatment.Ginkgo Biloba can reduce the risk of infection by several mechanisms; these mechanisms involve Ginkgo Biloba contains quercetin and other constituents, which have anti-inflammatory and immune modulator effects by reducing pro-inflammatory cytokines concentrations. Cytokines cause inflammation which have been induced the injuries in lung lining.Some observational studies confirmed that Ginkgo Biloba reduced the risk of asthma, sepsis and another respiratory disease as well as it reduced the risk of cigarette smoking on respiratory symptoms. While other evidences suggested the characters of Ginkgo Biloba as an antivirus agent through several mechanisms. Ginkgolic acid (GA) can inhibit the fusion and synthesis of viral proteins, thus, it inhibit the Herpes Simplex Virus type1 (HSV-1), genome replication in Human Cytomegalovirus (HCMV) and the infections of the Zika Virus (ZIKV). Also, it inhibits the wide spectrum of fusion by inhibiting the three types of proteins that have been induced fusion as (Influenza A Virus [IAV], Epstein Barr Virus [EBV], HIV and Ebola Virus [EBOV]).The secondary mechanism of GA targeting inhibition of the DNA and protein synthesis in virus, greatly have been related to its strong effects, even afterward the beginning of the infection, therefore, it potentially treats the acute viral contaminations like (Measles and Coronavirus COVID-19). Additionally, it has been used topically as an effective agent on vigorous lesions including (varicella-zoster virus [VZV], HSV-1 and HSV-2). Ginkgo Biloba may be useful for treating the infected people with coronavirus COVID-19 through its beneficial effect. To assess those recommendations should be conducted with random control trials and extensive population studies.
Collapse
Affiliation(s)
- Manal A Ibrahim
- Pharmacology and Toxicology Department, Pharmacy College, University of Basra, Basrah, Iraq
| | - Hanan H Ramadan
- Clinical Biochemistry Department, Pharmacy College, University of Basra, Basrah, Iraq
| | - Rasha N Mohammed
- Pharmacology and Toxicology Department, Pharmacy College, University of Basra, Basrah, Iraq
| |
Collapse
|
22
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
23
|
Das A, Habib G, Vivekanandan P, Kumar A. Reactive oxygen species production and inflammatory effects of ambient PM 2.5 -associated metals on human lung epithelial A549 cells "one year-long study": The Delhi chapter. CHEMOSPHERE 2021; 262:128305. [PMID: 33182158 DOI: 10.1016/j.chemosphere.2020.128305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The fine particulate matter (PM2.5) was collected at academic campus of Indian Institute of Technology, Delhi, India from January-December 2017. The PM2.5 samples were analysed for carcinogenic (Cd, Cr, As, Ni, and Pb) and non-carcinogenic (V, Cu, Zn, Fe) trace metals and their elicited effects on carcinoma epithelial cell line A549. Toxicological testing was done with ELISA kit. Same analyses were repeated for standard reference material (NIST-1648a) represents urban particulate matter. The student-t test and spearman correlation were used for data analysis. The seasonality in PM2.5 mass concentration and chemical composition showed effect on biological outcomes. The PM2.5 in post-monsoon and winter had higher amount of trace metals compared to mass collected in pre-monsoon and monsoon. Following the trend in PM mass concentration significantly (p < 0.5) lower cell viability was observed in post-monsoon and winter compared to other two seasons. NIST UPM 1648(a) samples always had higher cytotoxicity compared to ambient PM2.5 Delhi sample. Strong association of Chromium, Nickel, Cadmium, and Zinc was observed with cell viability and reactive oxygen species (ROS) production. In winter IL-6, IL-8 production were 2.8 and 3 times higher than values observed in post-monsoon and 53 and 9 times higher than control. In winter season trace metals As, Cu, Fe, in pre-monsoon Cr, Ni, As, Pb, V, and Fe, in post-monsoon Cd and V strongly correlated with ROS generation. ROS production in winter and pre-monsoon seasons found to be 2.6 and 1.3 times higher than extremely polluted post-monsoon season which had 2 to 3 times higher PM2.5 concentration compared to winter and pre-monsoon. The result clearly indicated that the presence of Fe in winter and pre-monsoon seasons catalysed the ROS production, probably OH˙ radical caused high cytokines production which influenced the cell viability reduction, while in post-monsoon PM majorly composed of Pb, As, Fe and Cu and affected by photochemical smog formation showed significant association between ROS production with cell viability. Overall, in Delhi most toxic seasons for respiratory system are winter and post-monsoon and safest season is monsoon.
Collapse
Affiliation(s)
- Ananya Das
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| | - Gazala Habib
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
24
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139825. [PMID: 32512362 PMCID: PMC7265857 DOI: 10.1016/j.scitotenv.2020.139825] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 04/13/2023]
Abstract
The novel coronavirus disease (COVID-19) is a highly pathogenic, transmittable and invasive pneumococcal disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in December 2019 and January 2020 in Wuhan city, Hubei province, China and fast spread later on the middle of February 2020 in the Northern part of Italy and Europe. This study investigates the correlation between the degree of accelerated diffusion and lethality of COVID-19 and the surface air pollution in Milan metropolitan area, Lombardy region, Italy. Daily average concentrations of inhalable particulate matter (PM) in two size fractions PM2.5, PM10 and maxima PM10 ground level atmospheric pollutants together air quality and climate variables (daily average temperature, relative humidity, wind speed, atmospheric pressure field and Planetary Boundary Layer-PBL height) collected during 1 January-30 April 2020 were analyzed. In spite of being considered primarily transmitted by indoor bioaerosols droplets and infected surfaces, or direct human-to-human personal contacts, it seems that high levels of urban air pollution, weather and specific climate conditions have a significant impact on the increased rates of confirmed COVID-19 Total number, Daily New and Total Deaths cases, possible attributed not only to indoor but also to outdoor airborne bioaerosols distribution. Our analysis demonstrates the strong influence of daily averaged ground levels of particulate matter concentrations, positively associated with average surface air temperature and inversely related to air relative humidity on COVID-19 cases outbreak in Milan. Being a novel pandemic coronavirus (SARS-CoV-2) version, COVID-19 might be ongoing during summer conditions associated with higher temperatures and low humidity levels. Presently is not clear if this protein "spike" of the new coronavirus COVID-19 is involved through attachment mechanisms on indoor or outdoor airborne aerosols in the infectious agent transmission from a reservoir to a susceptible host in some agglomerated urban areas like Milan is.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| |
Collapse
|
25
|
Al Housseiny H, Singh M, Emile S, Nicoleau M, Wal RLV, Silveyra P. Identification of Toxicity Parameters Associated with Combustion Produced Soot Surface Chemistry and Particle Structure by in Vitro Assays. Biomedicines 2020; 8:E345. [PMID: 32932874 PMCID: PMC7555766 DOI: 10.3390/biomedicines8090345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
Air pollution has become the world's single biggest environmental health risk of the past decade, causing millions of yearly deaths worldwide. One of the dominant air pollutants is fine particulate matter (PM2.5), which is a product of combustion. Exposure to PM2.5 has been associated with decreased lung function, impaired immunity, and exacerbations of lung disease. Accumulating evidence suggests that many of the adverse health effects of PM2.5 exposure are associated with lung inflammation and oxidative stress. While the physical structure and surface chemistry of PM2.5 are surrogate measures of particle oxidative potential, little is known about their contributions to negative health effects. In this study, we used functionalized carbon black particles as surrogates for atmospherically aged combustion-formed soot to assess the effects of PM2.5 surface chemistry in lung cells. We exposed the BEAS-2B lung epithelial cell line to different soot at a range of concentrations and assessed cell viability, inflammation, and oxidative stress. Our results indicate that exposure to soot with varying particle surface composition results in differential cell viability rates, the expression of pro-inflammatory and oxidative stress genes, and protein carbonylation. We conclude that particle surface chemistry, specifically oxygen content, in soot modulates lung cell inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Heba Al Housseiny
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Madhu Singh
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16801, USA; (M.S.); (R.L.V.W.)
| | - Shaneeka Emile
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Marvin Nicoleau
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Randy L. Vander Wal
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16801, USA; (M.S.); (R.L.V.W.)
- EMS Energy Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Patricia Silveyra
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
26
|
Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114732. [PMID: 32387671 PMCID: PMC7198142 DOI: 10.1016/j.envpol.2020.114732] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 05/18/2023]
Abstract
After the initial outbreak in China, the diffusion in Italy of SARS-CoV-2 is exhibiting a clear regional trend with more elevated frequency and severity of cases in Northern areas. Among multiple factors possibly involved in such geographical differences, a role has been hypothesized for atmospheric pollution. We provide additional evidence on the possible influence of air quality, particularly in terms of chronicity of exposure on the spread viral infection in Italian regions. Actual data on Covid-19 outbreak in Italian provinces and corresponding long-term air quality evaluations, were obtained from Italian and European agencies, elaborated and tested for possible interactions. Our elaborations reveal that, beside concentrations, the chronicity of exposure may influence the anomalous variability of SARS-CoV-2 in Italy. Data on distribution of atmospheric pollutants (NO2, O3, PM2.5 and PM10) in Italian regions during the last 4 years, days exceeding regulatory limits, and years of the last decade (2010-2019) in which the limits have been exceeded for at least 35 days, highlight that Northern Italy has been constantly exposed to chronic air pollution. Long-term air-quality data significantly correlated with cases of Covid-19 in up to 71 Italian provinces (updated April 27, 2020) providing further evidence that chronic exposure to atmospheric contamination may represent a favourable context for the spread of the virus. Pro-inflammatory responses and high incidence of respiratory and cardiac affections are well known, while the capability of this coronavirus to bind particulate matters remains to be established. Atmospheric and environmental pollution should be considered as part of an integrated approach for sustainable development, human health protection and prevention of epidemic spreads but in a long-term and chronic perspective, since adoption of mitigation actions during a viral outbreak could be of limited utility.
Collapse
Affiliation(s)
- Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (Disva), Università Politecnica delle Marche (Univpm), Via Brecce Bianche, 60100, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (Disva), Università Politecnica delle Marche (Univpm), Via Brecce Bianche, 60100, Ancona, Italy.
| |
Collapse
|
27
|
Wang C, Meng X, Meng M, Shi M, Sun W, Li X, Zhang X, Liu R, Fu Y, Song L. Oxidative stress activates the TRPM2-Ca 2+-NLRP3 axis to promote PM 2.5-induced lung injury of mice. Biomed Pharmacother 2020; 130:110481. [PMID: 32674019 DOI: 10.1016/j.biopha.2020.110481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
PM2.5, a main particulate air pollutant, poses a serious hazard to human health. The exposure to PM2.5 increases mortality and morbidity of many respiratory diseases such as asthma, chronic obstructive pulmonary diseases and even lung cancer. The contribution of reactive oxygen species (ROS) in the PM2.5-induced acute lung injury process was confirmed in our previous research, but the molecular mechanism based for it remains unclarified. In this research, ROS-induced lung injury after exposure to PM2.5 was explored in vivo and in vitro. The in vivo study indicated that N-acetyl-L-cysteine (NAC) could attenuate the accumulation of inflammatory cells, the thickening of alveolar wall and the degree of lung injury. Furthermore, we found ROS could regulate the intracellular Ca2+ level, expression of the Transient Receptor Potential Melastatin 2 (TRPM2), NLRP3 and its downstream inflammatory factors in vivo. In vitro experiments with A549 cells and primary type II alveolar epithelium cells (SD cells) showed that ROS induced by PM2.5 exposure could mediate intracellular Ca2+ mobilization via TRPM2, with a subsequent activation of NLRP3. In our present study, we demonstrated the contribution of the ROS-TRPM2-Ca2+-NLRP3 pathway in PM2.5-induced acute lung injury and offered a potential therapeutical target valid for related pathology.
Collapse
Affiliation(s)
- Chunyuan Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Min Shi
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Xiaojing Li
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Ruihao Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Ying Fu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China.
| |
Collapse
|
28
|
Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114465. [PMID: 32268945 PMCID: PMC7128509 DOI: 10.1016/j.envpol.2020.114465] [Citation(s) in RCA: 517] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 05/10/2023]
Abstract
This paper investigates the correlation between the high level of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) lethality and the atmospheric pollution in Northern Italy. Indeed, Lombardy and Emilia Romagna are Italian regions with both the highest level of virus lethality in the world and one of Europe's most polluted area. Based on this correlation, this paper analyzes the possible link between pollution and the development of acute respiratory distress syndrome and eventually death. We provide evidence that people living in an area with high levels of pollutant are more prone to develop chronic respiratory conditions and suitable to any infective agent. Moreover, a prolonged exposure to air pollution leads to a chronic inflammatory stimulus, even in young and healthy subjects. We conclude that the high level of pollution in Northern Italy should be considered an additional co-factor of the high level of lethality recorded in that area.
Collapse
Affiliation(s)
- Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, viale Mario Bracci 1, Siena, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, viale Mario Bracci 1, Siena, Italy
| | - Dario Caro
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark.
| |
Collapse
|
29
|
Menendez JA. Metformin and SARS-CoV-2: mechanistic lessons on air pollution to weather the cytokine/thrombotic storm in COVID-19. Aging (Albany NY) 2020; 12:8760-8765. [PMID: 32463794 PMCID: PMC7288975 DOI: 10.18632/aging.103347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Pathological signaling in the lung induced by particulate matter (PM) air pollution partially overlaps with that provoked by COVID-19, the pandemic disease caused by infection with the novel coronavirus SARS-CoV-2. Metformin is capable of suppressing one of the molecular triggers of the proinflammatory and prothrombotic processes of urban PM air pollution, namely the mitochondrial ROS/Ca2+ release-activated Ca2+ channels (CRAC)/IL-6 cascade. Given the linkage between mitochondrial functionality, ion channels, and inflamm-aging, the ability of metformin to target mitochondrial electron transport and prevent ROS/CRAC-mediated IL-6 release might illuminate new therapeutic avenues to quell the raging of the cytokine and thrombotic-like storms that are the leading causes of COVID-19 morbidity and mortality in older people. The incorporation of infection rates, severity and lethality of SARS-CoV-2 infections as new outcomes of metformin usage in elderly populations at risk of developing severe COVID-19, together with the assessment of bronchial/serological titers of inflammatory cytokines and D-dimers, could provide a novel mechanistic basis for the consideration of metformin as a therapeutic strategy against the inflammatory and thrombotic states underlying the gerolavic traits of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
30
|
Gallego-Hernández AL, Meza-Figueroa D, Tanori J, Acosta-Elías M, González-Grijalva B, Maldonado-Escalante JF, Rochín-Wong S, Soto-Puebla D, Navarro-Espinoza S, Ochoa-Contreras R, Pedroza-Montero M. Identification of inhalable rutile and polycyclic aromatic hydrocarbons (PAHs) nanoparticles in the atmospheric dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114006. [PMID: 32000024 DOI: 10.1016/j.envpol.2020.114006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Addressing the presence of rutile nanoparticles (NPs) in the air is a work in progress, and the development of methodologies for the identification of NPs in atmospheric dust is essential for the assessment of its toxicological effects. To address this issue, we selected the fast growing desertic city of Hermosillo in northern Mexico. Road dust (n = 266) and soils (n = 10) were sampled and bulk Ti-contents were tested by portable X-ray fluorescence. NPs were extracted from atmospheric dust by PM1.0-PTFE filters and further characterized by Confocal Raman Microscopy, Energy-dispersive X-ray spectroscopy (EDS) coupled to Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Results showed (i) the average concentration of Ti in road dust (3447 mg kg-1) was similar to natural values and worldwide urban dusts; (ii) the bulk geochemistry was not satisfactory for Ti-NPs identification; (iii) 76% of the total extracted PM1.0 sample corresponded to NPs; (iv) mono-microaggregates of rutile NPs were identified; (v) ubiquitous polycyclic aromatic hydrocarbons (PAHs) were linked to NPs. The genotoxicity of rutile and PAHs, in connection with NPs content, make us aware of a crucial emerging environmental issue of significant health concern, justifying further research in this field.
Collapse
Affiliation(s)
- Ana L Gallego-Hernández
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Judith Tanori
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Belem González-Grijalva
- Posgrado en Ciencias de la Tierra, Instituto de Geología, Universidad Nacional Autónoma de México, Mexico
| | | | - Sarai Rochín-Wong
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Diego Soto-Puebla
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Sofia Navarro-Espinoza
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo, 83000, Mexico
| | | | - Martín Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, 83000, Sonora, Mexico.
| |
Collapse
|
31
|
Wang J, Niu X, Sun J, Zhang Y, Zhang T, Shen Z, Zhang Q, Xu H, Li X, Zhang R. Source profiles of PM 2.5 emitted from four typical open burning sources and its cytotoxicity to vascular smooth muscle cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136949. [PMID: 32041051 DOI: 10.1016/j.scitotenv.2020.136949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the chemical profiles of PM2.5 from open burning of electronic waste (E-waste), household garbage, wheat residue, and outdoor barbeque in a combustion chamber. Carbonaceous fractions, including polycyclic aromatic hydrocarbons (PAHs), and water-soluble ions and elements in PM2.5 were quantified. A PM2.5 exposure study was performed to detect PM2.5-induced bioreactivities in vascular smooth muscle cells (VSMCs). Among all fractions, organic carbon (OC) exhibited the highest mass contribution to PM2.5-ranging from 39.9% ± 0.82% to 53.1% ± 8.76%. Proportions of total water-soluble ions and total elements both followed the sequence E-waste > wheat straw > outdoor barbeque > household garbage. Because of the high burning temperature, outdoor barbeque PM2.5 exhibited the highest total quantified PAHs (29.7‰). E-waste PM2.5 exhibited the highest heavy metal contents, derived mainly from the materials in printed circuit boards. The coefficients of divergence among the four source profiles ranged from 0.47 to 0.75, indicating that the collinear problems could be avoided in source apportionment in receptor models. The induced production of reactive oxygen species exhibited a significant dose-dependent increase and followed the sequence E-waste > household garbage > outdoor barbeque > wheat residue. Similar patterns and sequence among the four sources were observed in monocyte chemoattractant protein 1 (MCP-1) and interleukin 1β (IL-1β) production. The data indicated that PM2.5 emitted from E-waste has the highest cytotoxicity and special protections should be aimed at mitigating it. The Pearson correlation coefficient demonstrated that elemental carbon, heavy metals, and nitrated PAHs were strongly correlated with VSMC bioreactivity. Light elements exhibited moderate negative correlations with bioreactivities, implying that light elements (e.g., Ca) could mitigate heavy metal-induced cytotoxicity. This study summarized the chemical profiles of PM2.5 from four typical open burning sources and demonstrated their high cytotoxicity to the cardiovascular system.
Collapse
Affiliation(s)
- Jinhui Wang
- NICU, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jian Sun
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Renjian Zhang
- Key Lab of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
32
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
33
|
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020; 12:nu12040988. [PMID: 32252338 PMCID: PMC7231123 DOI: 10.3390/nu12040988] [Citation(s) in RCA: 1063] [Impact Index Per Article: 212.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
The world is in the grip of the COVID-19 pandemic. Public health measures that can reduce the risk of infection and death in addition to quarantines are desperately needed. This article reviews the roles of vitamin D in reducing the risk of respiratory tract infections, knowledge about the epidemiology of influenza and COVID-19, and how vitamin D supplementation might be a useful measure to reduce risk. Through several mechanisms, vitamin D can reduce risk of infections. Those mechanisms include inducing cathelicidins and defensins that can lower viral replication rates and reducing concentrations of pro-inflammatory cytokines that produce the inflammation that injures the lining of the lungs, leading to pneumonia, as well as increasing concentrations of anti-inflammatory cytokines. Several observational studies and clinical trials reported that vitamin D supplementation reduced the risk of influenza, whereas others did not. Evidence supporting the role of vitamin D in reducing risk of COVID-19 includes that the outbreak occurred in winter, a time when 25-hydroxyvitamin D (25(OH)D) concentrations are lowest; that the number of cases in the Southern Hemisphere near the end of summer are low; that vitamin D deficiency has been found to contribute to acute respiratory distress syndrome; and that case-fatality rates increase with age and with chronic disease comorbidity, both of which are associated with lower 25(OH)D concentration. To reduce the risk of infection, it is recommended that people at risk of influenza and/or COVID-19 consider taking 10,000 IU/d of vitamin D3 for a few weeks to rapidly raise 25(OH)D concentrations, followed by 5000 IU/d. The goal should be to raise 25(OH)D concentrations above 40-60 ng/mL (100-150 nmol/L). For treatment of people who become infected with COVID-19, higher vitamin D3 doses might be useful. Randomized controlled trials and large population studies should be conducted to evaluate these recommendations.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
- Correspondence: ; Tel.: +1-415-409-1980
| | - Henry Lahore
- 2289 Highland Loop, Port Townsend, WA 98368, USA;
| | - Sharon L. McDonnell
- GrassrootsHealth, Encinitas, CA 92024, USA; (S.L.M.); (C.A.B.); (C.B.F.); (J.L.A.)
| | - Carole A. Baggerly
- GrassrootsHealth, Encinitas, CA 92024, USA; (S.L.M.); (C.A.B.); (C.B.F.); (J.L.A.)
| | - Christine B. French
- GrassrootsHealth, Encinitas, CA 92024, USA; (S.L.M.); (C.A.B.); (C.B.F.); (J.L.A.)
| | - Jennifer L. Aliano
- GrassrootsHealth, Encinitas, CA 92024, USA; (S.L.M.); (C.A.B.); (C.B.F.); (J.L.A.)
| | - Harjit P. Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
34
|
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020. [PMID: 32252338 DOI: 10.20944/preprints202003.0235.v2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The world is in the grip of the COVID-19 pandemic. Public health measures that can reduce the risk of infection and death in addition to quarantines are desperately needed. This article reviews the roles of vitamin D in reducing the risk of respiratory tract infections, knowledge about the epidemiology of influenza and COVID-19, and how vitamin D supplementation might be a useful measure to reduce risk. Through several mechanisms, vitamin D can reduce risk of infections. Those mechanisms include inducing cathelicidins and defensins that can lower viral replication rates and reducing concentrations of pro-inflammatory cytokines that produce the inflammation that injures the lining of the lungs, leading to pneumonia, as well as increasing concentrations of anti-inflammatory cytokines. Several observational studies and clinical trials reported that vitamin D supplementation reduced the risk of influenza, whereas others did not. Evidence supporting the role of vitamin D in reducing risk of COVID-19 includes that the outbreak occurred in winter, a time when 25-hydroxyvitamin D (25(OH)D) concentrations are lowest; that the number of cases in the Southern Hemisphere near the end of summer are low; that vitamin D deficiency has been found to contribute to acute respiratory distress syndrome; and that case-fatality rates increase with age and with chronic disease comorbidity, both of which are associated with lower 25(OH)D concentration. To reduce the risk of infection, it is recommended that people at risk of influenza and/or COVID-19 consider taking 10,000 IU/d of vitamin D3 for a few weeks to rapidly raise 25(OH)D concentrations, followed by 5000 IU/d. The goal should be to raise 25(OH)D concentrations above 40-60 ng/mL (100-150 nmol/L). For treatment of people who become infected with COVID-19, higher vitamin D3 doses might be useful. Randomized controlled trials and large population studies should be conducted to evaluate these recommendations.
Collapse
Affiliation(s)
- William B Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Henry Lahore
- 2289 Highland Loop, Port Townsend, WA 98368, USA
| | | | | | | | | | - Harjit P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd 98, H-4032 Debrecen, Hungary
| |
Collapse
|
35
|
Almeida AS, Ferreira RMP, Silva AMS, Duarte AC, Neves BM, Duarte RMBO. Structural Features and Pro-Inflammatory Effects of Water-Soluble Organic Matter in Inhalable Fine Urban Air Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1082-1091. [PMID: 31710482 DOI: 10.1021/acs.est.9b04596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The impact of inhalable fine particulate matter (PM2.5, aerodynamic diameter <2.5 μm) on public health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies carried out with whole air particles, with the contribution of their different fractions remaining largely unknown. Herein, a set of urban PM2.5 samples were collected during daytime and nighttime periods in autumn and spring, aiming to address the seasonal and day-night variability of water-soluble organic matter (WSOM) composition. In vitro analysis of the oxidative and pro-inflammatory potential of WSOM samples was carried out in both acute (24 h) and chronic (3 weeks) exposure setups using Raw264.7 macrophages as cell model. Findings revealed that the structural composition of WSOM samples differs between seasons and in a day-night cycle. Cell exposure resulted in an increase in the transcription of the cytoprotective Hmox1 and pro-inflammatory genes Il1b and Nos2, leading to a moderate pro-inflammatory status. These macrophages showed an impaired capacity to subsequently respond to a strong pro-inflammatory stimulus such as bacterial lipopolysaccharide, which may implicate a compromised capacity to manage harmful pathogens. Further investigation on aerosol WSOM could help to constrain the mechanisms of WSOM-induced respiratory diseases and contribute to PM2.5 regulations.
Collapse
Affiliation(s)
- Antoine S Almeida
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Rita M P Ferreira
- Department of Chemistry & QOPNA and LAQV-REQUIMTE , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA and LAQV-REQUIMTE , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Armando C Duarte
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Bruno M Neves
- Department of Medical Sciences and Institute of Biomedicine-iBiMED , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Regina M B O Duarte
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| |
Collapse
|
36
|
Seasonal Variation in the Biological Effects of PM 2.5 from Greater Cairo. Int J Mol Sci 2019; 20:ijms20204970. [PMID: 31600872 PMCID: PMC6829270 DOI: 10.3390/ijms20204970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022] Open
Abstract
Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM’s toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017–2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards.
Collapse
|
37
|
Zerboni A, Bengalli R, Baeri G, Fiandra L, Catelani T, Mantecca P. Mixture Effects of Diesel Exhaust and Metal Oxide Nanoparticles in Human Lung A549 Cells. NANOMATERIALS 2019; 9:nano9091302. [PMID: 31514423 PMCID: PMC6781047 DOI: 10.3390/nano9091302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/26/2023]
Abstract
Airborne ultrafine particles (UFP) mainly derive from combustion sources (e.g., diesel exhaust particles—DEP), abrasion sources (non-exhaust particles) or from the unintentional release of engineered nanoparticles (e.g., metal oxide nanoparticles—NPs), determining human exposure to UFP mixtures. The aim of the present study was to analyse the combined in vitro effects of DEP and metal oxide NPs (ZnO, CuO) on human lung A549 cells. The mixtures and the relative single NPs (DEP, ZnO, CuO) were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and inductively coupled plasma-optic emission spectroscopy (ICP-OES). Cells were exposed for different times (3–72 h) to mixtures of standard DEP at a subcytotoxic concentration and ZnO and CuO at increasing concentrations. At the end of the exposure, the cytotoxicity was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and clonogenic tests, the pro-inflammatory potential was evaluated by interleukin-8 (IL-8) release and the cell morphology was investigated by fluorescence and transmission electron microscopy. The obtained results suggest that the presence of DEP may introduce new physico-chemical interactions able to increase the cytotoxicity of ZnO and to reduce that of CuO NPs.
Collapse
Affiliation(s)
- Alessandra Zerboni
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Rossella Bengalli
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Giulia Baeri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Luisa Fiandra
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Tiziano Catelani
- Microscopy facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy.
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
38
|
Zhang S, Zhang W, Zeng X, Zhao W, Wang Z, Dong X, Jia Y, Shen J, Chen R, Lin X. Inhibition of Rac1 activity alleviates PM2.5-induced pulmonary inflammation via the AKT signaling pathway. Toxicol Lett 2019; 310:61-69. [DOI: 10.1016/j.toxlet.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
39
|
Direct and Indirect Effect of Air Particles Exposure Induce Nrf2-Dependent Cardiomyocyte Cellular Response In Vitro. Cardiovasc Toxicol 2019; 19:575-587. [DOI: 10.1007/s12012-019-09530-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Méausoone C, El Khawaja R, Tremolet G, Siffert S, Cousin R, Cazier F, Billet S, Courcot D, Landkocz Y. In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode. Toxicol In Vitro 2019; 58:110-117. [PMID: 30910524 DOI: 10.1016/j.tiv.2019.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Toxicity of toluene and by-products formed during its catalytic oxidative degradation was studied in human bronchial BEAS-2B cells repeatedly exposed. BEAS-2B cells were exposed using an Air-Liquid Interface (ALI) System (Vitrocell®) for 1 h per day during 1, 3 or 5 days to gaseous flows: toluene vapors (100 and 1000 ppm) and outflow after catalytic oxidation of toluene (10 and 100%). After exposure to gaseous flow, cytotoxicity, inflammatory response and Xenobiotic Metabolism Enzymes (XME) gene expression were investigated. No significant cytotoxicity was found after 5 days for every condition of exposure. After cells exposure to catalytic oxidation flow, IL-6 level increased no significantly in a time- and dose-dependent way, while an inverted U-shaped profile of IL-8 secretion was observed. XME genes induction, notably CYP2E1 and CYP2F1 results were in line with the presence of unconverted toluene and benzene formed as a by-product, detected by analytical methods. Exposure to pure toluene also demonstrated the activation of these XMEs involved in its metabolism. Repeated exposure permits to show CYP1A1, CYP1B1 and CY2S1 expression, probably related to the formation of other by-products, as PAHs, not detected by standard analytical methods used for the development of catalysts.
Collapse
Affiliation(s)
- Clémence Méausoone
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Rebecca El Khawaja
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Gauthier Tremolet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Stéphane Siffert
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Renaud Cousin
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesure, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France..
| | - Yann Landkocz
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|