1
|
Romero-Leiton JP, Laison EK, Alfaro R, Parmley EJ, Arino J, Acharya KR, Nasri B. Exploring Zika's dynamics: A scoping review journey from epidemic to equations through mathematical modelling. Infect Dis Model 2025; 10:536-558. [PMID: 39897087 PMCID: PMC11786632 DOI: 10.1016/j.idm.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/24/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
Zika virus (ZIKV) infection, along with the concurrent circulation of other arboviruses, presents a great public health challenge, reminding the utilization of mathematical modelling as a crucial tool for explaining its intricate dynamics and interactions with co-circulating pathogens. Through a scoping review, we aimed to discern current mathematical models investigating ZIKV dynamics, focusing on its interplay with other pathogens, and to identify underlying assumptions and deficiencies supporting attention, particularly regarding the epidemiological attributes characterizing Zika outbreaks. Following the PRISMA-Sc guidelines, a systematic search across PubMed, Web of Science, and MathSciNet provided 137 pertinent studies from an initial pool of 2446 papers, showing a diversity of modelling approaches, predominantly centered on vector-host compartmental models, with a notable concentration on the epidemiological landscapes of Colombia and Brazil during the 2015-2016 Zika epidemic. While modelling studies have been important in explaining Zika transmission dynamics and their intersections with diseases such as Dengue, Chikungunya, and COVID-19 so far, future Zika models should prioritize robust data integration and rigorous validation against diverse datasets to improve the accuracy and reliability of epidemic prediction. In addition, models could benefit from adaptable frameworks incorporating human behavior, environmental factors, and stochastic parameters, with an emphasis on open-access tools to foster transparency and research collaboration.
Collapse
Affiliation(s)
- Jhoana P. Romero-Leiton
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Puerto Rico, PR 00681-9000, USA
| | - Elda K.E. Laison
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
| | - Rowin Alfaro
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 1E9, Canada
| | - Kamal R. Acharya
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Bouchra Nasri
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
- Centre de Recherches Mathématiques, Montréal, Canada
- Centre de Recherche en Santé Publique, Montréal, Canada
- Data Informatics Center of Epidemiology, PathCheck, Cambridge, USA
| |
Collapse
|
2
|
El-Daly MM, Bajrai LH, Alandijany TA, Alsaady IM, Gattan HS, Alhamdan MM, Dwivedi VD, Azhar EI. Exploring Echinacea angustifolia for anti-viral compounds against Zika virus RNA-dependent RNA polymerase: a computational study. Sci Rep 2025; 15:4060. [PMID: 39900998 PMCID: PMC11790867 DOI: 10.1038/s41598-025-88481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, has caused multiple widespread outbreaks, posing significant challenges to global health. This study explores the potential of compounds from Echinacea angustifolia (E. angustifolia) to inhibit the activity of ZIKV's RNA-dependent RNA polymerase (RDRP), a key enzyme in the viral replication process and an ideal candidate for antiviral therapy. Utilizing computational techniques, we conducted a thorough virtual examination using the MTi-OpenScreen tool to identify potential RDRP inhibitors among E. angustifolia compounds. The top four compounds were further examined through re-docking procedures. To assess the robustness and effectiveness of these interactions, we performed molecular dynamics simulations along with calculations of the binding free energy and PCA analysis. This investigation highlighted four naturally occurring compounds, viz., Echinacoside, Rutin, Echinacin, and Cynaroside, demonstrating a notable affinity for binding to the allosteric site of ZIKV RDRP. These compounds showed strong hydrogen bond formation with crucial residues of the RDRP and presented favorable binding free energies. Our research sheds light on the viability of these E. angustifolia compounds as ZIKV RDRP inhibitors, laying a foundation for further experimental research in developing novel antiviral treatments against ZIKV infections.
Collapse
Affiliation(s)
- Mai M El-Daly
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Leena H Bajrai
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Isra M Alsaady
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Meshari M Alhamdan
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Gajurel K, Dhakal R, Deresinski S. Arbovirus in Solid Organ Transplants: A Narrative Review of the Literature. Viruses 2024; 16:1778. [PMID: 39599892 PMCID: PMC11599096 DOI: 10.3390/v16111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the reported cases. Dengue and West Nile infections seem to be more severe with higher mortality in SOT patients than in the general population. Acute kidney injury is more frequent in patients with dengue and chikungunya although persistent arthralgia with the latter is less frequent. There is no clear relationship between arboviral infection and acute cellular rejection. Pre-transplant screening of donors should be implemented during increased arboviral activity but, despite donor screening and negative donor nucleic acid amplification test (NAT), donor derived infection can occur. NAT may be transiently positive. IgM tests lack specificity, and neutralizing antibody assays are more specific but not readily available. Other tests, such as immunohistochemistry, antigen tests, PCR, metagenomic assays, and viral culture, can also be performed. There are a few vaccines available against some arboviruses, but live vaccines should be avoided. Treatment is largely supportive. More data on arboviral infection in SOT are needed to understand its epidemiology and clinical course.
Collapse
Affiliation(s)
- Kiran Gajurel
- Division of Infectious Diseases, Carolinas Medical Center, Atrium Health, Charlotte, NC 28204, USA
| | | | - Stan Deresinski
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
4
|
Groß R, Reßin H, von Maltitz P, Albers D, Schneider L, Bley H, Hoffmann M, Cortese M, Gupta D, Deniz M, Choi JY, Jansen J, Preußer C, Seehafer K, Pöhlmann S, Voelker DR, Goffinet C, Pogge-von Strandmann E, Bunz U, Bartenschlager R, El Andaloussi S, Sparrer KMJ, Herker E, Becker S, Kirchhoff F, Münch J, Müller JA. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens. Nat Microbiol 2024; 9:905-921. [PMID: 38528146 PMCID: PMC10994849 DOI: 10.1038/s41564-024-01637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hanna Reßin
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Schneider
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Hanna Bley
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Miriam Deniz
- Clinic for Gynecology and Obstetrics, Ulm University Medical Center, Ulm, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | | | - Christine Goffinet
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elke Pogge-von Strandmann
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Hcini N, Lambert V, Picone O, Carod JF, Carles G, Pomar L, Epelboin L, Nacher M. Arboviruses and pregnancy: are the threats visible or hidden? Trop Dis Travel Med Vaccines 2024; 10:4. [PMID: 38355934 PMCID: PMC10868105 DOI: 10.1186/s40794-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
Mosquito-borne arboviral diseases are a global concern and can have severe consequences on maternal, neonatal, and child health. Their impact on pregnancy tends to be neglected in developing countries. Despite hundreds of millions of infections, 90% pregnancies being exposed, scientific data on pregnant women is poor and sometimes non-existent. Recently and since the 2016 Zika virus outbreak, there has been a newfound interest in these diseases. Through various neuropathogenic, visceral, placental, and teratogenic mechanisms, these arbovirus infections can lead to fetal losses, obstetrical complications, and a wide range of congenital abnormalities, resulting in long-term neurological and sensory impairments. Climate change, growing urbanization, worldwide interconnectivity, and ease of mobility allow arboviruses to spread to other territories and impact populations that had never been in contact with these emerging agents before. Pregnant travelers are also at risk of infection with potential subsequent complications. Beyond that, these pathologies show the inequalities of access to care on a global scale in a context of demographic growth and increasing urbanization. It is essential to promote research, diagnostic tools, treatments, and vaccine development to address this emerging threat.Background The vulnerability of pregnant women and fetuses to emergent and re-emergent pathogens has been notably illustrated by the outbreaks of Zika virus. Our comprehension of the complete scope and consequences of these infections during pregnancy remains limited, particularly among those involved in perinatal healthcare, such as obstetricians and midwives. This review aims to provide the latest information and recommendations regarding the various risks, management, and prevention for pregnant women exposed to arboviral infections.
Collapse
Affiliation(s)
- Najeh Hcini
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana.
- CIC Inserm 1424 and DFR Santé Université Guyane, Cayenne, French Guiana, France.
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Department of Obstetrics and Gynecology, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, CEDEX, Colombes, France
| | - Jean-Francois Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Gabriel Carles
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Léo Pomar
- Materno-Fetal and Obstetrics Research Unit, Department "Woman-Mother-Child", Lausanne University Hospital, Lausanne, Switzerland
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC1424, Centre Hospitalier de Cayenne, 97300, Cayenne, French Guiana
| |
Collapse
|
6
|
Martínez-Rojas PP, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Zika Virus-Infected Monocyte Exosomes Mediate Cell-to-Cell Viral Transmission. Cells 2024; 13:144. [PMID: 38247836 PMCID: PMC10814160 DOI: 10.3390/cells13020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Zika fever is a reemerging arthropod-borne viral disease; however, Zika virus (ZIKV) can be transmitted by other, non-vector means. Severe Zika fever is characterized by neurological disorders, autoimmunity, or congenital Zika syndrome. Monocytes are primary ZIKV targets in humans and, in response to infection, release extracellular vesicles like exosomes. Exosomes mediate intercellular communication and are involved in the virus's ability to circumvent the immune response, promoting pathological processes. This study aimed to evaluate the role of monocyte exosomes in cell-to-cell viral transmission. We isolated exosomes from ZIKV-infected monocytes (Mø exo ZIKV) by differential ultracentrifugation and identified them by nanoparticle tracking analysis; transmission electron microscopy; and CD63, CD81, TSG101, and Alix detection by cytofluorometry. Purified exosome isolates were obtained by uncoupling from paramagnetic beads or by treatment with UV radiation and RNase A. We found that Mø exo ZIKV carry viral RNA and E/NS1 proteins and that their interaction with naïve cells favors viral transmission, infection, and cell differentiation/activation. These data suggest that Mø exo ZIKV are an efficient alternative pathway for ZIKV infection. Knowledge of these mechanisms contributes to understanding the pathogenesis of severe disease and to the development of new vaccines and therapies.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| |
Collapse
|
7
|
Phumee A, Chitcharoen S, Sutthanont N, Intayot P, Wacharapluesadee S, Siriyasatien P. Genetic diversity and phylogenetic analyses of Asian lineage Zika virus whole genome sequences derived from Culex quinquefasciatus mosquitoes and urine of patients during the 2020 epidemic in Thailand. Sci Rep 2023; 13:18470. [PMID: 37891235 PMCID: PMC10611781 DOI: 10.1038/s41598-023-45814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, has been continually emerging and re-emerging since 2010, with sporadic cases reported annually in Thailand, peaking at over 1000 confirmed positive cases in 2016. Leveraging high-throughput sequencing technologies, specifically whole genome sequencing (WGS), has facilitated rapid pathogen genome sequencing. In this study, we used multiplex amplicon sequencing on the Illumina Miseq instrument to describe ZIKV WGS. Six ZIKV WGS were derived from three samples of field-caught Culex quinquefasciatus mosquitoes (two males and one female) and three urine samples collected from patients in three different provinces of Thailand. Additionally, successful isolation of a ZIKV isolate occurred from a female Cx. quinquefasciatus. The WGS analysis revealed a correlation between the 2020 outbreak and the acquisition of five amino acid changes in the Asian lineage ZIKV strains from Thailand (2006), Cambodia (2010 and 2019), and the Philippines (2012). These changes, including C-T106A, prM-V1A, E-V473M, NS1-A188V, and NS5-M872V, were identified in all seven WGS, previously linked to significantly higher mortality rates. Furthermore, phylogenetic analysis indicated that the seven ZIKV sequences belonged to the Asian lineage. Notably, the genomic region of the E gene showed the highest nucleotide diversity (0.7-1.3%). This data holds significance in informing the development of molecular tools that enhance our understanding of virus patterns and evolution. Moreover, it may identify targets for improved methods to prevent and control future ZIKV outbreaks.
Collapse
Affiliation(s)
- Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Proawpilart Intayot
- Pharmaceutical Ingredient and Medical Device Research Division, Research Development and Innovation Department, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
9
|
Blázquez AB. Mechanisms of Infection in Zika Virus. Pathogens 2023; 12:1035. [PMID: 37623995 PMCID: PMC10458827 DOI: 10.3390/pathogens12081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that was first identified in Uganda in 1947, then was essentially neglected for six decades [...].
Collapse
Affiliation(s)
- Ana Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| |
Collapse
|
10
|
Benchimol GDC, Santos JB, Lopes ASDC, Oliveira KG, Okada EST, de Alcantara BN, Pereira WLA, Leão DL, Martins ACC, Carneiro LA, Imbeloni AA, Makiama ST, de Castro LPPA, Coutinho LN, Casseb LMN, Vasconcelos PFDC, Domingues SFS, Medeiros DBDA, Scalercio SRRDA. Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys ( Saimiri collinsi). Viruses 2023; 15:615. [PMID: 36992324 PMCID: PMC10051343 DOI: 10.3390/v15030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 02/26/2023] Open
Abstract
During the Zika virus (ZIKV) outbreak and after evidence of its sexual transmission was obtained, concerns arose about the impact of the adverse effects of ZIKV infection on human fertility. In this study, we evaluated the clinical-laboratory aspects and testicular histopathological patterns of pubertal squirrel monkeys (Saimiri collinsi) infected with ZIKV, analyzing the effects at different stages of infection. The susceptibility of S. collinsi to ZIKV infection was confirmed by laboratory tests, which detected viremia (mean 1.63 × 106 RNA copies/µL) and IgM antibody induction. Reduced fecal testosterone levels, severe testicular atrophy and prolonged orchitis were observed throughout the experiment by ultrasound. At 21 dpi, testicular damage associated with ZIKV was confirmed by histopathological and immunohistochemical (IHC) analyses. Tubular retraction, the degeneration and necrosis of somatic and germ cells in the seminiferous tubules, the proliferation of interstitial cells and an inflammatory infiltrate were observed. ZIKV antigen was identified in the same cells where tissue injuries were observed. In conclusion, squirrel monkeys were found to be susceptible to the Asian variant of ZIKV, and this model enabled the identification of multifocal lesions in the seminiferous tubules of the infected group evaluated. These findings may suggest an impact of ZIKV infection on male fertility.
Collapse
Affiliation(s)
- Gabriela da Costa Benchimol
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | - Josye Bianca Santos
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Postgraduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
| | | | | | | | | | - Washington Luiz Assunção Pereira
- Laboratory of Animal Pathology (LABOPAT), Institute of Health and Animal Production, Federal Rural University of the Amazon, Belém 66077-830, Pará, Brazil
| | - Danuza Leite Leão
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Mamirauá Institute for Sustainable Development, Tefé 69553-225, Amazonas, Brazil
| | | | | | | | | | | | - Leandro Nassar Coutinho
- Laboratory of Animal Pathology (LABOPAT), Institute of Health and Animal Production, Federal Rural University of the Amazon, Belém 66077-830, Pará, Brazil
| | - Lívia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Department of Pathology, Center of Biologic and Health Sciences, State University of Pará, Belém 66050-540, Pará, Brazil
| | - Sheyla Farhayldes Souza Domingues
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Postgraduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- School of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Pará, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | | |
Collapse
|
11
|
Watts JL, Ralston A. The fetal lineage is susceptible to Zika virus infection within days of fertilization. Development 2022; 149:276104. [PMID: 35900100 PMCID: PMC9382896 DOI: 10.1242/dev.200501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated ‘The people behind the papers’ interview. Summary: Mouse preimplantation embryos are vulnerable to Zika virus-induced lethality even in the presence of the zona pellucida, highlighting a potential risk of sexually transmitted infection in early pregnancy.
Collapse
Affiliation(s)
- Jennifer L. Watts
- Molecular, Cellular and Integrative Physiology Graduate Program, Michigan State University 1 , East Lansing , MI 48824 , USA
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| | - Amy Ralston
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| |
Collapse
|
12
|
Ball EE, Pesavento PA, Van Rompay KKA, Keel MK, Singapuri A, Gomez-Vazquez JP, Dudley DM, O’Connor DH, Breitbach ME, Maness NJ, Schouest B, Panganiban A, Coffey LL. Zika virus persistence in the male macaque reproductive tract. PLoS Negl Trop Dis 2022; 16:e0010566. [PMID: 35788751 PMCID: PMC9299295 DOI: 10.1371/journal.pntd.0010566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in that it is also vertically and sexually transmitted by humans. The male reproductive tract is thought to be a ZIKV reservoir; however, the reported magnitude and duration of viral persistence in male genital tissues vary widely in humans and non-human primate models. ZIKV tissue and cellular tropism and potential effects on male fertility also remain unclear. The objective of this study was to resolve these questions by analyzing archived genital tissues from 51 ZIKV-inoculated male macaques and correlating data on plasma viral kinetics, tissue tropism, and ZIKV-induced pathological changes in the reproductive tract. We hypothesized that ZIKV would persist in the male macaque genital tract for longer than there was detectable viremia, where it would localize to germ and epithelial cells and associate with lesions. We detected ZIKV RNA and infectious virus in testis, epididymis, seminal vesicle, and prostate gland. In contrast to prepubertal males, sexually mature macaques were significantly more likely to harbor persistent ZIKV RNA or infectious virus somewhere in the genital tract, with detection as late as 60 days post-inoculation. ZIKV RNA localized primarily to testicular stem cells/sperm precursors and epithelial cells, including Sertoli cells, epididymal duct epithelium, and glandular epithelia of the seminal vesicle and prostate gland. ZIKV infection was associated with microscopic evidence of inflammation in the epididymis and prostate gland of sexually mature males, pathologies that were absent in uninfected controls, which could have significant effects on male fertility. The findings from this study increase our understanding of persistent ZIKV infection which can inform risk of sexual transmission during assisted reproductive therapies as well as potential impacts on male fertility. Zika virus (ZIKV) spread since 2015 led to establishment of urban epidemic cycles involving humans and Aedes mosquitoes. ZIKV is also sexually and vertically transmitted and causes congenital Zika syndrome. Together, these features show that ZIKV poses significant global public health risks. By virtue of similar reproductive anatomy and physiology to humans, macaques serve as a useful model for ZIKV infection. However, macaque studies to date have been limited by small sample size, typically 1 to 5 animals. Although mounting evidence identifies the male reproductive tract as a significant ZIKV reservoir, data regarding the duration of ZIKV persistence, potential for sexual transmission, and male genitourinary sequelae remain sparse. Here, we analyzed archived genital tissues from more than 50 ZIKV-inoculated male macaques. Our results show that ZIKV can persist in the male macaque reproductive tract after the resolution of viremia, with virus localization to sperm precursors and epithelial cells, and microscopic evidence of inflammation in the epididymis and prostate gland. Our findings help explain cases of sexual transmission of ZIKV in humans, which also carries a risk for transmission via assisted fertility procedures, even after resolution of detectable viremia.
Collapse
Affiliation(s)
- Erin E. Ball
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- United States Army, Veterinary Corps
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jose P. Gomez-Vazquez
- Center for Animal Disease Modeling and Surveillance, University of California, Davis, California, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Antonito Panganiban
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 2022; 167:1763-1772. [PMID: 35723756 DOI: 10.1007/s00705-022-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.
Collapse
|
14
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
15
|
Gareau E, Phillips KP. Key informant perspectives on sexual health services for travelling young adults: a qualitative study. BMC Health Serv Res 2022; 22:145. [PMID: 35120510 PMCID: PMC8814567 DOI: 10.1186/s12913-022-07542-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND International travel has become increasingly popular among young adults. Young adults often engage in casual sexual relationships abroad, exhibit sexual risk behaviours and may thus be at risk of contracting sexually transmitted and blood-borne infections. Pre-travel interventions and consultations may mitigate this risk. At present, we know little about sexual health-related pre-travel interventions. The aim of this study was therefore to document key informants' experiences, perceptions and recommendations in the context of sexual health of young adult travellers. METHODS Key informants were professionals working in Ottawa, Canada travel clinics, travel organizations or sexual health clinics with a young adult clientele. This study used a qualitative approach and consisted of 13 in-person or Skype semi-structured interviews with key informants. Thematic content analysis was informed by a sexual health framework, with themes emerging both inductively and deductively. RESULTS Sexual health was not common in pre-travel interventions described by key informants. Risk-assessment, and practical or purpose-driven pre-travel interventions were identified, resulting in risk mitigation strategies tailored to the destination region and/or mission/culture of the travel organization. Dissemination (e.g. limited time, lack of training) and uptake (e.g. young adults' embarrassment, provider discomfort, financial constraints) barriers limited in-depth discussions of pre-travel interventions related to sexual health. Key informants acknowledged the importance of early sexual health education, and recommended ongoing, comprehensive sexual education for both youth and young adults. CONCLUSION The findings of this study suggest that more time and resources should be allocated to the topic of sexual health during pre-travel interventions with young adults. Professionals who guide and prepare young adults for travel must develop concomitant skills in sexual health promotion. Early, comprehensive sexual education is recommended to improve overall sexual health in young adults and mitigate risk behaviours during travel.
Collapse
Affiliation(s)
- Emmanuelle Gareau
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Karen P Phillips
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
16
|
Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, Swinnen JV, Pannecouque C, Schols D. Deciphering the Role of Extracellular Vesicles Derived from ZIKV-Infected hcMEC/D3 Cells on the Blood-Brain Barrier System. Viruses 2021; 13:v13122363. [PMID: 34960632 PMCID: PMC8708812 DOI: 10.3390/v13122363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechanisms underlying ZIKV-associated pathogenesis of the central nervous system (CNS) are largely unexplored. Getting more insight into the cellular pathways that ZIKV recruits to facilitate infection of susceptible cells will be crucial for establishing an effective treatment strategy. In general, cells secrete a number of vesicles, known as extracellular vesicles (EVs), in response to viral infections. These EVs serve as intercellular communicators. Here, we investigated the role of EVs derived from ZIKV-infected human brain microvascular endothelial cells on the blood–brain barrier (BBB) system. We demonstrated that ZIKV-infected EVs (IEVs) can incorporate viral components, including ZIKV RNA, NS1, and E-protein, and further transfer them to several types of CNS cells. Using label-free impedance-based biosensing, we observed that ZIKV and IEVs can temporally disturb the monolayer integrity of BBB-mimicking cells, possibly by inducing structural rearrangements of the adherent protein VE-cadherin (immunofluorescence staining). Finally, differences in the lipidomic profile between EVs and their parental cells possibly suggest a preferential sorting mechanism of specific lipid species into the vesicles. To conclude, these data suggest that IEVs could be postulated as vehicles (Trojan horse) for ZIKV transmission via the BBB.
Collapse
Affiliation(s)
- Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jordi Doijen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Frank Vanderhoydonc
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Eef Meyen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
- Correspondence: ; Tel.: +32-16-32-19-98
| |
Collapse
|
17
|
Major CG, Paz-Bailey G, Hills SL, Rodriguez DM, Biggerstaff BJ, Johansson M. Risk Estimation of Sexual Transmission of Zika Virus-United States, 2016-2017. J Infect Dis 2021; 224:1756-1764. [PMID: 33822107 PMCID: PMC10015296 DOI: 10.1093/infdis/jiab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) can be transmitted sexually but the risk of sexual transmission remains unknown. Most evidence of sexual transmission is from partners of infected travelers returning from areas with ZIKV circulation. METHODS We used data from the US national arboviral disease surveillance system on travel- and sexually acquired ZIKV disease cases during 2016-2017 to develop individual-level simulations for estimating risk of male-to-female, male-to-male, and female-to-male sexual transmission of ZIKV via vaginal and/or anal intercourse. We specified parametric distributions to characterize individual-level variability of parameters for ZIKV persistence and sexual behaviors. RESULTS Using ZIKV RNA persistence in semen/vaginal fluids to approximate infectiousness duration, male-to-male transmission had the highest estimated probability (1.3% [95% confidence interval, CI, .4%-6.0%] per anal sex act), followed by male-to-female and female-to-male transmission (0.4% [95% CI, .3%-.6%] per vaginal/anal sex act and 0.1% [95% CI, 0%-.8%] per vaginal sex act, respectively). Models using viral isolation in semen vs RNA detection to approximate infectiousness duration predicted greater risk of sexual transmission. CONCLUSIONS While likely insufficient to maintain sustained transmission, the estimated risk of ZIKV transmission through unprotected sex is not trivial and is especially important for pregnant women, as ZIKV infection can cause severe congenital disorders.
Collapse
Affiliation(s)
- Chelsea G Major
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | - Susan L Hills
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Dania M Rodriguez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | - Brad J Biggerstaff
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Michael Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| |
Collapse
|
18
|
Maia CQ, Lima WG, Nizer WSDC, Ferreira JMS. Epilepsy in children with Congenital Zika Syndrome: A systematic review and meta-analysis. Epilepsia 2021; 62:1193-1207. [PMID: 33778951 DOI: 10.1111/epi.16890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To estimate the overall frequency of epilepsy in children with congenital Zika syndrome (CZS) and describe the profile of seizures and the response rate to anti-epileptic treatment in this group of patients. METHODS A systematic review and meta-analysis were conducted following the Cochrane Handbook and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. PubMed/MEDLINE, Scopus, Cochrane Library, SciELO, and LILACS were searched until June 23, 2020. Observational studies that evaluated the frequency of epilepsy in children diagnosed with CZS according to international criteria were included in the study. RESULTS Fourteen studies evaluating 903 patients diagnosed with CZS were pooled in a meta-analysis. All studies were conducted in Brazil, with reports published between 2016 and 2020, and included children diagnosed with CSZ from 0 to 40 months of age. The overall rate of epilepsy in children diagnosed with CZS was estimated at 60% (95% confidence interval [CI] 0.51-0.68). The studies included in this review show that the frequency of epilepsy in patients with CSZ varies with age, with higher rates in older children. Epileptic spasms was the primary type of seizure observed in this group, followed by focal and generalized crisis. The response rate to anti-epileptic drugs was considerably low, ranging from 20% of seizure control in the first year and 30% in the second year. SIGNIFICANCE Children with CZS presented a high cumulative incidence of epilepsy episodes with increased severity and a low response to anti-epileptic therapy, which is associated with the extensive damage caused by the Zika virus on the cortical structures of patients.
Collapse
Affiliation(s)
- César Quadros Maia
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, Minas Gerais, Brasil
| | - William Gustavo Lima
- Researcher of the Group (CNPq) for Epidemiological, Economic and Pharmacological Studies of Arboviruses (EEPIFARBO), Divinópolis, Brasil
| | | | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, Minas Gerais, Brasil
| |
Collapse
|
19
|
Abstract
Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-human transmission and be directly transmitted human-to-human via sexual and vertical routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate hosts is unknown. Here we show that molecularly barcoded ZIKV rapidly adapted to a mammalian host during direct transmission chains in mice, coincident with the emergence of an amino acid substitution previously shown to enhance virulence. In contrast, little to no adaptation of ZIKV to mice was observed following chains of direct transmission in mosquitoes or alternating host transmission. Detailed genetic analyses revealed that ZIKV evolution in mice was generally more convergent and subjected to more relaxed purifying selection than in mosquitoes or alternate passages. These findings suggest that prevention of direct human transmission chains may be paramount to resist gains in ZIKV virulence.Importance We used experimental evolution to model chains of direct and indirect Zika virus (ZIKV) transmission by serially passaging a synthetic swarm of molecularly barcoded ZIKV within and between mosquitoes and mice. We observed that direct mouse transmission chains facilitated a rapid increase in ZIKV replication and enhanced virulence in mice. These findings demonstrate that ZIKV is capable of rapid adaptation to a vertebrate host and indicate that direct human-to-human transmission could pose a greater threat to public health than currently realized.
Collapse
|
20
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
21
|
Alam MA, Hasan MR, Anzar N, Suleman S, Narang J. Diagnostic approaches for the rapid detection of Zika virus–A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Sharma S, Kabir MA, Asghar W. Lab-on-a-Chip Zika Detection With Reverse Transcription Loop-Mediated Isothermal Amplification-Based Assay for Point-of-Care Settings. Arch Pathol Lab Med 2020; 144:1335-1343. [PMID: 32886758 DOI: 10.5858/arpa.2019-0667-oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Zika virus (ZIKV) infection, primarily transmitted by mosquitoes, causes various neurologic disorders. To differentiate ZIKV from other arboviruses, such as dengue, chikungunya, and yellow fever viruses, a highly specific, sensitive, and automated detection system is needed for point-of-care (POC) settings. OBJECTIVE.— To detect ZIKV at POC settings, we have developed a fully automated lab-on-a-chip microfluidic platform for rapid disease detection by using reverse transcription loop-mediated isothermal amplification. DESIGN.— The developed setup consists of a microfluidic chip, a platform for magnetic actuation, and a heater along with the sensor to precisely control the temperature for the target amplification. The platform accurately controls the movement of the magnetic beads that enable the isolation and purification of the target nucleotides adhered to their surface for the amplification and disease detection on the microfluidic chip. RESULTS.— Within 40 minutes, change in color due to the presence of ZIKV amplicons was visually observed with the spiked plasma samples in the end point analysis. Also, we have accurately and specifically identified ZIKV in a small number of de-identified clinical samples. CONCLUSIONS.— All-inclusive, the developed fully automated POC ZIKV diagnostic chip is rapid, simple, easy to use, inexpensive, and suitable for the areas where facilities are limited.
Collapse
Affiliation(s)
- Sandhya Sharma
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| | - Md Alamgir Kabir
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| | - Waseem Asghar
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| |
Collapse
|
23
|
Hubert M, Jeannin P, Burlaud-Gaillard J, Roingeard P, Gessain A, Ceccaldi PE, Vidy A. Evidence That Zika Virus Is Transmitted by Breastfeeding to Newborn A129 ( Ifnar1 Knock-Out) Mice and Is Able to Infect and Cross a Tight Monolayer of Human Intestinal Epithelial Cells. Front Microbiol 2020; 11:524678. [PMID: 33193119 PMCID: PMC7649816 DOI: 10.3389/fmicb.2020.524678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus in the Flaviviridae family. Mainly transmitted via mosquito bites (Aedes aegypti, Aedes albopictus), ZIKV has been classified in the large category of arthropod-borne viruses, or arboviruses. However, during the past two outbreaks in French Polynesia (2013–2014) and Latin America (2015–2016), several cases of ZIKV human-to-human transmission were reported, either vertically via transplacental route but also horizontally after sexual intercourse. Interestingly, high viral burdens were detected in the colostrum and breast milk of infected women and mother-to-child transmission of ZIKV during breastfeeding was recently highlighted. In a previous study, we highlighted the implication of the mammary epithelium (blood–milk barrier) in ZIKV infectious particles excretion in breast milk. However, mechanisms of their further transmissibility to the newborn via oral route through contaminated breast milk remain unknown. In this study, we provide the first experimental proof-of-concept of the existence of the breastfeeding as a route for mother-to-child transmission of ZIKV and characterized the neonatal oral transmission in a well-established mouse model of ZIKV infection. From a mechanistical point-of-view, we demonstrated for the first time that ZIKV was able to infect and cross an in vitro model of tight human intestinal epithelium without altering its barrier integrity, permitting us to consider the gut as an entry site for ZIKV after oral exposure. By combining in vitro and in vivo experiments, this study strengthens the plausibility of mother-to-child transmission of ZIKV during breastfeeding and helps to better characterize underlying mechanisms, such as the crossing of the newborn intestinal epithelium by ZIKV. As a consequence, these data could serve as a basis for a reflection about the implementation of measures to prevent ZIKV transmission, while keeping in mind breastfeeding-associated benefits.
Collapse
Affiliation(s)
- Mathieu Hubert
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Patricia Jeannin
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Université de Tours et CHU de Tours, Tours, France.,Plate-forme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U1259, Université de Tours et CHU de Tours, Tours, France.,Plate-forme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, Tours, France
| | - Antoine Gessain
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Aurore Vidy
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| |
Collapse
|
24
|
Conzelmann C, Groß R, Zou M, Krüger F, Görgens A, Gustafsson MO, El Andaloussi S, Münch J, Müller JA. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. J Extracell Vesicles 2020; 9:1808281. [PMID: 32939236 PMCID: PMC7480612 DOI: 10.1080/20013078.2020.1808281] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is mainly transmitted via mosquitos, but human-to-human transmissions also occur. The virus is shed into various body fluids including saliva, which represents a possible source of viral transmission. Thus, we here explored whether human saliva affects ZIKV infectivity. We found that physiological concentrations of pooled saliva dose-dependently inhibit ZIKV infection of monkey and human cells by preventing viral attachment to target cells. The anti-ZIKV activity in saliva could not be abrogated by boiling, suggesting the antiviral factor is not a protein. Instead, we found that purified extracellular vesicles (EVs) from saliva inhibit ZIKV infection. Salivary EVs (saEVs) express typical EV markers such as tetraspanins CD9, CD63 and CD81 and prevent ZIKV attachment to and infection of target cells at concentrations that are naturally present in saliva. The anti-ZIKV activity of saliva is conserved but the magnitude of inhibition varies between individual donors. In contrast to ZIKV, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), predominantly spreading via respiratory droplets, is not affected by saliva or saEVs. Our findings provide a plausible explanation for why ZIKV transmission via saliva, i.e. by deep kissing have not been recorded and establish a novel oral innate immune defence mechanism against some viral pathogens.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Min Zou
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | | | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Janis A. Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
25
|
Angelo KM, Stoney RJ, Brun-Cottan G, Leder K, Grobusch MP, Hochberg N, Kuhn S, Bottieau E, Schlagenhauf P, Chen L, Hynes NA, Perez CP, Mockenhaupt FP, Molina I, Crespillo-Andújar C, Malvy D, Caumes E, Plourde P, Shaw M, McCarthy AE, Piper-Jenks N, Connor BA, Hamer DH, Wilder-Smith A. Zika among international travellers presenting to GeoSentinel sites, 2012-2019: implications for clinical practice. J Travel Med 2020; 27:5824831. [PMID: 32330261 PMCID: PMC7604850 DOI: 10.1093/jtm/taaa061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION International travellers contribute to the rapid spread of Zika virus (ZIKV) and its sentinel identification globally. We describe ZIKV infections among international travellers seen at GeoSentinel sites with a focus on ZIKV acquired in the Americas and the Caribbean, describe countries of exposure and traveller characteristics, and assess ZIKV diagnostic testing by site. METHODS Records with an international travel-related diagnosis of confirmed or probable ZIKV from January 2012 through December 2019 reported to GeoSentinel with a recorded illness onset date were included to show reported cases over time. Records from March 2016 through December 2019 with an exposure region of the Americas or the Caribbean were included in the descriptive analysis. A survey was conducted to assess the availability, accessibility and utilization of ZIKV diagnostic tests at GeoSentinel sites. RESULTS GeoSentinel sites reported 525 ZIKV cases from 2012 through 2019. Between 2012 and 2014, eight cases were reported, and all were acquired in Asia or Oceania. After 2014, most cases were acquired in the Americas or the Caribbean, a large decline in ZIKV cases occurred in 2018-19.Between March 2016 and December 2019, 423 patients acquired ZIKV in the Americas or the Caribbean, peak reporting to these regions occurred in 2016 [330 cases (78%)]. The median age was 36 years (range: 3-92); 63% were female. The most frequent region of exposure was the Caribbean (60%). Thirteen travellers were pregnant during or after travel; one had a sexually acquired ZIKV infection. There was one case of fetal anomaly and two travellers with Guillain-Barré syndrome. GeoSentinel sites reported various challenges to diagnose ZIKV effectively. CONCLUSION ZIKV should remain a consideration for travellers returning from areas with risk of ZIKV transmission. Travellers should discuss their travel plans with their healthcare providers to ensure ZIKV prevention measures are taken.
Collapse
Affiliation(s)
- Kristina M Angelo
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Rhett J Stoney
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Gaelle Brun-Cottan
- Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA
| | - Karin Leder
- School of Public Health and Preventive Medicine, Victorian Infectious Disease Service, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Monash University, 300 Grattan St, Parkville 3050, Australia
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Natasha Hochberg
- Department of Pediatrics, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA
| | - Susan Kuhn
- Department of Pediatrics, Alberta Health Services, 10101 Southport Rd SW, Calgary AB T2W 3N2, Canada
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Patricia Schlagenhauf
- WHO Collaborating Centre for Travellers' Health, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| | - Lin Chen
- Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, Cambridge and Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Noreen A Hynes
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Cecilia Perret Perez
- School of Medicine, Universidad Catolica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Santiago Metropolitan, Chile
| | - Frank P Mockenhaupt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Augustenburger Pl. 1, 13353 Berlin, Germany
| | - Israel Molina
- Department of Infectious Diseases, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, PROSICS, Campus de la UAB, Plaça Cívica, 08193, Barcelona, Spain
| | - Clara Crespillo-Andújar
- National Referral Unit for Tropical and Travel Medicine, Department of Internal Medicine, University Hospital La Paz-Carlos III, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Denis Malvy
- Department for Infectious Diseases and Tropical Medicine, University Hospital Centre of Bordeaux, and Inserm 1219, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Caumes
- Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Plourde
- University of Manitoba, 66 Chancellors Cir, Winnipeg MB R3T 2N2, Canada
| | - Marc Shaw
- James Cook University, 1 James Cook Dr, Douglas, Townsville 4811, Australia.,Worldwise Travellers' Health Centres, 18 Saint Marks Road, Remuera, Auckland 1050, New Zealand
| | - Anne E McCarthy
- Department of Medicine, Ottawa Hospital, University of Ottawa, 75 Laurier Ave E, Ottawa K1N 6N5, Canada
| | | | - Bradley A Connor
- The New York Center for Travel and Tropical Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.,Section of Infectious Diseases, Department of Medicine, Boston Medical Center, One Boston Medical Center Pl, Boston, MA 02118, USA
| | - Annelies Wilder-Smith
- Department of Epidemiology and Global Health, University of Umea, Petrus Laestadius Väg, 901 87, Umeå, Sweden.,Department for Disease Control, London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
26
|
Haddow AD, Perez-Sautu U, Wiley MR, Miller LJ, Kimmel AE, Principe LM, Wollen-Roberts SE, Shamblin JD, Valdez SM, Cazares LH, Pratt WD, Rossi FD, Lugo-Roman L, Bavari S, Palacios GF, Nalca A, Nasar F, Pitt MLM. Modeling mosquito-borne and sexual transmission of Zika virus in an enzootic host, the African green monkey. PLoS Negl Trop Dis 2020; 14:e0008107. [PMID: 32569276 PMCID: PMC7343349 DOI: 10.1371/journal.pntd.0008107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/08/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023] Open
Abstract
Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.
Collapse
Affiliation(s)
- Andrew D. Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Unai Perez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael R. Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lynn J. Miller
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Adrienne E. Kimmel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lucia M. Principe
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Suzanne E. Wollen-Roberts
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Joshua D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Stephanie M. Valdez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lisa H. Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - William D. Pratt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Franco D. Rossi
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Luis Lugo-Roman
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo F. Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aysegul Nalca
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - M. Louise M. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| |
Collapse
|
27
|
Grobusch MP, van der Fluit KS, Stijnis C, De Pijper CA, Hanscheid T, Gautret P, Schlagenhauf P, Goorhuis A. Can dengue virus be sexually transmitted? Travel Med Infect Dis 2020; 38:101753. [PMID: 32473313 DOI: 10.1016/j.tmaid.2020.101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
It has been well documented that Zika virus (ZIKV) can be sexually transmitted. Dengue virus (DENV) shows many similarities with ZIKV; both belong to the genus Flavivirus and share the same main vector route of transmission. Moreover, they share overall architectural features on a molecular level, with a highly similar structure and distinctive insertions, deletions and mutations of their respective E proteins, and it has been suggested that they use a common pathophysiological pathway. In view of similarities with other sexually transmissible viruses, the question arises as to whether DENV could also be sexually transmissible. Limited animal model data do not suggest otherwise. The presence of dengue virus in - and human-to-human, non-vector transmission from - various bodily fluids other than semen or vaginal secretions has been documented anecdotally. Several anecdotal reports described prolonged presence of DENV in semen, urine and vaginal secretions. In 2019, two cases of likely sexual transmission were reported from Spain and South Korea, respectively. We discuss the evidence for and against a relevant DENV sexual transmission potential, highlight controversies and propose a future research agenda on this issue.
Collapse
Affiliation(s)
- Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, Amsterdam, the Netherlands; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Karin S van der Fluit
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, Amsterdam, the Netherlands
| | - Cornelis Stijnis
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, Amsterdam, the Netherlands
| | - Cornelis A De Pijper
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, Amsterdam, the Netherlands
| | - Thomas Hanscheid
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Philippe Gautret
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Patricia Schlagenhauf
- University of Zürich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, Institute for Epidemiology, Biostatistics and Prevention, Zürich, Switzerland
| | - Abraham Goorhuis
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Diouf B, Gaye A, Diagne CT, Diallo M, Diallo D. Zika virus in southeastern Senegal: survival of the vectors and the virus during the dry season. BMC Infect Dis 2020; 20:371. [PMID: 32448116 PMCID: PMC7247193 DOI: 10.1186/s12879-020-05093-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. METHODS Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. RESULTS A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes. ZIKV was detected from 4 out of the 82 mosquito pools tested. Positive pools included Ae. bromeliae (2 pools), Ae. unilineatus (1 pool), and Ae. vittatus (1 pool), indicating that the virus is maintained in these Aedes eggs during the dry season. CONCLUSION Our investigation identified breeding sites types and land cover classes where several ZIKV vectors are maintained, and their maintenance rates during the dry season in southeastern Senegal. The maintenance of the virus in these vectors in nature could explain its early amplification at the start of the rainy season in this area.
Collapse
Affiliation(s)
- Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
29
|
Maternal Zika Virus (ZIKV) Infection following Vaginal Inoculation with ZIKV-Infected Semen in Timed-Pregnant Olive Baboons. J Virol 2020; 94:JVI.00058-20. [PMID: 32188737 PMCID: PMC7269433 DOI: 10.1128/jvi.00058-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.
Collapse
|
30
|
Zika virus transmission via breast milk in suckling mice. Clin Microbiol Infect 2020; 27:469.e1-469.e7. [PMID: 32344170 DOI: 10.1016/j.cmi.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Infectious Zika viral particles were detected in human milk; however, whether they can be transmitted via breastfeeding remains unknown, so our objective was to clarify this. METHODS Here, in a natural breastfeeding model, wild-type (C57Bl/6; WT) or interferon α/β (IFNα/β) receptor-deficient (A129; KO) murine dams on day 1 post-delivery were infected with Zika virus (ZIKV) intraperitoneally, and the neonates were suckled. In a novel artificial feeding model, WT suckling mice at 1 day old were fed with ZIKV alone or ZIKV and human breast milk mixtures. Thereafter, the virus distribution, clinical progression and neuropathology in the WT or KO neonates were characterized to evaluate the risk of ZIKV transmission through breast milk. RESULTS In natural breastfeeding, viral RNAs (8/8) and infectious viral particles (7/8) were extensively present in the mammary glands of KO dams. All tested KO neonates (5/5), and none of WT neonates (0/9), were infected with ZIKV. In artificial feeding, 100% of the WT neonates (two groups, 12/12 and 16/16) were infected and developed some signs of neurodegeneration. ZIKV tended to seed and accumulate in the lungs and were subsequently disseminated to other tissues in both 16 naturally suckled and 19 artificially fed infected neonates. As human breast milk was mixed with ZIKV and fed to WT neonates, 45% individuals (9/20) were infected; in the infected neonates, the viral spread to the brain was delayed, and the clinical outcomes were alleviated. CONCLUSIONS These results demonstrated that suckling mice can be infected with ZIKV through suckling, and breast milk has potential antiviral activity, inhibiting ZIKV infection.
Collapse
|
31
|
Teixeira FME, Pietrobon AJ, Oliveira LDM, Oliveira LMDS, Sato MN. Maternal-Fetal Interplay in Zika Virus Infection and Adverse Perinatal Outcomes. Front Immunol 2020; 11:175. [PMID: 32117303 PMCID: PMC7033814 DOI: 10.3389/fimmu.2020.00175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
During pregnancy, the organization of complex tolerance mechanisms occurs to assure non-rejection of the semiallogeneic fetus. Pregnancy is a period of vulnerability to some viral infections, mainly during the first and second trimesters, that may cause congenital damage to the fetus. Recently, Zika virus (ZIKV) infection has gained great notoriety due to the occurrence of congenital ZIKV syndrome, characterized by fetal microcephaly, which results from the ability of ZIKV to infect placental cells and neural precursors in the fetus. Importantly, in addition to the congenital effects, studies have shown that perinatal ZIKV infection causes a number of disorders, including maculopapular rash, conjunctivitis, and arthralgia. In this paper, we contextualize the immunological aspects involved in the maternal-fetal interface and vulnerability to ZIKV infection, especially the alterations resulting in perinatal outcomes. This highlights the need to develop protective maternal vaccine strategies or interventions that are capable of preventing fetal or even neonatal infection.
Collapse
Affiliation(s)
- Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Correa-Morales F, González-Acosta C, Mejía-Zúñiga D, Huerta H, Pérez-Rentería C, Vazquez-Pichardo M, Ortega-Morales AI, Hernández-Triana LM, Salazar-Bueyes VM, Moreno-García M. Surveillance for Zika in Mexico: naturally infected mosquitoes in urban and semi-urban areas. Pathog Glob Health 2020; 113:309-314. [PMID: 31902313 DOI: 10.1080/20477724.2019.1706291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Zika cases have been reported in 29 out of the 32 states of Mexico. Information regarding which mosquito species might be driving Zika virus transmission/maintenance in nature must be regularly updated. From January 2017 to November 2018, mosquitoes were collected indoors and outdoors using the CDC backpack aspirator in urban and semi-urban areas with evidence of mosquito-borne disease transmission. 3873 mosquito pools were tested for Zika infection using the CDC Trioplex real-time RT-PCR. For each collected specie, maximum likelihood estimator of infection rate (MLE) was estimated. Results showed 492 mosquito pools positive for Zika virus RNA. The majority of the positive pools were Aedes (Stegomyia) aegypti (Linnaeus) (54.6%, MLE = 19) (males and females) and Culex (Culex) quinquefasciatus (Say) (19.5%, MLE = 16.8). For the first time, ZIKV infection was detected in Ae. (Georgecraigius) epactius (Dyar and Knab) (MLE = 17.1), Cx. (Melanoconion) erraticus (Dyar and Knab) (MLE = non-estimable), Culiseta (Culiseta) inornata (Williston) (MLE = non estimable), and Cs (Cs.) particeps (Adams) (MLE = 369.5). Other detected species were: Ae. (Stg.) albopictus (Skuse) (MLE = 90.5), Cx. (Cx.) coronator s.l. (Dyar and Knab) (MLE = 102.8) and Cx. (Cx.) tarsalis (Coquillett) (MLE = 117.2). However, our results do not allow for the incrimination of these species as vectors of ZIKV. Routine surveillance should start to consider other mosquito species across the taxonomic spectrum of the Culicidae.
Collapse
Affiliation(s)
- Fabián Correa-Morales
- Subdirección del Programa de Enfermedades Transmitidas por Vectores, Centro Nacional de Programas Preventivos y Control de Enfermedades, Ciudad de México, México
| | - Cassandra González-Acosta
- Coordinación de Enfermedades Transmitidas por Vector y Zoonosis, Servicios de Salud de Morelos, Cuernavaca, México
| | - David Mejía-Zúñiga
- Unidad de Investigación Entomológica y Bioensayos-Servicios de Salud de Chihuahua, Chihuahua, México
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos 'Dr. Manuel Martínez Báez', Ciudad de México, México
| | - Crescencio Pérez-Rentería
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos 'Dr. Manuel Martínez Báez', Ciudad de México, México
| | - Mauricio Vazquez-Pichardo
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos 'Dr. Manuel Martínez Báez', Ciudad de México, México
| | - Aldo I Ortega-Morales
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, México
| | - Luis M Hernández-Triana
- Animal and Plant Health Agency, Virology Department, Wildlife Zoonoses and Vector-Borne Diseases Research Group, Addlestone, UK
| | - Víctor M Salazar-Bueyes
- Subdirección del Programa de Enfermedades Transmitidas por Vectores, Centro Nacional de Programas Preventivos y Control de Enfermedades, Ciudad de México, México
| | - Miguel Moreno-García
- Unidad de Investigación Entomológica y Bioensayos-Centro Regional de Control de Vectores Panchimalco-Servicios de Salud de Morelos, Jojutla, México
| |
Collapse
|
33
|
Ávila-Pérez G, Nogales A, Park JG, Márquez-Jurado S, Iborra FJ, Almazan F, Martínez-Sobrido L. A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Sci Rep 2019; 9:19968. [PMID: 31882898 PMCID: PMC6934710 DOI: 10.1038/s41598-019-56291-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) infection is currently one of the major concerns in human public health due to its association with neurological disorders. Intensive effort has been implemented for the treatment of ZIKV, however there are not currently approved vaccines or antivirals available to combat ZIKV infection. In this sense, the identification of virulence factors associated with changes in ZIKV virulence could help to develop safe and effective countermeasures to treat ZIKV or to prevent future outbreaks. Here, we have compared the virulence of two related ZIKV strains from the recent outbreak in Brazil (2015), Rio Grande do Norte Natal (RGN) and Paraiba. In spite of both viruses being identified in the same period of time and region, significant differences in virulence and replication were observed using a validated mouse model of ZIKV infection. While ZIKV-RGN has a 50% mouse lethal dose (MLD50) of ~105 focus forming units (FFUs), ZIKV-Paraiba infection resulted in 100% of lethality with less than 10 FFUs. Combining deep-sequencing analysis and our previously described infectious ZIKV-RGN cDNA clone, we identified a natural polymorphism in the non-structural protein 2 A (NS2A) that increase the virulence of ZIKV. Moreover, results demonstrate that the single amino acid alanine to valine substitution at position 117 (A117V) in the NS2A was sufficient to convert the attenuated rZIKV-RGN in a virulent Paraiba-like virus (MLD50 < 10 FFU). The mechanism of action was also evaluated and data indicate that substitution A117V in ZIKV NS2A protein reduces host innate immune responses and viral-induced apoptosis in vitro. Therefore, amino acid substitution A117V in ZIKV NS2A could be used as a genetic risk-assessment marker for future ZIKV outbreaks.
Collapse
Affiliation(s)
- Gines Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
- Center for Animal Health Research, INIA-CISA, 28130, Valdeolmos, Madrid, Spain
| | - Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Silvia Márquez-Jurado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain
| | - Francisco J Iborra
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain
| | - Fernando Almazan
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
34
|
Zika Virus Infection, Reproductive Organ Targeting, and Semen Transmission in the Male Olive Baboon. J Virol 2019; 94:JVI.01434-19. [PMID: 31597777 DOI: 10.1128/jvi.01434-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) infection in pregnant women is a serious threat to the development and viability of the fetus. The primary mode of ZIKV transmission to humans is through mosquito bites, but sexual transmission has also been well documented in humans. However, little is known of the short- and long-term effects of ZIKV infection on the human male reproductive system. This study examines the effects of ZIKV infection on the male reproductive organs and semen and the immune response of the olive baboon (Papio anubis). Nine mature male baboons were infected with ZIKV (French Polynesian strain) subcutaneously. Six animals were euthanized at 41 days, while three animals were euthanized at 10 or 11 days postinfection (dpi). Viremia and clinical evidence of infection were present in all nine baboons. ZIKV RNA was present in the semen of five of nine baboons. ZIKV was present in the testes of two of three males euthanized at 10 or 11 dpi, but in none of six males at 41 dpi. Immunofluorescence of testes suggested the presence of ZIKV in sperm progenitor cells, macrophage penetration of seminiferous tubules, and increased tumor necrosis factor alpha (TNF-α), particularly in vascular walls. These data demonstrate that male olive baboons approximate the male human ZIKV response, including viremia, the adaptive immune response, and persistent ZIKV in semen. Although gross testicular pathology was not seen, the demonstrated breach of the testes-blood barrier and targeting of spermatogenic precursors suggest possible long-term implications in ZIKV-infected primates.IMPORTANCE Zika virus (ZIKV) is an emerging flavivirus spread through mosquitoes and sexual contact. ZIKV infection during pregnancy can lead to severe fetal outcomes, including miscarriage, fetal death, preterm birth, intrauterine growth restriction, and fetal microcephaly, collectively known as congenital Zika syndrome. Therefore, it is important to understand how this virus spreads, as well as the resulting pathogenesis in translational animal models that faithfully mimic ZIKV infection in humans. Such models will contribute to the future development of efficient therapeutics and prevention mechanisms. Through our previous work in olive baboons, we developed a nonhuman primate model that is permissive to ZIKV infection and transfers the virus vertically from mother to fetus, modeling human observations. The present study contributes to understanding of ZIKV infection in male baboon reproductive tissues and begins to elucidate how this may affect fertility, reproductive capacity, and sexual transmission of the virus.
Collapse
|
35
|
Poland GA, Ovsyannikova IG, Kennedy RB. Zika Vaccine Development: Current Status. Mayo Clin Proc 2019; 94:2572-2586. [PMID: 31806107 PMCID: PMC7094556 DOI: 10.1016/j.mayocp.2019.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Zika virus outbreaks have been explosive and unpredictable and have led to significant adverse health effects-as well as considerable public anxiety. Significant scientific work has resulted in multiple candidate vaccines that are now undergoing further clinical development, with several vaccines now in phase 2 clinical trials. In this review, we survey current vaccine efforts, preclinical and clinical results, and ethical and other concerns that directly bear on vaccine development. It is clear that the world needs safe and effective vaccines to protect against Zika virus infection. Whether such vaccines can be developed through to licensure and public availability absent significant financial investment by countries, and other barriers discussed within this article, remains uncertain.
Collapse
Key Words
- ade, antibody-dependent enhancement
- c, capsid
- denv, dengue virus
- e, envelope
- gbs, guillain-barré syndrome
- ifn, interferon
- irf, ifn response factor
- mrna, messenger rna
- prm, premembrane/membrane
- who, world health organization
- zikv, zika virus
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
36
|
Saver AE, Crawford SA, Joyce JD, Bertke AS. Route of Infection Influences Zika Virus Shedding in a Guinea Pig Model. Cells 2019; 8:E1437. [PMID: 31739508 PMCID: PMC6912420 DOI: 10.3390/cells8111437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the recent epidemic of Zika virus (ZIKV) infection and resulting sequelae, as well as concerns about both the sexual and vertical transmission of the virus, renewed attention has been paid to the pathogenesis of this unique arbovirus. Numerous small animal models have been used in various ZIKV pathogenicity studies, however, they are often performed using immunodeficient or immunosuppressed animals, which may impact disease progression in a manner not relevant to immunocompetent humans. The use of immunocompetent animal models, such as macaques, is constrained by small sample sizes and the need for specialized equipment/staff. Here we report the establishment of ZIKV infection in an immunocompetent small animal model, the guinea pig, using both subcutaneous and vaginal routes of infection to mimic mosquito-borne and sexual transmission. Guinea pigs developed clinical signs consistent with mostly asymptomatic and mild disease observed in humans. We demonstrate that the route of infection does not significantly alter viral tissue tropism but does impact mucosal shedding mechanics. We also demonstrate persistent infection in sensory and autonomic ganglia, identifying a previously unrecognized niche of viral persistence that could contribute to viral shedding in secretions. We conclude that the guinea pig represents a useful and relevant model for ZIKV pathogenesis.
Collapse
Affiliation(s)
- Ashley E. Saver
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.E.S.); (S.A.C.)
| | - Stephanie A. Crawford
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.E.S.); (S.A.C.)
| | - Jonathan D. Joyce
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Andrea S. Bertke
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
37
|
Meeting Report: WHO consultation on considerations for regulatory expectations of Zika virus vaccines for use during an emergency. Vaccine 2019; 37:7443-7450. [DOI: 10.1016/j.vaccine.2016.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022]
|
38
|
Cirne-Santos CC, Barros CDS, Nogueira CCR, Azevedo RC, Yamamoto KA, Meira GLS, de Vasconcelos ZFM, Ratcliffe NA, Teixeira VL, Schmidt-Chanasit J, Ferreira DF, Paixão ICNDP. Inhibition by Marine Algae of Chikungunya Virus Isolated From Patients in a Recent Disease Outbreak in Rio de Janeiro. Front Microbiol 2019; 10:2426. [PMID: 31708898 PMCID: PMC6821653 DOI: 10.3389/fmicb.2019.02426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is one of the most challenging re-emergent diseases caused by a virus, and with no specific antiviral treatment it has now become a major public health concern. In this investigation, 25 blood samples were collected from patients with characteristic CHIKV symptoms and submitted to a virus isolation protocol, which detected 3 CHIKV isolates. These samples were evaluated by sequencing for the characterization of the strains and any homology to viruses circulating in Brazil during a recent outbreak. These viruses were used for the development of antiviral assays. Subsequently, the inhibitory effects of seaweed extracts on CHIKV replication were studied. The marine species of algae tested were Bryothamnion triquetrum, Caulerpa racemosa, Laurencia dendroidea, Osmundaria obtusiloba, Ulva fasciata, and Kappaphycus alvarezii, all of which are found in different countries including Brazil. The results revealed high levels of CHIKV inhibition, including extracts of O. obtusiloba with inhibition values of 1.25 μg/mL and a selectivity index of 420. Viral inhibition was dependent on the time of addition of extract of O. obtusiloba to the infected cells, with the optimal inhibition occurring up to 16 h after infection. Neuron evaluations with O. obtusiloba were performed and demonstrated low toxicity, and in infected neurons we observed high inhibitory activity in a dose-dependent manner. These results indicate that the algal extracts may be promising novel candidates for the development of therapeutic agents against CHIKV infections.
Collapse
Affiliation(s)
- Claudio Cesar Cirne-Santos
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Departamento de Ensino, Curso de Farmácia na Universidade Salgado de Oliveira, Niterói, Brazil
| | - Caroline de Souza Barros
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Caio Cesar Richter Nogueira
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Produtos Naturais de Algas Marinhas (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Renata Campos Azevedo
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kristie Aimi Yamamoto
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Louzada Silva Meira
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Laneuville Teixeira
- Laboratório de Produtos Naturais de Algas Marinhas (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Biologia e Taxonomia de Algas (LABIOTAL), Programa de Pós-graduação em Biodiversidade Neotropical, Instituto de Biociencias, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Davis Fernandes Ferreira
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Izabel Christina Nunes de Palmer Paixão
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
39
|
Productive Infection of Mouse Mammary Glands and Human Mammary Epithelial Cells by Zika Virus. Viruses 2019; 11:v11100950. [PMID: 31619008 PMCID: PMC6832565 DOI: 10.3390/v11100950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) belongs to the large category of arboviruses. Surprisingly, several human-to-human transmissions of ZIKV have been notified, either following sexual intercourse or from the mother to fetus during pregnancy. Importantly, high viral loads have been detected in the human breast milk of infected mothers, and the existence of breastfeeding as a new mode of mother-to-child transmission of ZIKV was recently hypothesized. However, the maternal origin of infectious particles in breast milk is currently unknown. Here, we show that ZIKV disseminates to the mammary glands of infected mice after both systemic and local exposure with differential kinetics. Ex vivo, we demonstrate that primary human mammary epithelial cells were sensitive and permissive to ZIKV infection in this study. Moreover, by using in vitro models, we prove that mammary luminal- and myoepithelial-phenotype cell lines are both able to produce important virus progeny after ZIKV exposure. Our data suggest that the dissemination of ZIKV to the mammary glands and subsequent infection of the mammary epithelium could be one mechanism of viral excretion in human breast milk.
Collapse
|
40
|
Hastings AK, Uraki R, Gaitsch H, Dhaliwal K, Stanley S, Sproch H, Williamson E, MacNeil T, Marin-Lopez A, Hwang J, Wang Y, Grover JR, Fikrig E. Aedes aegypti NeSt1 Protein Enhances Zika Virus Pathogenesis by Activating Neutrophils. J Virol 2019; 93:e00395-19. [PMID: 30971475 PMCID: PMC6580965 DOI: 10.1128/jvi.00395-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022] Open
Abstract
Saliva from the mosquito vector of flaviviruses is capable of changing the local immune environment, leading to an increase in flavivirus-susceptible cells at the infected bite site. In addition, an antibody response to specific salivary gland (SG) components changes the pathogenesis of flaviviruses in human populations. To investigate whether antigenic SG proteins are capable of enhancing infection with Zika virus (ZIKV), a reemerging flavivirus primarily transmitted by the Aedes aegypti mosquito, we screened for antigenic SG proteins using a yeast display library and demonstrate that a previously undescribed SG protein we term neutrophil stimulating factor 1 (NeSt1) activates primary mouse neutrophils ex vivo Passive immunization against NeSt1 decreases pro-interleukin-1β and CXCL2 expression, prevents macrophages from infiltrating the bite site, protects susceptible IFNAR-/- IFNGR-/- (AG129) mice from early ZIKV replication, and ameliorates virus-induced pathogenesis. These findings indicate that NeSt1 stimulates neutrophils at the mosquito bite site to change the immune microenvironment, allowing a higher level of early viral replication and enhancing ZIKV pathogenesis.IMPORTANCE When a Zika virus-infected mosquito bites a person, mosquito saliva is injected into the skin along with the virus. Molecules in this saliva can make virus infection more severe by changing the immune system to make the skin a better place for the virus to replicate. We identified a molecule that activates immune cells, called neutrophils, to recruit other immune cells, called macrophages, that the virus can infect. We named this molecule neutrophil-stimulating factor 1 (NeSt1). When we used antibodies to block NeSt1 in mice and then allowed Zika virus-infected mosquitoes to feed on these mice, they survived much better than mice that do not have antibodies against NeSt1. These findings give us more information about how mosquito saliva enhances virus infection, and it is possible that a vaccine against NeSt1 might protect people against severe Zika virus infection.
Collapse
Affiliation(s)
- Andrew K Hastings
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ryuta Uraki
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hallie Gaitsch
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Khushwant Dhaliwal
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sydney Stanley
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Sproch
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric Williamson
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tyler MacNeil
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuchen Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan R Grover
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
41
|
Conzelmann C, Zou M, Groß R, Harms M, Röcker A, Riedel CU, Münch J, Müller JA. Storage-Dependent Generation of Potent Anti-ZIKV Activity in Human Breast Milk. Viruses 2019; 11:v11070591. [PMID: 31261806 PMCID: PMC6669682 DOI: 10.3390/v11070591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) causes congenital neurologic birth defects, notably microcephaly, and has been associated with other serious complications in adults. The virus has been detected in human breast milk and possible transmissions via breastfeeding have been reported. Breast milk is rich in nutrients and bio-active substances that might directly affect viral infectivity. Thus, here, we analyzed the effect of human breast milk on ZIKV infection. We observed that fresh human breast milk had no effect on ZIKV, but found that upon storage, milk effectively suppressed infection. The antiviral activity is present in the fat-containing cream fraction of milk and results in the destruction of the structural integrity of viral particles, thereby abrogating infectivity. The release of the factor is time dependent but varies with donors and incubation temperatures. The viral titer of milk that was spiked with ZIKV decreased considerably upon storage at 37 °C for 8 h, was lost entirely after 2 days of 4 °C storage, but was not affected at -20 °C. This suggests that cold storage of milk inactivates ZIKV and that the antiviral factor in milk may also be generated upon breastfeeding and limit this transmission route of ZIKV.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Min Zou
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
42
|
Zika Virus Associated Pathology and Antigen Presence in the Testicle in the Absence of Sexual Transmission During Subacute to Chronic Infection in a Mouse Model. Sci Rep 2019; 9:8325. [PMID: 31171800 PMCID: PMC6554467 DOI: 10.1038/s41598-019-44582-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) is an arboviral infection that has been shown to be sexually transmitted. The study outlined herein aims to determine if accessory sex glands and epididymal epithelial cells are sources of viral persistence in subacute and chronic ZIKV infection, and if infection of these organs is important in sexual transmission during long-term (chronic) infection. Male interferon type I receptor knockout (Ifnar-/-) mice were challenged with ZIKV and reproductive tissues were harvested 14 and 35 days post infection (DPI) for inoculation studies and 14, 35 and 70 DPI for histopathology. Artificial insemination fluid derived from epididymal flush and seminal plasma from the prostate and seminal vesicle was obtained from ZIKV inoculated and sham-infected males. Naïve interferon type I and II receptor knockout (AG129) female mice were pre-treated with progesterone and inoculated intravaginally with artificial insemination fluid from ZIKV-infected males. ZIKV RNA was detected in the artificial insemination fluid generated from epididymal flush or seminal plasma from ZIKV infected males at 14 and 35 DPI. ZIKV antigens were only detected in seminiferous tubules at 14 DPI. Epididymal epithelial cells did not show ZIKV antigen immunoreactivity at 14, 35 or 70 DPI. Severe fibrosing orchitis (end stage orchitis) was observed at 35 and 70 DPI. Mild inflammation and peri-tubular fibrosis were observed in the epididymis following clearance of virus. Viral RNA was not detected by PCR in whole blood samples of females from any intravaginal experimental group and only detected in 20% of subcutaneously inoculated animals (derived from 1 experimentally infected male) at 35 DPI. While ZIKV RNA and antigens can be detected in the male reproductive tract at 14 DPI and RNA can also be detected at 35 DPI, intravaginal inoculation of artificial insemination fluid from these time-points failed to result in viremia in naïve females inoculated intravaginally. These studies support the hypothesis that epididymal epithelial cells are critical to sexual transmission in immunocompromised mice. Additionally, acute but not chronic male reproductive tract infection with ZIKV results in infectious virus capable of being sexually transmitted in mice.
Collapse
|
43
|
Lecouturier V, Bernard MC, Berry C, Carayol S, Richier E, Boudet F, Heinrichs J. Immunogenicity and protection conferred by an optimized purified inactivated Zika vaccine in mice. Vaccine 2019; 37:2679-2686. [PMID: 30967310 DOI: 10.1016/j.vaccine.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/30/2023]
Abstract
After decades of inconsequential infections, and sporadic outbreaks in the Asia-Pacific region between 2007 and 2013, Zika virus caused a widespread epidemic in South America in 2015 that was complicated by severe congenital infections. After the WHO declared a Public Health Emergency of International Concern in February 2016, vaccine development efforts based on different platforms were initiated. Several candidates have since been evaluated in clinical phase I studies. Of these, a Zika purified inactivated vaccine (ZPIV), adjuvanted with aluminum hydroxide, developed by the Walter Reed Army Institute of Research (WRAIR), yielded high seroconversion rates. Sanofi Pasteur further optimized the vaccine in terms of production scale, purification conditions and regulatory compliance, using its experience in flavivirus vaccine development. Here we report that the resulting optimized vaccine (ZPIV-SP) elicited robust seroneutralizing antibody responses and provided complete protection from homologous Zika virus strain challenge in immunocompetent BALB/c mice. ZPIV-SP also showed improved immunogenicity compared with the first-generation vaccine, and improved efficacy in the more permissive interferon receptor-deficient A129 mice. Finally, analysis of the IgG response directed towards nonstructural protein 1 (NS1) suggests that viral NS1 was efficiently removed during the optimized purification process of ZPIV-SP. Together, these results suggest that the optimized vaccine is well suited for further evaluation in larger animal models and late-stage clinical studies.
Collapse
Affiliation(s)
| | | | - Catherine Berry
- Research & Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Eric Richier
- Analytical R&D Sanofi Pasteur, Marcy l'Etoile, France
| | - Florence Boudet
- Research & Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | |
Collapse
|
44
|
Runge-Ranzinger S, Morrison AC, Manrique-Saide P, Horstick O. Zika transmission patterns: a meta-review. Trop Med Int Health 2019; 24:523-529. [PMID: 30771269 DOI: 10.1111/tmi.13216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assesses what is known and identify knowledge gaps for Zika virus (ZIKV) transmission patterns. METHODS Meta-review searching the databases BioSys; Cochrane Infectious Diseases Group Specialised Register and Cochrane Central Register of Controlled Trials; EMBASE; Google Scholar; LILACS; MEDLINE (PubMed); Web of Science; and WHOLIS with the term 'ZIKA'. Systematic reviews and reviews specifying the search methods and describing potential modes of transmission were eligible for analysis. RESULTS Of 5,401 hits for 'Zika', 44 studies were assessed and 11 included after applying in- and exclusion criteria: six systematic reviews and five reviews with specified methods, covering all ways of possible transmission. Results can be grouped into transmission routes with good evidence and agreement between the studies (evidence on vector, mother-to-child and sexual transmission) and transmission routes with limited evidence. Transmission by breastfeeding, intrapartum, by animal bites or laboratory-based remains inconclusive, as these routes are suggested by single studies only. The risk of transfusion transmission is described and public health measures for safe transfusion should be taken as available. CONCLUSION Our results imply the need for public health measures to limit transmission via vectors, mother-to-child, sexual transmission and blood transfusion. Also needed are long-term prospective cohort studies covering periods of active Zika virus transmission and measuring epidemiological parameters to establish evidence on other routes of transmission; seroprevalence studies; transmission dynamics modelling and modelling health impacts by different modes of transmission.
Collapse
Affiliation(s)
- S Runge-Ranzinger
- Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - A C Morrison
- Department of Entomology and Nematology, University of California, Davis, USA
| | | | - O Horstick
- Heidelberg Institute of Global Health, University of Heidelberg, Germany
| |
Collapse
|
45
|
Development and Validation of Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) for Rapid Detection of ZIKV in Mosquito Samples from Brazil. Sci Rep 2019; 9:4494. [PMID: 30872672 PMCID: PMC6418238 DOI: 10.1038/s41598-019-40960-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
The rapid spread of Zika virus (ZIKV) represents a global public health problem, especially in areas that harbor several mosquito species responsible for virus transmission, such as Brazil. In these areas, improvement in mosquito control needs to be a top priority, but mosquito viral surveillance occurs inefficiently in ZIKV-endemic countries. Quantitative reverse transcription PCR (qRT-PCR) is the gold standard for molecular diagnostic of ZIKV in both human and mosquito samples. However, the technique presents high cost and limitations for Point-of-care (POC) diagnostics, which hampers its application for a large number of samples in entomological surveillance programs. Here, we developed and validated a one-step reverse transcription LAMP (RT-LAMP) platform for detection of ZIKV in mosquito samples. The RT-LAMP assay was highly specific for ZIKV and up to 10,000 times more sensitive than qRT-PCR. Assay validation was performed using 60 samples from Aedes aegypti and Culex quinquefasciatus mosquitoes collected in Pernambuco State, Brazil, which is at the epicenter of the Zika epidemic. The RT-LAMP had a sensitivity of 100%, specificity of 91.18%, and overall accuracy of 95.24%. Thus, our POC diagnostics is a powerful and inexpensive tool to monitor ZIKV in mosquito populations and will allow developing countries to establish better control strategies for this devastating pathogen.
Collapse
|
46
|
Sampieri CL, Montero H. Breastfeeding in the time of Zika: a systematic literature review. PeerJ 2019; 7:e6452. [PMID: 30809448 PMCID: PMC6385688 DOI: 10.7717/peerj.6452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background The disease Zika is considered as emergent. The infection can be acquired through different routes: a bite from the Aedes mosquito, sexual contact, from mother to child during pregnancy and by blood transfusion. The possibility of Zika transmission through human lactation has been considered. Zika is a disease of great concern for public health because it has been associated with neonatal and postnatal microcephaly, among other birth defects. Objectives To review published evidence of the probable transmission of Zika through human lactation. Data sources Electronic databases: Cochrane Central Register of Controlled Trials, EBSCO, Gale, Science Direct, Scopus, US National Library of Medicine (PubMed) and Web of Science. World Health Organization and Centers for Disease Control and Prevention web pages. Study eligibility criteria To be eligible, studies of any design had to provide primary data of human breast milk as a potential fluid for the transmission of Zika, or primary or secondary follow-up data of infants with at least one previous published study that complied with the first criterion of eligibility. Participants Studies about women with suspected, probable or confirmed Zika during pregnancy, or the postnatal period and beyond. Studies about infants who breastfeed directly from the breast or where fed with the expressed breast milk of the suspected, probable or confirmed women with Zika. Results This study only chose data from research papers; no patients were taken directly by the authors. A total of 1,146 were screened and nine studies were included in the qualitative synthesis, from which a total of 10 cases were identified, with documented follow-up in three of these cases. Through the timing of maternal Zika infection, five cases were classified as prenatal (time before delivery), one as immediate postnatal (period from 0 to 4 days after birth); no cases were classified as medium postnatal (period from 5 days to 8 weeks after birth); two were classified as long postnatal (period from 8 weeks to 6 months after birth) and two as beyond six months after birth. Conclusion Human milk may be considered as a potentially infectious fluid, but we found no currently documented studies of the long-term complications in infants up to 32 months of age, with suspected, probable or confirmed Zika through human lactation, or evidence with respect to the human pathophysiology of the infection acquired through human lactation. In the light of the studies reviewed here, the World Health Organization recommendation of June 29th 2016, remains valid: “the benefits of breastfeeding for the infant and mother outweigh any potential risk of Zika virus transmission through breast milk.”
Collapse
Affiliation(s)
- Clara Luz Sampieri
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
47
|
Regla-Nava JA, Viramontes KM, Vozdolska T, Huynh AT, Villani T, Gardner G, Johnson M, Ferro PJ, Shresta S, Kim K. Detection of Zika virus in mouse mammary gland and breast milk. PLoS Negl Trop Dis 2019; 13:e0007080. [PMID: 30742628 PMCID: PMC6386411 DOI: 10.1371/journal.pntd.0007080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/22/2019] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Clinical reports of Zika Virus (ZIKV) RNA detection in breast milk have been described, but evidence conflicts as to whether this RNA represents infectious virus. We infected post-parturient AG129 murine dams deficient in type I and II interferon receptors with ZIKV. ZIKV RNA was detected in pup stomach milk clots (SMC) as early as 1 day post maternal infection (dpi) and persisted as late as 7 dpi. In mammary tissues, ZIKV replication was demonstrated by immunohistochemistry in multiple cell types including cells morphologically consistent with myoepithelial cells. No mastitis was seen histopathologically. In the SMC and tissues of the nursing pups, no infectious virus was detected via focus forming assay. However, serial passages of fresh milk supernatant yielded infectious virus, and immunohistochemistry showed ZIKV replication protein associated with degraded cells in SMC. These results suggest that breast milk may contain infectious ZIKV. However, breast milk transmission (BMT) does not occur in this mouse strain that is highly sensitive to ZIKV infection. These results suggest a low risk for breast milk transmission of ZIKV, and provide a platform for investigating ZIKV entry into milk and mechanisms which may prevent or permit BMT.
Collapse
Affiliation(s)
- Jose Angel Regla-Nava
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Karla M. Viramontes
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Teodora Vozdolska
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Anh-Thy Huynh
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Tom Villani
- Visikol, New Jersey, United States of America
| | | | | | - Pamela J. Ferro
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX, United States of America
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Kenneth Kim
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| |
Collapse
|
48
|
Cirne-Santos CC, Barros CDS, Nogueira CCR, Azevedo RC, Yamamoto KA, Meira GLS, de Vasconcelos ZFM, Ratcliffe NA, Teixeira VL, Schmidt-Chanasit J, Ferreira DF, Paixão ICNDP. Inhibition by Marine Algae of Chikungunya Virus Isolated From Patients in a Recent Disease Outbreak in Rio de Janeiro. Front Microbiol 2019. [PMID: 31708898 DOI: 10.3389/fmicb201902426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is one of the most challenging re-emergent diseases caused by a virus, and with no specific antiviral treatment it has now become a major public health concern. In this investigation, 25 blood samples were collected from patients with characteristic CHIKV symptoms and submitted to a virus isolation protocol, which detected 3 CHIKV isolates. These samples were evaluated by sequencing for the characterization of the strains and any homology to viruses circulating in Brazil during a recent outbreak. These viruses were used for the development of antiviral assays. Subsequently, the inhibitory effects of seaweed extracts on CHIKV replication were studied. The marine species of algae tested were Bryothamnion triquetrum, Caulerpa racemosa, Laurencia dendroidea, Osmundaria obtusiloba, Ulva fasciata, and Kappaphycus alvarezii, all of which are found in different countries including Brazil. The results revealed high levels of CHIKV inhibition, including extracts of O. obtusiloba with inhibition values of 1.25 μg/mL and a selectivity index of 420. Viral inhibition was dependent on the time of addition of extract of O. obtusiloba to the infected cells, with the optimal inhibition occurring up to 16 h after infection. Neuron evaluations with O. obtusiloba were performed and demonstrated low toxicity, and in infected neurons we observed high inhibitory activity in a dose-dependent manner. These results indicate that the algal extracts may be promising novel candidates for the development of therapeutic agents against CHIKV infections.
Collapse
Affiliation(s)
- Claudio Cesar Cirne-Santos
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Ensino, Curso de Farmácia na Universidade Salgado de Oliveira, Niterói, Brazil
| | - Caroline de Souza Barros
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Caio Cesar Richter Nogueira
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Produtos Naturais de Algas Marinhas (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Renata Campos Azevedo
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kristie Aimi Yamamoto
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Louzada Silva Meira
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Laneuville Teixeira
- Laboratório de Produtos Naturais de Algas Marinhas (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Biologia e Taxonomia de Algas (LABIOTAL), Programa de Pós-graduação em Biodiversidade Neotropical, Instituto de Biociencias, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Davis Fernandes Ferreira
- Instituto de Microbiologia Paulo de Góes (IMPPG), Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Izabel Christina Nunes de Palmer Paixão
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
49
|
Kumar A, Liang B, Aarthy M, Singh SK, Garg N, Mysorekar IU, Giri R. Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS OMEGA 2018; 3:18132-18141. [PMID: 30613818 PMCID: PMC6312647 DOI: 10.1021/acsomega.8b01002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/05/2018] [Indexed: 05/30/2023]
Abstract
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Collapse
Affiliation(s)
- Ankur Kumar
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Brooke Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, and Department of
Pathology and Immunology, Washington University
School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Murali Aarthy
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Laboratory, Alagappa University, Science Block, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Laboratory, Alagappa University, Science Block, Karaikudi 630003, Tamil Nadu, India
| | - Neha Garg
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- BioX Center, Indian Institute
of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, and Department of
Pathology and Immunology, Washington University
School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Rajanish Giri
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- BioX Center, Indian Institute
of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
50
|
Niedrig M, Patel P, El Wahed AA, Schädler R, Yactayo S. Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infect Dis 2018; 18:707. [PMID: 30594124 PMCID: PMC6311079 DOI: 10.1186/s12879-018-3611-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The emergence of different viral infections during the last decades like dengue, West Nile, SARS, chikungunya, MERS-CoV, Ebola, Zika and Yellow Fever raised some questions on quickness and reliability of laboratory diagnostic tests for verification of suspected cases. Since sampling of blood requires medically trained personal and comprises some risks for the patient as well as for the health care personal, the sampling by non-invasive methods (e.g. saliva and/ or urine) might be a very valuable alternative for investigating a diseased patient. MAIN BODY To analyse the usefulness of alternative non-invasive samples for the diagnosis of emerging infectious viral diseases, a literature search was performed on PubMed for alternative sampling for these viral infections. In total, 711 papers of potential relevance were found, of which we have included 128 in this review. CONCLUSIONS Considering the experience using non-invasive sampling for the diagnostic of emerging viral diseases, it seems important to perform an investigation using alternative samples for routine diagnostics. Moreover, during an outbreak situation, evaluation of appropriate sampling and further processing for laboratory analysis on various diagnostic platforms are very crucial. This will help to achieve optimal diagnostic results for a good and reliable case identification.
Collapse
Affiliation(s)
| | | | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | | | - Sergio Yactayo
- Control of Epidemic Diseases (CED), World Health Organization, Geneva, Switzerland
| |
Collapse
|