1
|
Hurraß J, Heinzow B, Walser-Reichenbach S, Aurbach U, Becker S, Bellmann R, Bergmann KC, Cornely OA, Engelhart S, Fischer G, Gabrio T, Herr CEW, Joest M, Karagiannidis C, Klimek L, Köberle M, Kolk A, Lichtnecker H, Lob-Corzilius T, Mülleneisen N, Nowak D, Rabe U, Raulf M, Steinmann J, Steiß JO, Stemler J, Umpfenbach U, Valtanen K, Werchan B, Willinger B, Wiesmüller GA. [Medical clinical diagnostics for indoor mould exposure - Update 2023 (AWMF Register No. 161/001)]. Pneumologie 2024; 78:693-784. [PMID: 39424320 DOI: 10.1055/a-2194-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This article is an abridged version of the updated AWMF mould guideline "Medical clinical diagnostics in case of indoor mould exposure - Update 2023", presented in July 2023 by the German Society of Hygiene, Environmental Medicine and Preventive Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin, GHUP), in collaboration with German and Austrian scientific medical societies, and experts. Indoor mould growth is a potential health risk, even if a quantitative and/or causal relationship between the occurrence of individual mould species and health problems has yet to be established. There is no evidence for a causal relationship between moisture/mould damage and human diseases, mainly because of the ubiquitous presence of fungi and hitherto inadequate diagnostic methods. Sufficient evidence for an association between moisture/mould damage and the following health effects has been established for: allergic respiratory diseases, allergic rhinitis, allergic rhino-conjunctivitis, allergic bronchopulmonary aspergillosis (ABPA), other allergic bronchopulmonary mycosis (ABPM), aspergilloma, Aspergillus bronchitis, asthma (manifestation, progression, exacerbation), bronchitis (acute, chronic), community-acquired Aspergillus pneumonia, hypersensitivity pneumonitis (HP; extrinsic allergic alveolitis (EEA)), invasive Aspergillosis, mycoses, organic dust toxic syndrome (ODTS) [workplace exposure], promotion of respiratory infections, pulmonary aspergillosis (subacute, chronic), and rhinosinusitis (acute, chronically invasive, or granulomatous, allergic). In this context the sensitizing potential of moulds is obviously low compared to other environmental allergens. Recent studies show a comparatively low sensitization prevalence of 3-22,5 % in the general population across Europe. Limited or suspected evidence for an association exist with respect to atopic eczema (atopic dermatitis, neurodermatitis; manifestation), chronic obstructive pulmonary disease (COPD), mood disorders, mucous membrane irritation (MMI), odor effects, and sarcoidosis. (iv) Inadequate or insufficient evidence for an association exist for acute idiopathic pulmonary hemorrhage in infants, airborne transmitted mycotoxicosis, arthritis, autoimmune diseases, cancer, chronic fatigue syndrome (CFS), endocrinopathies, gastrointestinal effects, multiple chemical sensitivity (MCS), multiple sclerosis, neuropsychological effects, neurotoxic effects, renal effects, reproductive disorders, rheumatism, sick building syndrome (SBS), sudden infant death syndrome, teratogenicity, thyroid diseases, and urticaria.The risk of infection posed by moulds regularly occurring indoors is low for healthy persons; most species are in risk group 1 and a few in risk group 2 (Aspergillus fumigatus, A. flavus) of the German Biological Agents Act (Biostoffverordnung). Only moulds that are potentially able to form toxins can be triggers of toxic reactions. Whether or not toxin formation occurs in individual cases is determined by environmental and growth conditions, water activity, temperature and above all the growth substrates.In case of indoor moisture/mould damage, everyone can be affected by odor effects and/or mood disorders.However, this is not an acute health hazard. Predisposing factors for odor effects can include genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for mood disorders may include environmental concerns, anxiety, condition, and attribution, as well as various diseases. Risk groups to be protected particularly regarding infection risk are immunocompromised persons according to the classification of the German Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, KRINKO) at the Robert Koch-Institute (RKI), persons suffering from severe influenza, persons suffering from severe COVID-19, and persons with cystic fibrosis (mucoviscidosis); with regard to allergic risk, persons with cystic fibrosis (mucoviscidosis) and patients with bronchial asthma must be protected. The rational diagnostics include the medical history, physical examination, and conventional allergy diagnostics including provocation tests if necessary; sometimes cellular test systems are indicated. In the case of mould infections, the reader is referred to the specific guidelines. Regarding mycotoxins, there are currently no useful and validated test procedures for clinical diagnostics. From a preventive medical point of view, it is important that indoor mould infestation in relevant magnitudes cannot be tolerated for precautionary reasons.For evaluation of mould damage in the indoor environment and appropriate remedial procedures, the reader is referred to the mould guideline issued by the German Federal Environment Agency (Umweltbundesamt, UBA).
Collapse
Affiliation(s)
- Julia Hurraß
- Sachgebiet Hygiene in Gesundheitseinrichtungen, Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln
| | - Birger Heinzow
- Ehemals: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel
| | | | - Ute Aurbach
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
| | - Sven Becker
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Tübingen
| | - Romuald Bellmann
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck
| | | | - Oliver A Cornely
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | | | - Guido Fischer
- Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Thomas Gabrio
- Ehemals: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Caroline E W Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
- Ludwig-Maximilians-Universität München, apl. Prof. "Hygiene und Umweltmedizin"
| | - Marcus Joest
- Allergologisch-immunologisches Labor, Helios Lungen- und Allergiezentrum Bonn
| | - Christian Karagiannidis
- Fakultät für Gesundheit, Professur für Extrakorporale Lungenersatzverfahren, Universität Witten/Herdecke
- Lungenklinik Köln Merheim, Kliniken der Stadt Köln
| | | | - Martin Köberle
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Annette Kolk
- Institut für Arbeitsschutz der DGUV (IFA), Bereich Biostoffe, Sankt Augustin
| | | | | | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München
| | - Uta Rabe
- Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus Treuenbrietzen
| | - Monika Raulf
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA)
| | - Jörg Steinmann
- Institut für Klinikhygiene, Medizinische Mikrobiologie und Klinische Infektiologie, Paracelsus Medizinische Privatuniversität Klinikum Nürnberg
| | - Jens-Oliver Steiß
- Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen
- Schwerpunktpraxis Allergologie und Kinder-Pneumologie Fulda
| | - Jannik Stemler
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | - Ulli Umpfenbach
- Arzt für Kinderheilkunde und Jugendmedizin, Kinderpneumologie, Umweltmedizin, klassische Homöopathie, Asthmatrainer, Neurodermitistrainer, Viersen
| | | | | | - Birgit Willinger
- Klinisches Institut für Labormedizin, Klinische Abteilung für Klinische Mikrobiologie - MedUni Wien
| | - Gerhard A Wiesmüller
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
- Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen
| |
Collapse
|
2
|
Chedik L, Baybekov S, Cosnier F, Marcou G, Varnek A, Champmartin C. An update of skin permeability data based on a systematic review of recent research. Sci Data 2024; 11:224. [PMID: 38383523 PMCID: PMC10881585 DOI: 10.1038/s41597-024-03026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs and cosmetics, as well as for assessing environmental and occupational chemical risks. Despite the great variability in the design of experimental conditions due to uncertain international guidelines, datasets like HuskinDB have been created to report skin absorption endpoints. This review updates available skin permeability data by rigorously compiling research published between 2012 and 2021. Inclusion and exclusion criteria have been selected to build the most harmonized and reusable dataset possible. The Generative Topographic Mapping method was applied to the present dataset and compared to HuskinDB to monitor the progress in skin permeability research and locate chemotypes of particular concern. The open-source dataset (SkinPiX) includes steady-state flux, maximum flux, lag time and permeability coefficient results for the substances tested, as well as relevant information on experimental parameters that can impact the data. It can be used to extract subsets of data for comparisons and to build predictive models.
Collapse
Affiliation(s)
- Lisa Chedik
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Frédéric Cosnier
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Catherine Champmartin
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
3
|
Wu D, Wu Y, Zhang M, Lan H. Aflatoxin B1 exposure triggers inflammation and premature skin aging via ERMCS/Ca 2+/ROS signaling cascade. Int Immunopharmacol 2023; 124:110961. [PMID: 37742367 DOI: 10.1016/j.intimp.2023.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Aflatoxin B1 (AFB1) is a recognized hazard environmental contaminant mainly found in cereal and fruits. The toxicity of AFB1 exposure to various organs has been revealed in some literature. In current study, we explored the effect of AFB1 exposure on premature aging/senescence of skin. In vivo, 8-week-old C57 mice were used as models to evaluate the effect of dietary AFB1 exposure on premature skin aging. The results showed that AFB1 exposure caused premature skin aging by testing aging markers. Additionally, AFB1 led to oxidative stress and inflammatory response. In vitro, AFB1 exposure triggered premature cellular senescence in mouse skin fibroblasts cells (L929 cells) by assessing a range of cellular senescence-related markers. Further, the potential molecular mechanism by which AFB1 induce the premature skin aging was studied. ROS and Ca2+ is proven to be the key molecules in AFB1-induced cellular senescence. Further, through eliminating Ca2+, AFB1-caused oxidative stress and cellular senescence were both attenuated, suggesting that Ca2+ overload in the mitochondria results in cellular senescence by increasing ROS production. Next, we analyzed the causes of Ca2+ overload, and results showed that AFB1 exposure induces Ca2+ overload through increasing the formation of mitoguardin (Miga) and vesicle-associated membrane protein (VAMP)-associated protein (Vap33)-mediated endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS). AFB1 exposure also inhibited mitophagy, leading to accelerate L929 cell senescence. In short, combining in vivo and in vitro results, we demonstrate that exposure to AFB1 causes premature skin aging, which is dependent on ERMCS/Ca2+/ROS/ signaling axis. The current study suggests that prolonged exposure to AFB1 makes skin more vulnerable to damage.
Collapse
Affiliation(s)
- Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yi Wu
- Department of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| | - Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Ando M, Yamaguchi H, Morimoto A, Iwashita N, Takagi Y, Nagane M, Yoshinari T, Fukuyama T. Chronic oral exposure to low-concentration fumonisin B2 significantly exacerbates the inflammatory responses of allergies in mice via inhibition of IL-10 release by regulatory T cells in gut-associated lymphoid tissue. Arch Toxicol 2023; 97:2707-2719. [PMID: 37589943 DOI: 10.1007/s00204-023-03579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Contamination with fumonisins produced by Fusarium spp. is rapidly growing in both developing and developed countries. The purpose of this study was to determine whether oral exposure to fumonisin contributed to the development of allergic diseases. We initially examined the immunotoxic potential of short-term, oral administration of fumonisin B1 (FB1, 1 mg/kg) and fumonisin B2 (FB2, 1 mg/kg), both naturally occurring fumonisins, using a BALB/c mouse model of allergic contact dermatitis and Dermatophagoides farina-induced asthma. Using an NC/nga mouse model of atopic dermatitis (AD), we evaluated the adverse effects of subchronic oral exposure to low concentrations of FB2 (2 or 200 μg/kg). Finally, we explored the influence of FB2 on regulatory T cell proliferation and function in mesenteric lymph nodes after 1-week oral exposure to FB2 in BALB/c mice. Oral exposure to FB2 markedly exacerbated the symptoms of allergy, including skin thickness, histological evaluation, immunocyte proliferation, and proinflammatory cytokine production, although no change was observed following exposure to FB1. Furthermore, oral exposure to low concentrations of FB2 considerably exacerbated the AD scores, skin thickness, transepidermal water loss, histological features, and proinflammatory cytokine production. The aggravated allergic symptoms induced by oral exposure to FB2 could be attributed to the direct inhibition of IL-10 production by regulatory T cells in mesenteric lymph nodes. Our findings indicate that the recommended maximum fumonisin level should be reconsidered based on the potential for allergy development.
Collapse
Affiliation(s)
- Mana Ando
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroki Yamaguchi
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Ai Morimoto
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Naoki Iwashita
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Bioalch Co., Ltd., 3-28 Honshuku-cho, Fuchu, Tokyo, Japan
| | - Yoshiichi Takagi
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Japan SLC, Inc, 85 Ohara-cho, Kita-ku, Hamamatsu, Shizuoka, Japan
| | - Masaki Nagane
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Laboratory of Veterinary Pharmacology, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
5
|
Al-Shaarani AAQA, Quach ZM, Wang X, Muafa MHM, Nafis MMH, Pecoraro L. Analysis of Airborne Fungal Communities on Pedestrian Bridges in Urban Environments. Microorganisms 2023; 11:2097. [PMID: 37630657 PMCID: PMC10458245 DOI: 10.3390/microorganisms11082097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Airborne fungal spores constitute an important type of bioaerosol and are responsible for a number of negative effects on human health, including respiratory diseases and allergies. We investigated the diversity and concentration of culturable airborne fungi on pedestrian bridges in Tianjin, China, using an HAS-100B air sampler. We compared the airborne fungal communities at the top central area of the selected pedestrian bridges and along the corresponding sidewalk, at ground level. A total of 228 fungal strains belonging to 96 species and 58 genera of Ascomycota (68.86%), Basidiomycota (30.26%), and Mucoromycota (0.88%) were isolated and identified using morphological and molecular analysis. Alternaria was the dominant genus (20.61%), followed by Cladosporium (11.48%), Schizophyllum (6.14%), Sporobolomyces (5.70%), and Sporidiobolus (4.82%). Alternaria alternata was the most frequently occurring fungal species (6.58%), followed by Schizophyllum commune (5.26%), Alternaria sp. (4.82%), Sporobolomyces carnicolor (4.39%), and Cladosporium cladosporioides (3.95%). The recorded fungal concentration ranged from 10 to 180 CFU/m3. Although there was no significant difference in the distribution and abundance of the dominant airborne fungal taxa between the two investigated bridges' sites, numerous species detected with a low percentage of abundance belonging to well-known pathogenic fungal genera, including Alternaria, Aspergillus, Aureobasidium, Cladosporium, Penicillium, and Trichoderma, were exclusively present in one of the two sites. The relative humidity showed a stronger influence compared to the temperature on the diversity and concentration of airborne fungi in the investigated sites. Our results may provide valuable information for air quality monitoring and for assessing human health risks associated with microbial pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China; (A.A.Q.A.A.-S.); (Z.M.Q.); (X.W.); (M.H.M.M.); (M.M.H.N.)
| |
Collapse
|
6
|
Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022; 14:2038. [PMID: 35631179 PMCID: PMC9147554 DOI: 10.3390/nu14102038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| |
Collapse
|
7
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
van den Brandhof JG, Wösten HAB. Risk assessment of fungal materials. Fungal Biol Biotechnol 2022; 9:3. [PMID: 35209958 PMCID: PMC8876125 DOI: 10.1186/s40694-022-00134-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sustainable fungal materials have a high potential to replace non-sustainable materials such as those used for packaging or as an alternative for leather and textile. The properties of fungal materials depend on the type of fungus and substrate, the growth conditions and post-treatment of the material. So far, fungal materials are mainly made with species from the phylum Basidiomycota, selected for the mechanical and physical properties they provide. However, for mycelium materials to be implemented in society on a large scale, selection of fungal species should also be based on a risk assessment of the potential to be pathogenic, form mycotoxins, attract insects, or become an invasive species. Moreover, production processes should be standardized to ensure reproducibility and safety of the product.
Collapse
Affiliation(s)
- Jeroen G van den Brandhof
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
10
|
Kumi J, Appiah-Opong R, Rein D, Egbi G, Aninagyei E, Boye A, Omane-Acheampong D. Safety and Efficacy of Novasil Clay (Calcium Montmorillonite) in Children Exposed to Aflatoxin in Ejura-Sekyedumase District in Ghana. Glob Pediatr Health 2022; 9:2333794X221121243. [PMID: 36133399 PMCID: PMC9483956 DOI: 10.1177/2333794x221121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Aflatoxin levels are very high in animals and humans in places where cereals are poorly stored. In this study, Novasil was evaluated for safety and efficacy in children. Methods. Children (200) aged between 2 and 9 years were put into Novasil and placebo group. Participants received either 1.5 g of Novasil or calcium carbonate in their food. Urine samples were analyzed for AFM1 by HPLC, blood samples were assayed for complete blood count and chemistries. Results. Aflatoxin M1 levels in the Novasil treated group, significantly reduced to 60% compared to an increase of urine AFM1 in the placebo group. Hematological parameters did not change except for an increase in hemoglobin level in the Novasil group. Biochemical parameters remained unchanged except calcium ions. Glutathione levels in the Novasil increased, compared group to the placebo group. Conclusion. Novasil is safe, reduce aflatoxin bioavailability in humans while improving GSH antioxidant capacity as well. The trial has been registered with Pan African Clinical Trial Registry ( www.pactr.org ). A WHO registry for clinical trials with a unique identification number PACTR202202797930675.
Collapse
Affiliation(s)
- Justice Kumi
- University of Ghana, Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
- University of Cape Coast, Department of Biomedical Science, Cape Coast, Ghana
| | - Regina Appiah-Opong
- University of Ghana, Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
| | - Dietrich Rein
- BASF SE Food Fortification, Human Nutrition, Ludwigshafen, Germany
| | - Godfred Egbi
- University of Ghana, Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
| | - Enoch Aninagyei
- University of Allied Health Sciences, Department of Biomedical Sciences, Ho, Ghana
| | - Alex Boye
- University of Cape Coast, Department of Medical Laboratory Science, Cape Coast, Ghana
| | | |
Collapse
|
11
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
12
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
13
|
Abstract
Aflatoxins are endemic in Kenya. The 2004 outbreak of acute aflatoxicosis in the country was one of the unprecedented epidemics of human aflatoxin poisoning recorded in mycotoxin history. In this study, an elaborate review was performed to synthesize Kenya’s major findings in relation to aflatoxins, their prevalence, detection, quantification, exposure assessment, prevention, and management in various matrices. Data retrieved indicate that the toxins are primarily biosynthesized by Aspergillus flavus and A. parasiticus, with the eastern part of the country reportedly more aflatoxin-prone. Aflatoxins have been reported in maize and maize products (Busaa, chan’gaa, githeri, irio, muthokoi, uji, and ugali), peanuts and its products, rice, cassava, sorghum, millet, yams, beers, dried fish, animal feeds, dairy and herbal products, and sometimes in tandem with other mycotoxins. The highest total aflatoxin concentration of 58,000 μg/kg has been reported in maize. At least 500 acute human illnesses and 200 deaths due to aflatoxins have been reported. The causes and prevalence of aflatoxins have been grossly ascribed to poor agronomic practices, low education levels, and inadequate statutory regulation and sensitization. Low diet diversity has aggravated exposure to aflatoxins in Kenya because maize as a dietetic staple is aflatoxin-prone. Detection and surveillance are only barely adequate, though some exposure assessments have been conducted. There is a need to widen diet diversity as a measure of reducing exposure due to consumption of aflatoxin-contaminated foods.
Collapse
|
14
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
15
|
Moradi M, Azizi‐Lalabadi M, Motamedi P, Sadeghi E. Electrochemical determination of T 2 toxin by graphite/polyacrylonitrile nanofiber electrode. Food Sci Nutr 2021; 9:1171-1179. [PMID: 33598201 PMCID: PMC7866594 DOI: 10.1002/fsn3.2097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
Fabricating graphite electrode corrected with nanofiber by electrospinning as a considerable procedure for utilization in the fluid materials, milk, and syrup for detection of T2 mycotoxin is a significant technique. The modern biosensor was fabricated at normal degrees of room and utilized via buffer Britton-Robinson (B-R) in pH = 5 to refine the chemico-mechanical specifications. The electrochemical manner of the modified surface was surveyed using the scanning electron microscopy (SEM), cyclic voltammetry (CV), square wave voltammetry (SQWV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The corrected electrode displayed a linear reply to T2 toxin in two distinct concentration ranges of 30-100 nM with correlation coefficients of 0.99. The greatest signals in the square wave spectrums for the B-R buffer created on the uttermost signals of the obtained streams were pH = 5 and 0.5 M of KNO3 for T2 toxin. The modified electrode has a big signal, broad dynamic concentration and high sensitivity and selectivity.
Collapse
Affiliation(s)
- Mona Moradi
- Department of Chemical Engineering‐ Food SciencesKermanshah Science and Research BranchIslamic Azad UniversityKermanshahIran
| | - Maryam Azizi‐Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH)Kermanshah University of Medical SciencesKermanshahIran
| | - Parisa Motamedi
- Research Center for Environmental Determinants of Health (RCEDH)Kermanshah University of Medical SciencesKermanshahIran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH)Kermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
16
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
17
|
Ndaw S, Jargot D, Antoine G, Denis F, Melin S, Robert A. Investigating Multi-Mycotoxin Exposure in Occupational Settings: A Biomonitoring and Airborne Measurement Approach. Toxins (Basel) 2021; 13:54. [PMID: 33450876 PMCID: PMC7828332 DOI: 10.3390/toxins13010054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/29/2022] Open
Abstract
Investigating workplace exposure to mycotoxins is of the utmost importance in supporting the implementation of preventive measures for workers. The aim of this study was to provide tools for measuring mycotoxins in urine and airborne samples. A multi-class mycotoxin method was developed in urine for the determination of aflatoxin B1, aflatoxin M1, ochratoxin A, ochratoxin α, deoxynivalenol, zearalenone, α-zearalenol, β-zearalenol, fumonisin B1, HT2-toxin and T2-toxin. Analysis was based on liquid chromatography-high resolution mass spectrometry. Sample pre-treatments included enzymatic digestion and an online or offline sample clean-up step. The method was validated according to the European Medicines Agency guidance procedures. In order to estimate external exposure, air samples collected with a CIP 10 (Capteur Individuel de Particules 10) personal dust sampler were analyzed for the quantification of up to ten mycotoxins, including aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin B1 and HT-2 toxin and T-2 toxin. The method was validated according to standards for workplace exposure to chemical and biological agents EN 482. Both methods, biomonitoring and airborne mycotoxin measurement, showed good analytical performances. They were successfully applied in a small pilot study to assess mycotoxin contamination in workers during cleaning of a grain elevator. We demonstrated that this approach was suitable for investigating occupational exposure to mycotoxins.
Collapse
Affiliation(s)
- Sophie Ndaw
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (G.A.); (F.D.); (A.R.)
| | - Daniele Jargot
- Pollutant Metrology Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (D.J.); (S.M.)
| | - Guillaume Antoine
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (G.A.); (F.D.); (A.R.)
| | - Flavien Denis
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (G.A.); (F.D.); (A.R.)
| | - Sandrine Melin
- Pollutant Metrology Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (D.J.); (S.M.)
| | - Alain Robert
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (G.A.); (F.D.); (A.R.)
| |
Collapse
|
18
|
Mwihia EW, Lyche JL, Mbuthia PG, Ivanova L, Uhlig S, Gathumbi JK, Maina JG, Eshitera EE, Eriksen GS. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins (Basel) 2020; 12:E627. [PMID: 33008105 PMCID: PMC7600487 DOI: 10.3390/toxins12100627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
This study determined the presence, levels and co-occurrence of mycotoxins in fish feeds in Kenya. Seventy-eight fish feeds and ingredients were sampled from fish farms and fish feed manufacturing plants and analysed for 40 mycotoxins using high-performance liquid chromatography-high resolution mass spectrometry. Twenty-nine (73%) mycotoxins were identified with 76 (97%) samples testing positive for mycotoxins presence. Mycotoxins with the highest prevalences were enniatin B (91%), deoxynivalenol (76%) and fumonisin B1 (54%) while those with the highest maximum levels were sterigmatocystin (<30.5-3517.1 µg/kg); moniliformin (<218.9-2583.4 µg/kg) and ergotamine (<29.3-1895.6 µg/kg). Mycotoxin co-occurrence was observed in 68 (87%) samples. Correlations were observed between the fumonisins; enniatins B and zearalenone and its metabolites. Fish dietary exposure estimates ranged between <0.16 and 43.38 µg/kg body weight per day. This study shows evidence of mycotoxin presence and co-occurrence in fish feeds and feed ingredients in Kenya. Fish exposure to these levels of mycotoxins over a long period of time may lead to adverse health effects due to their possible additive, synergistic or antagonist toxic effects. Measures to reduce fish feed mycotoxin contamination should be taken to avoid mycotoxicosis in fish and subsequently in humans and animals through residues.
Collapse
Affiliation(s)
- Evalyn Wanjiru Mwihia
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536, Egerton 20115, Kenya
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Jan Ludvig Lyche
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
| | - Paul Gichohi Mbuthia
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Joyce G. Maina
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya;
| | - Eric Emali Eshitera
- Department of Animal Health and Production, School of Natural Resource and Animal Sciences, Maasai Mara University, P.O. Box 861, Narok 20500, Kenya;
| | - Gunnar Sundstøl Eriksen
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| |
Collapse
|
19
|
Franco LT, Ismail A, Amjad A, Oliveira CAFD. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: a systematic review. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1795685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
20
|
Hussar P, Popovska-Percinic F, Blagoevska K, Järveots T, Dūrītis I. Immunohistochemical Study of Glucose Transporter GLUT-5 in Duodenal Epithelium in Norm and in T-2 Mycotoxicosis. Foods 2020; 9:E849. [PMID: 32610537 PMCID: PMC7404732 DOI: 10.3390/foods9070849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Although patterns of glucose transporter expression and notes about diseases leading to adaptive changes in intestinal fructose transport have been well-characterized, the connection between infection and fructose transportation has been lightly investigated. Up to now only few studies on GLUT-5 expression and function under pathological conditions in bird intestines have been carried out. The aim of our current research was to immunolocalize GLUT-5 in chicken duodenal epithelium in norm and during T-2 mycotoxicosis. Material from chicken (Gallus gallus domesticus) duodenum was collected from twelve seven-day-old female broilers, divided into control group and broilers with T-2 mycotoxicosis. The material was fixed with 10% formalin and thereafter embedded into paraffin; slices 7 μm in thickness were cut, followed by immunohistochemical staining, according to the manufacturers guidelines (IHC kit, Abcam, UK) using polyclonal primary antibody Rabbit anti-GLUT-5. Our study revealed the strong expression of GLUT-5 in the apical parts of the duodenal epithelial cells in the control group chickens and weak staining for GLUT-5 in the intestinal epithelium in the T-2 mycotoxicosis group. Our results confirmed decreased the expression of GLUT-5 in the duodenal epithelium during T-2 mycotoxicosis.
Collapse
Affiliation(s)
- Piret Hussar
- Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Florina Popovska-Percinic
- Faculty of Veterinary Medicine, Ss.Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Katerina Blagoevska
- Laboratory for Molecular Food Analyses and Genetically Modified Organism, Food Institute, Faculty of Veterinary Medicine, 1000 Skopje, North Macedonia;
| | - Tõnu Järveots
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine, Latvian University of Agriculture, LV 3004 Jelgava, Latvia;
| |
Collapse
|
21
|
Mishra S, Srivastava S, Divakar A, Mandal P, Dewangan J, Chaturvedi S, Wahajuddin M, Kumar S, Tripathi A, Rath SK. Celecoxib reduces Deoxynivalenol induced proliferation, inflammation and protein kinase C translocation via modulating downstream targets in mouse skin. Chem Biol Interact 2020; 326:109128. [PMID: 32416088 DOI: 10.1016/j.cbi.2020.109128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022]
Abstract
Exposure to mycotoxins is mostly by ingestion but also occurs by the dermal and inhalation routes. The present study for the first time demonstrated that mycotoxin Deoxynivalenol (DON), permeates through Swiss albino mice skin, which demands awareness of health risks in people who are dermally exposed to mycotoxins especially agricultural farmers. Despite the widespread contamination of DON in food commodities studies to alleviate DON's toxicity are sparsely reported. Thus effective measures to combat mycotoxins associated toxicity remains an imperative aspect to be considered from the angle of dermal exposure. Topical application of Celecoxib (1-2 mg), followed by DON (100 μg) application on the dorsal side of mice, resulted in substantial decrease in DON-induced (i) edema, hyperplasia, cell proliferation (ii) inhibition of cytokine and prostaglandin-E2 levels (iii) phosphorylation of ERK1/2, JNK, p38, MAPKKs, CREB, P90-RSK (iv) downregulation of c-Jun, c- Fos, phospho-NF-kB and their downstream target proteins cyclin D1 and COX-2. Using Ro-31-8220 (Protein-Kinase-C inhibitor), it was observed PKC was responsible for DON induced upregulation of COX-2 and iNOS proteins. Treatment of Celecoxib decreased DON-induced translocation of Protein Kinase C isozymes (α,ε,γ), demonstrating the role of PKC in DON-mediated biochemical and molecular alterations responsible for its dermal toxicity. The present findings indicate that topical application of celecoxib is effective in the management of inflammatory skin disorders induced by foodborne fungal toxin DON. The skin permeation potential of Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor NSAID, was also assessed, and the results indicated that the permeation was relatively lower as compared to the oral mode of administration. Hence topical use of celecoxib may be preferred over oral dosing because of lower systemic absorption and to avoid the unwanted side effects. This study provides a prospect for exploring the clinical efficacy of topically applied COX-2 inhibitors for the management of inflammatory skin disorders induced by foodborne fungal toxins.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Payal Mandal
- Food Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226 001, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sadan Kumar
- Immunotoxicology Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Anurag Tripathi
- Food Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226 001, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
22
|
Park S, Lee JY, You S, Song G, Lim W. Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121639. [PMID: 31787402 DOI: 10.1016/j.jhazmat.2019.121639] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 is one of the well-known mycotoxins and mainly found in contaminated animal feed and various agricultural products inducing acute and chronic toxicology, tumor, and abnormal neural development. However, the effects of aflatoxin B1 on the human brain, especially on astrocytes, have not been studied in depth. In the present study, we studied the neurotoxic effects of aflatoxin B1, in vitro and in vivo. Aflatoxin B1 decreased the proliferation and stopped cell cycle progression at the sub G0/G1 stage with an increase in BAX, BAK, and cytochrome c proteins in human astrocytes. In addition, it increased the mitochondrial depolarization, oxidative stress, and calcium influx in both the cytosol and mitochondria. Surprisingly, inhibition of calcium overload in the cytosol and mitochondria, using calcium chelators and an inhibitor, partially rescued the proliferation of aflatoxin B1-treated astrocytes. Based on the toxicity assays using zebrafish models, aflatoxin B1 decreased the embryo survival rate with physiological changes and an increase in the caspase and tp53 genes. It also decreased the expression of gfap, mbp, and olig2 in the transgenic zebrafish embryo's brain and axon. Our results revealed the specific mechanism of the neurotoxic effects of aflatoxin B1 on human astrocytes and zebrafish glial cells.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
23
|
Viegas S, Assunção R, Twarużek M, Kosicki R, Grajewski J, Viegas C. Mycotoxins feed contamination in a dairy farm - potential implications for milk contamination and workers' exposure in a One Health approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1118-1123. [PMID: 31667844 DOI: 10.1002/jsfa.10120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dairy farming feed can be contaminated with mycotoxins, affecting animals' health and milk quality. Dairy farming is also prone to occupational exposure to mycotoxins, and feed is recognized as a source of contamination in the workplace. An exploratory study was developed in a dairy farm located in Portugal intending to assess the mycotoxins present in the feed. RESULTS All the samples analyzed presented contamination by at least two mycotoxins and up to a maximum of 13 mycotoxins in the same sample. Zearalenone (ZEA) was detected in all the samples (n = 10) followed by deoxynivalenol (DON), which was reported in eight samples, and ochratoxin A (OTA), reported in five samples. CONCLUSION The results point to the possible contamination of milk by several mycotoxins and raise the possibility of occupational exposure to mycotoxins due to feed contamination. An adequate One Health approach for dairy production should address these issues through effective preventive actions such as avoiding the use of feed contaminated with mycotoxins. This represents an important challenge due to climate change. It requires proper attention and accurate management measures. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susana Viegas
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Ricardo Assunção
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Magdalena Twarużek
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jan Grajewski
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Carla Viegas
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Ruggeberg KG, O'Sullivan P, Kovacs TJ, Dawson K, Capponi VJ, Chan PP, Golobish TD, Gruda MC. Hemoadsorption Improves Survival of Rats Exposed to an Acutely Lethal Dose of Aflatoxin B 1. Sci Rep 2020; 10:799. [PMID: 31964964 PMCID: PMC6972926 DOI: 10.1038/s41598-020-57727-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), pose a serious threat as biological weapons due to their high toxicity, environmental stability, easy accessibility and lack of effective therapeutics. This study investigated if blood purification therapy with CytoSorb (CS) porous polymer beads could improve survival after a lethal aflatoxin dose (LD90). The effective treatment window and potential therapeutic mechanisms were also investigated. Sprague Dawley rats received a lethal dose of AFB1 (0.5-1.0 mg/kg) intravenously and hemoperfusion with a CS or Control device was initiated immediately, or after 30, 90, or 240-minute delays and conducted for 4 hours. The CS device removes AFB1 from circulation and significantly improves survival when initiated within 90 minutes of toxin administration. Treated subjects exhibited improved liver morphology and health scores. Changes in the levels of cytokines, leukocytes and platelets indicate a moderately-severe inflammatory response to acute toxin exposure. Quantitative proteomic analysis showed significant changes in the level of a broad spectrum of plasma proteins including serine protease/endopeptidase inhibitors, coagulation factors, complement proteins, carbonic anhydrases, and redox enzymes that ostensibly contribute to the therapeutic effect. Together, these results suggest that hemoadsorption with CS could be a viable countermeasure against acute mycotoxin exposure.
Collapse
Affiliation(s)
| | | | | | - Kathryn Dawson
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | - Phillip P Chan
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | | |
Collapse
|
25
|
Viegas S, Viegas C, Oppliger A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann Work Expo Health 2019; 62:923-941. [PMID: 30099513 DOI: 10.1093/annweh/wxy070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
Occupational exposure to mycotoxins is supposedly very frequent, but it is rarely reported in the scientific literature. Several recent studies described occupational exposure to the aflatoxin B1 (AFB1) mycotoxin in different occupational settings. Previously, exposure to other mycotoxins was shown in the animal husbandry and food processing sectors, confirming that occupational exposure cannot be negligible. However, no guidelines or standard methodologies are available for helping occupational hygienists to consider mycotoxin exposure in their interventions. This article reviews the literature on this problem and recommends some actions for the better management of this risk factor in occupational settings, especially where environmental conditions are favorable to fungal presence.
Collapse
Affiliation(s)
- Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, New University of Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, New University of Lisbon, Lisbon, Portugal
| | - Anne Oppliger
- Institute for Work and Health, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Wangia RN, Tang L, Wang JS. Occupational exposure to aflatoxins and health outcomes: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:215-234. [PMID: 31512547 DOI: 10.1080/10590501.2019.1664836] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aflatoxins [AFs] are secondary metabolites of the fungus species Aspergillus spp. Both animal and epidemiological studies provided sufficient evidence on the carcinogenic, immunotoxic, mutagenic, and genotoxic potential of AFs. While ingestion is the main route of exposure for AFs through consumption of contaminated food products, agricultural workers and personnel who handle AF-contaminated grains are also at higher risk of exposure via inhalation. The main objective of the review is to provide a comprehensive overview of past scientific studies on occupational exposure to AFs, high-risk occupations, and disease outcomes. A search of peer-reviewed articles was done on PubMed and Web of Science Databases. A total of 164 papers was identified and 61 journal articles were selected for further review. High risk occupations include animal husbandry and processing of grain cereals and/or animal feed. Primary liver cancer and respiratory cancers were the most reported as a result of occupational exposure to AFs. For future studies, improved study designs, better characterization of AFs exposure in an occupational setting, and use of biomarkers are recommended in order to promote better understanding of occupational exposure to AFs and the resulting disease burden among workers.
Collapse
Affiliation(s)
- Ruth Nabwire Wangia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
27
|
De Santis B, Debegnach F, Sonego E, Mazzilli G, Buiarelli F, Ferri F, Giorgi Rossi P, Collini G, Brera C. Biomonitoring Data for Assessing Aflatoxins and Ochratoxin A Exposure by Italian Feedstuffs Workers. Toxins (Basel) 2019; 11:E351. [PMID: 31216680 PMCID: PMC6628428 DOI: 10.3390/toxins11060351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Mycotoxins exposure by inhalation and/or dermal contact is possible in different branches of industry especially where heavily dusty settings are present and the handling of dusty commodities is performed. This study aims to explore the validity of the biomonitoring as a tool to investigate the intake of mycotoxins in a population of workers operating in an Italian feed plant. Serum samples were collected for the determination of aflatoxins B1 (AFB1), AFB1-Lysine adduct and ochratoxin A (OTA). A method based on liquid-liquid extraction coupled with high resolution mass spectrometry determination was developed and fully validated. For AFB1, a high number of non-detected samples (90%) was found and no statistical difference was observed comparing workers and control group. None of the analyzed samples showed the presence of AFB1-Lysine adduct. For OTA, the 100% of the analyzed samples was positive with a 33% of the samples showing a concentration higher than the limit of quantification (LOQ), but no statistical difference was highlighted between the average levels of exposed and control groups. In conclusion, the presence of AFB1 and OTA in serum cannot be attributable to occupational exposure.
Collapse
Affiliation(s)
- Barbara De Santis
- Reparto di Sicurezza Chimica degli Alimenti - Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Francesca Debegnach
- Reparto di Sicurezza Chimica degli Alimenti - Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elisa Sonego
- Dipartimento di Chimica - Università "Sapienza", 00185 Rome, Italy.
| | - Gianmarco Mazzilli
- Reparto di Sicurezza Chimica degli Alimenti - Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | - Fulvio Ferri
- Servizio Prevenzione Sicurezza Ambienti di Lavoro, SPSAL - AUSL, 42122 Reggio Emilia, Italy.
| | - Paolo Giorgi Rossi
- Servizio Epidemiologia, AUSL - IRCSS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Giorgia Collini
- Servizio Epidemiologia, AUSL - IRCSS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Carlo Brera
- Reparto di Sicurezza Chimica degli Alimenti - Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
28
|
Effects of Subcutaneous Ochratoxin-A Exposure on Immune System of Broiler Chicks. Toxins (Basel) 2019; 11:toxins11050264. [PMID: 31083513 PMCID: PMC6563231 DOI: 10.3390/toxins11050264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/03/2022] Open
Abstract
Ochratoxin A (OTA), an immunosuppressive mycotoxin, can increase the risk of many infectious diseases and contribute to economic losses to the poultry industry. The immunosuppressive effect has mainly been investigated through oral exposure; however, birds may also be contaminated through skin absorption. The present study investigated the influence of OTA exposure on the defense system of broiler chicks through the subcutaneous route and including low doses. Groups of broiler chicks (Cobb), 05 days old, were exposed to subcutaneous inoculation of OTA at concentrations of 0.1; 0.5; 0.9; 1.3; and 1.7 mg OTA/kg body weight. The size of the lymphoid organs, circulating immune cells, and total IgY and IgA levels were evaluated 21 days post inoculation. Subcutaneous OTA exposure decreased the weight of the thymus, spleen, and bursa of Fabricius, and leukocytopenia (p < 0.05) was detected in chicks of the OTA treated groups. In a dose-dependent way, decreased levels of circulating lymphocytes and heterophils (p < 0.05), and increased levels of monocytes (p < 0.05) were detected. Decreased IgY and IgA serum concentrations were noted in the OTA treated groups (p < 0.05). In conclusion, subcutaneous OTA exposure induces immunosuppression even at low levels.
Collapse
|
29
|
Lauwers M, De Baere S, Letor B, Rychlik M, Croubels S, Devreese M. Multi LC-MS/MS and LC-HRMS Methods for Determination of 24 Mycotoxins including Major Phase I and II Biomarker Metabolites in Biological Matrices from Pigs and Broiler Chickens. Toxins (Basel) 2019; 11:toxins11030171. [PMID: 30893895 PMCID: PMC6468661 DOI: 10.3390/toxins11030171] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
A reliable and practical multi-method was developed for the quantification of mycotoxins in plasma, urine, and feces of pigs, and plasma and excreta of broiler chickens using liquid chromatography–tandem mass spectrometry. The targeted mycotoxins belong to the regulated groups, i.e., aflatoxins, ochratoxin A and Fusarium mycotoxins, and to two groups of emerging mycotoxins, i.e., Alternaria mycotoxins and enniatins. In addition, the developed method was transferred to a LC-high resolution mass spectrometry instrument to qualitatively determine phase I and II metabolites, for which analytical standards are not always commercially available. Sample preparation of plasma was simple and generic and was accomplished by precipitation of proteins alone (pig) or in combination with removal of phospholipids (chicken). A more intensive sample clean-up of the other matrices was needed and consisted of a pH-dependent liquid–liquid extraction (LLE) using ethyl acetate (pig urine), methanol/ethyl acetate/formic acid (75/24/1, v/v/v) (pig feces) or acetonitrile (chicken excreta). For the extraction of pig feces, additionally a combination of LLE using acetone and filtration of the supernatant on a HybridSPE-phospholipid cartridge was applied. The LC-MS/MS method was in-house validated according to guidelines defined by the European and international community. Finally, the multi-methods were successfully applied in a specific toxicokinetic study and a screening study to monitor the exposure of individual animals.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Ben Letor
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
30
|
Viegas S, Assunção R, Martins C, Nunes C, Osteresch B, Twarużek M, Kosicki R, Grajewski J, Ribeiro E, Viegas C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins (Basel) 2019; 11:E78. [PMID: 30717100 PMCID: PMC6410041 DOI: 10.3390/toxins11020078] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/24/2022] Open
Abstract
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B₁ (AFB₁) in Portuguese swine production farms has already been reported. However, besides AFB₁, data regarding fungal contamination showed that exposure to other mycotoxins could be expected in this setting. The present study aimed to characterize the occupational exposure to multiple mycotoxins of swine production workers. To provide a broad view on the burden of contamination by mycotoxins and the workers' exposure, biological (urine) samples from workers (n = 25) and 38 environmental samples (air samples, n = 23; litter samples, n = 5; feed samples, n = 10) were collected. The mycotoxins biomarkers detected in the urine samples of the workers group were the deoxynivalenol-glucuronic acid conjugate (60%), aflatoxin M₁ (16%), enniatin B (4%), citrinin (8%), dihydrocitrinone (12%) and ochratoxin A (80%). Results of the control group followed the same pattern, but in general with a lower number of quantifiable results (
Collapse
Affiliation(s)
- Susana Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Ricardo Assunção
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Martins
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Carla Nunes
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
- Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Bernd Osteresch
- Group of Prof. Humpf, Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster Corrensstraße 45, 48149 Münster, Germany.
| | - Magdalena Twarużek
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland.
| | - Robert Kosicki
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland.
| | - Jan Grajewski
- Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland.
| | - Edna Ribeiro
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
| | - Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| |
Collapse
|
31
|
Alternariol induced proliferation in primary mouse keratinocytes and inflammation in mouse skin is regulated via PGE 2/EP2/cAMP/p-CREB signaling pathway. Toxicology 2018; 412:79-88. [PMID: 30503586 DOI: 10.1016/j.tox.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 01/23/2023]
Abstract
Alternariol (AOH) is a mycotoxin that contaminates various food stuffs as well as animal feed and may cause toxicity after consumption. However, a dermal toxic potential of AOH has not been explored so far. In the present study, skin toxicity after topical exposure of AOH and the involved mechanism/s are revealed. Single topical application of different AOH doses (12.5, 25, 50 μg/animal) caused increased bi-fold thickness as well as hyperplasia and higher production of prostaglandin E2 (PGE2) along with cAMP in the skin demonstrating its inflammatory potential. Western blot analysis showed that exposure of AOH lead to phosphorylation of CREB and increased the expression of COX-2, cyclin D1 as well as prostanoid EP2 receptor. Further studies on primary mouse keratinocytes (PMK) revealed that very low concentrations of AOH (50-500 nM) resulted in significant PMK proliferation. Additionally, using specific antagonist or agonist of prostanoid receptors, we delineated that EP2 receptor play a key role in AOH-induced PMKs proliferation. Collectively, our findings show that AOH can lead to dermal toxicity in mice by activating the EP2/cAMP/p-CREB signaling cascade.
Collapse
|
32
|
Zhang J, Li Z, Zhao S, Lu Y. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 2018; 141:4029-34. [PMID: 27137348 DOI: 10.1039/c6an00368k] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aflatoxin B1 (AFB1) is a common toxin found in many foods. While AFB1 sensors have been reported, few studies have shown amplified detection with tunable dynamic ranges. We herein report a simple and highly sensitive amplified aptamer-based fluorescent sensor for AFB1, which relies on the ability of nano-graphene oxide (GO) to protect aptamers from nuclease cleavage for amplified detection and on the nanometer size effect of GO to tune the dynamic range and sensitivity. The assay was performed by simply mixing the carboxyl-X-rhodamine (ROX)-labeled AFB1 aptamer, the GO, the nuclease, and the AFB1 samples. Modulating the size of the GO nanosheet resulted in three dynamic ranges, i.e., 12.5 to 312.5 ng mL(-1), 1.0 to 100 ng mL(-1), and 5.0 to 50 ng mL(-1), with corresponding limits of detection of 10.0 ng mL(-1), 0.35 ng mL(-1) and 15.0 ng mL(-1), respectively. The sensor was highly selective against other aflatoxins and common molecules in foods, and its performance was verified in corn samples spiked with known concentration of AFB1.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zengmei Li
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China and Department of Chemistry, Key laboratory of Test Technology on Food Quality and Safety of Shandong Province, Jinan, 250100, People's Republic of China
| | - Shancang Zhao
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China and Department of Chemistry, Key laboratory of Test Technology on Food Quality and Safety of Shandong Province, Jinan, 250100, People's Republic of China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Soni P, Ghufran MS, Kanade SR. Aflatoxin B 1 induced multiple epigenetic modulators in human epithelial cell lines. Toxicon 2018; 151:119-128. [PMID: 30006306 DOI: 10.1016/j.toxicon.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/15/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
The compulsive and insidious secondary metabolite aflatoxin B1, produced by the opportunistic fungi Aspergillus flavus, upholds a distinguished place in midst of the toxicants causing fatal hazards to humans. Aflatoxins alter the function of host cells by inducing multiple effects through genetic and non-genetic pathways. Epigenetic mechanisms drag major attention towards finding novel and new mechanisms involved in this process. Our present work intends to study the functional expression profile of multiple epigenetic regulators. AFB1 modulates multiple epigenetic regulators like DNA methyltransferases (DMNTs), histones modifying enzymes and polycomb proteins. AFB1 upregulates the expression of DNMTs at gene and protein level in a dose dependent manner. It reduced the histone acetyl transferase (HAT) activity significantly with a remarkable increase in histone deacetylase (HDAC) activity along with an induction in expression of HDACs gene and protein in a dose dependent manner. The gene and protein expression of polycomb repressor proteins B cell specific moloney murine leukemia virus integration site 1 (BMI-1) and enhancer of zeste homolog 2 (EZH2) was significantly over expressed with enhanced trimethylation of H3K27 and ubiquitination of H2AK119. In summary, our results show impact of aflatoxin B1 on multiple epigenetic modulations known to be pivotal in oncogenic processes.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India.
| |
Collapse
|
34
|
Ghufran MS, Soni P, Kanade SR. Aflatoxin-induced upregulation of protein arginine methyltransferase 5 is mediated by protein kinase C and extracellular signal-regulated kinase. Cell Biol Toxicol 2018; 35:67-80. [DOI: 10.1007/s10565-018-9439-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 12/24/2022]
|
35
|
Sibin Melo KC, Correia MH, Svidzinski TIE, Hernandes L. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin. APMIS 2018; 126:418-427. [PMID: 29696718 DOI: 10.1111/apm.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/21/2018] [Indexed: 11/26/2022]
Abstract
The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining.
Collapse
Affiliation(s)
- Katia C Sibin Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marcelo H Correia
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Terezinha I E Svidzinski
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
36
|
Ayelign A, Woldegiorgis AZ, Adish A, De Saeger S. Total aflatoxins in complementary foods produced at community levels using locally available ingredients in Ethiopia. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:111-118. [DOI: 10.1080/19393210.2018.1437784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Abebe Ayelign
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Food Science and Postharvest Technology, Jimma University, Jimma, Ethiopia
| | | | - Abdulaziz Adish
- Micronutrient Initiative (MI), Deputy Regional Director, Addis Ababa, Ethiopia
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Dellafiora L, Dall'Asta C, Galaverna G. Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment-An In Silico Perspective. Toxins (Basel) 2018; 10:E52. [PMID: 29360783 PMCID: PMC5848153 DOI: 10.3390/toxins10020052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins severely threaten the health of humans and animals. For this reason, many countries have enforced regulations and recommendations to reduce the dietary exposure. However, even though regulatory actions must be based on solid scientific knowledge, many aspects of their toxicological activity are still poorly understood. In particular, deepening knowledge on the primal molecular events triggering the toxic stimulus may be relevant to better understand the mechanisms of action of mycotoxins. The present work presents the use of in silico approaches in studying the mycotoxins toxicodynamics, and discusses how they may contribute in widening the background of knowledge. A particular emphasis has been posed on the methods accounting the molecular initiating events of toxic action. In more details, the key concepts and challenges of mycotoxins toxicology have been introduced. Then, topical case studies have been presented and some possible practical implementations of studying mycotoxins toxicodynamics have been discussed.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
38
|
Viegas S, Osteresch B, Almeida A, Cramer B, Humpf HU, Viegas C. Enniatin B and ochratoxin A in the blood serum of workers from the waste management setting. Mycotoxin Res 2017; 34:85-90. [PMID: 29185179 DOI: 10.1007/s12550-017-0302-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023]
Abstract
The waste management occupational environment is recognized by the simultaneous presence of several substances and biologic agents. Therefore, workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 in one Portuguese waste sorting plant was already reported. However, besides this mycotoxin, data regarding fungal contamination showed that exposure to other mycotoxins could be expected. A study was developed to analyze if exposure to other mycotoxins besides aflatoxin B1 was occurring in the workers from the waste sorting plant previously assessed and to discuss how these findings need to be considered in the risk assessment process. In addition to aflatoxin B1 detected previously by ELISA, two additional mycotoxins and one mycotoxin degradation product were detected and quantified by a multi-mycotoxin HPLC-MS/MS approach: Enniatin B and ochratoxin A as well as 2'R-ochratoxin A. Besides the confirmation of co-exposure to several mycotoxins, results probably indicate different exposure routes for the mycotoxins reported.
Collapse
Affiliation(s)
- Susana Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal. .,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Pacre Cruz, 1600-560, Lisbon, Portugal.
| | - Bernd Osteresch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Ana Almeida
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Carla Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal.,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Pacre Cruz, 1600-560, Lisbon, Portugal
| |
Collapse
|
39
|
Ayelign A, Woldegiorgis AZ, Adish A, De Boevre M, Heyndrickx E, De Saeger S. Assessment of aflatoxin exposure among young children in Ethiopia using urinary biomarkers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1606-1616. [DOI: 10.1080/19440049.2017.1350290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Abebe Ayelign
- Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Food Science and Postharvest Technology, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Ashagrie Zewdu Woldegiorgis
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abdulaziz Adish
- Micronutrient Initiative (MI), Deputy Regional Director, Addis Ababa, Ethiopia
| | - Marthe De Boevre
- Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ellen Heyndrickx
- Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMCID: PMC5486322 DOI: 10.3390/ijerph14060636] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Collapse
|
41
|
Kadaifciler DG, Demirel R. Fungal biodiversity and mycotoxigenic fungi in cooling-tower water systems in Istanbul, Turkey. JOURNAL OF WATER AND HEALTH 2017; 15:308-320. [PMID: 28362312 DOI: 10.2166/wh.2017.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This is the first study to assess fungal diversity and mycotoxigenic fungi in open recirculating cooling-tower (CT) water systems (biofilm and water phase). The production capability of mycotoxin from fungal isolates was also examined. The mean fungal count in 21 different water and biofilm samples was determined as 234 CFU/100 mL and 4 CFU/cm2. A total of 32 species were identified by internal transcribed spacer (ITS) sequencing. The most common isolated fungi belonged to the genera Aspergillus and Penicillium, of which the most prevalent fungi were Aspergillus versicolor, Aspergillus niger, and Penicillium dipodomyicola. From 42% of the surveyed CTs, aflatoxigenic A. flavus isolates were identified. The detection of opportunistic pathogens and/or allergen species suggests that open recirculating CTs are a possible source of fungal infection for both the public and for occupational workers via the inhalation of aerosols and/or skin contact.
Collapse
Affiliation(s)
- Duygu Göksay Kadaifciler
- Faculty of Science, Department of Biology, Istanbul University, 34314 Vezneciler, Istanbul, Turkey E-mail:
| | - Rasime Demirel
- Faculty of Science, Department of Biology, Anadolu University, 26470 Tepebaşı, Eskişehir, Turkey
| |
Collapse
|
42
|
Mavrikou S, Flampouri E, Iconomou D, Kintzios S. Development of a cellular biosensor for the detection of aflatoxin B1, based on the interaction of membrane engineered Vero cells with anti-AFB1 antibodies on the surface of gold nanoparticle screen printed electrodes. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res 2017; 33:65-73. [PMID: 27888487 DOI: 10.1007/s12550-016-0265-7] [Citation(s) in RCA: 504] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)-through its IARC Monographs programme-has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B1, B2, G1, G2 and M1), fumonisins (fumonisin B1 and B2) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis-should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans-could lead to the reclassification of OTA.
Collapse
Affiliation(s)
- Vladimir Ostry
- Center for Health, Nutrition and Food, National Institute of Public Health in Prague, Palackeho 3a, 61242, Brno, Czech Republic.
| | - Frantisek Malir
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon, France
| |
Collapse
|
44
|
Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors5010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Niculita-Hirzel H, Hantier G, Storti F, Plateel G, Roger T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins (Basel) 2016; 8:E370. [PMID: 27973454 PMCID: PMC5198564 DOI: 10.3390/toxins8120370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023] Open
Abstract
Type B trichotecens such as deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and zearalenone (ZEN) are mycotoxins contaminating wheat and wheat dust. Mycotoxins are toxic upon ingestion and considered potentially toxic when inhaled. Whereas dietary exposure to mycotoxins is controlled in food, data on occupational exposure by inhalation by grain workers are scarce. The objectives of this study were to determine the incidence of DON, 3-ADON, 15-ADON, NIV and ZEN in aerosols generated during grain harvesting and unloading and the risk of exposure of grain workers. Aerosols were collected during the threshing of 78 winter wheat fields and grain unloading of 59 grain lots in six grain terminals in the Vaud region (Switzerland). The samples represented the diversity of the winter wheat cultivar and of the farming system (88 treated with fungicides, 46 untreated). Using a HPLC MS/MS method developed to quantify mycotoxins in aerosols, we report that the mycotoxin content of aerosols was not affected by the wheat cultivars or farming system, but that the incidence of the mycotoxins differed between activities. While wheat harvesting generated on average 28, 20 and 1 ng·m-3 of DON, NIV and ZEN, respectively, grain unloading generated 53, 46 and 4 ng·m-3. Personal sampling revealed that working in a cab was an efficient protective measure. However, it was not sufficient to avoid chronic exposure to multiple mycotoxins. The most exposed activity was the cleaning, exposing workers to DON, NIV and ZEN at concentrations as high as 65, 59 and 3 ng·m-3. These data provide valuable information for future studies of mycotoxin toxicity at relevant concentrations on respiratory health.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Gregoire Hantier
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Ferdinand Storti
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Gregory Plateel
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Thierry Roger
- Infectious Diseases Service, Lausanne University Hospital, 1066 Epalinges-Lausanne, Switzerland.
| |
Collapse
|
46
|
Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets. Toxins (Basel) 2016; 8:toxins8100300. [PMID: 27763510 PMCID: PMC5086660 DOI: 10.3390/toxins8100300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is mainly produced by Fusarium fungi. In this study, Bacillus licheniformis CK1 isolated from soil with the capability of degrading ZEA was evaluated for its efficacy in reducing the adverse effects of ZEA in piglets. The gilts were fed one of the following three diets for 14 days: a basic diet for the control group; the basic diet supplemented with ZEA-contaminated basic diet for the treatment 1 (T1) group; and the basic diet supplemented with fermented ZEA-contaminated basic diet by CK1 for the treatment 2 (T2) group. The actual ZEA contents (analyzed) were 0, 1.20 ± 0.11, 0.47 ± 0.22 mg/kg for the control, T1, and T2 diets, respectively. The results showed that the T1 group had significantly increased the size of vulva and the relative weight of reproductive organs compared to the control group at the end of the trial. The T1 group significantly decreased the concentration of the luteinizing hormone (LH) compared with the control and T2 groups. Expression of ERβ was significantly up-regulated in the T2 group compared with the control. In addition, expression of ERβ was not different between the control and the T1 group. In summary, our results suggest that Bacillus licheniformis CK1 could detoxify ZEA in feed and reduce the adverse effects of ZEA in the gilts.
Collapse
|
47
|
Ezekiel CN, Sulyok M, Somorin Y, Odutayo FI, Nwabekee SU, Balogun AT, Krska R. Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. Int J Food Microbiol 2016; 237:83-91. [PMID: 27543818 DOI: 10.1016/j.ijfoodmicro.2016.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023]
Abstract
An examination of the mould and fungal metabolite pattern in melon and bush mango seeds locally produced in Nigeria was undertaken in order to understand the mycotoxicological risk posed to consumers of both of these important and commonly consumed soup thickeners. The variation in mycotoxin levels in graded categories of both foodstuffs were also determined. Aspergillus, Fusarium, Penicillium, Mucorales and Trichoderma were the recovered fungi from the foodstuffs with Aspergillus species dominating (melon=97.8%; bush mango=89.9%). Among the Aspergillus species identified Aspergillus section Flavi dominated (melon: 72%; bush mango: 57%) and A. flavus, A. parasiticus, A. parvisclerotigenus and A. tamarii were the recovered species. About 56% and 73% of the A. flavus isolates from melon and bush mango seed samples, respectively were aflatoxigenic. Thirty-four and 59 metabolites including notable mycotoxins were found in the melon and bush mango seeds respectively. Mean aflatoxin levels (μg/kg) in melon (aflatoxin B1 (AFB1)=37.5 and total aflatoxins=142) and bush mango seeds (AFB1=68.1 and total aflatoxins=61.7) were higher than other mycotoxins, suggesting potential higher exposure for consumer populations. Significantly (p<0.05) higher levels of mycotoxins were found in hand-peeled melon and discoloured bush mango seeds than in machine-peeled melon and non-discoloured seeds except for HT-2 and T-2 toxins which occurred conversely. All melon and bush mango seeds exceeded the 2μg/kg AFB1 limit whereas all melon and 55% of bush mango seeds exceeded the 4μg/kg total aflatoxin EU limit adopted in Nigeria. This is the first report of (1) mycotoxin co-occurrence in bush mango seeds, (2) cyclopiazonic acid, HT-2 toxin, moniliformin, mycophenolic acid, T-2 toxin and tenuazonic acid occurrence, and (3) mycotoxin exposure assessment of both foodstuffs.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Yinka Somorin
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Foluke I Odutayo
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Department of Basic Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Stella U Nwabekee
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Afeez T Balogun
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| |
Collapse
|
48
|
Mishra S, Tewari P, Chaudhari BP, Dwivedi PD, Pandey HP, Das M. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes. Int J Cancer 2016; 139:2033-46. [PMID: 27389473 DOI: 10.1002/ijc.30260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/04/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event.
Collapse
Affiliation(s)
- Sakshi Mishra
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Department of Biochemistry, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Prachi Tewari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Bhushan P Chaudhari
- Pathology Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, 226001, India
| | - Premendra D Dwivedi
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Haushila P Pandey
- Department of Biochemistry, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Mukul Das
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| |
Collapse
|
49
|
Ghufran MS, Ghosh K, Kanade SR. Aflatoxin B1 induced upregulation of protein arginine methyltransferase 5 in human cell lines. Toxicon 2016; 119:117-21. [PMID: 27242039 DOI: 10.1016/j.toxicon.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 11/29/2022]
Abstract
The exposure of naturally occurring mycotoxins affects human health and play a vital role in cancer initiation and progression. Aflatoxin B1 is a difuranocoumarin mycotoxin, classified as a group I carcinogen. The present study was conducted to assess the effect of aflatoxin B1 on epigenetic regulatory proteins. The protein arginine methyltransferase 5 expression was induced upon aflatoxin B1 treatment in a dose and time dependent manner. Further global arginine methylation was also increased in the same manner. This is the first report showing the induction of epigenetic regulatory protein, protein arginine methyltransferase 5 upon aflatoxin B1 treatment. Further study is required to establish the detailed pathway of PRMT5 induction.
Collapse
Affiliation(s)
- Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, 671314, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, 671314, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, 671314, India.
| |
Collapse
|
50
|
Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:277-287. [PMID: 25757886 DOI: 10.1038/jes.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.
Collapse
Affiliation(s)
- Lien Taevernier
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Lieselotte Veryser
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Catherine Delesalle
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|