1
|
Peng FJ, Lin CA, Wada R, Bodinier B, Iglesias-González A, Palazzi P, Streel S, Guillaume M, Vuckovic D, Chadeau-Hyam M, Appenzeller BMR. Association of hair polychlorinated biphenyls and multiclass pesticides with obesity, diabetes, hypertension and dyslipidemia in NESCAV study. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132637. [PMID: 37788552 DOI: 10.1016/j.jhazmat.2023.132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Chia-An Lin
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rin Wada
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sylvie Streel
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Michèle Guillaume
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Dragana Vuckovic
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
2
|
McDevitt E, Henein L, Crawford A, Kondakala S, Young D, Meek E, Howell GE. Alterations of Systemic and Hepatic Metabolic Function Following Exposure to Trans-nonachlor in Low and High Fat Diet Fed Male Sprague Dawley Rats. Int J Toxicol 2023; 42:407-419. [PMID: 37126671 PMCID: PMC10530595 DOI: 10.1177/10915818231170527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction. Briefly, male Sprague Dawley rats were exposed to trans-nonachlor (.5 or 5 ppm) in either a low fat (LFD) or high fat diet (HFD) for 16 weeks. At 8 weeks of intake, trans-nonachlor decreased serum triglyceride levels in LFD and HFD fed animals and at 16 weeks compared to LFD fed animals. Interestingly, serum glucose levels were decreased by trans-nonachlor (5 ppm) in LFD fed animals at 16 weeks. Serum free fatty acids were increased by trans-nonachlor exposure (5 ppm) in LFD fed animals at 16 weeks. HFD fed animals displayed signs of hepatic steatosis including elevated liver triglycerides, liver enzymes, and liver lipid peroxidation which were not significantly altered by trans-nonachlor exposure. However, there was a trans-nonachlor mediated increase in expression of fatty acid synthase in livers of LFD fed animals and not HFD fed animals. Thus, the present data indicate exposure to trans-nonachlor in conjunction with LFD or HFD intake produces both diet and exposure dependent effects on lipid and glucose metabolism.
Collapse
Affiliation(s)
- Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
- University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Anna Crawford
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Sandeep Kondakala
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Edward Meek
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - George E. Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
3
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Type 2 Diabetes Induced by Changes in Proteomic Profiling of Zebrafish Chronically Exposed to a Mixture of Organochlorine Pesticides at Low Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094991. [PMID: 35564385 PMCID: PMC9100612 DOI: 10.3390/ijerph19094991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
Effect of organochlorine pesticides (OCPs) mixtures on development of type 2 diabetes mellitus (T2DM) and the underlying mechanism, especially at protein levels, are largely unknown. We exposed a mixture of five OCPs to zebrafish at concentrations of 0, 0.05, 0.25, 2.5, and 25 μg/L for 12 weeks. Differentially expressed proteins (DEPs) were quantitatively identified in female zebrafish livers, and its functional study was conducted. The significantly high glucose and low insulin levels were observed only at 0.05 μg/L, linking to the different pattern of DEPs than other concentrations. A total of 1082 proteins was quantified, of which 321 proteins formed 6 clusters in protein dynamics analysis. The enriched pathways in cluster 3 showing distinct pattern of DEPs could explain the nonlinear response at 0.05 μg/L, indicating that OCP mixtures adversely affected proteins associated with mitochondrial function and energy metabolism. We proposed a feasible mechanism that decrease in expression of aldehyde dehydrogenase led to abnormal accumulation of aldehydes, reducing expression of glyceraldehyde 3-phosphate dehydrogenase, and resulting in disruption of glucose homeostasis. Our findings help to better understand the causality of T2DM by exposure to OCP mixtures and to identify biomarkers in the protein expression level.
Collapse
|
5
|
Meng Z, Liu L, Yan S, Sun W, Jia M, Tian S, Huang S, Zhou Z, Zhu W. Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10517-10531. [PMID: 32902962 DOI: 10.1021/acs.jafc.0c04678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the past few decades, a large number of pesticides have been widely used for plant protection. Pesticides may enter non-target organisms through multiple ways and bring potential health risks. There is a dense and diverse microbial community in the intestines of mammals, which is called the gut microbiota. The gut microbiota and its metabolites play vital roles in maintaining the health of the host. Interestingly, many studies have shown that exposure to multiple pesticides could affect the gut microbiota of the host. However, the roles of gut microbiota and its related metabolites in the host health effects induced by pesticide exposure of non-target organisms need further study. We reviewed the relationships between pesticide exposure and host health effects as well as between the gut microbiota and host health effects. Importantly, we reviewed the latest research on the gut microbiota and its metabolites in the host health effects induced by pesticide exposure.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shiran Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Legler J, Zalko D, Jourdan F, Jacobs M, Fromenty B, Balaguer P, Bourguet W, Munic Kos V, Nadal A, Beausoleil C, Cristobal S, Remy S, Ermler S, Margiotta-Casaluci L, Griffin JL, Blumberg B, Chesné C, Hoffmann S, Andersson PL, Kamstra JH. The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. Int J Mol Sci 2020; 21:E3480. [PMID: 32423144 PMCID: PMC7279023 DOI: 10.3390/ijms21103480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
Collapse
Affiliation(s)
- Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Daniel Zalko
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Fabien Jourdan
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Miriam Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OXON. OX11 0RQ, UK;
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) INSERM UMR_A 1341, UMR_S 1241, Université de Rennes, F-35000 Rennes, France;
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Université de Montpellier, 34298 Montpellier, France;
| | - William Bourguet
- Center for Structural Biochemistry (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France;
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, 03202 Elche (Alicante), Spain;
| | - Claire Beausoleil
- ANSES, Direction de l’Evaluation des Risques, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort CEDEX, France;
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences (BKV), Cell Biology, Medical Faculty, Linköping University, SE-581 85 Linköping, Sweden;
| | - Sylvie Remy
- Sustainable Health, Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium;
| | - Sibylle Ermler
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Julian L. Griffin
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, 2011 BioSci 3, University of California, Irvine, CA 92697-2300, USA;
| | - Christophe Chesné
- Biopredic International, Parc d’Activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France;
| | | | | | - Jorke H. Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| |
Collapse
|
8
|
Young D, Worrell A, McDevitt E, Henein L, Howell GE. Alterations in macrophage phagocytosis and inflammatory tone following exposure to the organochlorine compounds oxychlordane and trans-nonachlor. Toxicol In Vitro 2020; 65:104791. [PMID: 32057836 DOI: 10.1016/j.tiv.2020.104791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
The role of macrophages in the innate immune response cannot be underscored however recent studies have demonstrated that both resident and recruited macrophages have critical roles in the pathogenesis of metabolic dysfunction. Given the recent data implicating exposure to persistent organic pollutants (POPs) in the pathogenesis of metabolic diseases, the current study was designed to examine the effects of the highly implicated organochlorine (OC) compounds oxychlordane and trans-nonachlor on overall macrophage function. Murine J774A.1 macrophages were exposed to trans-nonachlor or oxychlordane (0 - 20 µM) for 24 hours then phagocytosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, caspase activities, pro-inflammatory cytokine production, and macrophage plasticity were assessed. Overall, exposure to oxychlordane significantly decreased macrophage phagocytosis while both OC compounds significantly increased ROS generation. Exposure to trans-nonachlor significantly increased secretion of tumor necrosis factor alpha (TNFα) and interleukin-6 whereas oxychlordane had a biphasic effect on TNFα secretion. However, both oxychlordane and trans-nonachlor decreased basal expression of the M1 pro-inflammatory marker cyclooxygenase 2. Taken together, these data indicate that exposure to these two OC compounds have both compound and concentration dependent effects on macrophage function which may alter both the innate immune response and impact metabolic function of key organs involved in metabolic diseases.
Collapse
Affiliation(s)
- Darian Young
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Aren Worrell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - George E Howell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA..
| |
Collapse
|
9
|
Jaacks LM, Yadav S, Panuwet P, Kumar S, Rajacharya GH, Johnson C, Rawal I, Mohan D, Mohan V, Tandon N, Barr DB, Narayan KMV, Prabhakaran D. Metabolite of the pesticide DDT and incident type 2 diabetes in urban India. ENVIRONMENT INTERNATIONAL 2019; 133:105089. [PMID: 31654984 PMCID: PMC6860016 DOI: 10.1016/j.envint.2019.105089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Previous epidemiological studies, largely conducted in high-income countries and cross-sectional, have suggested a relatively strong association between exposure to dichlorodiphenyldichloroethylene (DDE), a metabolite of the pesticide dichlorodiphenyltrichloroethane (DDT), and type 2 diabetes. DDT is widely used in India and the prevalence of type 2 diabetes there is increasing, but the association between these factors has not been explored to date. OBJECTIVE The objective was to estimate the association of the p,p' isomer of DDE with incident type 2 diabetes in India. METHODS A nested case-control study was conducted in a representative prospective cohort of adults from two cities in India. Participants were enrolled in 2010-11 (n = 12,271) and followed for annual assessment of chronic diseases including type 2 diabetes. Baseline plasma samples from incident cases of diabetes (n = 193) and sex-city-matched controls (n = 323) were selected for analysis of p,p-DDE. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. RESULTS At baseline, cases had higher p,p-DDE concentrations: geometric mean (95% CI) 330 (273-399) ng/g lipid compared to 223 (189-262) ng/g lipid among controls. Delhi participants had higher p,p-DDE concentrations: 579 (521-643) ng/g lipid compared to 122 (102-145) ng/g lipid in Chennai. In unadjusted models, being in the highest versus lowest quartile of p,p-DDE was associated with a more than doubling of the odds of diabetes: unadjusted OR (95% CI), 2.30 (1.19, 4.43). However, this effect was no longer significant after adjustment for age: adjusted (95% CI), 0.97 (0.46, 2.06). DISCUSSION Results suggest that levels of p,p'-DDE in Delhi are exceptionally high, but we did not observe a significant association between p,p-DDE and incident type 2 diabetes. As this is the first study to evaluate this association in India, more studies are needed to inform our understanding of the association in this context, including potential routes of exposure.
Collapse
Affiliation(s)
- Lindsay M Jaacks
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Public Health Foundation of India, Gurgaon, India.
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Parinya Panuwet
- Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Sushil Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Girish H Rajacharya
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Cierra Johnson
- Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Ishita Rawal
- Centre for Chronic Disease Control, New Delhi, India
| | - Deepa Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | | | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - K M Venkat Narayan
- Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Dorairaj Prabhakaran
- Public Health Foundation of India, Gurgaon, India; Centre for Chronic Disease Control, New Delhi, India
| |
Collapse
|
10
|
Coole JB, Burr SS, Kay AM, Singh JA, Kondakala S, Yang E, Kaplan BLF, Howell GE, Stewart JA. Persistent organic pollutants (POPs) increase rage signaling to promote downstream cardiovascular remodeling. ENVIRONMENTAL TOXICOLOGY 2019; 34:1149-1159. [PMID: 31313498 PMCID: PMC6771979 DOI: 10.1002/tox.22817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/16/2023]
Abstract
Exposure to environmental contaminants and consumption of a high, saturated fatty diet has been demonstrated to promote precursors for metabolic syndrome (hyperglycemia, hyperinsulinemia, and hypertriglyceridemia). The purpose of this study was to determine if exposure to the most prevalent environmental persistent organic pollutants (POPs) would act as causative agents to promote metabolic syndrome independent of dietary intake. We hypothesized that POPs will activate the advanced glycated end-product (AGE)-and receptor for AGE (RAGE) signaling cascade to promote downstream signaling modulators of cardiovascular remodeling and oxidative stress in the heart. At 5-weeks of age nondiabetic (WT) and diabetic (ob/ob) mice were exposed POPs mixtures by oral gavage twice a week for 6-weeks. At the end of 6-weeks, animals were sacrificed and the hearts were taken for biochemical analysis. Increased activation of the AGE-RAGE signaling cascade via POPs exposure resulted in elevated levels of fibroblast differentiation (α-smooth muscle actin) and RAGE expression indicated maladaptive cardiac remodeling. Conversely, the observed decreased superoxide dismutase-1 and -2 (SOD-1 and SOD-2) expression may exacerbate the adverse changes occurring as a result of POPs treatment to reduce innate cardioprotective mechanisms. In comparison, ventricular collagen levels were decreased in mice exposed to POPs. In conclusion, exposure to organic environmental pollutants may intensify oxidative and inflammatory stressors to overwhelm protective mechanisms allowing for adverse cardiac remodeling.
Collapse
Affiliation(s)
- Jackson B. Coole
- Department of Biological Sciences, College of Arts and SciencesMississippi State UniversityStarkvilleMississippi
| | - Stephanie S. Burr
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| | - Amber M. Kay
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| | - Jaime A. Singh
- Virginia Commonwealth University Health SystemsRichmondVirginia
| | - Sandeep Kondakala
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - Eun‐Ju Yang
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - Barbara L. F. Kaplan
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - George E. Howell
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - James A. Stewart
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| |
Collapse
|
11
|
Rodríguez-Moro G, Abril N, Jara-Biedma R, Ramírez-Acosta S, Gómez-Ariza JL, García-Barrera T. Metabolic Impairments Caused by a "Chemical Cocktail" of DDE and Selenium in Mice Using Direct Infusion Triple Quadrupole Time-of-Flight and Gas Chromatography-Mass Spectrometry. Chem Res Toxicol 2019; 32:1940-1954. [PMID: 31532635 DOI: 10.1021/acs.chemrestox.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among organic contaminants, pesticides are one of the most important groups of chemicals due to their persistent character and toxicity. However, the biological systems are exposed to a complex environment in which the contaminants can interact in a synergistic/antagonistic fashion, and for this reason, the study of "chemical cocktails" is of great interest to fully understand the final biological effect. In this way, selenium is known for its antagonistic action against several toxicants. In this paper, metabolic impairments caused by the joint exposure of p,p'-dichloro diphenyl trichloroethane (DDE) and selenium (Se) have been issued for the first time. A metabolomic workflow was applied to mice fed DDE and DDE with Se diet, on the basis of the complementary use of two organic mass spectrometric techniques, combining direct infusion mass spectrometry (DI-ESI-QqQ-TOF MS) and gas chromatography-mass spectrometry (GC-MS). The results show a good classification between the studied groups caused by about 70 altered metabolites in the liver, kidney, or brain, including the pathways of energy metabolism, degradation of phospholipidic membrane, β-oxidation, and oxidative stress, which confirm the potential of combined metabolomic platforms in environmental studies.
Collapse
Affiliation(s)
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, International Agrofood Campus of Excellence International ceiA3 , University of Córdoba , Campus de Rabanales, Edificio Severo Ochoa , E-14071 Córdoba , Spain
| | | | | | | | | |
Collapse
|
12
|
Zhan J, Liang Y, Liu D, Ma X, Li P, Zhai W, Zhou Z, Wang P. Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: A case study of p,p'-DDE. ENVIRONMENT INTERNATIONAL 2019; 130:104861. [PMID: 31195221 DOI: 10.1016/j.envint.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The prevalence of obesity has raised global concerns. Environmental pollutants are one of the main causes of obesity. Many studies have demonstrated that dietary fiber could reduce obesity induced by high-fat diets, but whether environmental pollutant-induced obesity can be reversed is still unknown. OBJECTIVES This study aimed to investigate the effects of pectin on obesity induced by a typical environmental pollutant p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and explore the underlying mechanism by which pectin reversed p,p'-DDE-induced obesity. METHODS p,p'-DDE was used to induce obesity in C57BL/6J mice and pectin was supplied during and after cessation of p,p'-DDE exposure. Body and fat weight gain, plasma lipid profile and insulin resistance of mice were assessed. Gut microbiota composition and the levels of short-chain fatty acids (SCFAs) as well as the receptor proteins and hormones in the SCFAs-related signaling pathway were analyzed. Moreover, p,p'-DDE levels in various tissues of mice were detected. RESULTS Pectin supplementation reversed body and fat weight gain, dyslipidemia, hyperglycemia and insulin resistance in p,p'-DDE-exposed mice. Furthermore, pectin apparently altered the p,p'-DDE-induced microbial composition and then promoted the levels of SCFAs in colonic feces as well as the expression of G-protein coupled receptors and the concentration of hormone peptide YY (PYY) and glucagon like peptide-1 (GLP-1). Pectin treatment also significantly reduced p,p'-DDE accumulation in mice tissues during p,p'-DDE exposure but did not change p,p'-DDE metabolism after termination of p,p'-DDE exposure. CONCLUSIONS Pectin had a good effect on reducing p,p'-DDE-induced obesity through regulating gut microbiota and provided a potential strategy for the treatment of environmental pollutant-caused health problems.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
13
|
Cohn BA, Cirillo PM, La Merrill MA. Correlation of body mass index with serum DDTs predicts lower risk of breast cancer before the age of 50: prospective evidence in the Child Health and Development Studies. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:302-309. [PMID: 30224754 PMCID: PMC6996968 DOI: 10.1038/s41370-018-0072-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 05/08/2023]
Abstract
Many suspected breast cancer risk factors, including the pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE), are stored in fat where they could influence carcinogenesis. We tested the hypothesis that the relationship of DDT and DDE (DDTs) with adiposity is modified by disposition to develop breast cancer. We predicted that concentrations of serum DDTs would be inversely correlated with body mass index (BMI) during active exposure when DDTs move into the larger fat pool. We described this correlation at an average of 17 years before breast cancer was diagnosed, in a prospective nested case-control study in the Child Health and Development Studies. Women entered the study during pregnancy from 1959 to 1966 when DDT was in active use. In total, 133 breast cancer cases were diagnosed under the age of 50 as of 1998. Mean time to diagnosis was 17 years. In total, 133 controls were matched to cases on birth year. We observed the expected inverse correlation of serum DDTs with BMI only in women who remained cancer-free and not in women who ultimately developed breast cancer (p for interaction < 0.05). Findings suggest that vulnerability to breast cancer before the age of 50 may be associated with an uncoupling of the inverse correlation between BMI and serum DDTs. Investigation into mechanisms may eventually reveal early biomarkers of breast cancer risk.
Collapse
Affiliation(s)
- Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, 94709, USA.
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, 94709, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, College of Biological Sciences, Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Robinson KJ, Hall AJ, Debier C, Eppe G, Thomé JP, Bennett KA. Persistent Organic Pollutant Burden, Experimental POP Exposure, and Tissue Properties Affect Metabolic Profiles of Blubber from Gray Seal Pups. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13523-13534. [PMID: 30339760 DOI: 10.1021/acs.est.8b04240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Persistent organic pollutants (POPs) are toxic, ubiquitous, resist breakdown, bioaccumulate in living tissue, and biomagnify in food webs. POPs can also alter energy balance in humans and wildlife. Marine mammals experience high POP concentrations, but consequences for their tissue metabolic characteristics are unknown. We used blubber explants from wild, gray seal ( Halichoerus grypus) pups to examine impacts of intrinsic tissue POP burden and acute experimental POP exposure on adipose metabolic characteristics. Glucose use, lactate production, and lipolytic rate differed between matched inner and outer blubber explants from the same individuals and between feeding and natural fasting. Glucose use decreased with blubber dioxin-like PCBs (DL-PCB) and increased with acute experimental POP exposure. Lactate production increased with DL-PCBs during feeding, but decreased with DL-PCBs during fasting. Lipolytic rate increased with blubber dichlorodiphenyltrichloroethane and its metabolites (DDX) in fasting animals, but declined with DDX when animals were feeding. Our data show that POP burdens are high enough in seal pups to alter adipose function early in life, when fat deposition and mobilization are vital. Such POP-induced alterations to adipose metabolic properties may significantly alter energy balance regulation in marine top predators, with the potential for long-term impacts on fitness and survival.
Collapse
Affiliation(s)
- Kelly J Robinson
- Sea Mammal Research Unit, Scottish Oceans Institute , University of St Andrews , St Andrews , Fife KY16 8LB , United Kingdom of Great Britain and Northern Ireland
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute , University of St Andrews , St Andrews , Fife KY16 8LB , United Kingdom of Great Britain and Northern Ireland
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology , Université Catholique de Louvain , Ottignies-Louvain-la-Neuve, Louvain-la-Neuve 1348 , Belgium
| | - Gauthier Eppe
- Center for Analytical Research and Technology (CART), B6c, Department of Chemistry , Université de Liège , Liege 4000 , Belgium
| | - Jean-Pierre Thomé
- Center for Analytical Research and Technology (CART), Laboratory of Animal Ecology and Ecotoxicology (LEAE) , Université de Liège , Liege 4000 , Belgium
| | - Kimberley A Bennett
- Division of Science, School of Science Engineering and Technology , Abertay University , Dundee DD1 1HG , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
15
|
Pesta M, Cedikova M, Dvorak P, Dvorakova J, Kulda V, Srbecka K, Muller L, Bouchalova V, Kralickova M, Babuska V, Kuncova J, Mullerova D. Trends in gene expression changes during adipogenesis in human adipose derived mesenchymal stem cells under dichlorodiphenyldichloroethylene exposure. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Daniels SI, Chambers JC, Sanchez SS, La Merrill MA, Hubbard AE, Macherone A, McMullin M, Zhang L, Elliott P, Smith MT, Kooner J. Elevated Levels of Organochlorine Pesticides in South Asian Immigrants Are Associated With an Increased Risk of Diabetes. J Endocr Soc 2018; 2:832-841. [PMID: 30019022 PMCID: PMC6041775 DOI: 10.1210/js.2017-00480] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Rates of diabetes mellitus are higher in South Asians than in other populations and persist after migration. One unexplored cause may be higher exposure to persistent organic pollutants associated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations in South Asian immigrants and European whites to determine whether the disease was positively associated with OC pesticides in South Asians. RESEARCH DESIGN AND METHODS South Asians of Tamil or Telugu descent (n = 120) and European whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as well as biometric, clinical, and survey data were collected. Plasma levels of p,p'-dichlorodiphenyldichloroethylene (DDE), p,p'- dichlorodiphenyltrichloroethane, β-hexachlorohexane (HCH), and polychlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases and controls were categorized by binary exposure (above vs below the 50th percentile) to perform logistic regression. RESULTS Tamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p'-DDE above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR: 7.00; 95% CI: 2.22, 22.06). The odds of exposure to β-HCH above the 50th percentile was significantly greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97). CONCLUSIONS South Asian immigrants have a higher body burden of OC pesticides than European whites. Diabetes mellitus is associated with higher p,p'-DDE and β-HCH concentrations in this population. Additional longitudinal studies of South Asian populations should be performed.
Collapse
Affiliation(s)
- Sarah I Daniels
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College, London, United Kingdom
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
| | - Sylvia S Sanchez
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Alan E Hubbard
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Anthony Macherone
- Agilent Technologies, Inc., Santa Clara, California
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Luoping Zhang
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
| | - Martyn T Smith
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
18
|
Kondakala S, Lee JH, Ross MK, Howell GE. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice. Toxicol Appl Pharmacol 2017; 337:67-75. [DOI: 10.1016/j.taap.2017.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
|
19
|
Abstract
PURPOSE OF REVIEW The rising prevalence of obesity and diabetes cannot be fully explained by known risk factors, such as unhealthy diet, a sedentary lifestyle, and family history. This review summarizes the available studies linking persistent organic pollutants (POPs) to obesity and diabetes and discusses plausible underlying mechanisms. RECENT FINDINGS Increasing evidence suggest that POPs may act as obesogens and diabetogens to promote the development of obesity and diabetes and induce metabolic dysfunction. POPs are synthesized chemicals and are used widely in our daily life. These chemicals are resistant to degradation in chemical or biological processes, which enable them to exist in the environment persistently and to be bio-accumulated in animal and human tissue through the food chain. Increasingly, epidemiologic studies suggest a positive association between POPs and risk of developing diabetes. Understanding the relationship of POPs with obesity and diabetes may shed light on preventive strategies for obesity and diabetes.
Collapse
Affiliation(s)
- Chunxue Yang
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Zongwei Cai
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China.
- HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Arthur C K Chung
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China.
- HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
20
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|
21
|
Cano-Sancho G, Salmon AG, La Merrill MA. Association between Exposure to p,p'-DDT and Its Metabolite p,p'-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:096002. [PMID: 28934091 PMCID: PMC5915185 DOI: 10.1289/ehp527] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND The prevalence of obesity is increasing in all countries, becoming a substantial public health concern worldwide. Increasing evidence has associated obesity with persistent pollutants such as the pesticide DDT and its metabolite p,p'-DDE. OBJECTIVES Our objective was to systematically review the literature on the association between exposure to the pesticide DDT and its metabolites and obesity to develop hazard identification conclusions. METHODS We applied a systematic review-based strategy to identify and integrate evidence from epidemiological, in vivo, and in vitro studies. The evidence from prospective epidemiological studies was quantitatively synthesized by meta-analysis. We rated the body of evidence and integrated the streams of evidence to systematically develop hazard identification conclusions. RESULTS We identified seven epidemiological studies reporting prospective associations between exposure to p,p'-DDE and adiposity assessed by body mass index (BMI) z-score. The results from the meta-analysis revealed positive associations between exposure to p,p'-DDE and BMI z-score (β=0.13 BMI z-score (95% CI: 0.01, 0.25) per log increase of p,p'-DDE). Two studies constituted the primary in vivo evidence. Both studies reported positive associations between exposure to p,p'-DDT and increased adiposity in rodents. We identified 19 in vivo studies and 7 in vitro studies that supported the biological plausibility of the obesogenic effects of p,p'-DDT and p,p'-DDE. CONCLUSIONS We classified p,p'-DDT and p,p'-DDE as "presumed" to be obesogenic for humans, based on a moderate level of primary human evidence, a moderate level of primary in vivo evidence, and a moderate level of supporting evidence from in vivo and in vitro studies. https://doi.org/10.1289/EHP527.
Collapse
Affiliation(s)
- German Cano-Sancho
- Department of Environmental Toxicology, University of California, Davis , Davis, California, USA
| | - Andrew G Salmon
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency , Oakland, California, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis , Davis, California, USA
| |
Collapse
|
22
|
Pestana D, Teixeira D, Meireles M, Marques C, Norberto S, Sá C, Fernandes VC, Correia-Sá L, Faria A, Guardão L, Guimarães JT, Cooper WN, Sandovici I, Domingues VF, Delerue-Matos C, Monteiro R, Constância M, Calhau C. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE. Sci Rep 2017; 7:2738. [PMID: 28572628 PMCID: PMC5453948 DOI: 10.1038/s41598-017-02885-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals such as p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE), are bioaccumulated in the adipose tissue (AT) and have been implicated in the obesity and diabetes epidemic. Thus, it is hypothesized that p,p’-DDE exposure could aggravate the harm of an obesogenic context. We explored the effects of 12 weeks exposure in male Wistar rats’ metabolism and AT biology, assessing a range of metabolic, biochemical and histological parameters. p,p’-DDE -treatment exacerbated several of the metabolic syndrome-accompanying features induced by high-fat diet (HF), such as dyslipidaemia, glucose intolerance and hypertension. A transcriptome analysis comparing mesenteric visceral AT (vAT) of HF and HF/DDE groups revealed a decrease in expression of nervous system and tissue development-related genes, with special relevance for the neuropeptide galanin that also revealed DNA methylation changes at its promoter region. Additionally, we observed an increase in transcription of dipeptidylpeptidase 4, as well as a plasmatic increase of the pro-inflammatory cytokine IL-1β. Our results suggest that p,p’-DDE impairs vAT normal function and effectively decreases the dynamic response to energy surplus. We conclude that p,p’-DDE does not merely accumulate in fat, but may contribute significantly to the development of metabolic dysfunction and inflammation. Our findings reinforce their recognition as metabolism disrupting chemicals, even in non-obesogenic contexts.
Collapse
Affiliation(s)
- Diogo Pestana
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal. .,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal. .,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Diana Teixeira
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Marques
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Norberto
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Sá
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Virgínia C Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Faria
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luísa Guardão
- Animal House Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Clinical Pathology, Hospital S. João, Porto, Portugal
| | - Wendy N Cooper
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ionel Sandovici
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Valentina F Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Rosário Monteiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Miguel Constância
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Conceição Calhau
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Xiao X, Clark JM, Park Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol 2017; 105:456-474. [PMID: 28487232 DOI: 10.1016/j.fct.2017.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
The introduction of insecticides has greatly improved agricultural productivity and human nutrition; however, the wide use of insecticides has also sparked growing concern over their health impacts. Increased rate of cancers, neurodegenerative disorders, reproductive dysfunction, birth defects, respiratory diseases, cardiovascular diseases and aging have been linked with insecticide exposure. Meanwhile, a growing body of evidence is suggesting that exposure to insecticides can also potentiate the risk of obesity and type 2 diabetes. This review summarizes the relationship between insecticide exposure and development of obesity and type 2 diabetes using epidemiological and rodent animal studies, including potential mechanisms. The evidence as a whole suggests that exposure to insecticides is linked to increased risk of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
24
|
Liu Q, Wang Q, Xu C, Shao W, Zhang C, Liu H, Jiang Z, Gu A. Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Sci Rep 2017; 7:46339. [PMID: 28397872 PMCID: PMC5387717 DOI: 10.1038/srep46339] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
p,p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) were two predominant organochlorine pesticides (OCPs) metabolites in human body associated with disorders of fatty acid metabolism. However, the underlying mechanisms have not been fully clarified. In this study, adult male C57BL/6 mice were exposed to low dose of p, p'-DDE and β-HCH for 8 wk. OCPs accumulation in organs, hepatic fatty acid composition, tricarboxylic acid cycle (TCA) metabolites and other metabolite profiles were analyzed. Expression levels of genes involved in hepatic lipogenesis and β-oxidation were measured. Mitochondrial function was evaluated in HepG2 cells exposed to OCPs. High accumulation of p, p'-DDE and β-HCH was found in liver and damaged mitochondria was observed under electron microscopy. Expression of genes in fatty acid synthesis increased and that in mitochondrial fatty acid β-oxidation decreased in OCPs treatment groups. OCPs changed metabolite profiles in liver tissues, varied hepatic fatty acid compositions and levels of several TCA cycle metabolites. Furthermore, MitoTracker Green fluorescence, ATP levels, mitochondrial membrane potential and OCR decreased in HepG2 cells exposed to OCPs. In conclusion, chronic exposure to OCPs at doses equivalent to internal exposures in humans impaired mitochondrial function, decreased fatty acid β-oxidation and aggravated disorders of fatty acid metabolism.
Collapse
Affiliation(s)
- Qian Liu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qihan Wang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunlan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Mulligan C, Kondakala S, Yang EJ, Stokes JV, Stewart JA, Kaplan BLF, Howell GE. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male Ob/Ob mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1399-1411. [PMID: 27533883 DOI: 10.1002/tox.22334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 05/19/2023]
Abstract
Hepatic steatosis is recognized as an independent risk factor for the development of cardiovascular disease. While obesity and type 2 diabetes are well-established risk factors in the development of hepatic steatosis, recent studies have revealed exposure to mixtures of persistent organic pollutants (POPs), which are environmental contaminants in various fatty foods, can promote steatosis. Thus, the present study was designed to determine if exposure to a defined mixture of prevalent polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides or their metabolites promote hepatic steatosis in a genetically induced model of type 2 diabetes, the leptin-deficient ob/ob mouse. Male C57BL/6J wild type (WT) or ob/ob mice were administered an environmentally relevant mixture of PCBs and OCs for 7 weeks via oral gavage. Exposure to POPs did not significantly alter fasting serum glucose or insulin levels. However, POPs exposure significantly increased hepatic triglyceride content in ob/ob animals, while decreasing serum triglyceride levels. This POPs-mediated increase in hepatic triglyceride content did not appear to be associated with significantly increased inflammation in either the liver or adipose. Exposure to POPs significantly induced the expression of cytochrome P450 3a11 in WT animals, yet the expression of this cytochrome was significantly downregulated in ob/ob animals regardless of POPs exposure. Taken together, the present data indicate exposure to an environmentally relevant mixture of both PCBs and OC pesticides in ob/ob mice promotes hepatic steatosis while decreasing hypertriglyceridemia, which demonstrates exposure to a defined mixture of POPs alters systemic lipid metabolism in a genetically induced model of obesity and type 2 diabetes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1399-1411, 2017.
Collapse
Affiliation(s)
- Charlee Mulligan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Sandeep Kondakala
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Eun-Ju Yang
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - John V Stokes
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - James A Stewart
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Barbara L F Kaplan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - George E Howell
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| |
Collapse
|
26
|
Shen P, Hsieh TH, Yue Y, Sun Q, Clark JM, Park Y. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food Chem Toxicol 2017; 101:149-156. [DOI: 10.1016/j.fct.2017.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
|
27
|
In Vitro effect of DDE exposure on the regulation of lipid metabolism and secretion in McA-RH7777 hepatocytes: A potential role in dyslipidemia which may increase the risk of type 2 diabetes mellitus. Toxicol In Vitro 2016; 37:9-14. [DOI: 10.1016/j.tiv.2016.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
|
28
|
Brinati A, Oliveira JM, Oliveira VS, Barros MS, Carvalho BM, Oliveira LS, Queiroz MEL, Matta SLP, Freitas MB. Low, Chronic Exposure to Endosulfan Induces Bioaccumulation and Decreased Carcass Total Fatty Acids in Neotropical Fruit Bats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:626-631. [PMID: 27592102 DOI: 10.1007/s00128-016-1910-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
We investigated the effects of the insecticide endosulfan on energy metabolism and its possible accumulation in fruit bats. Adult male bats (Artibeus lituratus) were exposed for 35 days, when they were offered fruit treated with endosulfan (E) and adhesive spreader (AS) in the following concentrations (g/L): 0.0; 0.0 (Control), 0.0; 0.015 (AS), 1.05; 0.015 (E1), 2.1; 0.015 (E2). Concentrations used were those recommended by the manufacturer for fruit crop application (E1) or twice this value (E2). E1 bats showed decreased plasma glucose concentration. Carcass fatty acids were decreased in E1 and E2 bats. Endosulfan bioaccumulation was observed in both liver and adipose tissues from E1 and E2 bats. These results indicate that the chronic exposure of fruit bats to environmentally relevant concentrations of endosulfan can lead to significant bioaccumulation beyond control and also decreased fatty acid content, which may impair the health of this important seed disperser in neotropical forests.
Collapse
|
29
|
Müllerová D, Pešta M, Čedíková M, Dvořáková J, Kulda V, Srbecká K, Müller L, Dvořák P, Kripnerová M, Králíčková M, Babuška V, Kuncová J. DDE downregulates PLIN2 expression during differentiation of mesenchymal stem cells into adipocytes in lipid-enriched medium. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Mangum LH, Crow JA, Stokes JV, Howell GE, Ross MK, Pruett SB, Chambers JE. Exposure to p,p'-DDE Alters Macrophage Reactivity and Increases Macrophage Numbers in Adipose Stromal Vascular Fraction. Toxicol Sci 2016; 150:169-77. [PMID: 26748080 PMCID: PMC6280768 DOI: 10.1093/toxsci/kfv315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exposure to p,p'-DDE (DDE), the main bioaccumulative metabolite of the organochlorine insecticide p,p'-DDT, is associated with a higher prevalence of obesity, dyslipidemia, insulin resistance, metabolic syndrome, and immunomodulation. The present study was carried out to determine whether DDE perturbs adipose tissue homeostasis through modulation of macrophage function. Treatment with DDE or a cyclooxygenase-2 inhibitor prior to lipopolysaccharide exposure significantly decreased production of prostaglandins (PG) from J774a.1 macrophages in vitro. Similarly, J774A.1 cell lysates incubated with DDE or a specific cyclooxygenase-2 inhibitor (NS-398) produced significantly less PGE2 and PGF2α. Macrophage polarization studies revealed a pattern of DDE effects that were not fully consistent with a purely pro- or purely anti- M1 or M2 effect. However, DDE suppressed expression of two M1 markers (induced by an M1 stimulus) and enhanced expression of an M2 marker (induced by an M2 stimulus). Further studies including assessment of macrophage function are needed to fully characterize the effects of DDE on macrophage polarization. Obesity is characterized by an increase in the number of resident adipose tissue macrophages. To assess monocyte/macrophage recruitment to the adipose tissue in vivo, male C57Bl/6H mice were treated with 2 mg/kg DDE or corn oil vehicle for 5 days by gavage. Epididymal fat pads were digested and macrophage populations were analyzed by flow cytometry. In DDE-treated animals, there was a significant increase (37%) in F4/80(+)CD11b(+) macrophages/g of epididymal adipose over vehicle (P < .05). Together, these results suggest a role for DDE in the enhancement of adipose tissue macrophage recruitment and/or proliferation, as well as modulation of immune cell function that may contribute to the etiology of metabolic diseases associated with organochlorine exposure.
Collapse
Affiliation(s)
- Lauren H Mangum
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine and
| | - John Allen Crow
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine and
| | - John V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100
| | - George E Howell
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine and
| | - Matthew K Ross
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine and
| | - Stephen B Pruett
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100
| | - Janice E Chambers
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine and
| |
Collapse
|
31
|
Howell GE, Mulligan C, Meek E, Chambers JE. Effect of chronic p,p'-dichlorodiphenyldichloroethylene (DDE) exposure on high fat diet-induced alterations in glucose and lipid metabolism in male C57BL/6H mice. Toxicology 2014; 328:112-22. [PMID: 25541407 DOI: 10.1016/j.tox.2014.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a highly prevalent metabolic disease affecting 29.1 million people or 9.3% of the population of the United States. The most prevalent form of diabetes is type 2 diabetes (T2D) which comprises 90-95% of all reported cases of diabetes. While the exact cause of T2D remains an enigma, known risk factors include age, weight, sedentary lifestyle, poor dietary habits, and genetic predisposition. However, these risk factors can not sufficiently explain the increasing prevalence of T2D. Recently, environmental exposures have been explored as potential risk factors. Indeed, epidemiological and limited empirical studies have revealed elevated serum concentrations of certain persistent organic pollutants (POPs), including the bioaccumulative metabolite of p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), are positively correlated with increased T2D prevalence. The goal of the present study is to determine if chronic exposure to DDE promotes T2D in a widely used in vivo model, the high saturated fat-fed mouse. Male C57BL/6H mice were exposed to DDE (2.0mg/kg) or vehicle (corn oil; 1ml/kg) via gavage for 5 consecutive days, then every 7 days for the duration of the study. One week following the 5 day consecutive DDE dosing, animals were placed on either a low fat (10%kcal from lard) or high fat (45%kcal from lard) diet (HFD) for 13 weeks. Chronic exposure to DDE promoted fasting hyperglycemia after 4 and 8 weeks on the HFD diet and normalized fasting blood glucose levels at week 13. This DDE-mediated decrease in fasting hyperglycemia was preceded by improved glucose tolerance at week 12. In addition to normalizing fasting hyperglycemia at the end of high fat feeding, DDE exposure decreased HFD-induced fasting hyperinsulinemia, homeostasis model assessment of insulin resistance (HOMA-IR) values, and hepatic steatosis. Therefore, based on the current data, chronic DDE exposure appears to have a biphasic effect on HFD-induced hyperglycemia in the male C57BL/6H mouse characterized by elevated fasting blood glucose at weeks 4 and 8 of HFD intake followed by normoglycemia upon sacrifice. In addition, chronic DDE exposure reduced HFD-induced hepatic steatosis upon sacrifice. These results indicate chronic exposure to DDE can directly affect systemic glucose and hepatic lipid metabolism and that these effects can be diet dependent.
Collapse
MESH Headings
- Adipokines/blood
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/prevention & control
- Dichlorodiphenyl Dichloroethylene/pharmacology
- Dichlorodiphenyl Dichloroethylene/toxicity
- Diet, Fat-Restricted
- Diet, High-Fat
- Disease Models, Animal
- Dyslipidemias/blood
- Dyslipidemias/etiology
- Dyslipidemias/prevention & control
- Environmental Pollutants/pharmacology
- Environmental Pollutants/toxicity
- Fatty Liver/blood
- Fatty Liver/etiology
- Fatty Liver/prevention & control
- Food-Drug Interactions
- Glucose Intolerance/blood
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Hyperinsulinism/blood
- Hyperinsulinism/etiology
- Hyperinsulinism/prevention & control
- Insecticides/pharmacology
- Insecticides/toxicity
- Insulin/blood
- Insulin Resistance
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- RNA, Messenger/metabolism
- Time Factors
Collapse
Affiliation(s)
- George E Howell
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA.
| | - Charlee Mulligan
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| | - Edward Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| |
Collapse
|