1
|
Li Y, Wang Z, Wu J, Zheng J, Liu F, Ou J, Huang C, Ou S. Catalytic elevation effect of methylglyoxal on invertase and characterization of MGO modification products. Food Chem 2024; 460:140749. [PMID: 39142204 DOI: 10.1016/j.foodchem.2024.140749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Reactive carbonyl species can modify digestive enzymes upon intake due to their electrophilic nature. This study evaluated the effects of methylglyoxal (MGO), glyoxal, acrolein, and formaldehyde on invertase, an enzyme presents in digestive tract. Unexpectedly, MGO enhanced, rather than inhibited, invertase activity. Moreover, MGO counteracted the inhibitory effects of the other three carbonyls on invertase activity. Kinetic analyses revealed that 150 mmolLexp.-1 MGO resulted in a 2-fold increase in the Km and a 3.3-fold increase in Vmax, indicating that MGO increased the turnover rate of sucrose while reducing the substrate binding affinity of invertase. Additionally, MGO induced dynamic quenching of fluorescence, reduced free amino groups, increased hydrophobicity, the content of Amadori products, fluorescent and nonfluorescent AGEs, and amyloid fibrils of invertase. The specific modifications responsible for the elevated activity of MGO on invertase require further investigation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Zitong Wang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiaqi Wu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
2
|
Göttlinger T, Pirritano M, Simon M, Fuß J, Lohaus G. Metabolic and transcriptomic analyses of nectaries reveal differences in the mechanism of nectar production between monocots (Ananas comosus) and dicots (Nicotiana tabacum). BMC PLANT BIOLOGY 2024; 24:940. [PMID: 39385091 PMCID: PMC11462711 DOI: 10.1186/s12870-024-05630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Nectar is offered by numerous flowering plants to attract pollinators. To date, the production and secretion of nectar have been analyzed mainly in eudicots, particularly rosids such as Arabidopsis. However, due to the enormous diversity of flowering plants, further research on other plant species, especially monocots, is needed. Ananas comosus (monocot) is an economically important species that is ideal for such analyses because it produces easily accessible nectar in sufficient quantities. In addition, the analyses were also carried out with Nicotiana tabacum (dicot, asterids) for comparison. RESULTS We performed transcriptome sequencing (RNA-Seq) analyses of the nectaries of Ananas comosus and Nicotiana tabacum, to test whether the mechanisms described for nectar production and secretion in Arabidopsis are also present in these plant species. The focus of these analyses is on carbohydrate metabolism and transport (e.g., sucrose-phosphate synthases, invertases, sucrose synthases, SWEETs and further sugar transporters). In addition, the metabolites were analyzed in the nectar, nectaries and leaves of both plant species to address the question of whether concentration gradients for different metabolites exist between the nectaries and nectar The nectar of N. tabacum contains large amounts of glucose, fructose and sucrose, and the sucrose concentration in the nectar appears to be similar to the sucrose concentration in the nectaries. Nectar production and secretion in this species closely resemble corresponding processes in some other dicots, including sucrose synthesis in nectaries and sucrose secretion by SWEET9. The nectar of A. comosus also contains large amounts of glucose, fructose and sucrose and in this species the sucrose concentration in the nectar appears to be higher than the sucrose concentration in the nectaries. Furthermore, orthologs of SWEET9 generally appear to be absent in A. comosus and other monocots. Therefore, sucrose export by SWEETs from nectaries into nectar can be excluded; rather, other mechanisms, such as active sugar export or exocytosis, are more likely. CONCLUSION The mechanisms of nectar production and secretion in N. tabacum appear to be largely similar to those in other dicots, whereas in the monocotyledonous species A. comosus, different synthesis and transport processes are involved.
Collapse
Affiliation(s)
- Thomas Göttlinger
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany.
| | - Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Janina Fuß
- Competence Centre for Genomic Analysis, Kiel, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
3
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism Department, John Innes Centre, Norwich, UK
| | - Anthony J Miller
- Biochemistry & Metabolism Department, John Innes Centre, Norwich, UK
| | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, Jiangxi, China
| | - Yao Huang
- School of Life Science, NanChang University, Nanchang, Jiangxi, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Gaili Fan
- Xiamen Greening Administration Centre, Xiamen, China
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Tao J, Dong F, Wang Y, Xu T, Chen H, Tang M. Arbuscular mycorrhizal fungi alter carbon metabolism and invertase genes expressions of Populus simonii × P. nigra under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14572. [PMID: 39382057 DOI: 10.1111/ppl.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a crucial role in regulating the allocation of carbon between source and sink tissues in plants and in regulating their stress responses by changing the sucrose biosynthesis, transportation, and catabolism in plants. Invertase, a key enzyme for plant development, participates in the response of plants to drought stress by regulating sucrose metabolism. However, the detailed mechanisms by which INV genes respond to drought stress in mycorrhizal plants remain unclear. This study examined the sugar content, enzyme activity, and expression profiles of INV genes of Populus simonii × P. nigra (PsnINVs) under two inoculation treatments (inoculation or non-inoculation) and two water conditions (well-watered or drought stress). Results showed that under drought stress, AMF up-regulated the expressions of PsnA/NINV1, PsnA/NINV2, PsnA/NINV3, and PsnA/NINV5 in leaves, which may be related to the enhancement of photosynthetic capacity. Additionally, AMF up-regulated the expressions of PsnA/NINV6, PsnA/NINV10, and PsnA/NINV12 in leaves, which may be related to enhancing osmotic regulation ability and drought tolerance.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fengxin Dong
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yihan Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Rasool S, Jensen B, Roitsch TG, Meyling NV. Enzyme regulation patterns in fungal inoculated wheat may reflect resistance and tolerance towards an insect herbivore. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154298. [PMID: 38924905 DOI: 10.1016/j.jplph.2024.154298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing Beauveria bassiana and Metarhizium spp. causing either negative or positive effects against the aphid Rhopalosiphum padi. Activities of six carbohydrate enzymes increased in plants showing biomass build-up after EPF inoculations. However, only aldolase activity showed positive correlation with R. padi numbers. Plants inoculated with M. robertsii hosted fewest aphids and showed increased activity of superoxide dismutase, implying a defense strategy of resistance towards herbivores. In M. brunneum-inoculated plants, hosting most R. padi, activities of catalase and glutathione reductase were increased suggesting enhanced detoxification responses towards aphids. However, M. brunneum simultaneously increased plant growth indicating that this isolate may cause the plant to tolerate herbivory. EPF seed inoculants may therefore mediate either tolerance or resistance towards biotic stress in plants in an isolate-dependent manner.
Collapse
Affiliation(s)
- Shumaila Rasool
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.
| | - Birgit Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Thomas G Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Li F, Wang Y, Mostafa HHA, Wang T, Zhu S, Yuan M, Gao S, Liu T. Genome-wide association analysis identifies candidates of three bulb traits in garlic. PHYSIOLOGIA PLANTARUM 2024; 176:e14523. [PMID: 39262285 DOI: 10.1111/ppl.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/14/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Garlic bulbs generally possess several swelling cloves, and the swelling degree of the bulbs determines its yield and appearance quality. However, the genetic basis underlying bulb traits remains poorly known. To address this issue, we performed a genome-wide association analysis for three bulb traits: bulb weight, diameter, and height. It resulted in the identification of 51 significant associated signals from 38 genomic regions. Twelve genes from the associated regions, whose transcript abundances in the developmental bulb showed significant correlations with the investigated traits in 81 garlic accessions, were considered the candidates of the corresponding locus. We focused on five of these candidates and their variations and revealed that the promoter variations of fructose-bisphosphate aldolase-encoding Asa8G05696.1 and beta-fructofuranosidase-encoding Asa6G01167.1 are responsible for the functional diversity of these two genes in garlic population. Interestingly, our results revealed that all candidates we focused on experienced a degree of selection during garlic evolutionary history, and different genotypes of them were retained in two China-cultivated garlic groups. Taken together, these results suggest a potential involvement of those candidates in the parallel evolution of garlic bulb organs in two China-cultivated garlic groups. This study provides important insights into the genetic basis of garlic bulb traits and their evolution.
Collapse
Affiliation(s)
- Fu Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hassan H A Mostafa
- Central Laboratory of Organic Agriculture, Agricultural Research Center, Giza, Egypt
| | - Taotao Wang
- Shandong Dongyun Research Center of garlic Engineering, JinXiang, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Meng Yuan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Tuma TT, Nyamdari B, Hsieh C, Chen YH, Harding SA, Tsai CJ. Perturbation of tonoplast sucrose transport alters carbohydrate utilization for seasonal growth and defense metabolism in coppiced poplar. TREE PHYSIOLOGY 2024; 44:tpae061. [PMID: 38857382 DOI: 10.1093/treephys/tpae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Nonstructural carbohydrate reserves of stems and roots underpin overall tree fitness and productivity under short-rotation management practices such as coppicing for bioenergy. While sucrose and starch comprise the predominant stem carbohydrate reserves of Populus, utilization for fitness and agricultural productivity is understood primarily in terms of starch turnover. The tonoplast sucrose transport protein SUT4 modulates sucrose export from source leaves to distant sinks during photoautotrophic growth, but the possibility of its involvement in remobilizing carbohydrates from storage organs during heterotrophic growth has not been explored. Here, we used PtaSUT4-knockout mutants of Populus tremula × P. alba (INRA 717-1B4) in winter (cool) and summer (warm) glasshouse coppicing experiments to assess SUT4 involvement in reserve utilization. Conditions preceding and supporting summer sprouting were considered favorable for growth, while those preceding and supporting cool temperature sprouting were suboptimal akin to conditions associated with coppicing as generally practiced. Epicormic bud emergence was delayed in sut4 mutants following lower temperature 'winter' but not summer coppicing. Winter xylem hexose increases were observed in control but not in sut4 stumps after coppicing. The magnitude of starch and sucrose reserve depletion was similar in control and sut4 stumps during the winter and did not explain the sprouting and xylem hexose differences. However, winter maintenance costs appeared higher in sut4 based partly on Krebs cycle intermediate levels. In control plants, bark accrual of abundant defense metabolites, including salicinoids and condensed tannins, was higher in summer than in winter, but this increase of summer defense allocations was attenuated in sut4 mutants. Temperature-sensitive trade-offs between growth and other priorities may therefore depend on SUT4 in Populus.
Collapse
Affiliation(s)
- Trevor T Tuma
- Warnell School of Forestry and Natural Resources, 180 E. Green Street, University of Georgia, Athens, GA 30602, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, 180 E. Green Street, University of Georgia, Athens, GA 30602, USA
| | - Chen Hsieh
- Institute of Bioinformatics, 120 E. Green Street, University of Georgia, Athens, GA 30602, USA
| | - Yen-Ho Chen
- Department of Plant Biology, 2502 Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, 180 E. Green Street, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, 120 E. Green Street, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, 180 E. Green Street, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, 120 E. Green Street, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, 2502 Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, 120 E. Green Street, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Sun W, Luo C, Wu Y, Ding M, Feng M, Leng F, Wang Y. Paraphoma chrysanthemicola Affects the Carbohydrate and Lobetyolin Metabolism Regulated by Salicylic Acid in the Soilless Cultivation of Codonopsis pilosula. BIOLOGY 2024; 13:408. [PMID: 38927288 PMCID: PMC11200528 DOI: 10.3390/biology13060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Paraphoma chrysanthemicola, an endophytic fungus isolated from the roots of Codonopsis pilosula, influences salicylic acid (SA) levels. The interaction mechanism between SA and P. chrysanthemicola within C. pilosula remains elusive. To elucidate this, an experiment was conducted with four treatments: sterile water (CK), P. chrysanthemicola (FG), SA, and a combination of P. chrysanthemicola with salicylic acid (FG+SA). Results indicated that P. chrysanthemicola enhanced plant growth and counteracted the growth inhibition caused by exogenous SA. Physiological analysis showed that P. chrysanthemicola reduced carbohydrate content and enzymatic activity in C. pilosula without affecting total chlorophyll concentration and attenuated the increase in these parameters induced by exogenous SA. Secondary metabolite profiling showed a decrease in soluble proteins and lobetyolin levels in the FG group, whereas SA treatment led to an increase. Both P. chrysanthemicola and SA treatments decreased antioxidase-like activity. Notably, the FG group exhibited higher nitric oxide (NO) levels, and the SA group exhibited higher hydrogen peroxide (H2O2) levels in the stems. This study elucidated the intricate context of the symbiotic dynamics between the plant species P. chrysanthemicola and C. pilosula, where an antagonistic interaction involving salicylic acid was prominently observed. This antagonism was observed in the equilibrium between carbohydrate metabolism and secondary metabolism. This equilibrium had the potential to engage reactive oxygen species (ROS) and nitric oxide (NO).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (C.L.); (Y.W.); (M.D.); (M.F.); (F.L.)
| |
Collapse
|
9
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
van den Herik B, Bergonzi S, Li Y, Bachem CW, ten Tusscher KH. A coordinated switch in sucrose and callose metabolism enables enhanced symplastic unloading in potato tubers. QUANTITATIVE PLANT BIOLOGY 2024; 5:e4. [PMID: 38689753 PMCID: PMC11058582 DOI: 10.1017/qpb.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism. Here, we investigated the coordination between changes in unloading mode and sucrose metabolism and their relative role in tuber sink strength by looking into callose and sucrose metabolism gene expression combined with a model of apoplastic and symplastic unloading. Gene expression analysis suggests that callose deposition in tubers is decreased by lower callose synthase expression. Furthermore, changes in callose and sucrose metabolism are strongly correlated, indicating a well-coordinated developmental switch. Modelling indicates that symplastic unloading is not the most efficient unloading mode per se. Instead, it is the concurrent metabolic switch that provides the physiological conditions necessary to potentiate symplastic transport and thereby enhance tuber sink strength .
Collapse
Affiliation(s)
- Bas van den Herik
- Computational Developmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sara Bergonzi
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Yingji Li
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian W. Bachem
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
12
|
Khan Q, Qin Y, Guo DJ, Huang YY, Yang LT, Liang Q, Song XP, Xing YX, Li YR. Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane. PLANTS (BASEL, SWITZERLAND) 2024; 13:707. [PMID: 38475553 DOI: 10.3390/plants13050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Sugarcane is a significant primitive source of sugar and energy worldwide. The progress in enhancing the sugar content in sugarcane cultivars remains limited due to an insufficient understanding of specific genes related to sucrose production. The present investigation examined the enzyme activities, levels of reducing and non-reducing sugars, and transcript expression using RT-qPCR to assess the gene expression associated with sucrose metabolism in a high-sucrose sugarcane clone (GXB9) in comparison to a low-sucrose sister clone (B9). Sucrose phosphate synthase (SPS), sucrose phosphate phosphatase (SPP), sucrose synthase (SuSy), cell wall invertase (CWI), soluble acid invertase (SAI), and neutral invertase (NI) are essential enzymes involved in sucrose metabolism in sugarcane. The activities of these enzymes were comparatively quantified and analyzed in immature and maturing internodes of the high- and low-sucrose clones. The results showed that the higher-sucrose-accumulating clone had greater sucrose concentrations than the low-sucrose-accumulating clone; however, maturing internodes had higher sucrose levels than immature internodes in both clones. Hexose concentrations were higher in immature internodes than in maturing internodes for both clones. The SPS and SPP enzymes activities were higher in the high-sucrose-storing clone than in the low-sucrose clone. SuSy activity was higher in the low-sucrose clone than in the high-sucrose clone; further, the degree of SuSy activity was higher in immature internodes than in maturing internodes for both clones. The SPS gene expression was considerably higher in mature internodes of the high-sucrose clones than the low-sucrose clone. Conversely, the SuSy gene exhibited up-regulated expression in the low-sucrose clone. The enhanced expression of SPS in the high-sucrose clone compared to the low-sucrose clone suggests that SPS plays a major role in the increased accumulation of sucrose. These findings provide the opportunity to improve sugarcane cultivars by regulating the activity of genes related to sucrose metabolism using transgenic techniques.
Collapse
Affiliation(s)
- Qaisar Khan
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ying Qin
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dao-Jun Guo
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yu-Yan Huang
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Li-Tao Yang
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiang Liang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Yong-Xiu Xing
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| |
Collapse
|
13
|
Song C, Zhang Y, Zhang W, Manzoor MA, Deng H, Han B. The potential roles of acid invertase family in Dendrobium huoshanense: Identification, evolution, and expression analyses under abiotic stress. Int J Biol Macromol 2023; 253:127599. [PMID: 37871722 DOI: 10.1016/j.ijbiomac.2023.127599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| |
Collapse
|
14
|
Zhang S, Wang W, Chang R, Yu J, Yan J, Yu W, Li C, Xu Z. Structure and Expression Analysis of PtrSUS, PtrINV, PtrHXK, PtrPGM, and PtrUGP Gene Families in Populus trichocarpa Torr. and Gray. Int J Mol Sci 2023; 24:17277. [PMID: 38139109 PMCID: PMC10743687 DOI: 10.3390/ijms242417277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China;
| | - Wenxi Yu
- Heilongjiang Forestry Academy of Science, Harbin 150081, China;
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
15
|
Abbas F, Faried HN, Akhtar G, Ullah S, Javed T, Shehzad MA, Ziaf K, Razzaq K, Amin M, Wattoo FM, Hafeez A, Rahimi M, Abeed AHA. Cucumber grafting on indigenous cucurbit landraces confers salt tolerance and improves fruit yield by enhancing morpho-physio-biochemical and ionic attributes. Sci Rep 2023; 13:21697. [PMID: 38066051 PMCID: PMC10709624 DOI: 10.1038/s41598-023-48947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Pakistan is the 8th most climate-affected country in the globe along with a semi-arid to arid climate, thereby the crops require higher irrigation from underground water. Moreover, ~ 70% of pumped groundwater in irrigated agriculture is brackish and a major cause of secondary salinization. Cucumber (Cucumis sativus L.) is an important vegetable crop with an annual growth rate of about 3.3% in Pakistan. However, it is a relatively salt-sensitive crop. Therefore, a dire need for an alternate environment-friendly technology like grafting for managing salinity stress in cucumber by utilizing the indigenous cucurbit landraces. In this regard, a non-perforated pot-based study was carried out in a lath house to explore indigenous cucurbit landraces; bottle gourd (Lagenaria siceraria) (cv. Faisalabad Round), pumpkin (Cucurbit pepo. L) (cv. Local Desi Special), sponge gourd (Luffa aegyptiaca) (cv. Local) and ridge gourd (Luffa acutangula) (cv. Desi Special) as rootstocks for inducing salinity tolerance in cucumber (cv. Yahla F1). Four different salts (NaCl) treatments; T0 Control (2.4 dSm-1), T1 (4 dSm-1), T2 (6 dSm-1) and T3 (8 dSm-1) were applied. The grafted cucumber plants were transplanted into the already-induced salinity pots (12-inch). Different morpho-physio-biochemical, antioxidants, ionic, and yield attributes were recorded. The results illustrate that increasing salinity negatively affected the growing cucumber plants. However, grafted cucumber plants showed higher salt tolerance relative to non-grafted ones. Indigenous bottle gourd landrace (cv. Faisalabad Round) exhibited higher salt tolerance compared to non-grafted cucumber plants due to higher up-regulation of morpho-physio-biochemical, ionic, and yield attributes that was also confirmed by principal component analysis (PCA). Shoot and root biomass, chlorophylls contents (a and b), activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes, antioxidants scavenging activity (ASA), ionic (↑ K and Ca, ↓ Na), and yield-related attributes were found maximum in cucumber plants grafted onto indigenous bottle gourd landrace. Hence, the indigenous bottle gourd landrace 'cv. Faisalabad round' may be utilized as a rootstock for cucumber under a mild pot-based saline environment. However, indigenous bottle gourd landrace 'cv. Faisalabad round' may further be evaluated as rootstocks in moderate saline field conditions for possible developing hybrid rootstock and, subsequently, sustainable cucumber production.
Collapse
Affiliation(s)
- Fazal Abbas
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Hafiz Nazar Faried
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan.
| | - Gulzar Akhtar
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Sami Ullah
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Razzaq
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Amin
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Masoud Wattoo
- Department Plant Breeding and Genetics, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
16
|
Colbert JB, Coleman HD. Functional Diversification and the Plant Secondary Cell Wall. J Mol Evol 2023; 91:761-772. [PMID: 37979044 DOI: 10.1007/s00239-023-10145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.
Collapse
Affiliation(s)
- Joseph B Colbert
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
17
|
Asim M, Zhang Y, Sun Y, Guo M, Khan R, Wang XL, Hussain Q, Shi Y. Leaf senescence attributes: the novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormones signaling nodes. Crit Rev Biotechnol 2023; 43:1092-1110. [PMID: 35968918 DOI: 10.1080/07388551.2022.2094215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Sugars are the primary products of photosynthesis and play multiple roles in plants. Although sugars are usually considered to be the building blocks of energy storage and carbon transport molecules, they have also gradually come to be acknowledged as signaling molecules that can initiate senescence. Senescence is an active and essential process that occurs at the last developmental stage and corresponds to programmed degradation of: cells, tissues, organs, and entire organisms. It is a complex process involving: numerous biochemical changes, transporters, genes, and transcription factors. The process is controlled by multiple developmental signals, among which sugar signals are considered to play a vital role; however, the regulatory pathways involved are not fully understood. The dynamic mechanistic framework of sugar accumulation has an inconsistent effect on senescence through the sugar signaling pathway. Key metabolizing enzymes produce different sugar signals in response to the onset of senescence. Diverse sugar signal transduction pathways and a variety of sugar sensors are involved in controlling leaf senescence. This review highlights the processes underlying initiation of sugar signaling and crosstalk between sugars and hormones signal transduction pathways affecting leaf senescence. This summary of the state of current knowledge across different plants aids in filling knowledge gaps and raises key questions that remain to be answered with respect to regulation of leaf senescence by sugar signaling pathways.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Yanguo Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Mei Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Xiao Lin Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| |
Collapse
|
18
|
Liu J, Wu Y, Zhou L, Zhang A, Wang S, Liu Y, Yang D, Wang S. Influence of flowering on the anatomical structure, chemical components and carbohydrate metabolism of Bambusa tuldoides culms at different ages. FRONTIERS IN PLANT SCIENCE 2023; 14:1260302. [PMID: 38023931 PMCID: PMC10656694 DOI: 10.3389/fpls.2023.1260302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Bamboo forests, which have come to occupy large areas in recent years, naturally undergo the process of blooming. However, bamboo culms and rhizomes degenerate after the plants bloom, resulting in widespread loss of raw materials. Systematic research on the properties and physiology of bamboo culms after flowering is lacking, and whether flowering bamboo culms could be used as raw materials in industry is unclear. In this paper, we compared and measured the fiber morphology, chemical components, and sugar metabolism indexes of non-flowering and flowering Bambusa tuldoides culms at different ages. The results showed that the fibers in the middle internodes of both non-flowering and flowering B. tuldoides culms had the longest length. The fibers completed their elongation within 1 year, but the fiber walls were continually deposited with age. The levels of the chemical components in the nonflowering culms also continually increased with age. The nonstructural carbohydrate (NSC) content and sugar metabolism indexes showed the highest levels in the 2-year culms and then declined in the 3-year culms. Compared to young culms that had not yet flowered, the 3-month-old and 1-year-old flowering culms had a significant decrease in the fiber length and tangential diameter, and their holocellulose and lignin levels also decreased, while the levels of ash, SiO2, 1% NaOH extractives, and benzene-ethanol extractives increased. A correlation analysis showed that sugar catabolism was accelerated in the flowering cluster, which could lead to "starvation death" in bamboo and which had a significant negative impact on the anatomical and chemical properties of the bamboo culms. Generally, the flowering bamboo culms had shorter fibers, higher levels of extractives and ash, and lower holocellulose content, which indicated that bamboo flowering has an adverse effect on the application of such components in the production of pulp, in papermaking, and in other processing and utilization activities. This study revealed the physiological changes in flowering B. tuldoides culms and provided a theoretical basis to inform the utilization of culms in this species.
Collapse
Affiliation(s)
- Jiaxin Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Yufang Wu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Li Zhou
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Anmian Zhang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Sushuang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Yi Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Dejia Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Shuguang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
19
|
Wan H, Zhang Y, Wu L, Zhou G, Pan L, Fernie AR, Ruan YL. Evolution of cytosolic and organellar invertases empowered the colonization and thriving of land plants. PLANT PHYSIOLOGY 2023; 193:1227-1243. [PMID: 37429000 PMCID: PMC10661998 DOI: 10.1093/plphys/kiad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
The molecular innovation underpinning efficient carbon and energy metabolism during evolution of land plants remains largely unknown. Invertase-mediated sucrose cleavage into hexoses is central to fuel growth. Why some cytoplasmic invertases (CINs) function in the cytosol, whereas others operate in chloroplasts and mitochondria, is puzzling. We attempted to shed light on this question from an evolutionary perspective. Our analyses indicated that plant CINs originated from a putatively orthologous ancestral gene in cyanobacteria and formed the plastidic CIN (α1 clade) through endosymbiotic gene transfer, while its duplication in algae with a loss of its signal peptide produced the β clade CINs in the cytosol. The mitochondrial CINs (α2) were derived from duplication of the plastidic CINs and coevolved with vascular plants. Importantly, the copy number of mitochondrial and plastidic CINs increased upon the emergence of seed plants, corresponding with the rise of respiratory, photosynthetic, and growth rates. The cytosolic CIN (β subfamily) kept expanding from algae to gymnosperm, indicating its role in supporting the increase in carbon use efficiency during evolution. Affinity purification mass spectrometry identified a cohort of proteins interacting with α1 and 2 CINs, which points to their roles in plastid and mitochondrial glycolysis, oxidative stress tolerance, and the maintenance of subcellular sugar homeostasis. Collectively, the findings indicate evolutionary roles of α1 and α2 CINs in chloroplasts and mitochondria for achieving high photosynthetic and respiratory rates, respectively, which, together with the expanding of cytosolic CINs, likely underpin the colonization of land plants through fueling rapid growth and biomass production.
Collapse
Affiliation(s)
- Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Youjun Zhang
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Limin Wu
- Food and Agriculture, CSIRO, ACT, Canberra 2601, Australia
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Luzhao Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alisdair R Fernie
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
21
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
22
|
Qi C, Xv L, Xia W, Zhu Y, Wang Y, Zhang Z, Dai H, Miao M. Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes. Int J Mol Sci 2023; 24:13421. [PMID: 37686228 PMCID: PMC10487868 DOI: 10.3390/ijms241713421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).
Collapse
Affiliation(s)
- Chenze Qi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Liyun Xv
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Wenhao Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yunyi Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Haibo Dai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, The Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Meelua W, Wanjai T, Thinkumrob N, Friedman R, Jitonnom J. Multiscale QM/MM Simulations Identify the Roles of Asp239 and 1-OH···Nucleophile in Transition State Stabilization in Arabidopsis thaliana Cell-Wall Invertase 1. J Chem Inf Model 2023; 63:4827-4838. [PMID: 37503869 DOI: 10.1021/acs.jcim.3c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Arabidopsis thaliana cell-wall invertase 1 (AtCWIN1), a key enzyme in sucrose metabolism in plants, catalyzes the hydrolysis of sucrose into fructose and glucose. AtCWIN1 belongs to the glycoside hydrolase GH-J clan, where two carboxylate residues (Asp23 and Glu203 in AtCWIN1) are well documented as a nucleophile and an acid/base catalyst. However, details at the atomic level about the role of neighboring residues and enzyme-substrate interactions during catalysis are not fully understood. Here, quantum mechanical/molecular mechanical (QM/MM) free-energy simulations were carried out to clarify the origin of the observed decreased rates in Asp239Ala, Asp239Asn, and Asp239Phe in AtCWIN1 compared to the wild type and delineate the role of Asp239 in catalysis. The glycosylation and deglycosylation steps were considered in both wild type and mutants. Deglycosylation is predicted to be the rate-determining step in the reaction, with a calculated overall free-energy barrier of 15.9 kcal/mol, consistent with the experimental barrier (15.3 kcal/mol). During the reaction, the -1 furanosyl ring underwent a conformational change corresponding to 3E ↔ [E2]⧧ ↔ 1E according to the nomenclature of saccharide structures along the full catalytic reaction. Asp239 was found to stabilize not only the transition state but also the fructosyl-enzyme intermediate, which explains findings from previous structural and mutagenesis experiments. The 1-OH···nucleophile interaction has been found to provide an important contribution to the transition state stabilization, with a contribution of ∼7 kcal/mol, and affected glycosylation more significantly than deglycosylation. This study provides molecular insights that improve the current understanding of sucrose binding and hydrolysis in members of clan GH-J, which may benefit protein engineering research. Finally, a rationale on the sucrose inhibitor configuration in chicory 1-FEH IIa, proposed a long time ago in the literature, is also provided based on the QM/MM calculations.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar SE-391 82, Sweden
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
24
|
Li D, Ye G, Li J, Lai Z, Ruan S, Qi Q, Wang Z, Duan S, Jin HL, Wang HB. High light triggers flavonoid and polysaccharide synthesis through DoHY5-dependent signaling in Dendrobium officinale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1114-1133. [PMID: 37177908 DOI: 10.1111/tpj.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Dendrobium officinale is edible and has medicinal and ornamental functions. Polysaccharides and flavonoids, including anthocyanins, are important components of D. officinale that largely determine the nutritional quality and consumer appeal. There is a need to study the molecular mechanisms regulating anthocyanin and polysaccharide biosynthesis to enhance D. officinale quality and its market value. Here, we report that high light (HL) induced the accumulation of polysaccharides, particularly mannose, as well as anthocyanin accumulation, resulting in red stems. Metabolome and transcriptome analyses revealed that most of the flavonoids showed large changes in abundance, and flavonoid and polysaccharide biosynthesis was significantly activated under HL treatment. Interestingly, DoHY5 expression was also highly induced. Biochemical analyses demonstrated that DoHY5 directly binds to the promoters of DoF3H1 (involved in anthocyanin biosynthesis), DoGMPP2, and DoPMT28 (involved in polysaccharide biosynthesis) to activate their expression, thereby promoting anthocyanin and polysaccharide accumulation in D. officinale stems. DoHY5 silencing decreased flavonoid- and polysaccharide-related gene expression and reduced anthocyanin and polysaccharide accumulation, whereas DoHY5 overexpression had the opposite effects. Notably, naturally occurring red-stemmed D. officinale plants similarly have high levels of anthocyanin and polysaccharide accumulation and biosynthesis gene expression. Our results reveal a previously undiscovered role of DoHY5 in co-regulating anthocyanin and polysaccharide biosynthesis under HL conditions, improving our understanding of the mechanisms regulating stem color and determining nutritional quality in D. officinale. Collectively, our results propose a robust and simple strategy for significantly increasing anthocyanin and polysaccharide levels and subsequently improving the nutritional quality of D. officinale.
Collapse
Affiliation(s)
- Dongxiao Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jie Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhenqin Lai
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Siyou Ruan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Qi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
25
|
Guo J, Beemster GTS, Liu F, Wang Z, Li X. Abscisic Acid Regulates Carbohydrate Metabolism, Redox Homeostasis and Hormonal Regulation to Enhance Cold Tolerance in Spring Barley. Int J Mol Sci 2023; 24:11348. [PMID: 37511108 PMCID: PMC10379442 DOI: 10.3390/ijms241411348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Abscisic acid (ABA) plays a vital role in the induction of low temperature tolerance in plants. To understand the molecular basis of this phenomenon, we performed a proteomic analysis on an ABA-deficit mutant barley (Az34) and its wild type (cv Steptoe) under control conditions (25/18 °C) and after exposure to 0 °C for 24 h. Most of the differentially abundant proteins were involved in the processes of photosynthesis and metabolisms of starch, sucrose, carbon, and glutathione. The chloroplasts in Az34 leaves were more severely damaged, and the decrease in Fv/Fm was larger in Az34 plants compared with WT under low temperature. Under low temperature, Az34 plants possessed significantly higher activities of ADP-glucose pyrophosphorylase, fructokinase, monodehydroascorbate reductase, and three invertases, but lower UDP-glucose pyrophosphorylase activity than WT. In addition, concentrations of proline and soluble protein were lower, while concentration of H2O2 was higher in Az34 plants compared to WT under low temperature. Collectively, the results indicated that ABA deficiency induced modifications in starch and sucrose biosynthesis and sucrolytic pathway and overaccumulation of reactive oxygen species were the main reason for depressed low temperature tolerance in barley, which provide novel insights to the response of barley to low temperature under future climate change.
Collapse
Affiliation(s)
- Junhong Guo
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Zongming Wang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1063765. [PMID: 37469768 PMCID: PMC10352115 DOI: 10.3389/fpls.2023.1063765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
Pollen tubes of higher plants grow very rapidly until they reach the ovules to fertilize the female gametes. This growth process is energy demanding, however, the nutrition strategies of pollen are largely unexplored. Here, we studied the function of sucrose transporters and invertases during pollen germination and pollen tube growth. RT-PCR analyses, reporter lines and knockout mutants were used to study gene expression and protein function in pollen. The genome of Arabidopsis thaliana contains eight genes that encode functional sucrose/H+ symporters. Apart from AtSUC2, which is companion cell specific, all other AtSUC genes are expressed in pollen tubes. AtSUC1 is present in developing pollen and seems to be the most important sucrose transporter during the fertilization process. Pollen of an Atsuc1 knockout plant contain less sucrose and have defects in pollen germination and pollen tube growth. The loss of other sucrose carriers affects neither pollen germination nor pollen tube growth. A multiple knockout line Atsuc1Atsuc3Atsuc8Atsuc9 shows a phenotype that is comparable to the Atsuc1 mutant line. Loss of AtSUC1 can`t be complemented by AtSUC9, suggesting a special function of AtSUC1. Besides sucrose carriers, pollen tubes also synthesize monosaccharide carriers of the AtSTP family as well as invertases. We could show that AtcwINV2 and AtcwINV4 are expressed in pollen, AtcwINV1 in the transmitting tissue and AtcwINV5 in the funiculi of the ovary. The vacuolar invertase AtVI2 is also expressed in pollen, and a knockout of AtVI2 leads to a severe reduction in pollen germination. Our data indicate that AtSUC1 mediated sucrose accumulation during late stages of pollen development and cleavage of vacuolar sucrose into monosaccharides is important for the process of pollen germination.
Collapse
Affiliation(s)
- Jessica Seitz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin Fritz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Schröder
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johanna Knab
- Cell Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Walter Weber
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
27
|
Cheng L, Jin J, He X, Luo Z, Wang Z, Yang J, Xu X. Genome-wide identification and analysis of the invertase gene family in tobacco ( Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1164296. [PMID: 37332710 PMCID: PMC10272776 DOI: 10.3389/fpls.2023.1164296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sucrose (Suc) is directly associated with plant growth and development as well as tolerance to various stresses. Invertase (INV) enzymes played important role in sucrose metabolism by irreversibly catalyzing Suc degradation. However, genome-wide identification and function of individual members of the INV gene family in Nicotiana tabacum have not been conducted. In this report, 36 non-redundant NtINV family members were identified in Nicotiana tabacum including 20 alkaline/neutral INV genes (NtNINV1-20), 4 vacuolar INV genes (NtVINV1-4), and 12 cell wall INV isoforms (NtCWINV1-12). A comprehensive analysis based on the biochemical characteristics, the exon-intron structures, the chromosomal location and the evolutionary analysis revealed the conservation and the divergence of NtINVs. For the evolution of the NtINV gene, fragment duplication and purification selection were major factors. Besides, our analysis revealed that NtINV could be regulated by miRNAs and cis-regulatory elements of transcription factors associated with multiple stress responses. In addition, 3D structure analysis has provided evidence for the differentiation between the NINV and VINV. The expression patterns in diverse tissues and under various stresses were investigated, and qRT-PCR experiments were conducted to confirm the expression patterns. Results revealed that changes in NtNINV10 expression level were induced by leaf development, drought and salinity stresses. Further examination revealed that the NtNINV10-GFP fusion protein was located in the cell membrane. Furthermore, inhibition of the expression of NtNINV10 gene decreased the glucose and fructose in tobacco leaves. Overall, we have identified possible NtINV genes functioned in leaf development and tolerance to environmental stresses in tobacco. These findings provide a better understanding of the NtINV gene family and establish the basis for future research.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
28
|
Rasool S, Markou A, Hannula SE, Biere A. Effects of tomato inoculation with the entomopathogenic fungus Metarhizium brunneum on spider mite resistance and the rhizosphere microbial community. Front Microbiol 2023; 14:1197770. [PMID: 37293220 PMCID: PMC10244576 DOI: 10.3389/fmicb.2023.1197770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Entomopathogenic fungi have been well exploited as biocontrol agents that can kill insects through direct contact. However, recent research has shown that they can also play an important role as plant endophytes, stimulating plant growth, and indirectly suppressing pest populations. In this study, we examined the indirect, plant-mediated, effects of a strain of entomopathogenic fungus, Metarhizium brunneum on plant growth and population growth of two-spotted spider mites (Tetranychus urticae) in tomato, using different inoculation methods (seed treatment, soil drenching and a combination of both). Furthermore, we investigated changes in tomato leaf metabolites (sugars and phenolics), and rhizosphere microbial communities in response to M. brunneum inoculation and spider mite feeding. A significant reduction in spider mite population growth was observed in response to M. brunneum inoculation. The reduction was strongest when the inoculum was supplied both as seed treatment and soil drench. This combination treatment also yielded the highest shoot and root biomass in both spider mite-infested and non-infested plants, while spider mite infestation increased shoot but reduced root biomass. Fungal treatments did not consistently affect leaf chlorogenic acid and rutin concentrations, but M. brunneum inoculation via a combination of seed treatment and soil drenching reinforced chlorogenic acid (CGA) induction in response to spider mites and under these conditions the strongest spider mite resistance was observed. However, it is unclear whether the M. brunneum-induced increase in CGA contributed to the observed spider mite resistance, as no general association between CGA levels and spider mite resistance was observed. Spider mite infestation resulted in up to two-fold increase in leaf sucrose concentrations and a three to five-fold increase in glucose and fructose concentrations, but these concentrations were not affected by fungal inoculation. Metarhizium, especially when applied as soil drench, impacted the fungal community composition but not the bacterial community composition which was only affected by the presence of spider mites. Our results suggest that in addition to directly killing spider mites, M. brunneum can indirectly suppress spider mite populations on tomato, although the underlying mechanism has not yet been resolved, and can also affect the composition of the soil microbial community.
Collapse
Affiliation(s)
- Shumaila Rasool
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andreas Markou
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
29
|
Chen G, Peng L, Gong J, Wang J, Wu C, Sui X, Tian Y, Hu M, Li C, He X, Yang H, Zhang Q, Ouyang Y, Lan Y, Li T. Effects of water stress on starch synthesis and accumulation of two rice cultivars at different growth stages. FRONTIERS IN PLANT SCIENCE 2023; 14:1133524. [PMID: 37180383 PMCID: PMC10166795 DOI: 10.3389/fpls.2023.1133524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Rice is a water intensive crop and soil water conditions affect rice yield and quality. However, there is limited research on the starch synthesis and accumulation of rice under different soil water conditions at different growth stages. Thus, a pot experiment was conducted to explore the effects of IR72 (indica) and Nanjing (NJ) 9108 (japonica) rice cultivars under flood-irrigated treatment (CK, 0 kPa), light water stress treatment (L, -20 ± 5 kPa), moderate water stress treatment (M, -40 ± 5 kPa) and severe water stress treatment (S, -60 ± 5 kPa) on the starch synthesis and accumulation and rice yield at booting stage (T1), flowering stage (T2) and filling stage (T3), respectively. Under LT treatment, the total soluble sugar and sucrose contents of both cultivars decreased while the amylose and total starch contents increased. Starch synthesis-related enzyme activities and their peak activities at mid-late growth stage increased as well. However, applying MT and ST treatments produced the opposite effects. The 1000-grain weight of both cultivars increased under LT treatment while the seed setting rate increased only under LT3 treatment. Compared with CK, water stress at booting stage decreased grain yield. The principal component analysis (PCA) showed that LT3 got the highest comprehensive score while ST1 got lowest for both cultivars. Furthermore, the comprehensive score of both cultivars under the same water stress treatment followed the trend of T3 > T2 > T1, and NJ 9108 had a better drought-resistant ability than IR72. Compared with CK, the grain yield under LT3 increased by 11.59% for IR72 and 16.01% for NJ 9108, respectively. Overall, these results suggested that light water stress at filling stage could be an effective method to enhance starch synthesis-related enzyme activities, promote starch synthesis and accumulation and increase grain yield.
Collapse
Affiliation(s)
- Guangyi Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ligong Peng
- College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chaoyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaodong Sui
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Tian
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingming Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Congmei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xingmei He
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hong Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiuqiu Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuyuan Ouyang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Lan
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tian Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
31
|
Peng Y, Zhu L, Tian R, Wang L, Su J, Yuan Y, Ma F, Li M, Ma B. Genome-wide identification, characterization and evolutionary dynamic of invertase gene family in apple, and revealing its roles in cold tolerance. Int J Biol Macromol 2023; 229:766-777. [PMID: 36610562 DOI: 10.1016/j.ijbiomac.2022.12.330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Invertases are ubiquitous enzymes that catalyze the unalterable cleavage of sucrose into glucose and fructose, and are crucially involved in plant growth, development and stress response. In this study, a total of 17 putative invertase genes, including 3 cell wall invertases, 3 vacuolar invertases, and 11 neutral invertases were identified in apple genome. Subcellular localization of MdNINV7 and MdNINV11 indicated that both invertases were located in the cytoplasm. Comprehensive analyses of physicochemical properties, chromosomal localization, genomic characterization, and gene evolution of MdINV family were conducted. Gene duplication revealed that whole-genome or segmental duplication and random duplication might have been the major driving force for MdINVs expansion. Selection index values, ω, showed strong evidence of positive selection signatures among the INV clusters. Gene expression analysis indicated that MdNINV1/3/6/7 members are crucially involved in fruit development and sugar accumulation. Similarly, expression profiles of MdCWINV1, MdVINV1, and MdNINV1/2/7/11 suggested their potential roles in response to cold stress. Furthermore, overexpression of MdNINV11 in apple calli at least in part promoted the expression of MdCBF1-5 and H2O2 detoxification in response to cold. Overall, our results will be useful for understanding the functions of MdINVs in the regulation of apple fruit development and cold stress response.
Collapse
Affiliation(s)
- Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Barbosa ACO, Rocha DS, Silva GCB, Santos MGM, Camillo LR, de Oliveira PHGA, Cavalari AA, Costa MGC. Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:159-172. [PMID: 36875726 PMCID: PMC9981854 DOI: 10.1007/s12298-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01288-7.
Collapse
Affiliation(s)
- Ana C. O. Barbosa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Dilson S. Rocha
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Glaucia C. B. Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Miguel G. M. Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Luciana R. Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Paulo H. G. A. de Oliveira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Aline A. Cavalari
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Diadema 09913-030 Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| |
Collapse
|
33
|
Zhang J, Yao J, Mao L, Li Q, Wang L, Lin Q. Low temperature reduces potato wound formation by inhibiting phenylpropanoid metabolism and fatty acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1109953. [PMID: 36743579 PMCID: PMC9889875 DOI: 10.3389/fpls.2022.1109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Potato tubers have the healing capacity to prevent surface water transpiration and pathogen invasion after mechanical damage. Previous research has shown the inability to form healing periderm in potatoes under low temperatures, but the potential mechanism is still unclear. METHODS To explore the effects and mechanisms of low-temperature potato healing, wounded potatoes were stored at low temperature (4°C) and room temperature (22°C), respectively. RESULTS In this study, compared with 22°C healing, low temperature reduced the content of hydrogen peroxide, and the down-regulation of StAMY23 inhibited the conversion of starch to sugar, alleviated the degradation of starch, and reduced the content of soluble sugars and sucrose. Meanwhile, inhibition of phenylalanine metabolism by suppression of StPAL1 and St4CL expression reduced lignin accumulation. Low temperature also down-regulated the expression of StKCS6, StFAOH, StGPAT5, and StPrx, causing the lower deposition amount of suberin in wounds of potato tubers. DISCUSSION The above results suggested that low temperature led to less wound tissue deposition at the wound surfaces via suppressing phenylpropanoid metabolism and fatty acid biosynthesis in potato tubers.
Collapse
Affiliation(s)
- Jiadi Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Yao
- School of Biomedicine, Beijing City University, Beijing, China
| | - Linli Mao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingpeng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Zhang S, Wang J, Liu F, BassiriRad H, Liu N. Simulated nitrogen deposition promotes the carbon assimilation of shrubs rather than tree species in an evergreen broad-leaved forest. ENVIRONMENTAL RESEARCH 2023; 216:114497. [PMID: 36265598 DOI: 10.1016/j.envres.2022.114497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Although understory addition of nitrogen (UAN) is commonly used to simulate nitrogen deposition in field studies in forest ecosystems, it ignores the effects of atmospheric nitrogen deposition on the canopy. We studied the effects of nitrogen deposition simulated by UAN and by canopy addition of nitrogen (CAN) on leaf structure, chemical properties, Calvin cycle, and photosynthate distribution strategy of representative woody plant species in a subtropical evergreen broadleaved forest in South China. The results showed that maximum photosynthetic rate (Amax) of shrub species Blastus cochinchinensis and Ardisia quinquegona under CAN treatments was significantly higher than that of UAN treatments at the same N addition concentration. The concentrations of intermediates (PGK, DPGA and G3P) in Calvin cycle of B. cochinchinensis and A. quinquegona, and Castanea henryi were significantly increased with CAN treatments, but the opposite was true with UAN treatments. CAN25 significantly increased starch concentrations of shrub species Lasianthus chinensis and B. cochinchinensis, and significantly decreased sucrose concentrations of shrub species A. quinquegona and tree species C. henryi. Correlation analyses showed that nitrogen application amount under different modes helped explain the changes in Amax and Calvin cycle intermediates. In summary, nitrogen deposition may promote the Amax and Calvin cycle of shrub species, and the adaptability of shrub species to nitrogen deposition is higher than that of tree species, which may help to explain the degradation of subtropical evergreen broad-leaved forest.
Collapse
Affiliation(s)
- Shike Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hormoz BassiriRad
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, 60607, USA
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
35
|
Yasmeen A, Shakoor S, Azam S, Bakhsh A, Shahid N, Latif A, Shahid AA, Husnain T, Rao AQ. CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. PLANTA 2022; 256:107. [PMID: 36342558 DOI: 10.1007/s00425-022-04022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes. CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90-99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars' analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.
Collapse
Affiliation(s)
- Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| |
Collapse
|
36
|
Kebrom TH, Doust AN. Activation of apoplastic sugar at the transition stage may be essential for axillary bud outgrowth in the grasses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023581. [PMID: 36388483 PMCID: PMC9643854 DOI: 10.3389/fpls.2022.1023581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Shoot branches develop from buds in leaf axils. Once formed from axillary meristems, the buds enter a transition stage before growing into branches. The buds may transition into dormancy if internal and environmental factors limit sucrose supply to the buds. A fundamental question is why sucrose can be limiting at the transition stage for bud outgrowth, whereas new buds continue to be formed. Sucrose is transported to sink tissues through symplastic or apoplastic pathways and a shift from symplastic to apoplastic pathway is common during seed and fruit development. In addition, symplastic connected tissues are stronger sinks than symplastically isolated tissues that rely on sugars effluxed to the apoplast. Recent studies in sorghum, sugarcane, and maize indicate activation of apoplastic sugar in buds that transition to outgrowth but not to dormancy, although the mode of sugar transport during bud formation is still unclear. Since the apoplastic pathway in sorghum buds was specifically activated during bud outgrowth, we posit that sugar for axillary bud formation is most likely supplied through the symplastic pathway. This suggests a key developmental change at the transition stage, which alters the sugar transport pathway of newly-formed buds from symplastic to apoplastic, making the buds a less strong sink for sugars. We suggest therefore that bud outgrowth that relies on overflow of excess sucrose to the apoplast will be more sensitive to internal and environmental factors that enhance the growth of sink tissues and sucrose demand in the parent shoot; whereas bud formation that relies on symplastic sucrose will be less affected by these factors.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
- Center for Computational Systems Biology, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
37
|
Osorio-Navarro C, Toledo J, Norambuena L. Sucrose targets clathrin-mediated endocytosis kinetics supporting cell elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:987191. [PMID: 36330253 PMCID: PMC9623095 DOI: 10.3389/fpls.2022.987191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sucrose is a central regulator of plant growth and development, coordinating cell division and cell elongation according to the energy status of plants. Sucrose is known to stimulate bulk endocytosis in cultured cells; however, its physiological role has not been described to date. Our work shows that sucrose supplementation induces root cell elongation and endocytosis. Sucrose targets clathrin-mediated endocytosis (CME) in epidermal cells. Its presence decreases the abundance of both the clathrin coating complex and phosphatidylinositol 4,5-biphosphate at the plasma membrane, while increasing clathrin complex abundance in intracellular spaces. Sucrose decreases the plasma membrane residence time of the clathrin complex, indicating that it controls the kinetics of endocytic vesicle formation and internalization. CME regulation by sucrose is inducible and reversible; this on/off mechanism reveals an endocytosis-mediated mechanism for sensing plant energy status and signaling root elongation. The sucrose monosaccharide fructose also induces CME, while glucose and mannitol have no effect, demonstrating the specificity of the process. Overall, our data show that sucrose can mediate CME, which demonstrates that sucrose signaling for plant growth and development is dependent on endomembrane trafficking.
Collapse
Affiliation(s)
- Claudio Osorio-Navarro
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int J Mol Sci 2022; 23:ijms232012418. [PMID: 36293272 PMCID: PMC9603868 DOI: 10.3390/ijms232012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, 30-084 Kraków, Poland
| |
Collapse
|
39
|
Correia PMP, Cairo Westergaard J, Bernardes da Silva A, Roitsch T, Carmo-Silva E, Marques da Silva J. High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5235-5251. [PMID: 35446418 PMCID: PMC9440435 DOI: 10.1093/jxb/erac160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/20/2022] [Indexed: 05/30/2023]
Abstract
Interannual and local fluctuations in wheat crop yield are mostly explained by abiotic constraints. Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is increasing with global climate change. High-throughput methods were optimized to phenotype wheat plants under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring adaptative stress responses. Wheat plants of 10 genotypes were grown in a fully automated plant facility under 25/18 °C day/night for 30 d, and then the temperature was increased for 7 d (38/31 °C day/night) while maintaining half of the plants well irrigated and half at 30% field capacity. Thermal and multispectral images and pot weights were registered twice daily. At the end of the experiment, key metabolites and enzyme activities from carbohydrate and antioxidant metabolism were quantified. Regression machine learning models were successfully established to predict plant biomass using image-extracted parameters. Evapotranspiration traits expressed significant genotype-environment interactions (G×E) when acclimatization to stress was continuously monitored. Consequently, transpiration efficiency was essential to maintain the balance between water-saving strategies and biomass production in wheat under water deficit and high temperature. Stress tolerance included changes in carbohydrate metabolism, particularly in the sucrolytic and glycolytic pathways, and in antioxidant metabolism. The observed genetic differences in sensitivity to high temperature and water deficit can be exploited in breeding programmes to improve wheat resilience to climate change.
Collapse
Affiliation(s)
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, Section of Crop Science, Copenhagen University, Højbakkegård Allé 13, 2630 Tåstrup, Denmark
| | - Anabela Bernardes da Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, Copenhagen University, Højbakkegård Allé 13, 2630 Tåstrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, 603 00 Brno, Czech Republic
| | | | - Jorge Marques da Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
40
|
Jammer A, Akhtar SS, Amby DB, Pandey C, Mekureyaw MF, Bak F, Roth PM, Roitsch T. Enzyme activity profiling for physiological phenotyping within functional phenomics: plant growth and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5170-5198. [PMID: 35675172 DOI: 10.1093/jxb/erac215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study. This includes the introduction of multivariate statistical analyses that can easily be implemented in similar studies, allowing researchers to extract more valuable information to identify enzymatic biosignatures. Through a literature meta-analysis, we demonstrate how enzyme activity profiling has already provided functional information on the mechanisms regulating plant development and response mechanisms to abiotic stress and pathogen attack. The high robustness of the distinct enzymatic biosignatures observed during developmental processes and under stress conditions underpins the enormous potential of enzyme activity profiling for future applications in both basic and applied research. Enzyme activity profiling will complement molecular -omics approaches to contribute to the mechanistic understanding required to narrow the genotype-to-phenotype knowledge gap and to identify predictive biomarkers for plant breeding to develop climate-resilient crops.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F Mekureyaw
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Sciences, Section of Microbial Ecology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Roth
- Institute for Computational Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- International AI Future Lab, Technical University of Munich, Munich, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
41
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
42
|
Ren H, Xu Y, Lixie H, Kuang J, Wang Y, Jin Q. Integrated Transcriptome and Targeted Metabolite Analysis Reveal miRNA-mRNA Networks in Low-Light-Induced Lotus Flower Bud Abortion. Int J Mol Sci 2022; 23:9925. [PMID: 36077323 PMCID: PMC9456346 DOI: 10.3390/ijms23179925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Most Nelumbo nucifera (lotus) flower buds were aborted during the growing season, notably in low-light environments. How lotus produces so many aborted flower buds is largely unknown. An integrated transcriptome and targeted metabolite analysis was performed to reveal the genetic regulatory networks underlying lotus flower bud abortion. A total of 233 miRNAs and 25,351 genes were identified in lotus flower buds, including 68 novel miRNAs and 1108 novel genes. Further enrichment analysis indicated that sugar signaling plays a potential central role in regulating lotus flower bud abortion. Targeted metabolite analysis showed that trehalose levels declined the most in the aborting flower buds. A potential regulatory network centered on miR156 governs lotus flower bud abortion, involving multiple miRNA-mRNA pairs related to cell integrity, cell proliferation and expansion, and DNA repair. Genetic analysis showed that miRNA156-5p-overexpressing lotus showed aggravated flower bud abortion phenotypes. Trehalose-6-P synthase 1 (TPS1), which is required for trehalose synthase, had a negative regulatory effect on miR156 expression. TPS1-overexpression lotus showed significantly decreased flower bud abortion rates both in normal-light and low-light environments. Our study establishes a possible genetic basis for how lotus produces so many aborted flower buds, facilitating genetic improvement of lotus' shade tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4908-4922. [PMID: 35552692 DOI: 10.1093/jxb/erac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the β-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.
Collapse
Affiliation(s)
- Satoshi Oku
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Keiji Ueno
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Yukiko Sawazaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tomoo Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Yutaka Jitsuyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takashi Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shuichi Onodera
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Kaien Fujino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
44
|
Zhang D, Yang Z, Song X, Zhang F, Liu Y. TMT-based proteomic analysis of liquorice root in response to drought stress. BMC Genomics 2022; 23:524. [PMID: 35854220 PMCID: PMC9297632 DOI: 10.1186/s12864-022-08733-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought stress is a serious threat to land use efficiency and crop yields worldwide. Understanding the mechanisms that plants use to withstand drought stress will help breeders to develop drought-tolerant medicinal crops. Liquorice (Glycyrrhiza uralensis Fisch.) is an important medicinal crop in the legume family and is currently grown mostly in northwest China, it is highly tolerant to drought. Given this, it is considered an ideal crop to study plant stress tolerance and can be used to identify drought-resistant proteins. Therefore, to understand the effects of drought stress on protein levels of liquorice, we undertook a comparative proteomic analysis of liquorice seedlings grown for 10 days in soil with different relative water content (SRWC of 80%, 65%, 50% and 35%, respectively). We used an integrated approach of Tandem Mass Tag labeling in conjunction with LC-MS/MS. RESULTS A total of 7409 proteins were identified in this study, of which 7305 total proteins could be quantified. There were 837 differentially expressed proteins (DEPs) identified after different drought stresses. Compared with CK, 123 DEPs (80 up-regulated and 43 down-regulated) were found in LS; 353 DEPs (254 up-regulated and 99 down-regulated) in MS; and 564 DEPs (312 up-regulated and 252 down-regulated) in SS.The number of differentially expressed proteins increased with increasing water stress, and the number of up-regulated proteins was higher than that of down-regulated proteins in the different drought stress treatments compared with the CK. Used systematic bioinformatics analysis of these data to identify informative proteins we showed that osmolytes such as cottonseed sugars and proline accumulated under light drought stress and improved resistance. Under moderate and severe drought stress, oxidation of unsaturated fatty acids and accumulation of glucose and galactose increased in response to drought stress. Under moderate and severe drought stress synthesis of the terpene precursors, pentacene 2,3-epoxide and β-coumarin, was inhibited and accumulation of triterpenoids (glycyrrhetinic acid) was also affected. CONCLUSIONS These data provide a baseline reference for further study of the downstream liquorice proteome in response to drought stress. Our data show that liquorice roots exhibit specific response mechanisms to different drought stresses.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China. .,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yan Liu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
45
|
Liu Y, Cao D, Ma L, Jin X. Upregulation of protein N-glycosylation plays crucial roles in the response of Camellia sinensis leaves to fluoride. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:138-150. [PMID: 35597102 DOI: 10.1016/j.plaphy.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The tea plant (Camellia sinensis) is one of the three major beverage crops in the world with its leaves consumption as tea. However, it can hyperaccumulate fluoride with about 98% fluoride deposition in the leaves. Our previously studies found that cell wall proteins (CWPs) might play a central role in fluoride accumulation/detoxification in C. sinensis. CWP is known to be glycosylated, however the response of CWP N-glycosylation to fluoride remains unknown in C. sinensis. In this study, a comparative N-glycoproteomic analysis was performed through HILIC enrichment coupled with UPLC-MS/MS based on TMT-labeling approach in C. sinensis leaves. Totally, 237 N-glycoproteins containing 326 unique N-glycosites were identified. 73.4%, 18.6%, 6.3% and 1.7% of these proteins possess 1, 2, 3, and ≥4 modification site, respectively. 93.2% of these proteins were predicted to be localized in the secretory pathway and 78.9% of them were targeted to the cell wall and the plasma membrane. 133 differentially accumulated N-glycosites (DNGSs) on 100 N-glycoproteins (DNGPs) were detected and 85.0% of them exhibited upregulated expression after fluoride treatment. 78.0% DNGPs were extracellular DNGPs, which belonged to CWPs, and 53.0% of them were grouped into protein acting on cell wall polysaccharides, proteases and oxido-reductases, whereas the majority of the remaining DNGPs were mainly related to N-glycoprotein biosynthesis, trafficking and quality control. Our study shed new light on the N-glycoproteome study, and revealed that increased N-glycosylation abundance of CWPs might contribute to fluoride accumulation/detoxification in C. sinensis leave.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Dan Cao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Linlong Ma
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiaofang Jin
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
46
|
Physiological and omics analysis of maize inbred lines during late grain development. Genes Genomics 2022; 44:993-1006. [PMID: 35771389 DOI: 10.1007/s13258-022-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND There were significant differences in the change of moisture content and grain composition at the late stage of grain development among different maize varieties, but the regulation mechanism is not clear. OBJECTIVE To explore the key genes causing the variation in physiological traits of two typical maize inbred lines in late grain development. METHODS The grains at different development stages were selected as materials to determine the content of water, sucrose, starch and ABA. Transcriptomic and proteomic analysis of the materials were performed to screen relevant genes. RESULTS The grain dehydration rate and the content of sucrose, starch and ABA were showed significant differences between two varieties in the late stage of grain development. The enrichment analysis of common differentially expressed genes (proteins) showed that most of the genes (proteins) were enriched in the extracellular region. The downregulated genes were mainly concentrated in carbohydrate metabolism and lipid metabolism, while the upregulated genes were mainly in response to stress. Furthermore, this study also identified many key candidate genes (dehydrin genes, pathogenesis-related genes, sucrose synthase and secondary metabolites related genes) related to late grain development of maize. CONCLUSIONS The suggested genes related to late grain development of maize can be candidates for further functional study.
Collapse
|
47
|
Yavari N, Gazestani VH, Wu BS, MacPherson S, Kushalappa A, Lefsrud MG. Comparative proteomics analysis of Arabidopsis thaliana response to light-emitting diode of narrow wavelength 450 nm, 595 nm, and 650 nm. J Proteomics 2022; 265:104635. [PMID: 35659537 DOI: 10.1016/j.jprot.2022.104635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Incident light is a central modulator of plant growth and development. However, there are still open questions surrounding wavelength-specific plant proteomic responses. Here we applied tandem mass tag based quantitative proteomics technology to acquire an in-depth view of proteome changes in Arabidopsis thaliana response to narrow wavelength blue (B; 450 nm), amber (A; 595 nm), or red (R; 650 nm) light treatments. A total of 16,707 proteins were identified with 9120 proteins quantified across all three light treatments in three biological replicates. This enabled examination of changes in the abundance for proteins with low abundance and important regulatory roles including transcription factors and hormone signaling. Importantly, 18% (1631 proteins) of the A. thaliana proteome is differentially abundant in response to narrow wavelength lights, and changes in proteome correlate well with different morphologies exhibited by plants. To showcase the usefulness of this resource, data were placed in the context of more than thirty published datasets, providing orthogonal validation and further insights into light-specific biological pathways, including Systemic Acquired Resistance and Shade Avoidance Syndrome. This high-resolution resource for A. thaliana provides baseline data and a tool for defining molecular mechanisms that control fundamental aspects of plant response to changing light conditions, with implications in plant development and adaptation. SIGNIFICANCE: Understanding of molecular mechanisms involved in wavelength-specific response of plant is question of widespread interest both to basic researchers and to those interested in applying such knowledge to the engineering of novel proteins, as well as targeted lighting systems. Here we sought to generate a high-resolution labeling proteomic profile of plant leaves, based on exposure to specific narrow-wavelength lights. Although changes in plant physiology in response to light spectral composition is well documented, there is limited knowledge on the roles of specific light wavelengths and their impact. Most previous studies have utilized relatively broad wavebands in their experiments. These multi-wavelengths lights function in a complex signaling network, which provide major challenges in inference of wavelength-specific molecular processes that underly the plant response. Besides, most studies have compared the effect of blue and red wavelengths comparing with FL, as control. As FL light consists the mixed spectra composition of both red and blue as well as numerous other wavelengths, comparing undeniably results in inconsistent and overlapping responses that will hamper effects to elucidate the plant response to specific wavelengths [1, 2]. Monitoring plant proteome response to specific wavelengths and further compare the changes to one another, rather than comparing plants proteome to FL, is thus necessary to gain the clear insights to specific underlying biological pathways and their effect consequences in plant response. Here, we employed narrow wavelength LED lights in our design to eliminate the potential overlap in molecular responses by ensuring non-overlapping wavelengths in the light treatments. We further applied TMT-labeling technology to gain a high-resolution view on the associates of proteome changes. Our proteomics data provides an in-depth coverage suitable for system-wide analyses, providing deep insights on plant physiological processes particularly because of the tremendous increase in the amount of identified proteins which outreach the other biological data.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada; Department of Electro-Chemistry Engineering, Dexcom, Inc., 6340 Sequence Dr., San Diego, CA, USA.
| | - Vahid H Gazestani
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA, USA
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Ajjamada Kushalappa
- Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Mark G Lefsrud
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| |
Collapse
|
48
|
Abstract
Sugar, an osmoregulatory substance used by plants to adapt to abiotic stresses such as drought and salinity, is one of the most important indexes of fruit quality. In this study, 0–150 mM saline–alkali solutions (NaCl:NaHCO3 = 3:1) were used to irrigate the roots of 10-year-old “Junzao” fruit trees during the growth period to explore the regulation mechanism of different concentrations of saline–alkali stress on sugar and reactive oxygen metabolism in jujube fruit at maturity. The results showed that under low stress (0~90 mM), the contents of sucrose, glucose, and fructose in the jujube fruit and the activities of sucrose phosphate synthase (SPS), sucrose synthase decomposition direction (SS-I), and sucrose synthase synthesis direction (SS-II) increased with increases in stress concentration, results that were consistent with the relative expression trends of the SPS and SS genes; however, the results were reversed under high concentrations (120 and 150 mM). The soluble acid invertase (S-AI) activity decreased with increases in stress concentration under low stress, and the results were reversed with high stress, which was consistent with the relative expression trends of the ZjcINV3, ZjnINV1, and ZjnINV3. Research regarding the response of antioxidant enzymes in fruits under saline–alkali stress showed that only the differences in peroxidase (POD) activity under saline–alkali stress were consistent with sugar accumulation; the proline (PRO), catalase (CAT) decreased and the malondialdehyde (MDA) superoxide dismutase (SOD) increased with increases in saline–alkali stress. These results indicate that the sugar metabolism and antioxidase jointly promote and regulate sugar accumulation in jujube fruits in a low saline–alkali environment.
Collapse
|
49
|
Changes of Fruit Abscission and Carbohydrates, Hormones, Related Gene Expression in the Fruit and Pedicel of Macadamia under Starvation Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order toexplore the regulation mechanism of macadamia fruitlet abscission induced by ‘starvation stress’, a treatment of girdling and defoliation was applied to the bearing shoots of macadamia cultivar ‘H2’ at the early stage of fruit development, simulating the starvation stress induced by interrupting carbon supply to fruit. The levels of carbohydrates, hormones, and related gene expression in the different tissues (husk, seed, and pedicel) were investigated after treatment. The results showed that a severe fruit drop occurred 3~5 d after starvation stress treatment. The contents of glucose, fructose, and sucrose in both the husk and the seed were significantly decreased, as well as the fructose and sucrose in the pedicel; this large reduction occurred prior to the massive fruit shedding. Starvation stress significantly reduced the GA3 and ZR contents and enhanced the ABA level in the pedicel and the seed, whereas it did not obviously change these hormones in the husk. After treatment, IAA content decreased considerably in both the husk and seed but increased remarkably in the pedicel. In the husk, the expression of genes related to sugar metabolism and signaling (NI, HXK2, TPS, and TPP), as well as the biosynthesis of ethylene (ACO2 and ACS) and ABA (NCED1.1 and AAO3), was significantly upregulated by starvation stress, as well as the stress-responsive transcription factors (AP2/ERF, HD-ZIP12, bZIP124, and ABI5), whereas the BG gene associated with ABA accumulation and the early auxin-responsive genes (Aux/IAA22 and GH3.9) were considerably suppressed during the period of massive fruit abscission. Similar changes in the expression of all genes occurred in the pedicel, except for NI and AP2/ERF, the expression of which was significantly upregulated during the early stage of fruit shedding and downregulated during the period of severe fruit drop. These results suggest that complicated crosstalk among the sugar, IAA, and ABA signaling may be related to macadamia fruitlet abscission induced by carbohydrate starvation.
Collapse
|
50
|
Wang X, Liu H, Zhang D, Zou D, Wang J, Zheng H, Jia Y, Qu Z, Sun B, Zhao H. Photosynthetic Carbon Fixation and Sucrose Metabolism Supplemented by Weighted Gene Co-expression Network Analysis in Response to Water Stress in Rice With Overlapping Growth Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:864605. [PMID: 35528941 PMCID: PMC9069116 DOI: 10.3389/fpls.2022.864605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/26/2023]
Abstract
Drought stress at jointing and booting phases of plant development directly affects plant growth and productivity in rice. Limited by natural factors, the jointing and booting stages in rice varieties are known to overlap in high-latitude areas that are more sensitive to water deficit. However, the regulation of photosynthetic carbon fixation and sucrose metabolism in rice leaves under different degrees of drought stress remains unclear. In this study, rice plants were subjected to three degrees of drought stress (-10, -25, -and 40 kPa) for 15 days during the jointing-booting stage, we investigated photosynthetic carbon sequestration and sucrose metabolism pathways in rice leaves and analyzed key genes and regulatory networks using transcriptome sequencing in 2016. And we investigated the effects of drought stress on the growth periods of rice with overlapping growth periods in 2016 and 2017. The results showed that short-term drought stress promoted photosynthetic carbon fixation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity significantly decreased, resulting in a significant decrease in photosynthetic rate. Drought stress increased the maximum activity of fructose-1,6-bisphosphate aldolase (FBA). FBA maintains the necessary photosynthetic rate during drought stress and provides a material base after the resumption of irrigation in the form of controlling the content of its reaction product triose phosphate. Drought stress significantly affected the activities of sucrose synthase (SuSase) and sucrose phosphate synthase (SPS). Vacuoles invertase (VIN) activity increased significantly, and the more severe the drought, the higher the VIN activity. Severe drought stress at the jointing-booting stage severely restricted the growth process of rice with overlapping growth stages and significantly delayed heading and anthesis stages. Transcriptome analysis showed that the number of differentially expressed genes was highest at 6-9 days after drought stress. Two invertase and four β-amylase genes with time-specific expression were involved in sucrose-starch metabolism in rice under drought stress. Combined with weighted gene co-expression network analysis, VIN and β-amylase genes up-regulated throughout drought stress were regulated by OsbZIP04 and OsWRKY62 transcription factors under drought stress. This study showed that any water deficit at the jointing-booting stage would have a serious effect on sucrose metabolism in leaves of rice with overlapping growth stages.
Collapse
|