1
|
Cheng Z, Liu X, Zhao B, Liu X, Yang X, Zhang X, Feng X. A portable europium complex-loaded fluorescent test paper combined with smartphone analysis for the on-site and visual detection of mancozeb in food samples. Food Chem 2024; 458:140311. [PMID: 38968718 DOI: 10.1016/j.foodchem.2024.140311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The on-site detection of mancozeb in food samples holds immense value for food safety. A red-fluorescent europium complex (Eu-PYDC-Phen) has been prepared and employed as a fluorescence probe for mancozeb detection. The optimized probe suspension exhibits excellent detection performances, including a wide linear range (0-0.24 mM), low detection limit (65 nM), rapid response (2 mins) and high selectivity. Moreover, a portable detection platform was carefully designed, integrating the Eu-PYDC-Phen-based fluorescent test strips with smartphone color recognition software. This innovative platform enables visual and on-site detection of mancozeb in tomato, apple, and lettuce, achieving satisfactory recovery rates (90.34 to 106.50%). Furthermore, the integration of machine learning techniques based on hierarchical clustering algorithm has the potential to further improve the prediction and decision-making efficiency in mancozeb detection. This work provides an economical, convenient, and reliable strategy for on-site detection of pesticide in agricultural products, thereby making a meaningful contribution to food safety.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xiaorui Yang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
2
|
Gao WJ, Tian MY, Ren XH, Zhang HR, He XW, Li WY, Zhang YK. Ultrabright silicon nanoparticles combined with o-phenylenediamine for ratiometric fluorescence and smartphone imaging dual-mode detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136233. [PMID: 39461290 DOI: 10.1016/j.jhazmat.2024.136233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Nitrite (NO2-) is widely present in the natural environment and human daily life. Excessive NO2- can cause harm to the environment and human health. Herein, silicon nanoparticles (SiNPs) with a fluorescence quantum yield of up to 70 % were synthesised using a one-pot hydrothermal method and combined with the common and inexpensive o-phenylenediamine (OPD) to achieve the detection of NO2-. Upon the addition of NO2-, the blue fluorescence of the SiNPs was quenched due to static quenching and Förster resonance energy transfer (FRET), while the yellow fluorescence of benzotriazole, the reaction product of OPD and NO2-, was enhanced, resulting in the fluorescence color change from blue to yellow. Based on these phenomena, a ratiometric fluorescence sensor integrated with smartphone imaging technology was developed. This sensor is notable for its portability, cost-effectiveness, and satisfactory detection limits (0.016 μM for ratiometric fluorescence and 1.64 μM for smartphone imaging). Importantly, it demonstrates high reliability and practicability in detecting NO2- in real water and food samples. This broadens the application of SiNPs in the sensing field and introduces new possibilities for NO2- detection in complex sample matrices.
Collapse
Affiliation(s)
- Wen-Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Yue Tian
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing-Hui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Rui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Pu Q, Wang C, Yin X, Ye N, Zhang L, Xiang Y. A ratiometric fluorescent dark box and smartphone integrated portable sensing platform based on hydrogen bonding induction for on-site determination of enrofloxacin. Food Chem 2024; 455:139876. [PMID: 38823143 DOI: 10.1016/j.foodchem.2024.139876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.
Collapse
Affiliation(s)
- Qi Pu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chumeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyue Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
5
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Sousa LR, Moreira NS, Guinati BGS, Coltro WKT, Cortón E, Figueredo F. Improved sensitivity in paper-based microfluidic analytical devices using a pH-responsive valve for nitrate analysis. Talanta 2024; 277:126361. [PMID: 38878509 DOI: 10.1016/j.talanta.2024.126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
This paper presents an innovative application of chitosan material to be used as pH-responsive valves for the precise control of lateral flow in microfluidic paper-based analytical devices (μPADs). The fabrication of μPADs involved wax printing, while pH-responsive valves were created using a solution of chitosan in acetic acid. The valve-forming solution was applied, and ready when dry; by exposure to acidic solutions, the valve opens. Remarkably, the valves exhibited excellent compatibility with alkaline, neutral, and acidic solutions with a pH higher than 4. The valve opening process had no impact on the flow rate and colorimetric analysis. The potential of chitosan valves used for flow control was demonstrated for μPADs employed for nitrate determination. Valves were used to increase the conversion time of nitrate to nitrite, which was further analyzed using the Griess reaction. The μPAD showed a linear response in the concentration range of 10-100 μmol L-1, with a detection limit of 5.4 μmol L-1. As a proof of concept, the assay was successfully applied to detect nitrate levels in water samples from artificial lakes of recreational parks. For analyses that require controlled kinetics and involve multiple sequential steps, the use of chitosan pH-responsive valves in μPADs is extremely valuable. This breakthrough holds great potential for the development of simple and high-impact microfluidic platforms that can cater to a wide range of analytical chemistry applications.
Collapse
Affiliation(s)
- Lucas R Sousa
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Eduardo Cortón
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
| | - Federico Figueredo
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina.
| |
Collapse
|
7
|
Zhang Y, Li J, Jiao S, Li Y, Zhou Y, Zhang X, Maryam B, Liu X. Microfluidic sensors for the detection of emerging contaminants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172734. [PMID: 38663621 DOI: 10.1016/j.scitotenv.2024.172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In recent years, numerous emerging contaminants have been identified in surface water, groundwater, and drinking water. Developing novel sensing methods for detecting diverse emerging pollutants in water is urgently needed, as even at low concentrations, these pollutants can pose a serious threat to human health and environmental safety. Traditional testing methods are based on laboratory equipment, which is highly sensitive but complex to operate, costly, and not suitable for on-site monitoring. Microfluidic sensors offer several benefits, including rapid evaluation, minimal sample usage, accurate liquid manipulation, compact size, automation, and in-situ detection capabilities. They provide promising and efficient analytical tools for high-performance sensing platforms in monitoring emerging contaminants in water. In this paper, recent research advances in microfluidic sensors for the detection of emerging contaminants in water are reviewed. Initially, a concise overview is provided about the various substrate materials, corresponding microfabrication techniques, different driving forces, and commonly used detection techniques for microfluidic devices. Subsequently, a comprehensive analysis is conducted on microfluidic detection methods for endocrine-disrupting chemicals, pharmaceuticals and personal care products, microplastics, and perfluorinated compounds. Finally, the prospects and future challenges of microfluidic sensors in this field are discussed.
Collapse
Affiliation(s)
- Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
8
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
9
|
Kasputis T, Hosmer KE, He Y, Chen J. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400003. [PMID: 38948318 PMCID: PMC11210746 DOI: 10.1002/ansa.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024]
Abstract
Detecting foodborne contamination is a critical challenge in ensuring food safety and preventing human suffering and economic losses. Contaminated food, comprising biological agents (e.g. bacteria, viruses and fungi) and chemicals (e.g. toxins, allergens, antibiotics and heavy metals), poses significant risks to public health. Microfluidic technology has emerged as a transformative solution, revolutionizing the detection of contaminants with precise and efficient methodologies. By manipulating minute volumes of fluid on miniaturized systems, microfluidics enables the creation of portable chips for biosensing applications. Advancements from early glass and silicon devices to modern polymers and cellulose-based chips have significantly enhanced microfluidic technology, offering adaptability, flexibility, cost-effectiveness and biocompatibility. Microfluidic systems integrate seamlessly with various biosensing reactions, facilitating nucleic acid amplification, target analyte recognition and accurate signal readouts. As research progresses, microfluidic technology is poised to play a pivotal role in addressing evolving challenges in the detection of foodborne contaminants. In this short review, we delve into various manufacturing materials for state-of-the-art microfluidic devices, including inorganics, elastomers, thermoplastics and paper. Additionally, we examine several applications where microfluidic technology offers unique advantages in the detection of food contaminants, including bacteria, viruses, fungi, allergens and more. This review underscores the significant advancement of microfluidic technology and its pivotal role in advancing the detection and mitigation of foodborne contaminants.
Collapse
Affiliation(s)
- Tom Kasputis
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | - Yawen He
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Juhong Chen
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
10
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
11
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
12
|
Chen JL, Njoku DI, Tang C, Gao Y, Chen J, Peng YK, Sun H, Mao G, Pan M, Tam NFY. Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications. SMALL METHODS 2024:e2400155. [PMID: 38781604 DOI: 10.1002/smtd.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Microfluidic Paper-based Analytical Devices (µPADs) have emerged as a new class of microfluidic systems, offering numerous advantages over traditional microfluidic chips. These advantages include simplicity, cost-effectiveness, stability, storability, disposability, and portability. As a result, various designs for different types of assays are developed and investigated. In recent years, µPADs are combined with conventional detection methods to enable rapid on-site detection, providing results comparable to expensive and sophisticated large-scale testing methods that require more time and skilled personnel. The application of µPAD techniques is extensive in environmental quality control/analysis, clinical diagnosis, and food safety testing, paving the way for on-site real-time diagnosis as a promising future development. This review focuses on the recent research advancements in the design, fabrication, material selection, and detection methods of µPADs. It provides a comprehensive understanding of their principles of operation, applications, and future development prospects.
Collapse
Affiliation(s)
- Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Demian Ifeanyi Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Cui Tang
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yaru Gao
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Jiayu Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yung-Kang Peng
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongyan Sun
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Nora Fung-Yee Tam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Farshchi F, Saadati A, Bahavarnia F, Hasanzadeh M, Shadjou N. Identification of acetaldehyde based on plasmonic patterns of a gold nanostructure conjugated with chromophore and H 2O 2: a new platform for the rapid and low-cost analysis of carcinogenic agents by colorimetric affordable test strip (CATS). RSC Adv 2024; 14:15755-15765. [PMID: 38752162 PMCID: PMC11094588 DOI: 10.1039/d4ra02814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Acetaldehyde, a prevalent carbonyl compound in fermented foods, poses challenges in various applications due to its reactivity. This study addresses the need for efficient acetaldehyde detection methods across biotechnological, environmental, pharmaceutical, and food sectors. Herein, we present a novel colorimetric/UV spectrophotometric approach utilizing gold nanoparticles (AuNPs), particularly gold nano-flowers (AuNFs), for sensitive acetaldehyde identification. The method exhibits a notable sensitivity, detecting acetaldehyde at concentrations as low as 0.1 μM. The mechanism involves the interaction of acetaldehyde molecules with AuNFs, leading to a significant change in the absorbance spectrum, which serves as the basis for detection. Moreover, its applicability extends to human biofluids, notably urine samples. Integration with a cost-effective one-drop microfluidic colorimetric device (OD-μPCD) enables the development of an affordable test strip (CATS). This semi-analytical device, employing a multichannel OD-μPCD, facilitates real-time analysis of acetaldehyde in human samples. Our findings demonstrate the pioneering utilization of AuNPs for selective and sensitive acetaldehyde detection, promising advancements in environmental and occupational safety standards, and laying a foundation for enhanced detection and monitoring of related volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No 4365-Manguinhos Rio de Janeiro 21040-900 Brazil
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
14
|
Zhao X, Lu Y, Li B, Kong M, Sun Y, Li H, Liu X, Lu G. Self-ratiometric fluorescent platform based on upconversion nanoparticles for on-site detection of chlorpyrifos. Food Chem 2024; 439:138100. [PMID: 38041885 DOI: 10.1016/j.foodchem.2023.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Monitoring organophosphorus pesticides is significant for food safety assessment. Herein, we developed upconversion nanoparticles (UCNPs)-based self-ratiometric fluorescent platform for the detection of chlorpyrifos. The UCNPs have the ability to confine the detection and reference functions in one nanoparticle. Specifically, the blue upconversion (UC) emission (448 nm) in the shell layer of UCNPs is quenched by the product of the acetylcholinesterase-mediated reaction, while the red UC emission (652 nm) from the core remains constant as a self-calibrated reference signal. Employing the inhibition property of chlorpyrifos, self-proportional fluorescence is employed to detect chlorpyrifos. As proof-of-concept, test strips are fabricated by loading the UCNPs onto filter paper. Combined with the smartphone and image-processing algorithm, chlorpyrifos quantitative testing is achieved with a detection limit of 14.4843 ng mL-1. This portable platform displays anti-interference capability and high stability in the complicated matrix, making it an effective candidate for on-site application.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Li
- Colorectal & Anal Surgery Department, General Surgery Center, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province 130021, People's Republic of China
| | - Minghui Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China.
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
15
|
Lee T, Park J, Oh SH, Cheong DY, Roh S, You JH, Hong Y, Lee G. Glucose Oxidase Activity Colorimetric Assay Using Redox-Sensitive Electrochromic Nanoparticle-Functionalized Paper Sensors. ACS OMEGA 2024; 9:15493-15501. [PMID: 38585131 PMCID: PMC10993408 DOI: 10.1021/acsomega.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Glucose oxidase (GOx) activity assays are vital for various applications, including glucose metabolism estimation and fungal testing. However, conventional methods involve time-consuming and complex procedures. In this study, we present a colorimetric platform for in situ GOx activity measurement utilizing redox-sensitive electrochromic nanoparticles based on polyaniline (PAni). The glucose-adsorbed colorimetric paper sensor, herein termed Glu@CPS, is created by immobilizing ferrocene and glucose onto paper substrates that have been functionalized with PAni nanoparticles. Glu@CPS not only demonstrated rapid detection (within 5 min) but also exhibited remarkable selectivity for GOx and a limit of detection as low as 1.25 μM. Moreover, Glu@CPS demonstrated consistent accuracy in the measurement of GOx activity, exhibiting no deviations even after being stored at ambient temperature for a duration of one month. To further corroborate the effectiveness of this method, we applied Glu@CPS in the detection of GOx activity in a moldy red wine. The results highlight the promising potential of Glu@CPS as a convenient and precise platform for GOx activity measurement in diverse applications including food quality control, environmental monitoring, and early detection of fungal contamination.
Collapse
Affiliation(s)
- Taeha Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jeongmin Park
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
| | - Seung Hyeon Oh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Da Yeon Cheong
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jae Hyun You
- Division
of Convergence Business, Korea University, Sejong 30019, South Korea
| | - Yoochan Hong
- Department
of Medical Device, Korea Institute of Machinery
and Materials (KIMM), Daegu 42994, South Korea
| | - Gyudo Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| |
Collapse
|
16
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
17
|
Wang L, Chen Y, Ji Y, Zheng S, Wang F, Li C. Cheap and portable paper chip with terrific oxidase-like activity and SERS enhancement performance for SERS-colorimetric bimodal detection of intracellular glutathione. Biosens Bioelectron 2024; 244:115817. [PMID: 37944354 DOI: 10.1016/j.bios.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Glutathione (GSH) acts a crucial role in the normal operation of manifold life activities and is closely bound up with many human diseases. Here, a SERS-colorimetric bimodal paper-based biosensor based on Mn-doped CDs/silver nanoparticles (Mn-CDs/AgNPs) has been fabricated for high-efficiency quantification of intracellular GSH. The Mn-CDs/AgNPs with fine oxidase-like characteristic and SERS enhancement ability has been assembled onto the Whatman filter paper (WFP) to cleverly fabricate paper chip (Mn-CDs/AgNPs@WFP) which can trigger the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue TMBox and simultaneously enhance the SERS signal of TMBox. However, the introduction of GSH inhibits the oxidation of TMB, leading to color fading of paper chip and diminishment of SERS signal. Considering this, the bimodal paper-based sensing platform can be exploited for SERS-colorimetric detection of GSH, manifesting excellent selectivity, reliable stability, and satisfactory precision. The detection limits of SERS and colorimetric detection modes are as low as 0.41 μM and 0.53 μM, respectively. Furthermore, this proposed bimodal biosensor has been successfully utilized for the determination of intracellular GSH and validated by commercial GSH assay kit, which provides a mighty and convenient tool for intracellular GSH detection and can boost future effort about exploitation of other multimode paper-based biosensors as well as promote their appliances in disease diagnosis.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yixin Chen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Shujun Zheng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
18
|
Sharipov M, Ju TJ, Azizov S, Turaev A, Lee YI. Novel molecularly imprinted nanogel modified microfluidic paper-based SERS substrate for simultaneous detection of bisphenol A and bisphenol S traces in plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132561. [PMID: 37729714 DOI: 10.1016/j.jhazmat.2023.132561] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Paper-based surface-enhanced Raman scattering (SERS) optical nanoprobes provide ultrasensitive analyte detection; however, they lack selectivity, making them difficult to use in real-world sample analysis without a pretreatment process. This work describes the design of a microfluidic paper-based SERS substrate based on molecularly imprinted nanogels decorated with silver nanoparticles to simultaneously detect bisphenol A (BPA) and bisphenol S (BPS) traces in plastic toys and receipts. The synthesized nanogels have two characteristics that boost SERS performance: molecularly imprinted cavities that allow for selective adsorption and a wrinkled surface that creates uniformly distributed hot spots. Simple paper-based sensor devices were built as 'drop and read' SERS substrates with a separate reservoir to detect a single target, while advanced SERS platforms were designed as a microfluidic chip with two reservoirs connected by a channel for simultaneous detection of BPA and BPS. The SERS platform with a single reservoir showed outstanding analytical performance for the detection of BPA and BPS, with low detection limits of 0.38 pM and 0.37 pM, respectively. The microfluidic paper-based sensor allowed simultaneous and selective detection of BPA and BPS with detection limits estimated at 0.68 nM and 0.47 nM, respectively. The developed sensors are successfully applied to detect BPA and BPS in plastic products and receipts. Finally, the results obtained with our method showed greater sensitivity than those of commercially available ELISA kits, and the acquired values within the ELISA detection range were in excellent agreement.
Collapse
Affiliation(s)
- Mirkomil Sharipov
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea; Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Tae Jun Ju
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Abbaskhan Turaev
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea; Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan.
| |
Collapse
|
19
|
Gong H, Chen S, Tang L, Chen F, Chen C, Cai C. Ultra-Sensitive Portable Visual Paper-Based Viral Molecularly Imprinted Sensor without Autofluorescence Interference. Anal Chem 2023; 95:17691-17698. [PMID: 37978911 DOI: 10.1021/acs.analchem.3c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Detection of the virus is the primary factor to discover and block the occurrence and development of the virus epidemic. Here, an ultrasensitive paper-based virus molecular imprinting sensor is developed to detect two viruses simultaneously in which the detection limit of the influenza virus (H5N1) is 16.0 aM (9.63 × 103 particles/mL) while that of the Hepatitis B Virus (HBV) is 129 fM (7.77 × 107 particles/mL). This paper-based sensor is low cost and is easy to cut, store, and carry. In addition, the visual semiquantitative detection of two viruses is achieved by using two aptamer-functionalized persistent luminescent nanoparticles as signal probes. These probes and the imprinted cavities on the paper-based material formed sandwich-type double recognition of the target viruses. This sensor has extremely high sensitivity to the H5N1 virus, which is of great value to solve the influenza epidemic with the most outbreaks in history, and also opens up a new way for the prevention and control of other virus epidemics. This cheap and portable visual sensor provides the possibility for self-service detection and can greatly reduce the pressure on medical staff and reduce the risk of virus infection caused by the concentration of people to be tested.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Siyu Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Li Tang
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Feng Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
20
|
Sudarsan S, Shetty P, Chinnappan R, Mani NK. Tuning Hydrophobicity of Paper Substrates for Effective Colorimetric detection of Glucose and Nucleic acids. Anal Bioanal Chem 2023; 415:6449-6460. [PMID: 37665340 PMCID: PMC10567893 DOI: 10.1007/s00216-023-04921-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
This study investigated the colorimetric response of standard glucose, serum glucose, and nucleic acid assays on various paper surfaces with different wettability, including hydrophilic, hydrophobic, and nearly superhydrophobic surfaces. Water contact angles (WCA) formed by water droplets on each surface were measured using ImageJ software. The hydrophilic surface showed no contact angle, while the hydrophobic and nearly superhydrophobic surfaces exhibited contact angles of 115.667° and 133.933°, respectively. The colorimetric sensitivity of the standard glucose assay was analyzed on these surfaces, revealing enhanced sensitivity on the nearly superhydrophobic surface due to the high molecular crowding effect owing to its non-wetting behavior and eventually confined reaction product at the sample loading zone. The hydrophobic nature of the surface restricts the spreading and diffusion of the reaction product, leading to a controlled and localized concentration of the assay product leading to moderate colorimetric intensity. On the other hand, the hydrophilic surface showed the least enhancement in colorimetric sensitivity; this is attributed to the high wettability of the hydrophilic surface causing the reaction product to spread extensively, resulting in a larger area of dispersion and consequently a lower colorimetric intensity. The measured limit of detection (LOD) for nucleic acid on nearly superhydrophobic surfaces was found to be 16.15 ng/µL, which was almost four-fold lower than on hydrophilic surfaces (60.08 ng/µL). Additionally, the LODs of standard glucose and clinical serum samples were two-fold lower on nearly superhydrophobic surfaces compared to hydrophilic surfaces. Our findings clearly highlight the promising potential of utilizing superhydrophobic surfaces to significantly enhance colorimetric sensitivity in paper-based diagnostic applications. This innovative approach holds promise for advancing point-of-care diagnostics and improving disease detection in resource-limited settings.
Collapse
Affiliation(s)
- Sujesh Sudarsan
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prashil Shetty
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
21
|
Xiao F, Li W, Wang Z, Xu Q, Song Y, Huang J, Bai X, Xu H. Smartphone-assisted biosensor based on broom-like bacteria-specific magnetic enrichment platform for colorimetric detection of Listeria monocytogenes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132250. [PMID: 37567141 DOI: 10.1016/j.jhazmat.2023.132250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Pathogenic bacteria contamination poses a major threat to human health. The detection of low-abundance bacteria in complex samples has always been a knotty problem, and high-sensitivity bacterial detection remains challenging. In this work, a novel magnetic platform with high enrichment efficiency for L. monocytogenes was developed. The magnetic platform was designed by branched polyglutamic acid-mediated indirect coupling of cefepime on magnetic nanoparticles (Cefe-PGA-MNPs), and the specific enrichment of low-abundance L. monocytogenes in real samples was achieved by an external magnet, with a capture efficiency over 90%. A controllable and highly active platinum-palladium nanozyme was synthesized and further introduced in the magnetic nanoplatform for the construction of enzymatic colorimetric biosensor. The total detection time for L. monocytogenes was within 100 min. The colorimetric signals generated by labelled nanozyme were corresponding to different concentrations of L. monocytogenes, with a limit of detection (LOD) of 3.1 × 101 CFU/mL, and high reliability and accuracy (with a recovery rate ranging from 96.5% to 116.4%) in the test of real samples. The concept of the developed method is applicable to various fields of biosensing that rely on magnetic separation platforms.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Zhixing Wang
- Zhejiang Rural Commercial Digital Technology Co., Ltd., Hangzhou 310016, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xuekun Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
22
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Li Y, Mu Z, Yuan Y, Zhou J, Bai L, Qing M. An enzymatic activity regulation-based clusterzyme sensor array for high-throughput identification of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131501. [PMID: 37119573 DOI: 10.1016/j.jhazmat.2023.131501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
The accurate identification and sensitive quantification of heavy metal ions are of great significance, considering that pose a serious threat to environment and human health. Most array-based sensing platforms, to date, utilize nanozymes as sensing elements, but few studies have explored the application of the peroxidase-like activity of clusterzymes in identification of multiple analytes. Herein, for the first time, we developed a clusterzyme sensor array utilizing gold nanoclusters (AuNCs) as sensing elements for five heavy metal ions identification including Hg2+, Pb2+, Cu2+, Cd2+ and Co2+. The heavy metal ions can differentially regulate the peroxidase-like activity of AuNCs, and that can be converted into colorimetric signals with 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate. Subsequently, the generated composite responses can be interpreted by combining pattern recognition algorithms. The developed clusterzyme sensor array can identify five heavy metal ions at concentrations as low as 0.5 μM and their multi-component mixtures. Especially, we demonstrated the successful identification of multiple heavy metal ions in tap water and traditional Chinese medicine, with an accuracy of 100% in blind test. This study provided a simple and effective method for identification and quantification of heavy metal ions, rendering a promising technique for environmental monitoring and drug safety assurance.
Collapse
Affiliation(s)
- Yueyuan Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Min Qing
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
24
|
Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv 2023; 13:19638-19650. [PMID: 37397283 PMCID: PMC10308203 DOI: 10.1039/d3ra03073c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
To date, a range of nanozymes has been reported for their enzyme-mimicking catalytic activity such as solution-based sensors. However, in remote areas, the need for portable, cost-effective, and one-pot prepared sensors is obvious. In this study, we report the development of a highly stable and sensitive gold tablet-based sensor for cysteamine quantification in human serum samples. The sensor is produced in two steps: synthesis of a pullulan-stabilized gold nanoparticle solution (pAuNP-Solution) using a pullulan polymer as a reducing, stabilizing, and encapsulating agent and then, casting the pAuNP-Solution into a pullulan gold nanoparticle tablet (pAuNP-Tablet) by a pipetting method. The tablet was characterized by UV-vis, DLS, FTIR, TEM, and AFM analyses. The pAuNP-tablet exhibited a high peroxidase-mimetic activity via a TMB-H2O2 system. The presence of cysteamine in the system introduced two types of inhibition which were dependent on the cysteamine concentration. By determining Michaelis-Menten's kinetic parameters, we gained mechanistic insights into the catalytic inhibition process. Based on the catalytic inhibition capability of cysteamine, the limit of detection (LoD) was calculated to be 69.04 and 82.9 μM in buffer and human serum samples, respectively. Finally, real human serum samples were tested, demonstrating the applicability of the pAuNP-Tablet for real-world applications. The % R values in human serum samples were in the range of 91-105% with % RSD less than 2% for all replicas. The stability tests over 16 months revealed the ultra-stable properties of the pAuNP-Tablet. Overall, with a simple fabrication method and a novel employed technique, this study contributes to the advancement of tablet-based sensors and helps in cysteamine detection in clinical settings.
Collapse
Affiliation(s)
- Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| |
Collapse
|
25
|
Mitrogiannopoulou AM, Tselepi V, Ellinas K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. MICROMACHINES 2023; 14:986. [PMID: 37241610 PMCID: PMC10223399 DOI: 10.3390/mi14050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Food quality and safety are important to protect consumers from foodborne illnesses. Currently, laboratory scale analysis, which takes several days to complete, is the main way to ensure the absence of pathogenic microorganisms in a wide range of food products. However, new methods such as PCR, ELISA, or even accelerated plate culture tests have been proposed for the rapid detection of pathogens. Lab-on-chip (LOC) devices and microfluidics are miniaturized devices that can enable faster, easier, and at the point of interest analysis. Nowadays, methods such as PCR are often coupled with microfluidics, providing new LOC devices that can replace or complement the standard methods by offering highly sensitive, fast, and on-site analysis. This review's objective is to present an overview of recent advances in LOCs used for the identification of the most prevalent foodborne and waterborne pathogens that put consumer health at risk. In particular, the paper is organized as follows: first, we discuss the main fabrication methods of microfluidics as well as the most popular materials used, and then we present recent literature examples for LOCs used for the detection of pathogenic bacteria found in water and other food samples. In the final section, we summarize our findings and also provide our point of view on the challenges and opportunities in the field.
Collapse
Affiliation(s)
| | | | - Kosmas Ellinas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, GR 81400 Myrina, Greece
| |
Collapse
|
26
|
Rodríguez CF, Andrade-Pérez V, Vargas MC, Mantilla-Orozco A, Osma JF, Reyes LH, Cruz JC. Breaking the clean room barrier: exploring low-cost alternatives for microfluidic devices. Front Bioeng Biotechnol 2023; 11:1176557. [PMID: 37180035 PMCID: PMC10172592 DOI: 10.3389/fbioe.2023.1176557] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Microfluidics is an interdisciplinary field that encompasses both science and engineering, which aims to design and fabricate devices capable of manipulating extremely low volumes of fluids on a microscale level. The central objective of microfluidics is to provide high precision and accuracy while using minimal reagents and equipment. The benefits of this approach include greater control over experimental conditions, faster analysis, and improved experimental reproducibility. Microfluidic devices, also known as labs-on-a-chip (LOCs), have emerged as potential instruments for optimizing operations and decreasing costs in various of industries, including pharmaceutical, medical, food, and cosmetics. However, the high price of conventional prototypes for LOCs devices, generated in clean room facilities, has increased the demand for inexpensive alternatives. Polymers, paper, and hydrogels are some of the materials that can be utilized to create the inexpensive microfluidic devices covered in this article. In addition, we highlighted different manufacturing techniques, such as soft lithography, laser plotting, and 3D printing, that are suitable for creating LOCs. The selection of materials and fabrication techniques will depend on the specific requirements and applications of each individual LOC. This article aims to provide a comprehensive overview of the numerous alternatives for the development of low-cost LOCs to service industries such as pharmaceuticals, chemicals, food, and biomedicine.
Collapse
Affiliation(s)
| | | | - María Camila Vargas
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
27
|
Ma S, Zhao W, Zhang Q, Zhang K, Liang C, Wang D, Liu X, Zhan X. A portable microfluidic electrochemical sensing platform for rapid detection of hazardous metal Pb 2+ based on thermocapillary convection using 3D Ag-rGO-f-Ni(OH) 2/NF as a signal amplifying element. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130923. [PMID: 36738616 DOI: 10.1016/j.jhazmat.2023.130923] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution is causing a great threat to ecological environment and public health, which needs an efficient strategy for monitoring. A portable microfluidic electrochemical sensing system was developed for the determination of heavy metal ions. Herein, the detection of Pb2+ was chosen as a model, and a microfluidic electrochemical sensing chip relying on a smartphone-based electrochemical workstation was proposed for rapid detection Pb2+ with the assistance of thermocapillary convection result from the formed temperature gradient. The 3D Ag-rGO-f-Ni(OH)2/NF composites, prepared by one-step hydrothermal method without any Ni precursor salt, were used to further amplify electrochemical signals under the synergistic effect of thermocapillary convection. The thermocapillary convection could accelerate the preconcentration process and shorten the detection time (save 300 s of preconcentration time). The fabricated system exhibited the exceptional competence for monitoring of Pb2+ range from 0.01 μg/L to 2100 μg/L with a low detection limit (LOD) of 0.00464 μg/L. Furthermore, this portable system has been successfully demonstrated for detecting Pb2+ (0.01 μg/L to 2100 μg/L) in river water (LOD = 0.00498 μg/L), fish (LOD = 0.00566 μg/L) and human serum samples (LOD = 0.00836 μg/L), and the results were consistent with inductively coupled plasma-mass spectrometry (ICP-MS). The proposed novel sensing platform provides a cost-effectiveness, rapidly responding and ease-to-use pathway for analysis of heavy metal ions in real samples and shows great potential in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China.
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Chong Liang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Dingkai Wang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
28
|
Chen F, Hu Q, Li H, Xie Y, Xiu L, Zhang Y, Guo X, Yin K. Multiplex Detection of Infectious Diseases on Microfluidic Platforms. BIOSENSORS 2023; 13:bios13030410. [PMID: 36979622 PMCID: PMC10046538 DOI: 10.3390/bios13030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Infectious diseases contribute significantly to the global disease burden. Sensitive and accurate screening methods are some of the most effective means of identifying sources of infection and controlling infectivity. Conventional detecting strategies such as quantitative polymerase chain reaction (qPCR), DNA sequencing, and mass spectrometry typically require bulky equipment and well-trained personnel. Therefore, mass screening of a large population using conventional strategies during pandemic periods often requires additional manpower, resources, and time, which cannot be guaranteed in resource-limited settings. Recently, emerging microfluidic technologies have shown the potential to replace conventional methods in performing point-of-care detection because they are automated, miniaturized, and integrated. By exploiting the spatial separation of detection sites, microfluidic platforms can enable the multiplex detection of infectious diseases to reduce the possibility of misdiagnosis and incomplete diagnosis of infectious diseases with similar symptoms. This review presents the recent advances in microfluidic platforms used for multiplex detection of infectious diseases, including microfluidic immunosensors and microfluidic nucleic acid sensors. As representative microfluidic platforms, lateral flow immunoassay (LFIA) platforms, polymer-based chips, paper-based devices, and droplet-based devices will be discussed in detail. In addition, the current challenges, commercialization, and prospects are proposed to promote the application of microfluidic platforms in infectious disease detection.
Collapse
Affiliation(s)
- Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yuqian Zhang
- Department of Surgery, Division of Surgery Research, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| |
Collapse
|
29
|
Lee AS, Kim SM, Kim KR, Park C, Lee DG, Heo HR, Cha HJ, Kim CS. A colorimetric lateral flow immunoassay based on oriented antibody immobilization for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133245. [PMID: 36589904 PMCID: PMC9791791 DOI: 10.1016/j.snb.2022.133245] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The high human-to-human transmission and rapid evolution of SARS-CoV-2 have resulted in a worldwide pandemic. To contain SARS-CoV-2, it is essential to efficiently control the transmission of the virus through the early diagnosis of infected individuals, including asymptomatic people. Therefore, a rapid and accurate assay is vital for the early diagnosis of SARS-CoV-2 in suspected individuals. In this study, we developed a colorimetric lateral flow immunoassay (LFIA) in which a CBP31-BC linker was used to immobilize antibodies on a cellulose membrane in an oriented manner. The developed LFIA enabled sensitive detection of cultured SARS-CoV-2 in 15 min with a detection limit of 5 × 104 copies/mL. The clinical performance of the LFIA for detecting SARS-CoV-2 was evaluated using 19 clinical samples validated by reverse transcription-polymerase chain reaction (RT-PCR). The LFIA detected all the positive and negative samples accurately, corresponding to 100% accuracy. Importantly, patient samples with low viral loads were accurately identified. Thus, the proposed method can provide a useful platform for rapid and accurate point-of-care testing of SARS-CoV-2 in infected individuals to efficiently control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Ryoung Heo
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
30
|
Han J, Liu H, Qi J, Xiang J, Fu L, Sun X, Wang L, Wang X, Li B, Chen L. A Simple and Effective Visual Fluorescent Sensing Paper-Based Chip for the Ultrasensitive Detection of Mercury Ions in Environmental Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:3094. [PMID: 36991805 PMCID: PMC10058424 DOI: 10.3390/s23063094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Traces of mercury ions in environmental water can harm humans and animals. Paper-based visual detection methods have been widely developed for the rapid detection of mercury ions; however, existing methods are not sensitive enough to be used in real environments. Here, we developed a novel, simple and effective visual fluorescent sensing paper-based chip for the ultrasensitive detection of mercury ions in environmental water. CdTe-quantum-dots-modified silica nanospheres were firmly absorbed by and anchored to the fiber interspaces on the paper's surface to effectively avoid the unevenness caused by liquid evaporation. The fluorescence of quantum dots emitted at 525 nm can be selectively and efficiently quenched with mercury ions, and the ultrasensitive visual fluorescence sensing results attained using this principle can be captured using a smartphone camera. This method has a detection limit of 2.83 µg/L and a fast response time (90 s). We successfully achieved the trace spiking detection of seawater (from three regions), lake water, river water and tap water with recoveries in the range of 96.8-105.4% using this method. This method is effective, low-cost, user-friendly and has good prospects for commercial application. Additionally, the work is expected to be utilized in the automated big data collection of large numbers of environmental samples.
Collapse
Affiliation(s)
- Jinglong Han
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Huajun Liu
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| | - Jiawen Xiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Liyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| |
Collapse
|
31
|
Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Mikrochim Acta 2023; 190:109. [PMID: 36867213 DOI: 10.1007/s00604-023-05693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).
Collapse
|
32
|
Paper-based dots and smartphone for detecting counterfeit country eggs. Food Chem 2023; 403:134484. [DOI: 10.1016/j.foodchem.2022.134484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
|
33
|
Li L, Yang L, Lin D, Xu S, Mei C, Yu S, Jiang C. Hydrogen-bond induced enhanced emission ratiometric fluorescent handy needle for visualization assay of amoxicillin by smartphone sensing platform. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130403. [PMID: 36403445 DOI: 10.1016/j.jhazmat.2022.130403] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Amoxicillin (AMO) is one of the most commonly used antibiotics, and its abuse in animal husbandry or clinical therapy can pose unpredictable hazards to humans. Therefore, it is crucial to develop a real-time and rapid method to accurately determine AMO content. Here, we designed a fluorescent nanoprobe for qualitative and quantitative AMO determination by using as-synthesized green safe materials of nontoxic red carbon dots (RCDs) and blue carbon dots (BCDs). In the presence of AMO, a reaction promoting hydrogen bonding occurred immediately, resulting in an instant increase in the intensity of the blue fluorescence of BCDs, accompanied by a marked color change from red to blue. For practical application, we designed a nontoxic sensing fluorescent handy needle to directly and quantitatively detect AMO in real samples. This portable and easy-to-use device was demonstrated on a smartphone platform based on 3D printing technology, which offers the advantages of simple production, excellent visualization, fast response, and instant quantitative detection. The device requires an extremely short detection time and has a sensitive detection limit of 2.39 nM. The method presented here enables real-time assessment for food safety, as well as on-site detection under field conditions to track various trace substances for timely health checks.
Collapse
Affiliation(s)
- Lingfei Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chunsheng Mei
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
34
|
Tong X, Cai G, Xie L, Wang T, Zhu Y, Peng Y, Tong C, Shi S, Guo Y. Threaded 3D microfluidic paper analytical device-based ratiometric fluorescent sensor for background-free and visual detection of organophosphorus pesticides. Biosens Bioelectron 2023; 222:114981. [PMID: 36473422 DOI: 10.1016/j.bios.2022.114981] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
With the increasing concerns of food safety and environmental protection, it is desirable to develop reliable, effective, and portable sensors for detection of organophosphorus pesticides (OPs). Here, a cascade reaction system integrated with threaded 3D microfluidic paper analytical device (3D μPAD) was firstly developed for background-free and visual detection of OPs in agricultural samples. Butyrylcholinesterase (BChE) hydrolyzed acetylcholine into thiocholine (TCh), which reduced MnO2 nanosheets into Mn2+. With addition of OPs, BChE activity was irreversibly inhibited, and the generation of TCh and the reduction of MnO2 nanosheets were prevented. Then the remaining MnO2 nanosheets oxidized o-phenylenediamine into 2,3-diaminophenazine with yellow-emission fluorescence, which quenched the fluorescence intensity of red-emission carbon dots (RCDs) via inner-filter effect. Based on above mechanism, a ratiometric fluorescent system was established for OPs detection. Threaded 3D μPAD consisted of 4 layers, which allowed to load and/or add reagents to trigger the cascade reaction system for OPs detection. The fluorescent images presented distinguishable color variations from red to yellow with dichlorvos concentrations ranging from 2.5 to 120 μg L-1, and the limit of detection was 1.0 μg L-1. In the practical samples testing, threaded 3D μPAD can eliminate background influence on fluorescent signal for OPs detection. Threaded 3D μPAD integrated with ratiometric sensing platform has merits of accuracy response, facile operation, and background-free detection, which supplies a new alternative approach for on-site pesticide detection.
Collapse
Affiliation(s)
- Xia Tong
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Tongtao Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Yongfeng Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Yuqing Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuyun Shi
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
35
|
3D Printed Microfluidic Chemiluminescence PoC Device with Self-Powering and Integrated Incubating System: Validation via ALP Detection on Disposable µPADs. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
36
|
Chen L, Ghiasvand A, Paull B. Applications of thread-based microfluidics: Approaches and options for detection. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
37
|
Xiong X, Guo C, Yan G, Han B, Wu Z, Chen Y, Xu S, Shao P, Song H, Xu X, Han J. Simultaneous Cross-type Detection of Water Quality Indexes via a Smartphone-App Integrated Microfluidic Paper-Based Platform. ACS OMEGA 2022; 7:44338-44345. [PMID: 36506192 PMCID: PMC9730490 DOI: 10.1021/acsomega.2c05938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Water quality guarantee in remote areas necessitates the development of portable, sensitive, fast, cost-effective, and easy-to-use water quality detection methods. The current work reports on a microfluidic paper-based analytical device (μPAD) integrated with a smartphone app for the simultaneous detection of cross-type water quality parameters including pH, Cu(II), Ni(II), Fe(III), and nitrite. The shapes, baking time, amount, and ratios of reaction reagent mixtures of wax μPAD were optimized to improve the color uniformity and intensity effectively. An easy-to-use smartphone app was established for recording, analyzing, and directly reading the colorimetric signals and target concentrations on μPAD. The results showed that under the optimum conditions, the current analytical platform has reached the detection limits of 0.4, 1.9, 2.9, and 1.1 ppm for nitrite, Cu(II), Ni(II), and Fe(III), respectively, and the liner ranges are 2.3-90 ppm (nitrite), 3.8-400 ppm (Cu(II)), 2.9-1000 ppm (Ni(II)), 2.8-500 ppm (Fe(III)), and 5-9 (pH). The proposed portable smartphone-app integrated μPAD detection system was successfully applied to real industrial wastewater and river water quality monitoring. The proposed method has great potential for field water quality detection.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Chengwang Guo
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Gengyang Yan
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Bingxin Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Zan Wu
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Yueqian Chen
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Shiqi Xu
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Peng Shao
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Hong Song
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Xiyan Xu
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing102488, China
| | - Junfeng Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| |
Collapse
|
38
|
Recent development of microfluidic biosensors for the analysis of antibiotic residues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Pullulan-stabilized gold nanoparticles tablet as a nanozyme sensor for point-of-care applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Liu Q, Wei H, Du Y. Microfluidic bioanalysis based on nanozymes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
42
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
43
|
A Novel Aptamer Lateral Flow Strip for the Rapid Detection of Gram-positive and Gram-negative Bacteria. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Shi T, Cheng Z, Liu T, Ye Z, Zhang Y. An up-conversion test paper based on "switch-off" of fluorescence is constructed to sensitively and selectively detect cancer-causing dye Sudan III in lipstick. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121515. [PMID: 35728403 DOI: 10.1016/j.saa.2022.121515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Cancer-causing dye Sudan III is banned adding to cosmetics, so a method for detecting trace Sudan III in cosmetics is established. A single dispersed up-conversion molecularly imprinted fluorescent nanoprobe is constructed and coated on the filter paper. The mechanism for detecting Sudan III by this composite fluorescent nanoprobes-paper is systematically analyzed. The fluorescent response (max emission peak is at 541 nm) is linearly related to 10-1000 nM Sudan III, and Sudan III can be selectively recognized (imprinting factor increased to 4.1). The limit of detection and quantitation are further reduced to 2.89 nM and 9.63 nM, respectively. The recoveries of Sudan III in lipstick samples are between 93.18 and 108.3%, and relative standard deviation is less than or equal to 4.6%. Trace Sudan III in cosmetics are detected accurately and sensitively by this method due to up-conversion nanoparticles with little interference of background fluorescence and molecularly imprinted polymers with selective enrichment.
Collapse
Affiliation(s)
- Tian Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiyuan Cheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiqi Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Arias-Alpízar K, Sánchez-Cano A, Prat-Trunas J, de la Serna Serna E, Alonso O, Sulleiro E, Sánchez-Montalvá A, Diéguez A, Baldrich E. Malaria quantitative POC testing using magnetic particles, a paper microfluidic device and a hand-held fluorescence reader. Biosens Bioelectron 2022; 215:114513. [DOI: 10.1016/j.bios.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|
46
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
47
|
Reagent-Loaded Annulus-Shaped Reactor on Filter-Paper with Virtual Colorimeter for Onsite Quick Detection of Chlorogenic Acid. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Shen Y, Gao X, Zhang Y, Chen H, Ye Y, Wu Y. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129582. [PMID: 35863223 DOI: 10.1016/j.jhazmat.2022.129582] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Development of a simple and efficient dual-mode analytical technique with the built-in cross reference correction feature is benefit to achieve the highly accurate detection of the target pollutants and avoid the false-positive outputs in environmental media. Here, we synthesized a Fe-doped polydopamine (Fe@PDA)-based nanozyme with prominent peroxide-mimetic enzyme activity and high fluorescence emission ability. On this basis, we designed a dual-recognition strategy-driven fluorescence-colorimetric dual-mode detection platform, consisting of Listeria monocytogenes (L. monocytogenes) recognition aptamer-modified Fe@PDA (apt/Fe@PDA) and vancomycin-functionalized Fe3O4 (van/Fe3O4), for L. monocytogenes. Owing to van/Fe3O4-powered magnetic separation, there was a L. monocytogenes concentration-dependent fluorescence enhancement of apt/Fe@PDA for performing fluorescence assay in the precipitate. In this case, the prominent peroxide-mimetic enzyme activity of the residual apt/Fe@PDA in the precipitation could catalyze H2O2 to further oxidate colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, which displayed a L. monocytogenes concentration-dependent absorbance enhancement for carrying out colorimetric assay as well. As a result, a fluorescence-colorimetric dual-mode analytical platform was proposed to successfully detect the residual L. monocytogenes in real environmental media with acceptable results. This work showed the great prospects by integrating dual-recognition strategy into fluorescence nanozyme to develop efficient and reliable dual-mode analytical platforms for safeguarding environmental health.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yiyin Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| |
Collapse
|
49
|
Lazzarini E, Pace A, Trozzi I, Zangheri M, Guardigli M, Calabria D, Mirasoli M. An Origami Paper-Based Biosensor for Allergen Detection by Chemiluminescence Immunoassay on Magnetic Microbeads. BIOSENSORS 2022; 12:825. [PMID: 36290961 PMCID: PMC9599061 DOI: 10.3390/bios12100825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Food allergies are adverse health effects that arise from specific immune responses, occurring upon exposure to given foods, even if present in traces. Egg allergy is one of the most common food allergies, mainly caused by egg white proteins, with ovalbumin being the most abundant. As allergens can also be present in foodstuff due to unintended contamination, there is a need for analytical tools that are able to rapidly detect allergens in food products at the point-of-use. Herein, we report an origami paper-based device for detecting ovalbumin in food samples, based on a competitive immunoassay with chemiluminescence detection. In this biosensor, magnetic microbeads have been employed for easy and efficient immobilization of ovalbumin on paper. Immobilized ovalbumin competes with the ovalbumin present in the sample for a limited amount of enzyme-labelled anti-ovalbumin antibody. By exploiting the origami approach, a multistep analytical procedure could be performed using reagents preloaded on paper layers, thus providing a ready-to-use immunosensing platform. The assay provided a limit of detection (LOD) of about 1 ng mL-1 for ovalbumin and, when tested on ovalbumin-spiked food matrices (chocolate chip cookies), demonstrated good assay specificity and accuracy, as compared with a commercial immunoassay kit.
Collapse
Affiliation(s)
- Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
50
|
Qin X, Zhang Z, Yang T, Yuan L, Guo Y, Yang X. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection. Food Chem 2022; 389:133093. [PMID: 35500406 DOI: 10.1016/j.foodchem.2022.133093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Auto-fluorescence of cellulose paper is often considered as an interfering fluorescence, which directly impedes the cellulose paper as a substrate material. This paper creatively explored the composition and properties of auto-fluorescence, and lignosulfonate was primarily speculated as the main source of auto-fluorescence. Surprisingly, its spatial solid phrase dispersion-induced fluorescence enhancement behavior was found. Then, cellulose paper was modified with Mn-doped ZnS quantum dots, and the prepared ratiometric fluorescent paper chip has good performances on morphology, stability, and fluorescence properties. Besides, the paper chip exhibited different fluorescence responses to three heavy metal ions in water sample. The limit of detection for Cd2+, Hg2+ and Pb2+ reached 1.61 nM, 0.01 nM, and 0.02 nM, respectively. In short, the molecular simulation results theoretically proved that heavy metal ions owned substitution affinity with lignosulfonate. Ultimately, this study was the first attempt to utilize paper-based auto-fluorescence, which could better accelerate the development of paper-based chips.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China.
| | - Tian Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Yurong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|