1
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
2
|
Uitbeijerse BS, Nijhoff MF, de Koning EJP. Comparison of an oral mixed meal plus arginine and intravenous glucose, GLP-1 plus arginine to unmask residual islet function in longstanding type 1 diabetes. Am J Physiol Endocrinol Metab 2024; 326:E673-E680. [PMID: 38446636 PMCID: PMC11376486 DOI: 10.1152/ajpendo.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Residual beta cells are present in most patients with longstanding type 1 diabetes but it is unknown whether these beta cells react normally to different stimuli. Moreover a defect in proinsulin conversion and abnormal alpha cell response are also part of the islet dysfunction. A three-phase [euglycemia, hyperglycemia, and hyperglycemia + glucagon-like peptide 1 (GLP-1)] clamp was performed in patients with longstanding type 1 diabetes. Intravenous arginine boluses were administered at the end of each phase. On another day, a mixed meal stimulation test with a subsequent intravenous arginine bolus was performed. C-peptide was detectable in a subgroup of subjects at baseline (2/15) or only after stimulation (3/15). When detectable, C-peptide increased 2.9-fold [95% CI: 1.2-7.1] during the hyperglycemia phase and 14.1-fold [95% CI: 3.1-65.2] during the hyperglycemia + GLP-1 phase, and 22.3-fold [95% CI: 5.6-89.1] during hyperglycemia + GLP-1 + arginine phase when compared with baseline. The same subset of patients with a C-peptide response were identified during the mixed meal stimulation test as during the clamp. There was an inhibition of glucagon secretion (0.72-fold, [95% CI: 0.63-0.84]) during the glucose clamp irrespective of the presence of detectable beta cell function. Proinsulin was only present in a subset of subjects with detectable C-peptide (3/15) and proinsulin mimicked the C-peptide response to the different stimuli when detectable. Residual beta cells in longstanding type 1 diabetes respond adequately to different stimuli and could be of clinical benefit.NEW & NOTEWORTHY If beta cell function is detectable, the beta cells react relatively normal to the different stimuli except for the first phase response to intravenous glucose. An oral mixed meal followed by an intravenous arginine bolus can identify residual beta cell function/mass as well as the more commonly used glucose potentiated arginine-induced insulin secretion during a hyperglycemic clamp.
Collapse
Affiliation(s)
- Bas S Uitbeijerse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel F Nijhoff
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Kennedy EC, Hawkes CP. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:186. [PMID: 38397298 PMCID: PMC10887271 DOI: 10.3390/children11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Type 1 diabetes (T1D) results from the autoimmune T-cell mediated destruction of pancreatic beta cells leading to insufficient insulin secretion. At the time of diagnosis of T1D, there is residual beta cell function that declines over the subsequent months to years. Recent interventions have been approved to preserve beta cell function in evolving T1D. OBJECTIVE The aim of this review is to summarise the approaches used to assess residual beta cell function in evolving T1D, and to highlight potential future directions. METHODS Studies including subjects aged 0 to 18 years were included in this review. The following search terms were used; "(type 1 diabetes) and (partial remission)" and "(type 1 diabetes) and (honeymoon)". References of included studies were reviewed to determine if additional relevant studies were eligible. RESULTS There are numerous approaches to quantifying beta cell reserve in evolving T1D. These include c-peptide measurement after a mixed meal or glucagon stimuli, fasting c-peptide, the urinary c-peptide/creatinine ratio, insulin dose-adjusted haemoglobin A1c, and other clinical models to estimate beta cell function. Other biomarkers may have a role, including the proinsulin/c-peptide ratio, cytokines, and microRNA. Studies using thresholds to determine if residual beta cell function is present often differ in values used to define remission. CONCLUSIONS As interventions are approved to preserve beta cell function, it will become increasingly necessary to quantify residual beta cell function in research and clinical contexts. In this report, we have highlighted the strengths and limitations of the current approaches.
Collapse
Affiliation(s)
- Elaine C Kennedy
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Colin P Hawkes
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Sims EK, Geyer SM, Long SA, Herold KC. High proinsulin:C-peptide ratio identifies individuals with stage 2 type 1 diabetes at high risk for progression to clinical diagnosis and responses to teplizumab treatment. Diabetologia 2023; 66:2283-2291. [PMID: 37667106 PMCID: PMC10914155 DOI: 10.1007/s00125-023-06003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
AIMS/HYPOTHESIS Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan M Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Sims EK, Kulkarni A, Hull A, Woerner SE, Cabrera S, Mastrandrea LD, Hammoud B, Sarkar S, Nakayasu ES, Mastracci TL, Perkins SM, Ouyang F, Webb-Robertson BJ, Enriquez JR, Tersey SA, Evans-Molina C, Long SA, Blanchfield L, Gerner EW, Mirmira RG, DiMeglio LA. Inhibition of polyamine biosynthesis preserves β cell function in type 1 diabetes. Cell Rep Med 2023; 4:101261. [PMID: 37918404 PMCID: PMC10694631 DOI: 10.1016/j.xcrm.2023.101261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing β cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with β cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during β cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve β cell function in T1D through islet cell-autonomous effects.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Audrey Hull
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Nationwide Children's Hospital Pediatric Residency Program, Columbus, OH 43205, USA
| | - Stephanie E Woerner
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Susanne Cabrera
- Department of Pediatrics, Section of Endocrinology and Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lucy D Mastrandrea
- Division of Pediatric Endocrinology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Batoul Hammoud
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Susan M Perkins
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fangqian Ouyang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jacob R Enriquez
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Carmella Evans-Molina
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medicine and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - S Alice Long
- Benaroya Research Institute, Center for Translational Immunology, Seattle, WA 98101, USA
| | - Lori Blanchfield
- Benaroya Research Institute, Center for Translational Immunology, Seattle, WA 98101, USA
| | | | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Stenlid R, Cerenius SY, Wen Q, Aydin BK, Manell H, Chowdhury A, Kristinsson H, Ciba I, Gjessing ES, Mörwald K, Gomahr J, Heu V, Weghuber D, Forslund A, Bergsten P. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front Endocrinol (Lausanne) 2023; 14:1293093. [PMID: 38027106 PMCID: PMC10646558 DOI: 10.3389/fendo.2023.1293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration clinicaltrials.gov, identifier NCT02794402.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Sara Y. Cerenius
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Banu Küçükemre Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Erik S. Gjessing
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katharina Mörwald
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Julian Gomahr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Verena Heu
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| |
Collapse
|
7
|
Desouter AK, Keymeulen B, Demeester S, Van de Velde U, De Pauw P, Van Dalem A, Lapauw B, De Block C, Gillard P, Pipeleers DG, Gorus FK. Baseline plasma proinsulin response to glucose for predicting therapeutic response to otelixizumab in recent-onset type 1 diabetes. Diabetes Res Clin Pract 2023; 205:110974. [PMID: 37884063 DOI: 10.1016/j.diabres.2023.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIMS In recent-onset type 1 diabetes, clamp-derived C-peptide predicts good response to anti-CD3. Elevated proinsulin and proinsulin/C-peptide ratio (PI/CP) suggest increased metabolic/inflammatory beta cell burden. We reanalyzed trial data to compare the ability of baseline acutely glucose-stimulated proinsulin, C-peptide and PI/CP to predict functional outcome. METHODS Eighty recent-onset type 1 diabetes patients participated in the placebo-controlled otelixizumab (GSK; NCT00627146) trial. Hyperglycemic clamps were performed at baseline, 6, 12 and 18 months, involving 3 h of induced euglycemia, followed by acutely raising and maintaining glycemia to ≥ 10 mmol/l for 140 min. Plasma proinsulin, C-peptide and PI/CP were determined after acute (minute 0 at 10 mmol/l; PI0, CP0, PI/CP0) and sustained glucose stimulation (AUC between minutes 60-140). Outcome was assessed as change in AUC60-140 C-peptide from baseline. RESULTS In multiple linear regression, higher baseline (≥median [P50]) PI0 independently predicted preservation of beta cell function in response to anti-CD3 and interacted significantly with IAA. During follow-up, anti-CD3 tempered a further increase in PI/CP0, but not in PI0. CP0 outperformed PI0 and PI/CP0 for post-treatment monitoring. CONCLUSIONS In recent-onset type 1 diabetes, elevated acutely glucose-stimulated proinsulin may complement or replace acutely or sustainedly stimulated C-peptide release for identifying good responders to anti-CD3, but not as outcome measure.
Collapse
Affiliation(s)
- Aster K Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Pieter De Pauw
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent-UGent, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, University of Antwerp-Antwerp University Hospital, Drie Eikestraat 655, 2650 Edegem, Belgium.
| | - Pieter Gillard
- Department of Endocrinology, University Hospital Leuven-KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
8
|
Ismail HM, Spall M, Evans-Molina C, DiMeglio LA. Evaluating the effect of prebiotics on the gut microbiome profile and β cell function in youth with newly diagnosed type 1 diabetes: protocol of a pilot randomized controlled trial. Pilot Feasibility Stud 2023; 9:150. [PMID: 37626387 PMCID: PMC10463339 DOI: 10.1186/s40814-023-01373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Data show that disturbances in the gut microbiota play a role in glucose homeostasis, type 1 diabetes (T1D) risk and progression. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites favorably with an increase in bacteria producing short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity, and secretion in healthy non-diabetic adults. Additionally, a recent study testing an acetylated and butyrylated form of HAMS (HAMS-AB) that further increases SCFA production prevented T1D in a rodent model without adverse safety effects. The overall objective of this human study will be to assess how daily HAMS-AB consumption impacts the gut microbiome profile, SCFA production, β cell heath, function, and glycemia as well as immune responses in newly diagnosed T1D youth. METHODS AND ANALYSIS We hypothesize that HAMS-AB intake will improve the gut microbiome profile, increase SCFA production, improve β cell health, function and glycemia as well as modulate the immune system. We describe here a pilot, randomized crossover trial of HAMS-AB in 12 newly diagnosed T1D youth, ages 11-17 years old, with residual β cell function. In Aim 1, we will determine the effect of HAMS-AB on the gut microbiome profile and SCFA production; in Aim 2, we will determine the effect of HAMS-AB on β cell health, function and glycemia; and in Aim 3, we will determine the peripheral blood effect of HAMS-AB on frequency, phenotype and function of specific T cell markers. Results will be used to determine the effect-size estimate of using HAMS-AB. We anticipate beneficial effects from a simple, inexpensive, and safe dietary approach. ETHICS AND DISSEMINATION The Institutional Review Board at Indiana University approved the study protocol. The findings of this trial will be submitted to a peer-reviewed pediatric journal. Abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NCT04114357; Pre-results.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA.
| | - Maria Spall
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| |
Collapse
|
9
|
A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
|
10
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
11
|
Freese J, Al-Rawi R, Choat H, Martin A, Lunsford A, Tse H, Mick G, McCormick K. Proinsulin to C-Peptide Ratio in the First Year After Diagnosis of Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:e4318-e4326. [PMID: 34228132 DOI: 10.1210/clinem/dgab463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The proinsulin to C-peptide (PI:C) ratio is reputedly a biomarker of β-cell endoplasmic reticulum (ER) stress. OBJECTIVE This study examined the natural history of the PI:C ratio and its correlation with residual β-cell function in childhood new-onset type 1 diabetes (T1D). Over the first year of T1D, the temporal trend in fasting and nutrient-stimulated PI data is limited. METHODS PI was a secondary pre-planned analysis of our 1-year, randomized, double-blind, placebo-controlled gamma aminobutyric acid (GABA) trial in new-onset T1D. Of the 99 participants in the primary study, aged 4 to 18 years, 30 were placebo. This study only involved the 30 placebo patients; all were enrolled within 5 weeks of T1D diagnosis. A liquid mixed meal tolerance test was administered at baseline and 5 and 12 months for determination of C-peptide, PI, glucose, and hemoglobin A1C. RESULTS Both the fasting (P = 0.0003) and stimulated (P = 0.00008) PI:C ratios increased from baseline to 12 months, indicating escalating β-cell ER stress. The baseline fasting PI correlated with the fasting change in C-peptide at 12 months (P = 0.004) with a higher PI correlating with greater decline in C-peptide. Patients with an insulin-adjusted A1C >9% (hence, not in remission) had higher fasting PI:C ratios. Younger age at diagnosis correlated with a higher PI:C ratio (P = 0.04). CONCLUSION Children with new-onset T1D undergo progressive β-cell ER stress and aberrant proinsulin processing, as evidenced by increasing PI:C ratios. Moreover, the PI:C ratio reflects more aggressive β-cell onslaught with younger age, as well as diminished glycemic control.
Collapse
Affiliation(s)
- Jurhee Freese
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rawan Al-Rawi
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Heather Choat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexandra Martin
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alison Lunsford
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hubert Tse
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gail Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kenneth McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 2021; 9:708-724. [PMID: 34480875 PMCID: PMC10881068 DOI: 10.1016/s2213-8587(21)00170-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring β-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived β-like cells to restore β-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of β-cell replacement therapies.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lonnie D Shea
- Departments of Biomedical Engineering, Chemical Engineering, and Surgery, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Rodriguez-Calvo T, Chen YC, Verchere CB, Haataja L, Arvan P, Leete P, Richardson SJ, Morgan NG, Qian WJ, Pugliese A, Atkinson M, Evans-Molina C, Sims EK. Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes 2021; 70:1038-1050. [PMID: 33947721 PMCID: PMC8173804 DOI: 10.2337/dbi20-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Analysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Pia Leete
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah J Richardson
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, Diabetes Institute, University of Florida, Gainesville, FL
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Departments of Cellular and Integrative Physiology, Medicine, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
15
|
Novoselova EG, Glushkova OV, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Sharapov MG, Gordeeva AE, Novoselov VI, Fesenko EE. Thymulin and peroxiredoxin 6 have protective effects against streptozotocin-induced type 1 diabetes in mice. Int J Immunopathol Pharmacol 2021; 35:20587384211005645. [PMID: 33779346 PMCID: PMC8010817 DOI: 10.1177/20587384211005645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protective effects of peroxiredoxin 6 (PRDX6) in RIN-m5F β-cells and of thymulin in mice with alloxan-induced diabetes were recently reported. The present work was aimed at studying the efficiency of thymulin and PRDX6 in a type 1 diabetes mellitus model induced by streptozotocin in mice. Effects of prolonged treatment with PRDX6 or thymic peptide thymulin on diabetes development were evaluated. We assessed the effects of the drugs on the physiological status of diabetic mice by measuring blood glucose, body weight, and cell counts in several organs, as well as effects of thymulin and PRDX6 on the immune status of diabetic mice measuring concentrations of pro-inflammatory cytokines in blood plasma (TNF-α, interleukin-5 and 17, and interferon-γ), activity of NF-κB and JNK pathways, and Hsp90α expression in immune cells. Both thymulin and PRDX6 reduced the physiological impairments in diabetic mice at various levels. Thymulin and PRDX6 provide beneficial effects in the model of diabetes via very different mechanisms. Taken together, the results of our study indicated that the thymic peptide and the antioxidant enzyme have anti-inflammatory functions. As increasing evidences show diabetes mellitus as a distinct comorbidity leading to acute respiratory distress syndrome and increased mortality in patients with COVID-19 having cytokine storm, thymulin, and PRDX6 might serve as a supporting anti-inflammatory treatment in the therapy of COVID 19 in diabetic patients.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Alina E Gordeeva
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Evgeny E Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| |
Collapse
|
16
|
Yeşiltepe-Mutlu G, Çapacı M, Can E, Gökçe T, Bayrakçı G, Muradoğlu S, İncir S, Çakır EP, Hatun Ş. A comparison of glycemic parameters and their relationship with C-peptide and Proinsulin levels during partial remission and non-remission periods in children with type 1 diabetes mellitus - a cross-sectional study. BMC Endocr Disord 2021; 21:18. [PMID: 33485357 PMCID: PMC7825237 DOI: 10.1186/s12902-021-00681-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, there is a lack of data relating to glycemic parameters and their relationship with C-peptide (CP) and proinsulin (PI) during the partial remission period (PRP) in type 1 diabetes mellitus (T1D). The aim of this study was to evaluate glycemic parameters in children with T1D who are in the PRP using intermittently scanned continuous glucose monitoring systems (isCGMS) and to investigate any relationships between CP and PI levels. METHODS The study included 21 children who were in the PRP and 31 children who were not. A cross-sectional, non-randomized study was performed. Demographic, clinical data were collected and 2 week- isCGMS data were retrieved. RESULTS The Serum CP showed a positive correlation with time-in-range in the PRP (p:0.03), however PI showed no correlations with glycemic parameters in both periods. The Serum CP and PI levels and the PI:CP ratio were significantly higher in the PRP group than in the non-PRP group. In the non-PRP group, the PI level was below 0.1 pmol/L (which is the detectable limit) in only 2 of the 17 cases as compared with none in the PRP group. Similarly, only 2 of the 17 children in the non-PRP group had CP levels of less than 0.2 nmol / L, although both had detectable PI levels. Overall time-in-range (3. 9-1.0 mmol/L) was significantly high in the PRP group. In contrast, the mean sensor glucose levels, time spent in hyperglycemia, and coefficient of variation levels (32.2vs 40.5%) were significantly lower in the PRP group. CONCLUSIONS Although the mean glucose and time in range during the PRP was better than that in the non-PRP group, the glycemic variability during this period was not as low as expected. While the CP levels showed an association with TIR during the PRP, there was no correlation between PI levels and glycemic parameters. Further studies are needed to determine if PI might prove to be a useful parameter in clinical follow-up.
Collapse
Affiliation(s)
- Gül Yeşiltepe-Mutlu
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey.
- Koç University School of Medicine, Istanbul, Turkey.
| | - Merve Çapacı
- Koç University School of Medicine, Istanbul, Turkey
| | - Ecem Can
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey
| | - Tuğba Gökçe
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey
| | - Gizem Bayrakçı
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey
| | - Serra Muradoğlu
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey
| | - Said İncir
- Department of Biochemistry, Koç University Hospital, Istanbul, Turkey
| | - Esra Papatya Çakır
- Department of Pediatric Endocrinology, Bakirköy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Şükrü Hatun
- Department of Pediatric Endocrinology and Diabetes, Koç University Hospital, Topkapı, Zeytinburnu, 34010, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
17
|
Moin ASM, Nandakumar M, Diane A, Dehbi M, Butler AE. The Role of Heat Shock Proteins in Type 1 Diabetes. Front Immunol 2021; 11:612584. [PMID: 33584694 PMCID: PMC7873876 DOI: 10.3389/fimmu.2020.612584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease characterized by recognition of pancreatic β-cell proteins as self-antigens, called autoantigens (AAgs), followed by loss of pancreatic β-cells. (Pre-)proinsulin ([P]PI), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, and the zinc transporter ZnT8 are key molecules in T1D pathogenesis and are recognized by autoantibodies detected in routine clinical laboratory assays. However, generation of new autoantigens (neoantigens) from β-cells has also been reported, against which the autoreactive T cells show activity. Heat shock proteins (HSPs) were originally described as “cellular stress responders” for their role as chaperones that regulate the conformation and function of a large number of cellular proteins to protect the body from stress. HSPs participate in key cellular functions under both physiological and stressful conditions, including suppression of protein aggregation, assisting folding and stability of nascent and damaged proteins, translocation of proteins into cellular compartments and targeting irreversibly damaged proteins for degradation. Low HSP expression impacts many pathological conditions associated with diabetes and could play a role in diabetic complications. HSPs have beneficial effects in preventing insulin resistance and hyperglycemia in type 2 diabetes (T2D). HSPs are, however, additionally involved in antigen presentation, presenting immunogenic peptides to class I and class II major histocompatibility molecules; thus, an opportunity exists for HSPs to be employed as modulators of immunologic responses in T1D and other autoimmune disorders. In this review, we discuss the multifaceted roles of HSPs in the pathogenesis of T1D and in autoantigen-specific immune protection against T1D development.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
18
|
Triolo TM, Pyle L, Seligova S, Yu L, Simmons K, Gottlieb P, Evans-Molina C, Steck AK. Proinsulin:C-peptide ratio trajectories over time in relatives at increased risk of progression to type 1 diabetes. J Transl Autoimmun 2021; 4:100089. [PMID: 33748733 PMCID: PMC7972972 DOI: 10.1016/j.jtauto.2021.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Biomarkers are needed to characterize heterogeneity within populations at risk for type 1 diabetes. The ratio of proinsulin to C-peptide (PI:C ratio), has been proposed as a biomarker of beta cell dysfunction and is associated with progression to type 1 diabetes. However, relationships between PI:C ratios and autoantibody type and number have not been examined. We sought to characterize PI:C ratios in multiple islet autoantibody positive, single autoantibody positive and autoantibody negative relatives of individuals with type 1 diabetes. METHODS We measured PI:C ratios and autoantibodies with both electrochemiluminescence (ECL) assays (ECL-IAA, ECL-GADA and ECL-IA2A) and radiobinding (RBA) assays (mIAA, GADA, IA2A and ZnT8A) in 98 relatives of individuals with type 1 diabetes followed in the TrialNet Pathway to Prevention Study at the Barbara Davis Center for a mean of 7.4 ± 4.1 years. Of these subjects, eight progressed to T1D, 31 were multiple autoantibody (Ab) positive, 37 were single Ab positive and 22 were Ab negative (by RBA). RESULTS In cross-sectional analyses, there were no significant differences in PI:C ratios between type 1 diabetes and/or multiple Ab positive subjects (4.16 ± 4.06) compared to single Ab positive subjects (4.08 ± 4.34) and negative Ab subjects (3.72 ± 3.78) (p = 0.92) overall or after adjusting for age, sex and BMI. Higher PI:C ratios were associated with mIAA titers (p = 0.03) and showed an association with ECL-IA2A titers (p = 0.09), but not with ECL-IAA, GADA, ECL-GADA, IA2A nor ZnT8A titers. In mixed-effects longitudinal models, the trajectories of PI:C ratio over time were significantly different between the Ab negative and multiple Ab positive/type 1 diabetes groups, after adjusting for sex, age, and BMI (p = 0.04). CONCLUSIONS PI:C ratio trajectories increase over time in subjects who have multiple Ab or develop type 1 diabetes and may be a helpful biomarker to further characterize and stratify risk of progression to type 1 diabetes over time.
Collapse
Affiliation(s)
- Taylor M Triolo
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Laura Pyle
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA.,University of Colorado Anschutz Medical Campus, Pediatrics, Aurora, CO, USA
| | - Sona Seligova
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Liping Yu
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Kimber Simmons
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Peter Gottlieb
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Center for Diabetes and Metabolic Diseases. Indianapolis, IN, USA
| | - Andrea K Steck
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| |
Collapse
|
19
|
Bilekova S, Sachs S, Lickert H. Pharmacological Targeting of Endoplasmic Reticulum Stress in Pancreatic Beta Cells. Trends Pharmacol Sci 2020; 42:85-95. [PMID: 33353789 DOI: 10.1016/j.tips.2020.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease with pandemic dimensions and no pharmacological treatment prevents disease progression. Dedifferentiation has been proposed to be a driver of beta-cell dysfunction in both type 1 and type 2 diabetes. Regenerative therapies aim to re-establish function in dysfunctional or dedifferentiated beta cells and restore the defective insulin secretion. Unsustainable levels of insulin production, with increased demand at disease onset, strain the beta-cell secretory machinery, leading to endoplasmic reticulum (ER) stress. Unresolved chronic ER stress is a major contributor to beta-cell loss of function and identity. Restoring ER homeostasis, enhancing ER-associated degradation of misfolded protein, and boosting chaperoning activity, are emerging therapeutic approaches for diabetes treatment.
Collapse
Affiliation(s)
- Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany
| | - Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
20
|
|
21
|
Abstract
PURPOSE OF REVIEW Emerging data have suggested that β-cell dysfunction may exacerbate the development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and suggest agents that may promote β-cell health in T1D. RECENT FINDINGS Metabolic abnormalities exist years before development of hyperglycemia and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but most remain to be tested in human populations with preclinical disease. SUMMARY This cumulative body of work shows clear evidence that β-cell stress, dysfunction, and death are harbingers of impending T1D and likely contribute to progression of disease and insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with immunomodulatory therapies but will need to be tested in intervention studies with endpoints carefully designed to capture changes in β-cell function and health.
Collapse
Affiliation(s)
- Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
22
|
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, Hattersley AT, Richardson SJ, Morgan NG. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63:1258-1267. [PMID: 32172310 PMCID: PMC7228905 DOI: 10.1007/s00125-020-05115-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. RESULTS Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). CONCLUSIONS/INTERPRETATION Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Clemens Ziller
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
23
|
Tong Y, Yang L, Shao F, Yan X, Li X, Huang G, Xiao Y, Zhou Z. Distinct secretion pattern of serum proinsulin in different types of diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:452. [PMID: 32395496 PMCID: PMC7210169 DOI: 10.21037/atm.2020.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Latent autoimmune diabetes in adults (LADA) is characterized by autoimmunity, late-onset and intermediate beta-cell deprivation rate between type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Herein, we investigated proinsulin (PI) secretion patterns and the endoplasmic reticulum (ER) dysfunction biomarker, PI-to-C-peptide (PI:CP) ratio, to elucidate beta-cell intrinsic pathogenesis mechanisms in different types of diabetes. Methods Total serum fasting PI (FPI) were measured in adult-onset and newly-diagnosed diabetes patients, including 60 T1DM, 60 LADA and 60 T2DM. Thirty of each type underwent mixed meal tolerance tests (MMTTs), and hence 120 min postprandial PI (PPI) were detected. PI:CP ratio = PI (pmol/L) ÷ CP (pmol/L) × 100%. PI-related measurements among types of diabetes were compared. Correlation between PI-related measurements and beta-cell autoimmunity were analyzed. The possibility of discriminating LADA from T1DM and T2DM with PI-related measurements were tested. Results FPI and PPI were significantly higher in LADA than T1DM (P<0.001 for both comparisons), but lower than those in T2DM (P<0.001 and P=0.026, respectively). Fasting PI:CP ratio was significantly higher in T1DM than both LADA and T2DM (median 3.25% vs. 2.13% and 2.32%, P=0.011 and P=0.017, respectively). In LADA, positive autoantibody numbers increased by both fasting and postprandial PI:CP ratio (P=0.007 and P=0.034, respectively). Areas under receiver operation characteristic curves (AUCROC) of FPI and PPI for discriminating LADA from adult-onset T1DM were 0.751 (P<0.001) and 0.838 (P<0.001), respectively. Between LADA and T2DM, AUCROC of FPI and PPI were 0.685 (P<0.001) and 0.741 (P=0.001), respectively. Conclusions In the development of autoimmune diabetes, interplays between ER stress and beta-cell autoimmunity are potentially responsible for severer beta-cell destruction. PI-related measurements could help in differentiating LADA from adult-onset T1DM and T2DM.
Collapse
Affiliation(s)
- Yue Tong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Feng Shao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| |
Collapse
|
24
|
Ellison BR, Burton JH, Hsia DS. Comparison of proinsulin to C-peptide ratio in children with and without type 1 diabetes and its relation to age. Ann Pediatr Endocrinol Metab 2020; 25:38-41. [PMID: 32252215 PMCID: PMC7136504 DOI: 10.6065/apem.2020.25.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE This study aimed to compare the proinsulin to C-peptide (PI:C) ratio in those with recent-onset type 1 diabetes versus those with no diabetes and to explore the effect of age on PI:C ratio. METHODS Nineteen participants (n=9 with type 1 diabetes and n=10 with no diabetes) between 10 and 19 years of age were enrolled in a single-visit cross-sectional study and underwent blood collection after 10 hours fasting to measure proinsulin and C-peptide levels as well as other glycemic parameters. RESULTS The median PI:C ratio was significantly different between type 1 diabetes and nondiabetes groups (6.24% vs. 1.46%, P<0.01). A significant negative correlation was seen between PI:C ratio and patient age after adjustment for duration of diabetes (r2=0.61, P=0.02) in the type 1 diabetes group. CONCLUSION Even in this narrow age window, a higher degree of β-cell dysfunction indicated by a higher PI:C ratio was seen in younger children.
Collapse
Affiliation(s)
| | | | - Daniel S. Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA, USA,Address for correspondence: Daniel S. Hsia, MD Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA Tel: +1-225-763-2831 Fax: +1-225-763-3022 E-mail:
| |
Collapse
|
25
|
Rega-Kaun G, Kaun C, Jaegersberger G, Prager M, Hackl M, Demyanets S, Wojta J, Hohensinner PJ. Roux-en-Y-Bariatric Surgery Reduces Markers of Metabolic Syndrome in Morbidly Obese Patients. Obes Surg 2019; 30:391-400. [DOI: 10.1007/s11695-019-04190-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Background
Obesity is closely linked to increased markers of metabolic syndrome and development of diabetes. Roux-en-Y bariatric surgery reduces hyperinsulinemia and improves insulin sensitivity and hence benefits morbidly obese patients.
Aim
To determine changes in markers of metabolic syndrome, pancreatic function, and hepatic insulin sensitivity in patients before and 1 year after undergoing Roux-en-Y gastric bypass surgery.
Methods
We enrolled 43 consecutive patients in a single center. Markers for metabolic syndrome included proinsulin, insulin, C-peptide, liver enzymes, and serum levels of selected microRNAs hsa-miR-122, hsa-miR-130, hsa-miR-132, and hsa-miR-375.
Results
After surgery, all patients showed a significant 37% drop of body mass index (p < 0.001). Furthermore, proinsulin (59% reduction, p < 0.001), insulin (76% reduction, p < 0.001), and C-peptide (56% reduction, p < 0.001) were all reduced 1 year after surgery. Using the hepatic insulin clearance score, we determined a significant increase in hepatic insulin clearance after surgery (76% increase, p < 0.001). Especially diabetic patients showed a marked 2.1-fold increase after surgery. Hepatic enzymes ALT (35% reduction, p = 0.002) and γGT (48% reduction, p < 0.001) were significantly reduced in all patients with similar improvement in diabetic and non-diabetic patients. miRNAs hsa-miR-122, hsa-miR-130, and hsa-miR-132 were all significantly reduced whereas hsa-miR-375 was increased after gastric bypass surgery (p < 0.001 for all miRNAs).
Conclusion
Both liver and pancreatic stress parameters were reduced significantly 1 year after Roux-en-Y gastric bypass surgery suggesting an overall amelioration of the metabolic syndrome in all patients regardless of previous health status.
Collapse
|
26
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
27
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
28
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Sims EK, Bahnson HT, Nyalwidhe J, Haataja L, Davis AK, Speake C, DiMeglio LA, Blum J, Morris MA, Mirmira RG, Nadler J, Mastracci TL, Marcovina S, Qian WJ, Yi L, Swensen AC, Yip-Schneider M, Schmidt CM, Considine RV, Arvan P, Greenbaum CJ, Evans-Molina C. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019; 42:258-264. [PMID: 30530850 PMCID: PMC6341288 DOI: 10.2337/dc17-2625] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years. RESULTS Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide. CONCLUSIONS In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN .,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Henry T Bahnson
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA
| | - Julius Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Asa K Davis
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Janice Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Margaret A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - Teresa L Mastracci
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN.,Indiana Biosciences Research Institute, Indianapolis, IN
| | - Santica Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | | | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Robert V Considine
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN.,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | | |
Collapse
|
30
|
Analysis of serum Hsp90 as a potential biomarker of β cell autoimmunity in type 1 diabetes. PLoS One 2019; 14:e0208456. [PMID: 30629603 PMCID: PMC6328179 DOI: 10.1371/journal.pone.0208456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 01/13/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a protein chaperone that is upregulated and released from pancreatic β cells under pro-inflammatory conditions. We hypothesized that serum Hsp90 may have utility as a biomarker of type 1 diabetes risk and exhibit elevations before the onset of clinically significant hyperglycemia. To this end, total levels of the alpha cytoplasmic isoform of Hsp90 were assayed in autoantibody-positive progressors to type 1 diabetes using banked serum samples from the TrialNet Pathway to Prevention Cohort that had been collected 12 months prior to diabetes onset, with comparison to age, sex, and BMI-category matched autoantibody-positive nonprogressors and healthy controls. Hsp90 levels were higher in autoantibody-positive progressors and nonprogressors ≤ 18 years of age compared to matched healthy controls. However, Hsp90 levels were not different between progressors and nonprogressors in any age group. Hsp90 was positively correlated with age in control subjects, but this correlation was absent in autoantibody positive individuals. In aggregate these data indicate that elevated Hsp90 levels are present in youth with β cell autoimmunity, but are not able to distinguish youth or adult type 1 diabetes progressors from nonprogressors in samples collected 12 months prior to diabetes development.
Collapse
|
31
|
Sullivan CA, Cacicedo JM, Rajendran I, Steenkamp DW. Comparison of proinsulin and C-peptide secretion in healthy versus long-standing type 1 diabetes mellitus cohorts: A pilot study. PLoS One 2018; 13:e0207065. [PMID: 30412637 PMCID: PMC6226191 DOI: 10.1371/journal.pone.0207065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/04/2022] Open
Abstract
Aims Increased proinsulin (PI) compared to C-peptide (CP) concentrations have been reported, both prior to type 1 diabetes mellitus (T1D) onset, as well as early in disease. In this pilot study, we sought to define the normal PI secretion in a healthy cohort and compare this to a local T1D cohort and a separate well-defined nationally representative T1D cohort with measurable CP. Methods Thirteen healthy subjects and 12 T1D subjects with T1D >3 years from the local T1D cohort completed mixed meal tolerance tests (MMTT) with PI and CP measured over 90 and 240 minutes. The change in CP (maximum versus baseline, ΔCP) during MMTT in the T1D Exchange T1D cohort was stratified according to non-fasting PI concentrations, based on a fasting PI threshold, as defined by the healthy control group. Results The maximum fasting PI in the control group was 6 pmol/L. Individuals from the T1D Exchange with a non-fasting PI ≥ 6 pmol/L had a lower ΔCP during a MMTT, compared to those with a PI < 6 pmol/L. While only three individuals from the local T1D cohort had measurable CP and PI during the MMTT, those with a greater ΔCP had lower PI secretion. Conclusion While all T1D subjects from the T1D Exchange secreted measurable non-fasting PI, those with a greater non-fasting PI demonstrated a decrease in ΔCP during the MMTT. PI may be preferentially secreted compared to CP in some individuals with long standing T1D.
Collapse
Affiliation(s)
- Catherine A. Sullivan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| | - Jose M. Cacicedo
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA, United States of America
| | - Iniya Rajendran
- School of Public Health, Boston University, Boston, MA, United States of America
| | - Devin W. Steenkamp
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
32
|
Sims EK, Evans-Molina C, Tersey SA, Eizirik DL, Mirmira RG. Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia 2018; 61:2259-2265. [PMID: 30112687 PMCID: PMC6160346 DOI: 10.1007/s00125-018-4712-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Recent work on the pathogenesis of type 1 diabetes has led to an evolving recognition of the heterogeneity of this disease, both with regards to clinical phenotype and responses to therapies to prevent or revert diabetes. This heterogeneity not only limits efforts to accurately predict clinical disease but also is reflected in differing responses to immunomodulatory therapeutics. Thus, there is a need for robust biomarkers of beta cell health, which could provide insight into pathophysiological differences in disease course, improve disease prediction, increase the understanding of therapeutic responses to immunomodulatory interventions and identify individuals most likely to benefit from these therapies. In this review, we outline current literature, limitations and future directions for promising circulating markers of beta cell stress and death in type 1 diabetes, including markers indicating abnormal prohormone processing, circulating RNAs and circulating DNAs.
Collapse
Affiliation(s)
- Emily K Sims
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, US Department of Veterans Affairs, Indianapolis, IN, USA
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Chen YC, Taylor AJ, Verchere CB. Islet prohormone processing in health and disease. Diabetes Obes Metab 2018; 20 Suppl 2:64-76. [PMID: 30230179 DOI: 10.1111/dom.13401] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Biosynthesis of peptide hormones by pancreatic islet endocrine cells is a tightly orchestrated process that is critical for metabolic homeostasis. Like neuroendocrine peptides, insulin and other islet hormones are first synthesized as larger precursor molecules that are processed to their mature secreted products through a series of proteolytic cleavages, mediated by the prohormone convertases Pc1/3 and Pc2, and carboxypeptidase E. Additional posttranslational modifications including C-terminal amidation of the β-cell peptide islet amyloid polypeptide (IAPP) by peptidyl-glycine α-amidating monooxygenase (Pam) may also occur. Genome-wide association studies (GWAS) have showed genetic linkage of these processing enzymes to obesity, β-cell dysfunction, and type 2 diabetes (T2D), pointing to their important roles in metabolism and blood glucose regulation. In both type 1 diabetes (T1D) and T2D, and in the face of metabolic or inflammatory stresses, islet prohormone processing may become impaired; indeed elevated proinsulin:insulin (PI:I) ratios are a hallmark of the β-cell dysfunction in T2D. Recent studies suggest that genetic or acquired defects in proIAPP processing may lead to the production and secretion of incompletely processed forms of proIAPP that could contribute to T2D pathogenesis, and additionally that impaired processing of both PI and proIAPP may be characteristic of β-cell dysfunction in T1D. In islet α-cells, the prohormone proglucagon is normally processed to bioactive glucagon by Pc2 but may express Pc1/3 under certain conditions leading to production of GLP-1(7-36NH2 ). A better understanding of how β-cell processing of PI and proIAPP, as well as α-cell processing of proglucagon, are impacted by genetic susceptibility and in the face of diabetogenic stresses, may lead to new therapeutic approaches for improving islet function in diabetes.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Austin J Taylor
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Fonolleda M, Murillo M, Vázquez F, Bel J, Vives-Pi M. Remission Phase in Paediatric Type 1 Diabetes: New Understanding and Emerging Biomarkers. Horm Res Paediatr 2018; 88:307-315. [PMID: 28772271 DOI: 10.1159/000479030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease of unknown aetiology that results from the autoimmune destruction of the β-cells. Clinical onset with classic hyperglycaemic symptoms occurs much more frequently in children and young adults, when less than 30% of β-cells remain. Exogenous insulin administration is the only treatment for patients. However, due to glucose dysregulation, severe complications develop gradually. Recently, an increase in T1D incidence has been reported worldwide, especially in children. Shortly after diagnosis, T1D patients often experience partial remission called "honeymoon phase," which lasts a few months, with minor requirements of exogenous insulin. In this stage, the remaining β-cells are still able to produce enough insulin to reduce the administration of exogenous insulin. A recovery of immunological tolerance to β-cell autoantigens could explain the regeneration attempt in this remission phase. This mini-review focuses on the remission phase in childhood T1D. Understanding this period and finding those peripheral biomarkers that are signs of immunoregulation or islet regeneration could contribute to the identification of patients with a better glycaemic prognosis and a lower risk of secondary complications. This remission phase could be a good checkpoint for the administration of future immunotherapies.
Collapse
Affiliation(s)
- Mireia Fonolleda
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Murillo
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Federico Vázquez
- Endocrinology and Nutrition and Clinical Trials Unit, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Joan Bel
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Spelios MG, Afinowicz LA, Tipon RC, Akirav EM. Human EndoC-βH1 β-cells form pseudoislets with improved glucose sensitivity and enhanced GLP-1 signaling in the presence of islet-derived endothelial cells. Am J Physiol Endocrinol Metab 2018; 314:E512-E521. [PMID: 29351476 DOI: 10.1152/ajpendo.00272.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional (3D) pseudoislets (PIs) can be used for the study of insulin-producing β-cells in free-floating islet-like structures similar to that of primary islets. Previously, we demonstrated the ability of islet-derived endothelial cells (iECs) to induce PIs using murine insulinomas, where PI formation enhanced insulin production and glucose responsiveness. In this report, we examined the ability of iECs to spontaneously induce the formation of free-floating 3D PIs using the EndoC-βH1 human β-cell line murine MS1 iEC. Within 14 days, the coculturing of both cell types produced fully humanized EndoC-βH1 PIs with little to no contaminating murine iECs. The size and shape of these PIs were similar to primary human islets. iEC-induced PIs demonstrated reduced dysregulated insulin release under low glucose levels and higher insulin secretion in response to high glucose and exendin-4 [a glucagon-like peptide-1 (GLP-1) analog] compared with monolayer cells cultured alone. Interestingly, iEC-PIs were also better at glucose sensing in the presence of extendin-4 compared with PIs generated on a low-adhesion surface plate in the absence of iECs and showed an overall improvement in cell viability. iEC-induced PIs exhibited increased expression of key genes involved in glucose transport, glucose sensing, β-cell differentiation, and insulin processing, with a concomitant decrease in glucagon mRNA expression. The enhanced responsiveness to exendin-4 was associated with increased protein expression of GLP-1 receptor and phosphokinase A. This rapid coculture system provides an unlimited number of human PIs with improved insulin secretion and GLP-1 responsiveness for the study of β-cell biology.
Collapse
Affiliation(s)
- Michael G Spelios
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Lauren A Afinowicz
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Regine C Tipon
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Eitan M Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
- Stony Brook University School of Medicine , Stony Brook, New York
| |
Collapse
|
38
|
Aslamy A, Oh E, Ahn M, Moin ASM, Chang M, Duncan M, Hacker-Stratton J, El-Shahawy M, Kandeel F, DiMeglio LA, Thurmond DC. Exocytosis Protein DOC2B as a Biomarker of Type 1 Diabetes. J Clin Endocrinol Metab 2018; 103:1966-1976. [PMID: 29506054 PMCID: PMC6276681 DOI: 10.1210/jc.2017-02492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Efforts to preserve β-cell mass in the preclinical stages of type 1 diabetes (T1D) are limited by few blood-derived biomarkers of β-cell destruction. OBJECTIVE Platelets are proposed sources of blood-derived biomarkers for a variety of diseases, and they show distinct proteomic changes in T1D. Thus, we investigated changes in the exocytosis protein, double C2 domain protein-β (DOC2B) in platelets and islets from T1D humans, and prediabetic nonobese diabetic (NOD) mice. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURE Protein levels of DOC2B were assessed in platelets and islets from prediabetic NOD mice and humans, with and without T1D. Seventeen new-onset T1D human subjects (10.3 ± 3.8 years) were recruited immediately following diagnosis, and platelet DOC2B levels were compared with 14 matched nondiabetic subjects (11.4 ± 2.9 years). Furthermore, DOC2B levels were assessed in T1D human pancreatic tissue samples, cytokine-stimulated human islets ex vivo, and platelets from T1D subjects before and after islet transplantation. RESULTS DOC2B protein abundance was substantially reduced in prediabetic NOD mouse platelets, and these changes were mirrored in the pancreatic islets from the same mice. Likewise, human DOC2B levels were reduced over twofold in platelets from new-onset T1D human subjects, and this reduction was mirrored in T1D human islets. Cytokine stimulation of normal islets reduced DOC2B expression ex vivo. Remarkably, platelet DOC2B levels increased after islet transplantation in patients with T1D. CONCLUSIONS Reduction of DOC2B is an early feature of T1D, and DOC2B abundance may serve as a valuable in vivo indicator of β-cell mass and an early biomarker of T1D.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Abu Saleh Md Moin
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Mariann Chang
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Molly Duncan
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Jeannette Hacker-Stratton
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Mohamed El-Shahawy
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Fouad Kandeel
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Linda A DiMeglio
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
- Correspondence and Reprint Requests: Debbie C. Thurmond, PhD, Department of Molecular and Cellular Endocrinology,
Diabetes and Metabolism Research Institute, and Beckman Research Institute of City of
Hope, 1500 East Duarte Road, Duarte, California 91010. E-mail:
| |
Collapse
|
39
|
Mehdi AM, Hamilton-Williams EE, Cristino A, Ziegler A, Bonifacio E, Le Cao KA, Harris M, Thomas R. A peripheral blood transcriptomic signature predicts autoantibody development in infants at risk of type 1 diabetes. JCI Insight 2018. [PMID: 29515040 DOI: 10.1172/jci.insight.98212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autoimmune-mediated destruction of pancreatic islet β cells results in type 1 diabetes (T1D). Serum islet autoantibodies usually develop in genetically susceptible individuals in early childhood before T1D onset, with multiple islet autoantibodies predicting diabetes development. However, most at-risk children remain islet-antibody negative, and no test currently identifies those likely to seroconvert. We sought a genomic signature predicting seroconversion risk by integrating longitudinal peripheral blood gene expression profiles collected in high-risk children included in the BABYDIET and DIPP cohorts, of whom 50 seroconverted. Subjects were followed for 10 years to determine time of seroconversion. Any cohort effect and the time of seroconversion were corrected to uncover genes differentially expressed (DE) in seroconverting children. Gene expression signatures associated with seroconversion were evident during the first year of life, with 67 DE genes identified in seroconverting children relative to those remaining antibody negative. These genes contribute to T cell-, DC-, and B cell-related immune responses. Near-birth expression of ADCY9, PTCH1, MEX3B, IL15RA, ZNF714, TENM1, and PLEKHA5, along with HLA risk score predicted seroconversion (AUC 0.85). The ubiquitin-proteasome pathway linked DE genes and T1D susceptibility genes. Therefore, a gene expression signature in infancy predicts risk of seroconversion. Ubiquitination may play a mechanistic role in diabetes progression.
Collapse
Affiliation(s)
- Ahmed M Mehdi
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Alexandre Cristino
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Anette Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, Neuherberg, and Forschergruppe Diabetes, Klinikum rechts der Isar, Institut für Diabetesforschung, Neuherberg, Germany
| | - Ezio Bonifacio
- CRTD-DFG Research Center for Regenerative Therapies Dresden, Medical Faculty Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kim-Anh Le Cao
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Mark Harris
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia.,Lady Cilento Children's Hospital, South Brisbane, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
40
|
Insel R, Dutta S, Hedrick J. Type 1 Diabetes: Disease Stratification. Biomed Hub 2017; 2:111-126. [PMID: 31988942 PMCID: PMC6945911 DOI: 10.1159/000481131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes, a disorder characterized by immune-mediated loss of functional pancreatic beta cells, is a disease continuum with specific presymptomatic stages with defined risk of progression to symptomatic disease. Prognostic biomarkers have been developed for disease staging and for stratification of subjects that address the heterogeneity in rate of disease progression. Using biomarkers for stratification of subjects at different stages of type 1 diabetes will enable smaller and shorter intervention clinical trials with greater effect size. Addressing the heterogeneity of the disease will allow precision medicine-based approaches to prevention and interception of presymptomatic stages of disease and treatment and cure of symptomatic disease.
Collapse
Affiliation(s)
| | | | - Joseph Hedrick
- Disease Interception Accelerator - T1D, Janssen Research & Development, LLC, Raritan, NJ, USA
| |
Collapse
|
41
|
Alhadj Ali M, Liu YF, Arif S, Tatovic D, Shariff H, Gibson VB, Yusuf N, Baptista R, Eichmann M, Petrov N, Heck S, Yang JHM, Tree TIM, Pujol-Autonell I, Yeo L, Baumard LR, Stenson R, Howell A, Clark A, Boult Z, Powrie J, Adams L, Wong FS, Luzio S, Dunseath G, Green K, O’Keefe A, Bayly G, Thorogood N, Andrews R, Leech N, Joseph F, Nair S, Seal S, Cheung H, Beam C, Hills R, Peakman M, Dayan CM. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci Transl Med 2017; 9:9/402/eaaf7779. [DOI: 10.1126/scitranslmed.aaf7779] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
Abstract
Immunotherapy using short immunogenic peptides of disease-related autoantigens restores immune tolerance in preclinical disease models. We studied safety and mechanistic effects of injecting human leukocyte antigen–DR4(DRB1*0401)–restricted immunodominant proinsulin peptide intradermally every 2 or 4 weeks for 6 months in newly diagnosed type 1 diabetes patients. Treatment was well tolerated with no systemic or local hypersensitivity. Placebo subjects showed a significant decline in stimulated C-peptide (measuring insulin reserve) at 3, 6, 9, and 12 months versus baseline, whereas no significant change was seen in the 4-weekly peptide group at these time points or the 2-weekly group at 3, 6, and 9 months. The placebo group’s daily insulin use increased by 50% over 12 months but remained unchanged in the intervention groups. C-peptide retention in treated subjects was associated with proinsulin-stimulated interleukin-10 production, increased FoxP3 expression by regulatory T cells, low baseline levels of activated β cell–specific CD8 T cells, and favorable β cell stress markers (proinsulin/C-peptide ratio). Thus, proinsulin peptide immunotherapy is safe, does not accelerate decline in β cell function, and is associated with antigen-specific and nonspecific immune modulation.
Collapse
|
42
|
Courtade JA, Klimek-Abercrombie AM, Chen YC, Patel N, Lu PYT, Speake C, Orban PC, Najafian B, Meneilly G, Greenbaum CJ, Warnock GL, Panagiotopoulos C, Verchere CB. Measurement of Pro-Islet Amyloid Polypeptide (1-48) in Diabetes and Islet Transplants. J Clin Endocrinol Metab 2017; 102:2595-2603. [PMID: 28368485 DOI: 10.1210/jc.2016-2773] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT Islet amyloid is a feature of β-cell failure in type 2 diabetes (T2D) and type 1 diabetes (T1D) recipients of islet transplants. Islet amyloid contains islet amyloid polypeptide (IAPP; amylin), a circulating peptide that is produced in β cells by processing of its precursor, proIAPP1-67, via an intermediate form, proIAPP1-48. Elevated proinsulin to C-peptide ratios in the plasma of persons with diabetes suggest defects in β-cell prohormone processing. OBJECTIVE Determine whether plasma levels of precursor forms of IAPP are elevated in diabetes. DESIGN, SETTING, AND PATIENTS We developed an immunoassay to detect proIAPP1-48 in human plasma, and we determined the ratio of proIAPP1-48 to mature IAPP in subjects with T1D, T2D, recipients of islet transplants, and healthy controls. RESULTS The proIAPP1-48 immunoassay had a limit of detection of 0.18 ± 0.06 pM and cross-reactivity with intact proIAPP1-67 <15%. Healthy individuals had plasma concentrations of proIAPP1-48 immunoreactivity of 1.5 ± 0.2 pM and a proIAPP1-48 to total IAPP ratio of 0.28 ± 0.03. Plasma concentrations of proIAPP1-48 immunoreactivity were not significantly different in subjects with T2D but were markedly increased in T1D recipients of islet transplants. Children and adults with T1D had reduced mature IAPP levels relative to age-matched controls but an elevated ratio of proIAPP1-48 to total IAPP. CONCLUSION The β cells in T1D and islet transplants have impaired processing of the proIAPP1-48 intermediate. The ratio of proIAPP1-48-to-IAPP immunoreactivity may have value as a biomarker of β-cell stress and dysfunction.
Collapse
Affiliation(s)
- Jaques A Courtade
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Agnieszka M Klimek-Abercrombie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yi-Chun Chen
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nirja Patel
- American Laboratory Products Company, Salem, New Hampshire 03079
| | - Phoebe Y T Lu
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Paul C Orban
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Behzad Najafian
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Graydon Meneilly
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Constadina Panagiotopoulos
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
43
|
Rodriguez-Calvo T, Zapardiel-Gonzalo J, Amirian N, Castillo E, Lajevardi Y, Krogvold L, Dahl-Jørgensen K, von Herrath MG. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset. Diabetes 2017; 66:1334-1345. [PMID: 28137793 PMCID: PMC5399615 DOI: 10.2337/db16-1343] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy.
Collapse
Affiliation(s)
| | | | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Ericka Castillo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Yasaman Lajevardi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
44
|
Ocaña GJ, Pérez L, Guindon L, Deffit SN, Evans-Molina C, Thurmond DC, Blum JS. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 2017; 151:198-210. [PMID: 28190264 DOI: 10.1111/imm.12723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 02/05/2017] [Indexed: 12/26/2022] Open
Abstract
A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity.
Collapse
Affiliation(s)
- Gail J Ocaña
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liliana Pérez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynette Guindon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah N Deffit
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
45
|
Van Dalem A, Demeester S, Balti EV, Keymeulen B, Gillard P, Lapauw B, De Block C, Abrams P, Weber E, Vermeulen I, De Pauw P, Pipeleers D, Weets I, Gorus FK. Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio. PLoS One 2016; 11:e0166702. [PMID: 27907006 PMCID: PMC5131964 DOI: 10.1371/journal.pone.0166702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release. METHODS Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5-39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20-57 months (interquartile range). RESULTS TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96-0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5-7.1 vs 6.7-9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001) with first-phase C-peptide release during clamp (also with second phase release, only available for age 12-39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release. CONCLUSIONS The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test.
Collapse
Affiliation(s)
- Annelien Van Dalem
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Simke Demeester
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Eric V. Balti
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Diabetology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pieter Gillard
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Endocrinology, Universitair Ziekenhuis Leuven, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Universitair Ziekenhuis Gent, Ghent, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Pascale Abrams
- Department of Endocrinology and Diabetology, GZA Campus Sint Augustinus en Sint Vincentius, Wilrijk-Antwerp, Belgium
| | - Eric Weber
- Department of Endocrinology and Diabetology, Clinique du Sud Luxembourg et Clinique Saint Joseph, Arlon, Belgium
| | - Ilse Vermeulen
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
| | - Pieter De Pauw
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
| | - Daniël Pipeleers
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
| | - Ilse Weets
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Brussels Free University—VUB, Brussels, Belgium
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | |
Collapse
|
46
|
Tatovic D, Luzio S, Dunseath G, Liu Y, Alhadj Ali M, Peakman M, Dayan CM. Stimulated urine C-peptide creatinine ratio vs serum C-peptide level for monitoring of β-cell function in the first year after diagnosis of Type 1 diabetes. Diabet Med 2016; 33:1564-1568. [PMID: 27425010 DOI: 10.1111/dme.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
AIMS To determine if urine C-peptide/creatinine ratio is a useful tool for monitoring β-cell function in new-onset Type 1 diabetes. METHODS Data were obtained from a prospective immunomodulation study in people with Type 1 diabetes ≤ 3 months from diagnosis, with a standard mixed-meal tolerance test and measurement of urine C-peptide/creatinine ratio carried out at 0, 3, 6, 9 and 12 months. The change in the insulin-dose-adjusted HbA1c level was also correlated with the change in serum/urine C-peptide level during the 12-month follow-up period. RESULTS A significant reduction in urine C-peptide/creatinine ratio, measured after a mixed-meal, was reached at 9 months (-45.4%), whilst the reduction in stimulated serum C-peptide level reached significance after 3 months (-54.7%) in placebo-treated participants. Neither change in stimulated serum C-peptide nor change in urine C-peptide level correlated with each other, and nor did change in insulin-dose-adjusted HbA1c level in the first 6 months, but all measures correlated significantly in the second half of the 12-month follow-up period. CONCLUSION Mixed-meal-stimulated urine C-peptide/creatinine ratio was similar to, although less sensitive than, stimulated serum C-peptide level in monitoring β-cell function during the first year after diagnosis. Because the former is significantly less invasive, it warrants inclusion in further studies in Type 1 diabetes and may represent an attractive alternative outcome measure in cohort studies and in children.
Collapse
Affiliation(s)
- D Tatovic
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - S Luzio
- Institute for Life Sciences, Swansea University, Swansea, UK
| | - G Dunseath
- Institute for Life Sciences, Swansea University, Swansea, UK
| | - Y Liu
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - M Alhadj Ali
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - M Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - C M Dayan
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
47
|
Abstract
The hallmark of type 1 diabetes (T1D) is a decline in functional β-cell mass arising as a result of autoimmunity. Immunomodulatory interventions at disease onset have resulted in partial stabilization of β-cell function, but full recovery of insulin secretion has remained elusive. Revised efforts have focused on disease prevention through interventions administered at earlier disease stages. To support this paradigm, there is a parallel effort ongoing to identify circulating biomarkers that have the potential to identify stress and death of the islet β-cells. Whereas no definitive biomarker(s) have been fully validated, several approaches hold promise that T1D can be reliably identified in the pre-symptomatic phase, such that either β-cell preservation or immunomodulatory agents might be employed in at-risk populations. This review summarizes the most promising protein- and nucleic acid-based biomarkers discovered to date and reviews the context in which they have been studied.
Collapse
Affiliation(s)
- Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, I635 Barnhill Drive, MS 2031, Indianapolis, IN, 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN, 46202, USA
| | - Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, I635 Barnhill Drive, MS 2031, Indianapolis, IN, 46202, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
48
|
Maganti AV, Tersey SA, Syed F, Nelson JB, Colvin SC, Maier B, Mirmira RG. Peroxisome Proliferator-activated Receptor-γ Activation Augments the β-Cell Unfolded Protein Response and Rescues Early Glycemic Deterioration and β Cell Death in Non-obese Diabetic Mice. J Biol Chem 2016; 291:22524-22533. [PMID: 27613867 DOI: 10.1074/jbc.m116.741694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes is an autoimmune disorder that is characterized by a failure of the unfolded protein response in islet β cells with subsequent endoplasmic reticulum stress and cellular death. Thiazolidinediones are insulin sensitizers that activate the nuclear receptor PPAR-γ and have been shown to partially ameliorate autoimmune type 1 diabetes in humans and non-obese diabetic (NOD) mice. We hypothesized that thiazolidinediones reduce β cell stress and death independently of insulin sensitivity. To test this hypothesis, female NOD mice were administered pioglitazone during the pre-diabetic phase and assessed for insulin sensitivity and β cell function relative to controls. Pioglitazone-treated mice showed identical weight gain, body fat distribution, and insulin sensitivity compared with controls. However, treated mice showed significantly improved glucose tolerance with enhanced serum insulin levels, reduced β cell death, and increased β cell mass. The effect of pioglitazone was independent of actions on T cells, as pancreatic lymph node T cell populations were unaltered and T cell proliferation was unaffected by pioglitazone. Isolated islets of treated mice showed a more robust unfolded protein response, with increases in Bip and ATF4 and reductions in spliced Xbp1 mRNA. The effect of pioglitazone appears to be a direct action on β cells, as islets from mice treated with pioglitazone showed reductions in PPAR-γ (Ser-273) phosphorylation. Our results demonstrate that PPAR-γ activation directly improves β cell function and survival in NOD mice by enhancing the unfolded protein response and suggest that blockade of PPAR-γ (Ser-273) phosphorylation may prevent type 1 diabetes.
Collapse
Affiliation(s)
- Aarthi V Maganti
- From the Department of Cellular and Integrative Physiology.,Center for Diabetes and Metabolic Diseases
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Farooq Syed
- Department of Pediatrics and the Herman B Wells Center
| | | | - Stephanie C Colvin
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Bernhard Maier
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, .,Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and.,Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| |
Collapse
|
49
|
Sims EK, Chaudhry Z, Watkins R, Syed F, Blum J, Ouyang F, Perkins SM, Mirmira RG, Sosenko J, DiMeglio LA, Evans-Molina C. Elevations in the Fasting Serum Proinsulin-to-C-Peptide Ratio Precede the Onset of Type 1 Diabetes. Diabetes Care 2016; 39:1519-26. [PMID: 27385327 PMCID: PMC5001142 DOI: 10.2337/dc15-2849] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/26/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We tested whether an elevation in the serum proinsulin-to-C-peptide ratio (PI:C), a biomarker of β-cell endoplasmic reticulum (ER) dysfunction, was associated with progression to type 1 diabetes. RESEARCH DESIGN AND METHODS Fasting total PI and C levels were measured in banked serum samples obtained from TrialNet Pathway to Prevention (PTP) participants, a cohort of autoantibody-positive relatives without diabetes of individuals with type 1 diabetes. Samples were obtained ∼12 months before diabetes onset from PTP progressors in whom diabetes developed (n = 60), and were compared with age-, sex-, and BMI-matched nonprogressors who remained normoglycemic (n = 58). PI:C ratios were calculated as molar ratios and were multiplied by 100% to obtain PI levels as a percentage of C levels. RESULTS Although absolute PI levels did not differ between groups, PI:C ratios were significantly increased in antibody-positive subjects in whom there was progression to diabetes compared with nonprogressors (median 1.81% vs. 1.17%, P = 0.03). The difference between groups was most pronounced in subjects who were ≤10 years old, where the median progressor PI:C ratio was nearly triple that of nonprogressors; 90.0% of subjects in this age group within the upper PI:C quartile progressed to the development of diabetes. Logistic regression analysis, adjusted for age and BMI, demonstrated increased odds of progression for higher natural log PI:C ratio values (odds ratio 1.44, 95% CI 1.02, 2.05). CONCLUSIONS These data suggest that β-cell ER dysfunction precedes type 1 diabetes onset, especially in younger children. Elevations in the serum PI:C ratio may have utility in predicting the onset of type 1 diabetes in the presymptomatic phase.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Zunaira Chaudhry
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Renecia Watkins
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Janice Blum
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Fangqian Ouyang
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Susan M Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Jay Sosenko
- Division of Endocrinology, University of Miami, Miami, FL
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
50
|
Garyu JW, Meffre E, Cotsapas C, Herold KC. Progress and challenges for treating Type 1 diabetes. J Autoimmun 2016; 71:1-9. [PMID: 27210268 PMCID: PMC4903889 DOI: 10.1016/j.jaut.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 02/09/2023]
Abstract
It has been more than 30 years since the initial trials of Cyclosporin A to treat patients with new onset Type 1 diabetes (T1D). Since that time, there have been insights into genetic predisposition to the disease, the failures of immune tolerance, and mechanisms that cause the immune mediated β cell destruction. The genetic loci associated affect lymphocyte development and tolerance mechanisms. Discoveries related to the roles of specific immune responses gene such as the major histocompatibility complex, PTPN22, CTLA-4, IL-2RA, as well as the mechanisms of antigen presentation in the thymus have suggested ways in which autoreactivity may follow changes in the functions of these genes that are associated with risk. Antigens that are recognized by the immune system in patients with T1D have been identified. With this information, insights into the novel cellular mechanisms leading to the initiation and orchestration of β cell killing have been developed such as the presentation of unique antigens within the islets. Clinical trials have been performed, some of which have shown efficacy in improving β cell function but none have been able to permanently prevent loss of insulin secretion. The reasons for the lack of long term success are not clear but may include the heterogeneity of the immune response and in individual responses to immune therapies, recurrence of autoimmunity after the initial effects of the therapies, or even intrinsic mechanisms of β cell death that proceeds independently of immune attack after initiation of the disease. In this review, we cover developments that have led to new therapeutics and characteristics of patients who may show the most benefits from therapies. We also identify areas of incomplete understanding that might be addressed to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Justin W Garyu
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Chris Cotsapas
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|