1
|
Marcus U, Michel J, Lunchenkov N, Beslic D, Treindl F, Surtees R, Weber C, Baumgarten A, Nitsche A, Stern D. A seroprevalence study indicates a high proportion of clinically undiagnosed MPXV infections in men who have sex with men in Berlin, Germany. BMC Infect Dis 2024; 24:1153. [PMID: 39396951 PMCID: PMC11472563 DOI: 10.1186/s12879-024-10066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION During the mpox outbreak in 2022, the highest number of cases in Germany were registered in Berlin, almost all of them in men who have sex with men (MSM). However, the frequency of clinically undiagnosed infections is unknown. METHODS A cross-sectional study was conducted among MSM in Berlin, Germany. Participants were recruited from private practices and community-based checkpoints specialised in HIV and STI care for MSM. They were asked to complete an online questionnaire on socio-demographic data, mpox diagnosis, vaccination history and sexual behaviour, and to provide a blood sample for serological analysis. The samples were tested for antibodies against a range of antigens to distinguish between antibodies induced by mpox infection and MVA vaccination, with pre-immune sera from childhood smallpox vaccination as a confounding factor. Associations of behavioural variables with reported and suspected mpox diagnosis as the outcome were tested using univariable and multivariable logistic regression models. RESULTS Between the 11th April and 1st July 2023, 1,119 participants were recruited in eight private practices and two community-based checkpoints in Berlin. All participants provided a blood sample for serological testing. Information for the online questionnaire was provided by 728 participants; core data on age and mpox history for participants who did not provide questionnaire data were provided by the practices for an additional 218 participants. A previous diagnosis of mpox was reported for/by 70 participants (7.4%). Using a conservative and strict case definition, we serologically identified an additional 91 individuals with suspected undiagnosed mpox infection. Individuals with reported or suspected mpox infections reported more condomless anal sex partners in the past 3 months (OR = 5.93; 95% CI 2.10-18.35 for 5-10 partners; OR = 9.53; 95% CI 2.72-37.54 for > 10 partners) and were more likely to report sexual contact with partners diagnosed with mpox (OR = 2.87; 95% CI 1.39-5.84). CONCLUSION A substantial proportion of mpox infections were clinically undiagnosed. The number of condomless anal sex partners was strongly associated with both confirmed and suspected undiagnosed mpox infection. Therefore, mpox control measures based on clinical diagnosis of mpox are likely to have limited effectiveness in preventing mpox transmission in outbreak situations because many infections remain unrecognised and undiagnosed.
Collapse
Affiliation(s)
- Ulrich Marcus
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.
| | - Janine Michel
- Centre for Biological Threats and Special Pathogens German Consultant Laboratory for Poxviruses Highly Pathogenic Viruses (ZBS 1) WHO Collaboration Center for Emerging Threats and Special Pathogens, Berlin, Germany
| | - Nikolay Lunchenkov
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
- Technical University of Munich, TUM School of Social Sciences and Technology, Munich, Germany
| | - Denis Beslic
- Centre for Artificial Intelligence in Public Health Research, ZKI-PH 3, Wildau, Germany
| | - Fridolin Treindl
- Centre for Biological Threats and Special Pathogens, Biological Toxins (ZBS 3), Robert Koch Institute, Berlin, Germany
| | - Rebecca Surtees
- Centre for Biological Threats and Special Pathogens German Consultant Laboratory for Poxviruses Highly Pathogenic Viruses (ZBS 1) WHO Collaboration Center for Emerging Threats and Special Pathogens, Berlin, Germany
| | | | | | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens German Consultant Laboratory for Poxviruses Highly Pathogenic Viruses (ZBS 1) WHO Collaboration Center for Emerging Threats and Special Pathogens, Berlin, Germany
| | - Daniel Stern
- Centre for Biological Threats and Special Pathogens, Biological Toxins (ZBS 3), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
2
|
Fierro C, Weidenthaler H, Vidojkovic S, Schmidt D, Gafoor Z, Stroukova D, Zwiers S, Müller J, Volkmann A. Safety and immunogenicity of a novel trivalent recombinant MVA-based equine encephalitis virus vaccine: A Phase 1 clinical trial. Vaccine 2024; 42:2695-2706. [PMID: 38494412 DOI: 10.1016/j.vaccine.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Three encephalitic alphaviruses-western, eastern, and Venezuelan equine encephalitis virus (WEEV, EEEV and VEEV)-can cause severe disease and have the potential to be used as biological weapons. There are no approved vaccines for human use. A novel multivalent MVA-BN-WEV vaccine encodes the envelope surface proteins of the 3 viruses and is thereby potentially able to protect against them all, as previously demonstrated in animal models. This first-in-human study assessed the safety, tolerability, and immunogenicity of MVA-BN-WEV vaccine in healthy adult participants. METHODS Forty-five participants were enrolled into 3 dose groups (1 × 10E7 Inf.U, 1 × 10E8 Inf.U, and 2 × 10E8 Inf.U), received 2 doses 4 weeks apart, and were then monitored for 6 months. RESULTS The safety profile of MVA-BN-WEV was acceptable at all administered doses, with incidence of local solicited AEs increased with increasing dose and no other clinically meaningful differences between dose groups. One SAE (Grade 2 pleural effusion) was reported in the lowest dose group and assessed as possibly related. No AEs resulted in death or led to withdrawal from the second vaccination or from the trial. The most common local solicited AE was injection site pain, and general solicited AEs were headache, fatigue, and myalgia. MVA-BN-WEV induced humoral immune responses; WEEV-, EEEV- and VEEV-specific neutralizing antibody responses peaked 2 weeks following the second vaccination, and the magnitude of these responses increased with dose escalation. The highest dose resulted in seroconversion of all (100 %) participants for WEEV and VEEV and 92.9 % for EEEV, 2 weeks following second vaccination, and durability was observed for 6 months. MVA-BN-WEV induced cellular immune responses to VEEV E1 and E2 (EEEV and WEEV not tested) and a dose effect for peptide pool E2. CONCLUSION The study demonstrated that MVA-BN-WEV is well tolerated, induces immune responses, and is suitable for further development. CLINICAL TRIAL REGISTRY NUMBER NCT04131595.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials (JCCT), 16400 College Blvd., Lenexa, KS 66219, USA
| | | | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Zarina Gafoor
- Bavarian Nordic Inc, 1005 Slater Road, Suite 101, Durham, NC 27703, USA
| | - Daria Stroukova
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Susan Zwiers
- Bavarian Nordic Inc, 1005 Slater Road, Suite 101, Durham, NC 27703, USA
| | - Jutta Müller
- Immunic AG, Lochhamer Schlag 21, 82166 Gräfelfing, Germany
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Eslami A, Alimoghadam S, Khoshravesh S, Shirani M, Alimoghadam R, Alavi Darazam I. Mpox vaccination and treatment: a systematic review. J Chemother 2024; 36:85-109. [PMID: 38069596 DOI: 10.1080/1120009x.2023.2289270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
The Human monkeypox virus (mpox) belongs to the Poxviridae family, characterized by double-stranded DNA. A 2022 outbreak, notably prevalent among men who have sex with men, was confirmed by the World Health Organization. To understand shifting prevalence patterns and clinical manifestations, we conducted a systematic review of recent animal and human studies. We comprehensively searched PubMed, Scopus, Web of Science, Cochrane Library, and Clinicaltrials.gov, reviewing 69 relevant articles from 4,342 screened records. Our analysis highlights Modified Vaccinia Ankara - Bavarian Nordic (MVA-BN)'s potential, though efficacy concerns exist. Tecovirimat emerged as a prominent antiviral in the recent outbreak. However, limited evidence underscores the imperative for further clinical trials in understanding and managing monkeypox.
Collapse
Affiliation(s)
- Arvin Eslami
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mahsa Shirani
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hwang YH, Byeon Y, Ahn SH, Kim MY, Byun SH, Lee HJ, Suh B, Kim D, Jung EJ, Kim YJ. Live attenuated smallpox vaccine candidate (KVAC103) efficiently induces protective immune responses in mice. Vaccine 2024; 42:1283-1291. [PMID: 38310019 DOI: 10.1016/j.vaccine.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.
Collapse
Affiliation(s)
- Yun-Ho Hwang
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Yeji Byeon
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Sung Hyun Ahn
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Mi-Young Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Sung-Hyun Byun
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Hyoung Jin Lee
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Bohyun Suh
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Eun Ju Jung
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea.
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea.
| |
Collapse
|
5
|
Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, D’Alise AM. Personalized Cancer Vaccines Go Viral: Viral Vectors in the Era of Personalized Immunotherapy of Cancer. Int J Mol Sci 2023; 24:16591. [PMID: 38068911 PMCID: PMC10706435 DOI: 10.3390/ijms242316591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of personalized cancer vaccines is to elicit potent and tumor-specific immune responses against neoantigens specific to each patient and to establish durable immunity, while minimizing the adverse events. Over recent years, there has been a renewed interest in personalized cancer vaccines, primarily due to the advancement of innovative technologies for the identification of neoantigens and novel vaccine delivery platforms. Here, we review the emerging field of personalized cancer vaccination, with a focus on the use of viral vectors as a vaccine platform. The recent advancements in viral vector technology have led to the development of efficient production processes, positioning personalized viral vaccines as one of the preferred technologies. Many clinical trials have shown the feasibility, safety, immunogenicity and, more recently, preliminary evidence of the anti-tumor activity of personalized vaccination, fostering active research in the field, including further clinical trials for different tumor types and in different clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Morena D’Alise
- Nouscom, Via di Castel Romano 100, 00128 Rome, Italy; (L.S.); (G.L.); (V.R.); (L.S.); (G.C.); (E.S.)
| |
Collapse
|
6
|
Jordan E, Kabir G, Schultz S, Silbernagl G, Schmidt D, Jenkins VA, Weidenthaler H, Stroukova D, Martin BK, De Moerlooze L. Reduced Respiratory Syncytial Virus Load, Symptoms, and Infections: A Human Challenge Trial of MVA-BN-RSV Vaccine. J Infect Dis 2023; 228:999-1011. [PMID: 37079393 PMCID: PMC10582911 DOI: 10.1093/infdis/jiad108] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes significant disease burden in older adults. MVA-BN-RSV is a novel poxvirus-vectored vaccine encoding internal and external RSV proteins. METHODS In a phase 2a randomized double-blind, placebo-controlled trial, healthy participants aged 18 to 50 years received MVA-BN-RSV or placebo, then were challenged 4 weeks later with RSV-A Memphis 37b. Viral load was assessed from nasal washes. RSV symptoms were collected. Antibody titers and cellular markers were assessed before and after vaccination and challenge. RESULTS After receiving MVA-BN-RSV or placebo, 31 and 32 participants, respectively, were challenged. Viral load areas under the curve from nasal washes were lower (P = .017) for MVA-BN-RSV (median = 0.00) than placebo (median = 49.05). Total symptom scores also were lower (median = 2.50 and 27.00, respectively; P = .004). Vaccine efficacy against symptomatic, laboratory-confirmed or culture-confirmed infection was 79.3% to 88.5% (P = .022 and .013). Serum immunoglobulin A and G titers increased approximately 4-fold after MVA-BN-RSV vaccination. Interferon-γ-producing cells increased 4- to 6-fold after MVA-BN-RSV in response to stimulation with the encoded RSV internal antigens. Injection site pain occurred more frequently with MVA-BN-RSV. No serious adverse events were attributed to vaccination. CONCLUSIONS MVA-BN-RSV vaccination resulted in lower viral load and symptom scores, fewer confirmed infections, and induced humoral and cellular responses. CLINICAL TRIALS REGISTRATION NCT04752644.
Collapse
|
7
|
Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, Frey TR, Gall JG, Moliva JI, Hunegnaw R, Asthagiri Arunkumar G, Ogega CO, Nasir A, Santos G, Levin RH, Meni A, Jorquera PA, Bennett H, Johnson JA, Durney MA, Stewart-Jones G, Hooper JW, Colpitts TM, Alter G, Sullivan NJ, Carfi A, Moss B. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med 2023; 15:eadg3540. [PMID: 37792954 DOI: 10.1126/scitranslmed.adg3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.
Collapse
Affiliation(s)
| | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | - Jason G Gall
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Juan I Moliva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Ruth Hunegnaw
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702 MD, USA
| | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| |
Collapse
|
8
|
Nave L, Margalit I, Tau N, Cohen I, Yelin D, Lienert F, Yahav D. Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine-A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines (Basel) 2023; 11:1410. [PMID: 37766090 PMCID: PMC10536351 DOI: 10.3390/vaccines11091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Prevention of mpox has become an important public health interest. We aimed to evaluate the safety and immunogenicity of the Modified Vaccinia Ankara (MVA) vaccine. We conducted a systematic review and meta-analysis of randomized-controlled trials (RCTs) comparing MVA versus no intervention, placebo, or another vaccine. Outcomes included safety and immunogenicity outcomes. We also performed a systematic review of RCTs evaluating various MVA regimens. Fifteen publications were included in the quantitative meta-analysis. All but one (ACAM2000) compared MVA with placebo. We found that cardiovascular adverse events following two MVA doses were significantly more common compared to placebo (relative risk [RR] 4.07, 95% confidence interval [CI] 1.10-15.10), though serious adverse events (SAEs) were not significantly different. Following a single MVA dose, no difference was demonstrated in any adverse event outcomes. Seroconversion rates were significantly higher compared with placebo after a single or two doses. None of the RCTs evaluated clinical effectiveness in preventing mpox. This meta-analysis provides reassuring results concerning the immunogenicity and safety of MVA. Further studies are needed to confirm the immunogenicity of a single dose and its clinical effectiveness. A single vaccine dose may be considered according to vaccine availability, with preference for two doses.
Collapse
Affiliation(s)
- Lior Nave
- Internal Medicine E, Sheba Medical Center, Ramat-Gan 52621, Israel; (L.N.)
| | - Ili Margalit
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (I.M.)
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Noam Tau
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (I.M.)
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ido Cohen
- Internal Medicine E, Sheba Medical Center, Ramat-Gan 52621, Israel; (L.N.)
| | - Dana Yelin
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (I.M.)
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan 52621, Israel
| | | | - Dafna Yahav
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (I.M.)
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan 52621, Israel
| |
Collapse
|
9
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
10
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
12
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
13
|
Seclì L, Infante L, Nocchi L, De Lucia M, Cotugno G, Leoni G, Micarelli E, Garzia I, Avalle L, Sdruscia G, Troise F, Allocca S, Romano G, Scarselli E, D'Alise AM. Vector Aided Microenvironment programming (VAMP): reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity. J Immunother Cancer 2023; 11:jitc-2023-006718. [PMID: 37117006 PMCID: PMC10151998 DOI: 10.1136/jitc-2023-006718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) represents a critical hurdle in cancer immunotherapy, given its ability to suppress antitumor immunity. Several efforts are made to overcome this hostile TME with the development of new therapeutic strategies modifying TME to boost antitumor immunity. Among these, cytokine-based approaches have been pursued for their known immunomodulatory effects on different cell populations within the TME. IL-12 is a potent pro-inflammatory cytokine that demonstrates striking immune activation and tumor control but causes severe adverse effects when systemically administered. Thus, local administration is considered a potential strategy to achieve high cytokine concentrations at the tumor site while sparing systemic adverse effects. METHODS Modified Vaccinia Ankara (MVA) vector is a potent inducer of pro-inflammatory response. Here, we cloned IL-12 into the genome of MVA for intratumoral immunotherapy, combining the immunomodulatory properties of both the vector and the cargo. The antitumor activity of MVA-IL-12 and its effect on TME reprogramming were investigated in preclinical tumor models. RNA sequencing (RNA-Seq) analysis was performed to assess changes in the TME in treated and distal tumors and the effect on the intratumoral T-cell receptor repertoire. RESULTS Intratumoral injection of MVA-IL-12 resulted in strong antitumor activity with the complete remission of established tumors in multiple murine models, including those resistant to checkpoint inhibitors. The therapeutic activity of MVA-IL-12 was associated with very low levels of circulating cytokine. Effective TME reprogramming was demonstrated on treatment, with the reduction of immunosuppressive M2 macrophages while increasing pro-inflammatory M1, and recruitment of dendritic cells. TME switch from immunosuppressive into immunostimulatory environment allowed for CD8 T cells priming and expansion leading to tumor attack. CONCLUSIONS Intratumoral administration of MVA-IL-12 turns immunologically 'cold' tumors 'hot' and overcomes resistance to programmed cell death protein-1 blockade.
Collapse
Affiliation(s)
| | - Luigia Infante
- NousCom, Rome, Italy
- University of Rome Tor Vergata, Roma, Lazio, Italy
| | | | | | | | | | | | | | - Lidia Avalle
- Department of Molecular Biotechnology and Health Science, University of Turin, Torino, Piemonte, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Turner Overton E, Schmidt D, Vidojkovic S, Menius E, Nopora K, Maclennan J, Weidenthaler H. A randomized phase 3 trial to assess the immunogenicity and safety of 3 consecutively produced lots of freeze-dried MVA-BN® vaccine in healthy adults. Vaccine 2023; 41:397-406. [PMID: 36460535 PMCID: PMC9707699 DOI: 10.1016/j.vaccine.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Since vaccination remains the only effective protection against orthopox virus-induced diseases such as smallpox or monkeypox, the strategic use and stockpiling of these vaccines remains of significant public health importance. The approved liquid-frozen formulation of Bavarian Nordic's Modified Vaccinia Ankara (MVA-BN) smallpox vaccine has specific cold-chain requirements, while the freeze-dried (FD) formulation of this vaccine provides more flexibility in terms of storage conditions and shelf life. In this randomized phase 3 trial, the immunogenicity and safety of 3 consecutively manufactured lots of the FD MVA-BN vaccine was evaluated. A total of 1129 healthy adults were randomized to 3 treatment groups (lots 1 to 3) and received 2 vaccinations 4 weeks apart. For both neutralizing and total antibodies, a robust increase of geometric mean titer (GMT) was observed across all lot groups 2 weeks following the second vaccination, comparable to published data. For the primary results, the ratios of the neutralizing antibody GMTs between the lot group pairs ranged from 0.936 to 1.115, with confidence ratios well within the pre-specified margin of equivalence. Results for total antibodies were similar. In addition, seroconversion rates were high across the 3 lots, ranging between 99.1 % and 99.7 %. No safety concerns were identified; particularly, no inflammatory cardiac disorders were detected. The most common local solicited adverse events (AEs) reported across lot groups were injection site pain (87.2%) and erythema (73.2%), while the most common general solicited adverse events were myalgia, fatigue, and headache in 40.6% to 45.5% of all participants, with no meaningful differences among the lot groups. No related serious AEs were reported. In conclusion, the data demonstrate consistent and robust immunogenicity and safety results with a freeze-dried formulation of MVA-BN. Clinical Trial Registry Number: NCT03699124.
Collapse
Affiliation(s)
- Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Erika Menius
- Bavarian Nordic Inc., 1005 Slater Road, Suite 101, Durham, NC 27703, United States
| | - Katrin Nopora
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Jane Maclennan
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | |
Collapse
|
15
|
Shafaati M, Zandi M. Human monkeypox (hMPXV) re-emergence: Host immunity status and current vaccines landscape. J Med Virol 2023; 95:e28251. [PMID: 36271768 DOI: 10.1002/jmv.28251] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
Monkeypox virus is a member of the Orthopoxvirus genus and the Poxviridae family. Orthopoxviruses are among the most intricate animal viruses. The pathogenicity of human monkeypox infection has been emphasized in response to its recent emergence in non-endemic countries and the threat of bioterrorism. It is always necessary to take appropriate precautions in exposure to emerging or re-emerging infections. Here, we focus on the current state of the human monkeypox infection outbreak, research & development of immune responses, and clinical interventions to prevent and treat the human monkeypox virus and other human poxviruses.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty of Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
- Occupational Sleep Research, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Priyamvada L, Carson WC, Ortega E, Navarra T, Tran S, Smith TG, Pukuta E, Muyamuna E, Kabamba J, Nguete BU, Likafi T, Kokola G, Lushima RS, Tamfum JJM, Okitolonda EW, Kaba DK, Monroe BP, McCollum AM, Petersen BW, Satheshkumar PS, Townsend MB. Serological responses to the MVA-based JYNNEOS monkeypox vaccine in a cohort of participants from the Democratic Republic of Congo. Vaccine 2022; 40:7321-7327. [PMID: 36344361 PMCID: PMC9635871 DOI: 10.1016/j.vaccine.2022.10.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William C. Carson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eddy Ortega
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terese Navarra
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Tran
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Todd G. Smith
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elisabeth Pukuta
- Institut National pour la Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Elisabeth Muyamuna
- Institut National pour la Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Joelle Kabamba
- Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo
| | - Beatrice U. Nguete
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Toutou Likafi
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Gaston Kokola
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | | | | | - Emile W. Okitolonda
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Didine K. Kaba
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Benjamin P. Monroe
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea M. McCollum
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brett W. Petersen
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Michael B. Townsend
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA,Corresponding author
| |
Collapse
|
18
|
Lvov DK, Alkhovsky SV, Zhirnov OP. [130th anniversary of virology]. Vopr Virusol 2022; 67:357-384. [PMID: 36515283 DOI: 10.36233/0507-4088-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/17/2023]
Abstract
130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.
Collapse
Affiliation(s)
- D K Lvov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - S V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - O P Zhirnov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| |
Collapse
|
19
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Shchelkunov SN, Sergeev AA, Titova KA, Pyankov SA, Starostina E, Borgoyakova MB, Kisakova LA, Kisakov DN, Karpenko LI, Yakubitskiy SN. Comparison of the Effectiveness of Transepidemal and Intradermal Immunization of Mice with the Vacinia Virus. Acta Naturae 2022; 14:111-118. [PMID: 36694907 PMCID: PMC9844093 DOI: 10.32607/actanaturae.11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023] Open
Abstract
The spread of the monkeypox virus infection among humans in many countries outside of Africa, which started in 2022, is now drawing the attention of the medical and scientific communities to the fact that immunization against this infection is sorely needed. According to current guidelines, immunization of people with the first-generation smallpox vaccine based on the vaccinia virus (VACV) LIVP strain, which is licensed in Russia, should be performed via transepidermal inoculation (skin scarification, s.s.). However, the long past experience of using this vaccination technique suggests that it does not ensure virus inoculation into patients' skin with enough reliability. The procedure of intradermal (i.d.) injection of a vaccine can be an alternative to s.s. inoculation. The effectiveness of i.d. vaccination can depend on the virus injection site on the body. Therefore, the aim of this study was to compare the development of the humoral and cellular immune responses in BALB/c mice immunized with the LIVP VACV strain, which was administered either by s.s. inoculation or i.d. injection into the same tail region of the animal. A virus dose of 105 pfu was used in both cases. ELISA of serum samples revealed no significant difference in the dynamics and level of production of VACV-specific IgM and IgG after i.d. or s.s. vaccination. A ELISpot analysis of splenocytes from the vaccinated mice showed that i.d. administration of VACV LIVP to mice induces a significantly greater T-cell immune response compared to s.s. inoculation. In order to assess the protective potency, on day 45 post immunization, mice were intranasally infected with lethal doses of either the cowpox virus (CPXV) or the ectromelia virus (ECTV), which is evolutionarily distant from the VACV and CPXV. Both vaccination techniques ensured complete protection of mice against infection with the CPXV. However, when mice were infected with a highly virulent strain of ECTV, 50% survived in the i.d. immunized group, whereas only 17% survived in the s.s. immunized group. It appears, therefore, that i.d. injection of the VACV can elicit a more potent protective immunity against orthopoxviruses compared to the conventional s.s. technique.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - K. A. Titova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - E.V. Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - M. B. Borgoyakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - L. A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - D. N. Kisakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| |
Collapse
|
21
|
Islam MR, Hossain MJ, Roy A, Hasan AHMN, Rahman MA, Shahriar M, Bhuiyan MA. Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. Health Sci Rep 2022; 5:e798. [PMID: 36032515 PMCID: PMC9399446 DOI: 10.1002/hsr2.798] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023] Open
Abstract
Background and aims There is a sought for vaccines and antiviral agents as countermeasures for the recent monkeypox outbreak. Here, we aimed to review and discuss the repurposing potentials of smallpox vaccines and drugs in monkeypox outbreaks based on their comparative benefits and risks. Therefore, we conducted this rapid review and discussed the repurposing potentials of smallpox vaccines and drugs in monkeypox infection. Methods Here, we searched Google Scholar and PubMed for relevant information and data. We found many articles that have suggested the use of smallpox vaccines and antiviral drugs in monkeypox outbreaks according to the study findings. We read the relevant articles to extract information. Results According to the available documents, we found two replication-competent and one replication-deficient vaccinia vaccines were effective against Orthopoxvirus. However, the healthcare authorities have authorized second-generation live vaccina virus vaccines against Orthopoxvirus in many countries. Smallpox vaccine is almost 85% effective in preventing monkeypox infection as monkeypox virus, variola virus, and vaccinia virus are similar. The United States and Canada have approved a replication-deficient third-generation smallpox vaccine for the prevention of monkeypox infection. However, the widely used second-generation smallpox vaccines contain a live virus and replicate it into the human cell. Therefore, there is a chance to cause virus-induced complications among the vaccinated subjects. In those circumstances, the available Orthopoxvirus inhibitors might be a good choice for treating monkeypox infections as they showed similar efficacy in monkeypox infection in different animal model clinical trials. Also, the combined use of antiviral drugs and vaccinia immune globulin can enhance significant effectiveness in immunocompromised subjects. Conclusion Repurposing of these smallpox vaccines and antiviral agents might be weapons to fight monkeypox infection. Also, we recommend further investigations of smallpox vaccines and Orthopoxvirus inhibitors in a human model study to explore their exact role in human monkeypox infections.
Collapse
Affiliation(s)
| | | | - Arpira Roy
- Department of BiotechnologySharda UniversityGreater NoidaIndia
| | | | - Md. Ashrafur Rahman
- Department of Pharmaceutical SciencesJerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC)AmarilloTexasUSA
| | | | | |
Collapse
|
22
|
Abdelaal A, Reda A, Lashin BI, Katamesh BE, Brakat AM, AL-Manaseer BM, Kaur S, Asija A, Patel NK, Basnyat S, Rabaan AA, Alhumaid S, Albayat H, Aljeldah M, Shammari BRA, Al-Najjar AH, Al-Jassem AK, AlShurbaji ST, Alshahrani FS, Alynbiawi A, Alfaraj ZH, Alfaraj DH, Aldawood AH, Sedhai YR, Mumbo V, Rodriguez-Morales AJ, Sah R. Preventing the Next Pandemic: Is Live Vaccine Efficacious against Monkeypox, or Is There a Need for Killed Virus and mRNA Vaccines? Vaccines (Basel) 2022; 10:1419. [PMID: 36146497 PMCID: PMC9500691 DOI: 10.3390/vaccines10091419] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The monkeypox virus (MPV) is a double-stranded DNA virus belonging to the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. It was called monkeypox because it was first discovered in monkeys, in a Danish laboratory, in 1958. However, the actual reservoir for MPV is still unknown. (2) Methods and Results: We have reviewed the existing literature on the options for Monkeypox virus. There are three available vaccines for orthopoxviruses-ACAM2000, JYNNEOS, and LC16-with the first being a replicating vaccine and the latter being non- or minimally replicating. (3) Conclusions: Smallpox vaccinations previously provided coincidental immunity to MPV. ACAM2000 (a live-attenuated replicating vaccine) and JYNNEOS (a live-attenuated, nonreplicating vaccine) are two US FDA-approved vaccines that can prevent monkeypox. However, ACAM2000 may cause serious side effects, including cardiac problems, whereas JYNNEOS is associated with fewer complications. The recent outbreaks across the globe have once again highlighted the need for constant monitoring and the development of novel prophylactic and therapeutic modalities. Based on available data, there is still a need to develop an effective and safe new generation of vaccines specific for monkeypox that are killed or developed into a mRNA vaccine before monkeypox is declared a pandemic.
Collapse
Affiliation(s)
- Abdelaziz Abdelaal
- Postgraduate Medical Education, Harvard Medical School, Boston, MA 02115, USA
- School of Medicine, Boston University, Boston, MA 02118, USA
- Tanta Research Team, Tanta 31527, Egypt
- Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | | | - Basant E. Katamesh
- Tanta Research Team, Tanta 31527, Egypt
- Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Aml M. Brakat
- Faculty of Medicine, Zagazig University, Ash Sharqia Governorate, Zagazig 44519, Egypt
| | - Balqees Mahmoud AL-Manaseer
- Jordan University Hospital, Amman 11942, Jordan
- School of Medicine, University of Jordan, Amman 11733, Jordan
| | - Sayanika Kaur
- Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Ankush Asija
- Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Nimesh K. Patel
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Soney Basnyat
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 11564, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11564, Saudi Arabia
| | - Ahmed K. Al-Jassem
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11564, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Zainab H. Alfaraj
- Department of Nursing, Maternity and Children Hospital, Dammam 31176, Saudi Arabia
| | - Duaa H. Alfaraj
- Department of Nursing, Maternity and Children Hospital, Dammam 31176, Saudi Arabia
| | - Ahmed H. Aldawood
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Yub Raj Sedhai
- Division of Pulmonary Diseases and Critical Care Medicine, University of Kentucky, Bowling Green, KY 40292, USA
| | - Victoria Mumbo
- Coast General Teaching and Referral Hospital, Mombasa P.O. Box 90231-80100, Kenya
| | - Alfonso J. Rodriguez-Morales
- Latin American Network on Monkeypox Virus Research (LAMOVI), Pereira 66001, Colombia
- Institución Universitaria Visión de las Américas, Pereira 12998, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónomade las Américas, Pereira 66003, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima 4861, Peru
| | - Ranjit Sah
- Postgraduate Medical Education, Harvard Medical School, Boston, MA 02115, USA
- Latin American Network on Monkeypox Virus Research (LAMOVI), Pereira 66001, Colombia
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| |
Collapse
|
23
|
Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H, Mehta R, Rabaan AA, Alhumaid S, Alfouzan WA, Alomar AI, Khamis F, Alofi FS, Aljohani MH, Alfaraj AH, Alfaresi M, Al-Jishi JM, Alsalman J, Alynbiawi A, Almogbel MS, Rodriguez-Morales AJ. Monkeypox and Its Possible Sexual Transmission: Where Are We Now with Its Evidence? Pathogens 2022; 11:924. [PMID: 36015044 PMCID: PMC9414346 DOI: 10.3390/pathogens11080924] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been identified in 89 countries. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores on the hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more likely to be infected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of cases. Moreover, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard.
Collapse
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Harvard Medical School, Boston, MA 02115, USA
| | - Abdelaziz Abdelaal
- Harvard Medical School, Boston, MA 02115, USA
- School of Medicine, Boston University, Boston, MA 02118, USA
- Tanta Research Team, Tanta 31527, Egypt
- MBBCh, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Basant E. Katamesh
- Tanta Research Team, Tanta 31527, Egypt
- MBBCh, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali 3286, Rwanda
| | - Hanaa Abdelmonem
- MBBCh, Faculty of Medicine Fayoum University, Fayoum 63514, Egypt
| | - Rachana Mehta
- National Public Health Laboratory, Kathmandu 44600, Nepal
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Amer I. Alomar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Maha H. Aljohani
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain P.O. Box 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira 660003, Risaralda, Colombia
- Institucion Universitaria Vision de las Americas, Pereira 12998, Risaralda, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima 15024, Peru
| |
Collapse
|
24
|
Parker S, D'Angelo J, Buller RM, Smee DF, Lantto J, Nielsen H, Jensen A, Prichard M, George SL. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge. Antiviral Res 2021; 195:105179. [PMID: 34530009 PMCID: PMC9628779 DOI: 10.1016/j.antiviral.2021.105179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Orthopoxviruses such as variola and monkeypox viruses continue to threaten the human population. Monkeypox virus is endemic in central and western Africa and outbreaks have reached as far as the U.S. Although variola virus, the etiologic agent of smallpox, has been eradicated by a successful vaccination program, official and likely clandestine stocks of the virus exist. Moreover, studies with ectromelia virus (the etiological agent of mousepox) have revealed that IL-4 recombinant viruses are significantly more virulent than wild-type viruses even in mice treated with vaccines and/or antivirals. For these reasons, it is critical that antiviral modalities are developed to treat these viruses should outbreaks, or deliberate dissemination, occur. Currently, 2 antivirals (brincidofovir and tecovirimat) are in the U.S. stockpile allowing for emergency use of the drugs to treat smallpox. Both antivirals have advantages and disadvantages in a clinical and emergency setting. Here we report on the efficacy of a recombinant immunoglobulin (rVIG) that demonstrated efficacy against several orthopoxviruses in vitro and in vivo in both a prophylactic and therapeutic fashion. A single intraperitoneal injection of rVIG significantly protected mice when given up to 14 days before or as late as 6 days post challenge. Moreover, rVIG reduced morbidity, as measured by weight-change, as well as several previously established biomarkers of disease. In rVIG treated mice, we found that vDNA levels in blood were significantly reduced, as was ALT (a marker of liver damage) and infectious virus levels in the liver. No apparent adverse events were observed in rVIG treated mice, suggesting the immunoglobulin is well tolerated. These findings suggest that recombinant immunoglobulins could be candidates for further evaluation and possible licensure under the FDA Animal Rule.
Collapse
Affiliation(s)
- Scott Parker
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - June D'Angelo
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - R Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, 63104, USA
| | - Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Johan Lantto
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | | | - Allan Jensen
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | - Mark Prichard
- Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Sarah L George
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA.
| |
Collapse
|
25
|
Wang W, Liu S, Dai P, Yang N, Wang Y, Giese RA, Merghoub T, Wolchok J, Deng L. Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat-inactivated vaccinia. J Immunother Cancer 2021; 9:jitc-2021-002569. [PMID: 34593618 PMCID: PMC8487208 DOI: 10.1136/jitc-2021-002569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background Viral-based immunotherapy can overcome resistance to immune checkpoint blockade (ICB) and fill the unmet needs of many patients with cancer. Oncolytic viruses (OVs) are defined as engineered or naturally occurring viruses that selectively replicate in and kill cancer cells. OVs also induce antitumor immunity. The purpose of this study was to compare the antitumor effects of live oncolytic vaccinia viruses versus the inactivated versions and elucidate their underlying immunological mechanisms. Methods We engineered a replication-competent, oncolytic vaccinia virus (OV-GM) by inserting a murine GM-CSF gene into the thymidine kinase locus of a mutant vaccinia E3L∆83N, which lacks the Z-DNA-binding domain of vaccinia virulence factor E3. We compared the antitumor effects of intratumoral (IT) delivery of live OV-GM versus heat-inactivated OV-GM (heat-iOV-GM) in a murine B16-F10 melanoma bilateral implantation model. We also generated vvDD, a well-studied oncolytic vaccinia virus, and compared the antitumor effects of live vvDD vs heat-inactivated vvDD (heat-ivvDD) in a murine A20 B-cell lymphoma bilateral tumor implantation model. Results Heat-iOV-GM infection of dendritic cells (DCs) and tumor cells in vitro induced type I interferon and proinflammatory cytokines and chemokines, whereas live OV-GM did not. IT live OV-GM was less effective in generating systemic antitumor immunity compared with heat-iOV-GM. Similar to heat-iOV-GM, the antitumor effects of live OV-GM also require Batf3-dependent CD103+ dendritic cells. When combined with systemic delivery of ICB, IT heat-iOV-GM was more effective in eradicating tumors, compared with live OV-GM. IT heat-ivvDD was also more effective in treating murine A20 B-cell lymphoma, compared with live vvDD. Conclusions Tumor lysis induced by the replication of oncolytic vaccinia virus has a limited effect on the generation of systemic antitumor immunity. The activation of Batf3-dependent CD103+ DCs is critical for antitumor effects induced by both live OV-GM and heat-iOV-GM, with the latter being more potent than live OV-GM in inducing innate and adaptive immunity in both locally injected and distant, non-injected tumors. We propose that evaluations of both innate and adaptive immunity, induced by IT oncolytic viral immunotherapy at injected and non-injected tumors, should be included as potential biomarkers for host responses to viral therapy.
Collapse
Affiliation(s)
- Weiyi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shuaitong Liu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel A Giese
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Taha Merghoub
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jedd Wolchok
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
26
|
Volkmann A, Williamson AL, Weidenthaler H, Meyer TPH, Robertson JS, Excler JL, Condit RC, Evans E, Smith ER, Kim D, Chen RT. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39:3067-3080. [PMID: 33077299 PMCID: PMC7568176 DOI: 10.1016/j.vaccine.2020.08.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara (MVA) vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebolavirus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence to replicate in human cells. MVA has six major deletions and other mutations of genes outside these deletions, which all contribute to the replication deficiency in human and other mammalian cells. Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines. MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vaccinees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has undergone clinical testing including Phase III in West Africa and is currently in use in large scale vaccination studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to provide solutions to prevent disease from high-consequence human pathogens.
Collapse
Affiliation(s)
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine at the University of Cape Town, South Africa
| | | | | | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric Evans
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
27
|
Cook IF. Subcutaneous vaccine administration - an outmoded practice. Hum Vaccin Immunother 2021; 17:1329-1341. [PMID: 32991241 PMCID: PMC8086591 DOI: 10.1080/21645515.2020.1814094] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Subcutaneous vaccine (SC) administration is an outmoded practice which complicates vaccine administration recommendations. Local adverse events following immunization (AEFIs) are a recognized determinant of vaccine hesitancy/refusal which can lead to an increased prevalence of vaccine-preventable disease.This extensive narrative review provides high-grade evidence that intramuscular (IM) administration of all vaccine types [adjuvanted, live virus and non-adjuvanted (inactivated whole cell, split cell and subunit)] significantly reduces the likelihood of local adverse events. This, combined with moderate grade evidence that IM injection generates significantly greater immune response compared with SC injection, allows a strong recommendation to be made for the IM injection of all vaccines except BCG and Rotavirus.This will simplify vaccination practice, minimize the inadvertent misadministration of vaccines and potentially improve public trust in vaccination.
Collapse
Affiliation(s)
- Ian F. Cook
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
28
|
Myopericarditis Associated With Smallpox Vaccination Among US Army Personnel - Fort Hood, Texas, 2018. Disaster Med Public Health Prep 2021; 16:1022-1028. [PMID: 33719991 DOI: 10.1017/dmp.2020.478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In March 2018, the US Department of Defense (DOD) added the smallpox vaccination, using ACAM2000, to its routine immunizations, increasing the number of persons receiving the vaccine. The following month, Fort Hood reported a cluster of 5 myopericarditis cases. The Centers for Disease Control and Prevention and the DOD launched an investigation. METHODS The investigation consisted of a review of medical records, establishment of case definitions, causality assessment, patient interviews, and active surveillance. A 2-sided exact rate ratio test was used to compare myopericarditis incidence rates. RESULTS This investigation identified 4 cases of probable myopericarditis and 1 case of suspected myopericarditis. No alternative etiology was identified as a cause. No additional cases were identified. There was no statistically significant difference in incidence rates between the observed cluster (5.23 per 1000 vaccinated individuals, 95% CI: 1.7-12.2) and the ACAM2000 clinical trial outcomes for symptomatic persons, which was 2.29 per 1000 vaccinated individuals (95% CI: 0.3-8.3). CONCLUSIONS Vaccination with ACAM2000 is the presumptive cause of this cluster. Caution should be exercised before considering vaccination campaigns for smallpox given the clinical morbidity and costs incurred by a case of myopericarditis. Risk of myopericarditis should be carefully weighed with risk of exposure to smallpox.
Collapse
|
29
|
Henning L, Endt K, Steigerwald R, Anderson M, Volkmann A. A Monovalent and Trivalent MVA-Based Vaccine Completely Protects Mice Against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenge. Front Immunol 2021; 11:598847. [PMID: 33542715 PMCID: PMC7851092 DOI: 10.3389/fimmu.2020.598847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | | | | |
Collapse
|
30
|
Lu Y, Zhang L. DNA-Sensing Antiviral Innate Immunity in Poxvirus Infection. Front Immunol 2020; 11:1637. [PMID: 32983084 PMCID: PMC7483915 DOI: 10.3389/fimmu.2020.01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
As pattern recognition receptors, cytosolic DNA sensors quickly induce an effective innate immune response. Poxvirus, a large DNA virus, is capable of evading the host antiviral innate immune response. In this review, we summarize the latest studies on how poxvirus is sensed by the host innate immune system and how poxvirus-encoded proteins antagonize DNA sensors. A comprehensive understanding of the interplay between poxvirus and DNA-sensing antiviral immune responses of the host will contribute to the development of new antiviral therapies and vaccines in the future.
Collapse
Affiliation(s)
- Yue Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Leiliang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China.,Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Overton ET, Lawrence SJ, Stapleton JT, Weidenthaler H, Schmidt D, Koenen B, Silbernagl G, Nopora K, Chaplin P. A randomized phase II trial to compare safety and immunogenicity of the MVA-BN smallpox vaccine at various doses in adults with a history of AIDS. Vaccine 2020; 38:2600-2607. [PMID: 32057574 DOI: 10.1016/j.vaccine.2020.01.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023]
Abstract
Traditional replicating smallpox vaccines are associated with serious safety concerns in the general population and are contraindicated in immunocompromised individuals. However, this very population remains at greatest risk for severe complications following viral infections, making vaccine prevention particularly relevant. MVA-BN was developed as a non-replicating smallpox vaccine that is potentially safer for people who are immunocompromised. In this phase II trial, 3 MVA-BN dosing regimens were evaluated for safety, tolerability, and immunogenicity in persons with HIV (PWH) who had a history of AIDS. Following randomization, 87 participants who were predominately male and African American received either 2 standard doses on weeks 0 and 4 in the standard dose (SD) group (N = 27), 2 double-standard doses on the same schedule in the double dose (DD) group (N = 29), or 3 standard doses on weeks 0, 4 and 12 in the booster dose (BD) group (N = 31). No safety concerns were identified, and injection site pain was the most commonly reported solicited adverse event (AE) in all groups (66.7%), with no meaningful differences between groups. The incidence of severe (Grade 3) AEs was low across groups and no serious AEs or AEs of special interest considered related to study vaccine were reported. Doubling the standard MVA-BN dose had no significant effect on induction of neutralizing antibodies, with 100% seroconversion and comparable GMTs at week 6 in the SD and DD groups (78.9 and 100.3, respectively). A booster dose significantly increased peak neutralizing titers in the BD group (GMT: 281.1), which remained elevated at 12 months (GMT: 45.3) compared to the SD (GMT: 6.2) and DD (GMT: 10.6) groups. However, based on the immune response previously reported for healthy participants, a third dose (booster) does not appear necessary, even for immunocompromised participants. Clinical Trial Registry Number: NCT02038881.
Collapse
Affiliation(s)
- Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven J Lawrence
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jack T Stapleton
- Division of Infectious Diseases, Departments of Internal Medicine, Microbiology & Immunology, University of Iowa Carver College of Medicine and Iowa City Veterans Administration Healthcare, Iowa City, IA, USA
| | | | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Brigitte Koenen
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Günter Silbernagl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Katrin Nopora
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Paul Chaplin
- Bavarian Nordic A/S, Hejreskovvej 10A, DK-3490 Kvistgård, Denmark
| |
Collapse
|
32
|
Petersen BW, Kabamba J, McCollum AM, Lushima RS, Wemakoy EO, Muyembe Tamfum JJ, Nguete B, Hughes CM, Monroe BP, Reynolds MG. Vaccinating against monkeypox in the Democratic Republic of the Congo. Antiviral Res 2019; 162:171-177. [PMID: 30445121 PMCID: PMC6438175 DOI: 10.1016/j.antiviral.2018.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
Healthcare-associated transmission of monkeypox has been observed on multiple occasions in areas where the disease is endemic. Data collected by the US Centers for Disease Control and Prevention (CDC) from an ongoing CDC-supported program of enhanced surveillance in the Tshuapa Province of the Democratic Republic of the Congo, where the annual incidence of human monkeypox is estimated to be 3.5-5/10,000, suggests that there is approximately one healthcare worker infection for every 100 confirmed monkeypox cases. Herein, we describe a study that commenced in February 2017, the intent of which is to evaluate the effectiveness, immunogenicity, and safety of a third-generation smallpox vaccine, IMVAMUNE®, in healthcare personnel at risk of monkeypox virus (MPXV) infection. We describe procedures for documenting exposures to monkeypox virus infection in study participants, and outline lessons learned that may be of relevance for studies of other investigational medical countermeasures in hard to reach, under-resourced populations.
Collapse
Affiliation(s)
| | - Joelle Kabamba
- U.S. Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo
| | | | - Robert Shongo Lushima
- Hemorrhagic Fever and Monkeypox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | | | | | - Beatrice Nguete
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | | | | | - Mary G Reynolds
- U.S. Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
33
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
34
|
Vaughan A, Aarons E, Astbury J, Balasegaram S, Beadsworth M, Beck CR, Chand M, O'Connor C, Dunning J, Ghebrehewet S, Harper N, Howlett-Shipley R, Ihekweazu C, Jacobs M, Kaindama L, Katwa P, Khoo S, Lamb L, Mawdsley S, Morgan D, Palmer R, Phin N, Russell K, Said B, Simpson A, Vivancos R, Wade M, Walsh A, Wilburn J. Two cases of monkeypox imported to the United Kingdom, September 2018. Euro Surveill 2018; 23:1800509. [PMID: 30255836 PMCID: PMC6157091 DOI: 10.2807/1560-7917.es.2018.23.38.1800509] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/26/2022] Open
Abstract
In early September 2018, two cases of monkeypox were reported in the United Kingdom (UK), diagnosed on 7 September in Cornwall (South West England) and 11 September in Blackpool (North West England). The cases were epidemiologically unconnected and had recently travelled to the UK from Nigeria, where monkeypox is currently circulating. We describe the epidemiology and the public health response for the first diagnosed cases outside the African continent since 2003.
Collapse
Affiliation(s)
- Aisling Vaughan
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Emma Aarons
- Rare and Imported Pathogens Laboratory, Public Health England, Porton, Salisbury, United Kingdom
| | - John Astbury
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Sooria Balasegaram
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Mike Beadsworth
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom, Liverpool, United Kingdom
| | - Charles R Beck
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Meera Chand
- National Infection Service, Public Health England, Colindale, London, United Kingdom
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Catherine O'Connor
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Jake Dunning
- National Infection Service, Public Health England, Colindale, London, United Kingdom
- Department of Infection, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sam Ghebrehewet
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Nick Harper
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, United Kingdom
| | | | | | - Michael Jacobs
- Department of Infection, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Lukeki Kaindama
- Travel and Migrant Health Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Parisha Katwa
- Travel and Migrant Health Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Saye Khoo
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom, Liverpool, United Kingdom
| | - Lucy Lamb
- Defence Medical Services, Ministry of Defence (MOD), United Kingdom
- Department of Infection, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sharon Mawdsley
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, United Kingdom
| | - Dilys Morgan
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Ruth Palmer
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, United Kingdom
| | - Nick Phin
- National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Katherine Russell
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Bengü Said
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Andrew Simpson
- Rare and Imported Pathogens Laboratory, Public Health England, Porton, Salisbury, United Kingdom
| | - Roberto Vivancos
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Michael Wade
- Field Service, National Infection Service, Public Health England, United Kingdom
| | - Amanda Walsh
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Jennifer Wilburn
- Emerging Infections and Zoonoses Section, National Infection Service, Public Health England, Colindale, London, United Kingdom
| |
Collapse
|
35
|
Hu WG, Steigerwald R, Kalla M, Volkmann A, Noll D, Nagata LP. Protective efficacy of monovalent and trivalent recombinant MVA-based vaccines against three encephalitic alphaviruses. Vaccine 2018; 36:5194-5203. [DOI: 10.1016/j.vaccine.2018.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
36
|
Nagata LP, Irwin CR, Hu WG, Evans DH. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol Genet Eng Rev 2018; 34:107-121. [PMID: 29779454 PMCID: PMC9491131 DOI: 10.1080/02648725.2018.1471643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have seen a rash of emerging viral diseases, including the Ebola crisis in West Africa, the pandemic spread of chikungunya, and the recent explosion of Zika in South America. Vaccination is the most reliable and cost-effective method of control of infectious diseases, however, there is often a long delay in production and approval in getting new vaccines to market. Vaccinia was the first vaccine developed for the successful eradication of smallpox and has properties that make it attractive as a universal vaccine vector. Vaccinia can cause severe complications, particularly in immune suppressed recipients that would limit its utility, but nonreplicating and attenuated strains have been developed. Modified vaccinia Ankara is nonreplicating in human cells and can be safely given to immune suppressed individuals. Vaccinia has recently been modified for use as an oncolytic treatment for cancer therapy. These new vaccinia vectors are replicating; but have been attenuated and could prove useful as a universal vaccine carrier as many of these are in clinical trials for cancer therapy. This article reviews the development of a universal vaccinia vaccine platform for emerging diseases or biothreat agents, based on nonreplicating or live attenuated vaccinia viruses.
Collapse
Affiliation(s)
- Les P Nagata
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada.,b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Chad R Irwin
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Wei-Gang Hu
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada
| | - David H Evans
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| |
Collapse
|
37
|
Overton ET, Lawrence SJ, Wagner E, Nopora K, Rösch S, Young P, Schmidt D, Kreusel C, De Carli S, Meyer TP, Weidenthaler H, Samy N, Chaplin P. Immunogenicity and safety of three consecutive production lots of the non replicating smallpox vaccine MVA: A randomised, double blind, placebo controlled phase III trial. PLoS One 2018; 13:e0195897. [PMID: 29652929 PMCID: PMC5898760 DOI: 10.1371/journal.pone.0195897] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background Modified Vaccinia Ankara (MVA) is a live, viral vaccine under advanced development as a non-replicating smallpox vaccine. A randomised, double-blind, placebo-controlled phase III clinical trial was conducted to demonstrate the humoral immunogenic equivalence of three consecutively manufactured MVA production lots, and to confirm the safety and tolerability of MVA focusing on cardiac readouts. Methods The trial was conducted at 34 sites in the US. Vaccinia-naïve adults aged 18-40 years were randomly allocated to one of four groups using a 1:1:1:1 randomization scheme. Subjects received either two MVA injections from three consecutive lots (Groups 1-3), or two placebo injections (Group 4), four weeks apart. Everyone except personnel involved in vaccine handling and administration was blinded to treatment. Safety assessment focused on cardiac monitoring throughout the trial. Vaccinia-specific antibody titers were measured using a Plaque Reduction Neutralization Test (PRNT) and an Enzyme-Linked Immunosorbent Assay (ELISA). The primary immunogenicity endpoint was Geometric Mean Titers (GMTs) after two MVA vaccinations measured by PRNT at trial visit 4. This trial is registered with ClinicalTrials.gov, number NCT01144637. Results Between March 2013 and May 2014, 4005 subjects were enrolled and received at least one injection of MVA (n = 3003) or placebo (n = 1002). The three MVA lots induced equivalent antibody titers two weeks after the second vaccination, with seroconversion rates of 99·8% (PRNT) and 99·7% (ELISA). Overall, 180 (6·0%) subjects receiving MVA and 29 (2·9%) subjects in the placebo group reported at least one unsolicited Adverse Event (AE) that was considered trial-related. Vaccination was well tolerated without significant safety concerns, particularly regarding cardiac assessment. Conclusions The neutralizing and total antibody titers induced by each of the three lots were equivalent. No significant safety concerns emerged in this healthy trial population, especially regarding cardiac safety, thus confirming the excellent safety and tolerability profile of MVA. Trial registration ClinicalTrials.gov NCT01144637
Collapse
Affiliation(s)
- Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Steven J. Lawrence
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eva Wagner
- Bavarian Nordic GmbH, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bathke B, Pätzold J, Kassub R, Giessel R, Lämmermann K, Hinterberger M, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice. Immunology 2018; 154:285-297. [PMID: 29281850 PMCID: PMC5980220 DOI: 10.1111/imm.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Suter
- Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Dai P, Wang W, Yang N, Serna-Tamayo C, Ricca JM, Zamarin D, Shuman S, Merghoub T, Wolchok JD, Deng L. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci Immunol 2017; 2:2/11/eaal1713. [PMID: 28763795 DOI: 10.1126/sciimmunol.aal1713] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Advanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents. We show that infection of conventional dendritic cells (DCs) with heat- or ultraviolet-inactivated MVA leads to higher levels of interferon induction than MVA alone through the cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING cytosolic DNA-sensing pathway. Intratumoral injection of inactivated MVA (iMVA) was effective and generated adaptive antitumor immunity in murine melanoma and colon cancer models. iMVA-induced antitumor therapy was less effective in STING- or Batf3-deficient mice than in wild-type mice, indicating that both cytosolic DNA sensing and Batf3-dependent CD103+/CD8α+ DCs are essential for iMVA immunotherapy. The combination of intratumoral delivery of iMVA and systemic delivery of immune checkpoint blockade generated synergistic antitumor effects in bilateral tumor implantation models as well as in a unilateral large established tumor model. Our results suggest that inactivated vaccinia virus could be used as an immunotherapeutic agent for human cancers.
Collapse
Affiliation(s)
- Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiyi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cristian Serna-Tamayo
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jacob M Ricca
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical and Graduate Colleges, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical and Graduate Colleges, New York, NY 10065, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Weill Cornell Medical and Graduate Colleges, New York, NY 10065, USA
| |
Collapse
|
40
|
Jackson LA, Frey SE, El Sahly HM, Mulligan MJ, Winokur PL, Kotloff KL, Campbell JD, Atmar RL, Graham I, Anderson EJ, Anderson EL, Patel SM, Fields C, Keitel W, Rouphael N, Hill H, Goll JB. Safety and immunogenicity of a modified vaccinia Ankara vaccine using three immunization schedules and two modes of delivery: A randomized clinical non-inferiority trial. Vaccine 2017; 35:1675-1682. [PMID: 28256358 DOI: 10.1016/j.vaccine.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION To guide the use of modified vaccinia Ankara (MVA) vaccine in response to a release of smallpox virus, the immunogenicity and safety of shorter vaccination intervals, and administration by jet injector (JI), were compared to the standard schedule of administration on Days 1 and 29 by syringe and needle (S&N). METHODS Healthy adults 18-40years of age were randomly assigned to receive MVA vaccine subcutaneously by S&N on Days 1 and 29 (standard), Days 1 and 15, or Days 1 and 22, or to receive the vaccine subcutaneously by JI on Days 1 and 29. Blood was collected at four time points after the second vaccination for plaque reduction neutralization test (PRNT) (primary endpoint) and ELISA (secondary endpoint) antibody assays. For each subject, the peak PRNT (or ELISA) titer was defined by the highest PRNT (or ELISA) titer among all available measurements post second vaccination. Non-inferiority of a non-standard arm compared to the standard arm was met if the upper limit of the 98.33% confidence interval of the difference in the mean log2 peak titers between the standard and non-standard arm was less than 1. RESULTS Non-inferiority of the PRNT antibody response was not established for any of the three non-standard study arms. Non-inferiority of the ELISA antibody response was established for the Day 1 and 22 compressed schedule and for administration by JI. Solicited local reactions, such as redness and swelling, tended to be more commonly reported with JI administration. Four post-vaccination hypersensitivity reactions were observed. CONCLUSIONS Evaluations of the primary endpoint of PRNT antibody responses do not support alternative strategies of administering MVA vaccine by S&N on compressed schedules or administration by JI on the standard schedule. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01827371.
Collapse
Affiliation(s)
- Lisa A Jackson
- Group Health Research Institute, Seattle, WA, United States.
| | - Sharon E Frey
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Hana M El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Patricia L Winokur
- University of Iowa and Iowa City VA Medical Center, Iowa City, IA, United States
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James D Campbell
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Irene Graham
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Edwin L Anderson
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Shital M Patel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Colin Fields
- Group Health Research Institute, Seattle, WA, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
41
|
Short-term clinical safety profile of brincidofovir: A favorable benefit-risk proposition in the treatment of smallpox. Antiviral Res 2017; 143:269-277. [PMID: 28093339 DOI: 10.1016/j.antiviral.2017.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Brincidofovir (BCV, CMX001) is an orally available, long-acting, broad-spectrum antiviral that has been evaluated in healthy subjects in Phase I studies and in hematopoietic cell transplant recipients and other immunocompromised patients in Phase II/III clinical trials for the prevention and treatment of cytomegalovirus and adenovirus infections. BCV has also shown in vitro activity against orthopoxviruses such as variola (smallpox) virus, and is under advanced development as a treatment for smallpox under the US FDA's 'Animal Rule'. The anticipated treatment regimen for smallpox is a total weekly dose of 200 mg administered orally for 3 consecutive weeks. To assess the benefit-to-risk profile of BCV for the treatment of smallpox, we evaluated short-term safety data associated with comparable doses from Phase I studies and from adult and pediatric subjects in the cytomegalovirus and adenovirus clinical programs. When administered at doses and durations similar to that proposed for the treatment of smallpox, BCV was generally well tolerated in both adults and pediatric subjects. The most common adverse events were mild gastrointestinal events and asymptomatic, transient, and reversible elevations in serum transaminases. The data presented herein indicate a favorable safety profile for BCV for the treatment of smallpox, and support its continued development for this indication.
Collapse
|
42
|
Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:648-51. [PMID: 27146001 DOI: 10.1128/cvi.00216-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 02/08/2023]
Abstract
Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination.
Collapse
|
43
|
Tree JA, Hall G, Rees P, Vipond J, Funnell SGP, Roberts AD. Repeated high-dose (5 × 10(8) TCID50) toxicity study of a third generation smallpox vaccine (IMVAMUNE) in New Zealand white rabbits. Hum Vaccin Immunother 2016; 12:1795-801. [PMID: 26836234 PMCID: PMC4964806 DOI: 10.1080/21645515.2015.1134070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 11/04/2022] Open
Abstract
Concern over the release of variola virus as an agent of bioterrorism remains high and a rapid vaccination regimen is desirable for use in the event of a confirmed release of virus. A single, high-dose (5×10(8) TCID50) of Bavarian Nordic's IMVAMUNE was tested in a Phase-II clinical trial, in humans, as a substitute for the standard (1×10(8) TCID50), using a 2-dose, 28-days apart regimen. Prior to this clinical trial taking place a Good Laboratory Practice, repeated high-dose, toxicology study was performed using IMVAMUNE, in New Zealand white rabbits and the results are reported here. Male and female rabbits were dosed twice, subcutaneously, with 5×10(8) TCID50 of IMVAMUNE (test) or saline (control), 7-days apart. The clinical condition, body-weight, food consumption, haematology, blood chemistry, immunogenicity, organ-weight, and macroscopic and microscopic pathology were investigated. Haematological investigations indicated changes within the white blood cell profile that were attributed to treatment with IMVAMUNE; these comprised slight increases in neutrophil and monocyte numbers, on study days 1-3 and a marginal increase in lymphocyte numbers on day 10. Macroscopic pathology revealed reddening at the sites of administration and thickened skin in IMVAMUNE, treated animals. After the second dose of IMVAMUNE 9/10 rabbits seroconverted, as detected by antibody ELISA on day 10, by day 21, 10/10 rabbits seroconverted. Treatment-related changes were not detected in other parameters. In conclusion, the subcutaneous injection of 2 high-doses of IMVAMUNE, to rabbits, was well tolerated producing only minor changes at the site of administration. Vaccinia-specific antibodies were raised in IMVAMUNE-vaccinated rabbits only.
Collapse
Affiliation(s)
- Julia A. Tree
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Peter Rees
- Envigo CRS Limited, Occold, Eye, Suffolk, UK
| | - Julia Vipond
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Simon G. P. Funnell
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Allen D. Roberts
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| |
Collapse
|
44
|
Darsow U, Sbornik M, Rombold S, Katzer K, von Sonnenburg F, Behrendt H, Ring J. Long-term safety of replication-defective smallpox vaccine (MVA-BN) in atopic eczema and allergic rhinitis. J Eur Acad Dermatol Venereol 2016; 30:1971-1977. [PMID: 27357167 DOI: 10.1111/jdv.13797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Availability of a safe smallpox vaccine may be necessary under certain circumstances. Use of the old life virus vaccine was associated with serious adverse events, particularly in the setting of atopic eczema (AE) and immunodeficiency. Modified virus Ankara (MVA)-BN, a highly attenuated strain of vaccinia virus, was developed for vaccination with improved safety profile. METHODS A phase 1 study was conducted in 60 subjects without history of smallpox vaccination to gain experience with smallpox vaccination using this strain in healthy and atopic subjects. Healthy subjects, subjects with a history of AE, subjects with mild active AE and subjects with mild allergic rhinitis without AE were equally allocated into four groups. MVA-BN was injected s.c. in a dose of 108 TCID50 twice in a 4-week interval. RESULTS No serious or unexpected adverse reactions were reported. All subjects experienced mild to moderate pain and redness at the injection site. Dermatologic examinations did not reveal any unfavourable reactions to the study medication, particularly no sign or exacerbation of eczema for as long as 196 days. All subjects seroconverted after two vaccinations and no significant difference in antibody titres between the four different groups was observed. CONCLUSIONS A good safety profile of the MVA-BN vaccine was shown. The absence of adverse events in subjects with atopic disorders appears promising for the development of a safe smallpox vaccine for patients with AE or other atopic diseases.
Collapse
Affiliation(s)
- U Darsow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany.
| | - M Sbornik
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany
| | - S Rombold
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany
| | - K Katzer
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany
| | - F von Sonnenburg
- Department of Infectious Diseases and Tropical Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - H Behrendt
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany
| | - J Ring
- Department of Dermatology and Allergy Biederstein, Technical University of Munich (TUM) and ZAUM - Center of Allergy and Environment, Munich, Germany
| |
Collapse
|
45
|
Greenberg RN, Hay CM, Stapleton JT, Marbury TC, Wagner E, Kreitmeir E, Röesch S, von Krempelhuber A, Young P, Nichols R, Meyer TP, Schmidt D, Weigl J, Virgin G, Arndtz-Wiedemann N, Chaplin P. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects. PLoS One 2016; 11:e0157335. [PMID: 27327616 PMCID: PMC4915701 DOI: 10.1371/journal.pone.0157335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/27/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56-80 years old population. METHODS MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56-80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. RESULTS Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after the final vaccination for Group MM were 804.1 and 605.8 for Group PM (with ratio of GMTs of 1.33 with 95% CI of [0.96, 1.84]). Similarly, GMTs measured by PRNT were 210.3 for Group MM and 126.7 for Group PM (with ratio 1.66 and 95% CI [0.95, 2.90]). CONCLUSIONS One or two doses of MVA were safe and immunogenic in a 56-80 years old vaccinia-experienced population. No cases of myopericarditis were observed following vaccinations with MVA. The safety, reactogenicity and immunogenicity were similar to that seen in younger (18-55 year old) healthy populations as investigated in other MVA trials. The results suggest that a single dose of MVA in a 56-80 years old population was well tolerated and sufficient to rapidly boost the long-term B cell memory response induced by a prior vaccination with a traditional smallpox vaccine. TRIAL REGISTRATION ClinicalTrials.gov NCT00857493.
Collapse
Affiliation(s)
- Richard N. Greenberg
- University of Kentucky School of Medicine, MN663 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536, United States of America
| | - Christine M. Hay
- University of Iowa, SW54, GH, 200 Hawkins Drive, UHC, Iowa City, IA, 52242, United States of America
| | - Jack T. Stapleton
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Avenue, Box 689, Rochester, NY, 14642, United States of America
| | - Thomas C. Marbury
- Orlando Clinical Research Center, 5055 South Orange Avenue, Orlando, FL, 32809, United States of America
| | - Eva Wagner
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Eva Kreitmeir
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Siegfried Röesch
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Philip Young
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Richard Nichols
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Thomas P. Meyer
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Josef Weigl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Garth Virgin
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| |
Collapse
|
46
|
Estimated prevalence of smallpox vaccine contraindications in Israeli adolescents. Vaccine 2016; 34:3331-4. [DOI: 10.1016/j.vaccine.2016.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/01/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
47
|
Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines. PLoS One 2016; 11:e0149364. [PMID: 26895072 PMCID: PMC4760941 DOI: 10.1371/journal.pone.0149364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.
Collapse
Affiliation(s)
- Clement A. Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vajini Atukorale
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jordan Kuhn
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jerry P. Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
48
|
Greenberg RN, Hurley Y, Dinh DV, Mraz S, Vera JG, von Bredow D, von Krempelhuber A, Roesch S, Virgin G, Arndtz-Wiedemann N, Meyer TP, Schmidt D, Nichols R, Young P, Chaplin P. A Multicenter, Open-Label, Controlled Phase II Study to Evaluate Safety and Immunogenicity of MVA Smallpox Vaccine (IMVAMUNE) in 18-40 Year Old Subjects with Diagnosed Atopic Dermatitis. PLoS One 2015; 10:e0138348. [PMID: 26439129 PMCID: PMC4595076 DOI: 10.1371/journal.pone.0138348] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/26/2015] [Indexed: 01/19/2023] Open
Abstract
Background Replicating smallpox vaccines can cause severe complications in individuals with atopic dermatitis (AD). Prior studies evaluating Modified Vaccinia Ankara virus (MVA), a non-replicating vaccine in humans, showed a favorable safety and immunogenicity profile in healthy volunteers. Objective This Phase II study compared the safety and immunogenicity of MVA enrolling groups of 350 subjects with AD (SCORAD ≤ 30) and 282 healthy subjects. Methods Subjects were vaccinated twice with MVA, each dose given subcutaneously 4 weeks apart. Adverse events, cardiac parameters, and the development of vaccinia virus humoral immune responses were monitored. Results The overall safety of the vaccine was similar in both groups. Adverse events affecting skin were experienced significantly more often in subjects with AD, but the majority of these events were mild to moderate in intensity. Seroconversion rates and geometric mean titers for total and neutralizing vaccinia-specific antibodies in the AD group were non-inferior compared to the healthy subjects. Limitations The size of the study population limited the detection of serious adverse events occurring at a frequency less than 1%. Conclusion MVA has a favorable safety profile and the ability to elicit vaccinia-specific immune responses in subjects with AD. Trial Registration ClinicalTrials.gov NCT00316602
Collapse
Affiliation(s)
- Richard N Greenberg
- University of Kentucky School of Medicine, Lexington, KY, United States of America
- * E-mail:
| | - Yadira Hurley
- Saint Louis University, Department of Dermatology, Saint Louis, MO, United States of America
| | - Dinh V. Dinh
- Rx Clinical Research, Inc., Garden Grove, CA, United States of America
| | - Serena Mraz
- Vallejo Dermatology Office, Vallejo, CA, United States of America
| | - Javier Gomez Vera
- Hospital Regional Lic. Adolfo Lopez Mateos, ISSSTE, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Simon WL, Salk HM, Ovsyannikova IG, Kennedy RB, Poland GA. Cytokine production associated with smallpox vaccine responses. Immunotherapy 2015; 6:1097-112. [PMID: 25428648 DOI: 10.2217/imt.14.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Smallpox was eradicated 34 years ago due to the success of the smallpox vaccine; yet, the vaccine continues to be studied because of its importance in responding to potential biological warfare and the adverse events associated with current smallpox vaccines. Interindividual variations in vaccine response are observed and are, in part, due to genetic variation. In some cases, these varying responses lead to adverse events, which occur at a relatively high rate for the smallpox vaccine compared with other vaccines. Here, we aim to summarize the cytokine responses associated with smallpox vaccine response to date. Along with a description of each of these cytokines, we describe the genetic and adverse event data associated with cytokine responses to smallpox vaccination.
Collapse
Affiliation(s)
- Whitney L Simon
- Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
50
|
Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, Pompilio D, Tebaldi G, Estep RD, Wong SW, Buller MR, Donofrio G. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge. PLoS Negl Trop Dis 2015; 9:e0003850. [PMID: 26086739 PMCID: PMC4473039 DOI: 10.1371/journal.pntd.0003850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/27/2015] [Indexed: 01/13/2023] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.
Collapse
Affiliation(s)
| | - Scott Parker
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan W. Crump
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Konstantin Doronin
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Edguardo Hembrador
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniela Pompilio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Mark R. Buller
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|