1
|
Loaiza RA, Farías MA, Andrade CA, Ramírez MA, Rodriguez-Guilarte L, Muñóz JT, González PA, Bueno SM, Kalergis AM. Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2024; 22:631-645. [PMID: 39269198 DOI: 10.1080/14787210.2024.2403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION The human respiratory syncytial virus (hRSV) is one of childhood diseases' most common respiratory pathogens and is associated with lower respiratory tract infections. The peak in disease that this virus can elicit during outbreaks is often a significant burden for healthcare systems worldwide. Despite theapproval of treatments against hRSV, this pathogen remains one the most common causative agent of infant mortality around the world. AREAS COVERED This review focuses on the key prognostic and immunomodulatory biomarkers associated with hRSV infection, as well as prophylactic monoclonal antibodies and vaccines. The goal is to catalyze a paradigm shift within the scientific community toward the discovery of novel targets to predict the clinical outcome of infected patients, as well as the development of novel antiviral agents targeting hRSV. The most pertinent research on this topic was systematically searched and analyzed using PubMed ISI Thomson Scientific databases. EXPERT OPINION Despite advances in approved therapies against hRSV, it is crucial to continue researching to develop new therapies and to find specific biomarkers to predict the severity of infection. Along these lines, the use of multi-omics data, artificial intelligence and natural-derived compounds with antiviral activity could be evaluated to fight hRSV and develop methods for rapid diagnosis of severity.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñóz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
3
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Hellgren F, Cagigi A, Arcoverde Cerveira R, Ols S, Kern T, Lin A, Eriksson B, Dodds MG, Jasny E, Schwendt K, Freuling C, Müller T, Corcoran M, Karlsson Hedestam GB, Petsch B, Loré K. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat Commun 2023; 14:3713. [PMID: 37349310 PMCID: PMC10287699 DOI: 10.1038/s41467-023-39421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.
Collapse
Affiliation(s)
- Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Nykode Therapeutics, Oslo, Norway
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Theresa Kern
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bengt Eriksson
- Astrid Fagraeus Laboratory, Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Conrad Freuling
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Thomas Müller
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Martin Corcoran
- Department of Microbiology and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
5
|
Lenart K, Hellgren F, Ols S, Yan X, Cagigi A, Cerveira RA, Winge I, Hanczak J, Mueller SO, Jasny E, Schwendt K, Rauch S, Petsch B, Loré K. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol Ther Methods Clin Dev 2022; 27:309-323. [PMID: 36217434 PMCID: PMC9535876 DOI: 10.1016/j.omtm.2022.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 10/24/2022]
Abstract
A third vaccine dose is often required to achieve potent, long-lasting immune responses. We investigated the impact of three 8 μg doses of CVnCoV, CureVac's SARS-CoV-2 vaccine candidate containing sequence-optimized unmodified mRNA encoding spike (S) glycoprotein, administered at 0, 4 and 28 weeks on immune responses in rhesus macaques. Following the third dose S-specific binding and neutralizing antibodies increased 50-fold compared with post-dose 2 levels, with increased responses also evident in the lower airways and against the SARS-CoV-2 B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) variants. Enhanced binding affinity of serum antibodies after the third dose correlated with higher somatic hypermutation in S-specific B cells, corresponding with improved binding properties of monoclonal antibodies expressed from isolated B cells. Administration of low dose mRNA led to fewer cells expressing antigen in vivo at the injection site and in the draining lymph nodes compared with a tenfold higher dose, possibly reducing the engagement of precursor cells with the antigen and resulting in the suboptimal response observed following two-dose vaccination schedules in phase IIb/III clinical trials of CVnCoV. However, when immune memory is established, a third dose efficiently boosts the immunological responses as well as improves antibody affinity and breadth.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xianglei Yan
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inga Winge
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jakub Hanczak
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Correspondence should be addressed to: Karin Loré, Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 4, BioClinicum J7:30, Karolinska University Hospital, 171 64 Stockholm, Sweden. E-mail address:
| |
Collapse
|
6
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Vaccine-Associated Enhanced Viral Disease: Implications for Viral Vaccine Development. BioDrugs 2021; 35:505-515. [PMID: 34499320 PMCID: PMC8427162 DOI: 10.1007/s40259-021-00495-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
Vaccine-associated enhanced disease (VAED) is a serious barrier to attaining successful virus vaccines in human and veterinary medicine. VAED occurs as two different immunopathologies, antibody-dependent enhancement (ADE) and vaccine-associated hypersensitivity (VAH). ADE contributes to the pathology of disease caused by four dengue viruses (DENV) through control of the intensity of cellular infection. Products of virus-infected cells are toxic. A partially protective yellow fever chimeric tetravalent DENV vaccine sensitized seronegative children to ADE breakthrough infections. A live-attenuated tetravalent whole virus vaccine in phase III testing appears to avoid ADE by providing durable protection against the four DENV. VAH sensitization by viral vaccines occurred historically. Children given formalin-inactivated measles or respiratory syncytial virus (RSV) vaccines experienced severe disease during breakthrough infections. Tissue responses demonstrated that VAH not ADE caused these vaccine safety problems. Subsequently, measles was successfully and safely contained by a live-attenuated virus vaccine. The difficulty in formulating a safe and effective RSV vaccine is troublesome evidence that avoiding VAH is a major research challenge. VAH-like tissue responses were observed during breakthrough homologous virus infections in monkeys given severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) vaccines.
Collapse
|
8
|
Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020. [DOI: 10.3390/vaccines8040783
expr 839529059 + 832255227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
|
9
|
Lukacs NW, Malinczak CA. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020; 8:783. [PMID: 33371275 PMCID: PMC7766447 DOI: 10.3390/vaccines8040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
Affiliation(s)
- Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
10
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
11
|
Eichinger KM, Kosanovich JL, Gidwani SV, Zomback A, Lipp MA, Perkins TN, Oury TD, Petrovsky N, Marshall CP, Yondola MA, Empey KM. Prefusion RSV F Immunization Elicits Th2-Mediated Lung Pathology in Mice When Formulated With a Th2 (but Not a Th1/Th2-Balanced) Adjuvant Despite Complete Viral Protection. Front Immunol 2020; 11:1673. [PMID: 32849580 PMCID: PMC7403488 DOI: 10.3389/fimmu.2020.01673] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered by the risk of developing enhanced respiratory disease (ERD) upon natural exposure to the virus. Generation of higher quality neutralizing antibodies with stabilized pre-fusion F protein antigens has been proposed as a strategy to prevent ERD. We sought to test whether there was evidence of ERD in naïve BALB/c mice immunized with an unadjuvanted, stabilized pre-fusion F protein, and challenged with RSV line 19. We further sought to determine the extent to which formulation with a Th2-biased (alum) or a more Th1/Th2-balanced (Advax-SM) adjuvant influenced cellular responses and lung pathology. When exposed to RSV, mice immunized with pre-fusion F protein alone (PreF) exhibited increased airway eosinophilia and mucus accumulation. This was further exacerbated by formulation of PreF with Alum (aluminum hydroxide). Conversely, formulation of PreF with a Th1/Th2-balanced adjuvant, Advax-SM, not only suppressed RSV viral replication, but also inhibited airway eosinophilia and mucus accumulation. This was associated with lower numbers of lung innate lymphocyte cells (ILC2s) and CD4+ T cells producing IL-5+ or IL-13+ and increased IFNγ+ CD4+ and CD8+ T cells, in addition to RSV F-specific CD8+ T cells. These data suggest that in the absence of preimmunity, stabilized PreF antigens may still be associated with aberrant Th2 responses that induce lung pathology in response to RSV infection, and can be prevented by formulation with more Th1/Th2-balanced adjuvants that enhance CD4+ and CD8+ IFNγ+ T cell responses. This may support the use of stabilized PreF antigens with Th1/Th2-balanced adjuvants like, Advax-SM, as safer alternatives to alum in RSV vaccine candidates.
Collapse
Affiliation(s)
- Katherine M Eichinger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, Division of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jessica L Kosanovich
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Aaron Zomback
- Calder Biosciences, New York City, NY, United States
| | - Madeline A Lipp
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | | | - Kerry M Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Speiser DE, Bachmann MF. COVID-19: Mechanisms of Vaccination and Immunity. Vaccines (Basel) 2020; 8:E404. [PMID: 32707833 PMCID: PMC7564472 DOI: 10.3390/vaccines8030404] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
Vaccines are needed to protect from SARS-CoV-2, the virus causing COVID-19. Vaccines that induce large quantities of high affinity virus-neutralizing antibodies may optimally prevent infection and avoid unfavorable effects. Vaccination trials require precise clinical management, complemented with detailed evaluation of safety and immune responses. Here, we review the pros and cons of available vaccine platforms and options to accelerate vaccine development towards the safe immunization of the world's population against SARS-CoV-2. Favorable vaccines, used in well-designed vaccination strategies, may be critical for limiting harm and promoting trust and a long-term return to normal public life and economy.
Collapse
Affiliation(s)
- Daniel E. Speiser
- Department of Oncology, University Hospital and University of Lausanne, 1066 Lausanne, Switzerland
| | - Martin F. Bachmann
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, China
- Department of Rheumatology, Immunology and Allergology, Inselspital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
13
|
Simon HU, Karaulov AV, Bachmann MF. Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection. Int Arch Allergy Immunol 2020; 181:624-628. [PMID: 32544911 PMCID: PMC7360494 DOI: 10.1159/000509368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
A vaccine to protect against COVID-19 is urgently needed. Such a vaccine should efficiently induce high-affinity neutralizing antibodies which neutralize SARS-CoV-2, the cause of COVID-19. However, there is a concern regarding both vaccine-induced eosinophilic lung disease and eosinophil-associated Th2 immunopotentiation following infection after vaccination. Here, we review the anticipated characteristics of a COVID-19 vaccine to avoid vaccine-associated eosinophil immunopathology.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Lee Y, Ko EJ, Kim KH, Lee YT, Hwang HS, Kwon YM, Graham BS, Kang SM. A unique combination adjuvant modulates immune responses preventing vaccine-enhanced pulmonary histopathology after a single dose vaccination with fusion protein and challenge with respiratory syncytial virus. Virology 2019; 534:1-13. [PMID: 31163351 DOI: 10.1016/j.virol.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Alum adjuvanted formalin-inactivated respiratory syncytial virus (RSV) vaccination resulted in enhanced respiratory disease in young children upon natural infection. Here, we investigated the adjuvant effects of monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG (CpG) on vaccine-enhanced respiratory disease after fusion (F) protein prime vaccination and RSV challenge in infant and adult mouse models. Combination CpG + MPL adjuvant in RSV F protein single dose priming of infant and adult age mice was found to promote the induction of IgG2a isotype antibodies and neutralizing activity, and lung viral clearance after challenge. CpG + MPL adjuvanted F protein (Fp) priming of infant and adult age mice was effective in avoiding lung histopathology, in reducing interleukin-4+ CD4 T cells and cellular infiltration of monocytes and neutrophils after RSV challenge. This study suggests that combination CpG and MPL adjuvant in RSV subunit vaccination might contribute to priming protective immune responses and preventing inflammatory RSV disease after infection.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, South Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Li N, Zhang L, Zheng B, Li W, Liu J, Zhang H, Zeng R. RSV recombinant candidate vaccine G1F/M2 with CpG as an adjuvant prevents vaccine-associated lung inflammation, which may be associated with the appropriate types of immune memory in spleens and lungs. Hum Vaccin Immunother 2019; 15:2684-2694. [PMID: 31021703 DOI: 10.1080/21645515.2019.1596710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major respiratory pathogen in infants. The early formalin-inactivated RSV not only failed to protect infants against infection, but also was associated with enhanced pulmonary inflammatory disease upon natural infection. A safe and effective vaccine should prevent the inflammatory disease and provide protection. Immune memory is the cornerstone of vaccines. In this study, we evaluated three types of immune memory T cells, antibodies, and lung inflammation of a vaccine candidate G1F/M2, which includes a neutralizing epitope fragment of RSV G protein and a cytotoxic T lymphocyte epitope of M2 protein, with toll-like receptor 9 agonist CpG2006 as an adjuvant by intranasal (i.n.) and intraperitoneal (i.p.) immunization protocols. The results indicated that immunization of mice with G1F/M2 + CpG i.p. induced significantly higher level of CD4+ or CD8+ central memory (TCM), Th1-type effector memory (TEM), and balanced ratio of IgG1/IgG2a, but lower level of lung tissue-resident memory (TRM), compared with immunization with G1F/M2 + CpG i.n., G1F/M2 i.n., or G1F/M2 i.p. Following RSV challenge, the mice immunized with G1F/M2 + CpG i.p. showed higher level of Th1-type responses, remarkably suppressed inflammatory cytokines and histopathology in lungs, compared with mice immunized with G1F/M2 + CpG i.n., G1F/M2 i.n., or G1F/M2 i.p. These results suggested that high level of TCM and Th1 type of TEM in spleens may contribute to inhibition of lung inflammation, while high level of TRM in lungs and lack of or weak Th1-type immune memory in spleens may promote lung inflammation following RSV challenge.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Department of Microbiology and Immunology, Xingtai Medical College, Xingtai, Hebei, PR China
| | - Ling Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Boyang Zheng
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jianxun Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Department of Microbiology and Immunology, Xingtai Medical College, Xingtai, Hebei, PR China
| | - Huixian Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei, China
| |
Collapse
|
16
|
Bohmwald K, Gálvez NMS, Canedo-Marroquín G, Pizarro-Ortega MS, Andrade-Parra C, Gómez-Santander F, Kalergis AM. Contribution of Cytokines to Tissue Damage During Human Respiratory Syncytial Virus Infection. Front Immunol 2019; 10:452. [PMID: 30936869 PMCID: PMC6431622 DOI: 10.3389/fimmu.2019.00452] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) remains one of the leading pathogens causing acute respiratory tract infections (ARTIs) in children younger than 2 years old, worldwide. Hospitalizations during the winter season due to hRSV-induced bronchiolitis and pneumonia increase every year. Despite this, there are no available vaccines to mitigate the health and economic burden caused by hRSV infection. The pathology caused by hRSV induces significant damage to the pulmonary epithelium, due to an excessive inflammatory response at the airways. Cytokines are considered essential players for the establishment and modulation of the immune and inflammatory responses, which can either be beneficial or harmful for the host. The deleterious effect observed upon hRSV infection is mainly due to tissue damage caused by immune cells recruited to the site of infection. This cellular recruitment takes place due to an altered profile of cytokines secreted by epithelial cells. As a result of inflammatory cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are further increased, while IL-10 and IFN-γ are decreased. However, additional studies are required to elicit the mediators directly associated with hRSV damage entirely. In addition to the detrimental induction of inflammatory mediators in the respiratory tract caused by hRSV, reports indicating alterations in the central nervous system (CNS) have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4 have been reported in cerebrospinal fluid from patients with severe bronchiolitis and hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis of the role of cytokines secreted upon hRSV infection and their potentially harmful contribution to tissue damage of the respiratory tract and the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Andrade-Parra
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Wilkinson A, Lattmann E, Roces CB, Pedersen GK, Christensen D, Perrie Y. Lipid conjugation of TLR7 agonist Resiquimod ensures co-delivery with the liposomal Cationic Adjuvant Formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated Resiquimod+CAF01. J Control Release 2018; 291:1-10. [PMID: 30291987 DOI: 10.1016/j.jconrel.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/12/2023]
Abstract
Pattern recognition receptors, including the Toll-like receptors (TLRs), are important in the induction and activation of two critical arms of the host defence to pathogens and microorganisms: the rapid innate immune response (as characterised by the production of Th1 promoting cytokines and type 1 interferons) and the adaptive immune response. Through this activation, ligands and agonists of TLRs can enhance immunotherapeutic efficacy. Resiquimod is a small (water-soluble) agonist of the endosome-located Toll-like receptors 7 and 8 (TLR7/8). However due to its molecular attributes it rapidly distributes throughout the body after injection. To circumvent this, these TLR agonists can be incorporated within delivery systems, such as liposomes, to promote the co-delivery of both antigen and agonists to antigen presenting cells. In this present study, resiquimod has been chemically conjugated to a lipid to form a lipid-TLR7/8 agonist conjugate which can be incorporated within immunogenic cationic liposomes composed of dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory glycolipid trehalose 6,6' - dibehenate (TDB). This DDA:TDB-TLR7/8 formulation offers similar vesicle characteristics to DDA:TDB (size and charge) and offers high retention of both resiquimod and the electrostatically adsorbed TB subunit antigen Ag85B-ESAT6-Rv2660c (H56). Following immunisation through the intramuscular (i.m.) route, these cationic DDA:TDB-TLR7/8 liposomes form a vaccine depot at the injection site. However, immunisation studies have shown that this biodistribution does not translate into notably increased antibody nor Th1 responses at the spleen and draining popliteal lymph node compared to DDA:TDB liposomes. This work demonstrates that the conjugation of TLR7/8 agonists to cationic liposomes can promote co-delivery but the immune responses stimulated do not merit the added complexity considerations of the formulation.
Collapse
Affiliation(s)
| | - Eric Lattmann
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Gabriel K Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK.
| |
Collapse
|
18
|
Control of Heterologous Simian Immunodeficiency Virus SIV smE660 Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. J Virol 2018; 92:JVI.00281-18. [PMID: 29793957 PMCID: PMC6052320 DOI: 10.1128/jvi.00281-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms. We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge. IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.
Collapse
|
19
|
Rodet F, Capuz A, Hara T, van Meel R, Duhamel M, Rose M, Raffo-Romero A, Fournier I, Salzet M. Deciphering molecular consequences of the proprotein convertase 1/3 inhibition in macrophages for application in anti-tumour immunotherapy. J Biotechnol 2018; 282:80-85. [PMID: 29990570 DOI: 10.1016/j.jbiotec.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/31/2022]
Abstract
During tumour development, macrophages are recruited to the tumour site and orientated towards an anti-inflammatory phenotype. Due to their immunosuppressive function, tumour associated macrophages (TAMs) are recognized as major components in tumour progression. Changing these macrophages to a pro-inflammatory phenotype is thus extensively studied as a potential means for developing novel anti-tumour therapy. In this context, we found that the Proprotein convertase 1/3 (PC1/3) is a relevant target. Proteomic analysis reveals that PC1/3 knockdown (KD) macrophages present all the characteristic of activated pro-inflammatory macrophages. Moreover, in PC1/3 KD macrophages, TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and anti-tumour factors. To develop an efficient anti-tumour immunotherapy, we may (i) target TAMs directly inside the tumour site for PC1/3 inhibition and TLR activation and used them as "Trojan macrophages" or (ii) directly take advantage of PC1/3 inhibited macrophages and use them as "drone macrophages" by activating them "at distance" with a TLR ligand. Therefore, PC1/3 inhibited macrophages constitute an innovative cell therapy to treat tumours efficiently.
Collapse
Affiliation(s)
- Franck Rodet
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France.
| | - Alice Capuz
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Tsukasa Hara
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Rinaldo van Meel
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Marie Duhamel
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Mélanie Rose
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Antonella Raffo-Romero
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Isabelle Fournier
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Michel Salzet
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| |
Collapse
|
20
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Abstract
Developing new vaccines against emerging pathogens or pathogens where variability of antigenic sites presents a challenge, the inclusion of stimulators of the innate immune system is critical to mature the immune response in a way that allows high avidity recognition while preserving the ability to react to drifted serovars. The innate immune system is an ancient mechanism for recognition of nonself and the first line of defense against pathogen insult. By triggering innate receptors, adjuvants can boost responses to vaccines and enhance the quality and magnitude of the resulting immune response. This chapter: (1) describes the innate immune system, (2) provides examples of how adjuvants are formulated to optimize their effectiveness, and (3) presents examples of how adjuvants can improve outcomes of immunization.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., 1616 Eastlake Ave E, Suite 550, Seattle, WA, 98102, USA.
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA.
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.
| | - Malcolm S Duthie
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Steven G Reed
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| |
Collapse
|
23
|
Salimi V, Mirzaei H, Ramezani A, Tahamtan A, Jamali A, Shahabi S, Golaram M, Minaei B, Gharagozlou MJ, Mahmoodi M, Bont L, Shokri F, Mokhtari-Azad T. Blocking of opioid receptors in experimental formaline-inactivated respiratory syncytial virus (FI-RSV) immunopathogenesis: from beneficial to harmful impacts. Med Microbiol Immunol 2017; 207:105-115. [DOI: 10.1007/s00430-017-0531-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
|
24
|
Jia R, Lu L, Liang X, Sun Z, Tan L, Xu M, Su L, Xu J. Poly(U) and CpG ameliorate the unbalanced T cell immunity and pneumonia of mice with RSV vaccine-enhanced disease. Biosci Trends 2017; 11:450-459. [PMID: 28652534 DOI: 10.5582/bst.2017.01119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Respiratory Syncycial Virus (RSV) is the most important pathogen responsible for children's severe lower respiratory tract infection. So far no RSV vaccine has yet been authorized for clinical use. The main impediment that blocked development of RSV vaccine is that inactivated RSV vaccine could cause RSV vaccine-enhanced disease (RVED). The mechanism of RVED remains unclear. Recently some researchers found that insufficient activation of innate immunity, including Toll-like receptors (TLRs), might be associated with the onset of RVED. Based on the above findings, this research was conducted to further study the mechanism of RVED. We first vaccinated mice with formalin-inactivated RSV vaccine (FIRSV) and then exposed them to RSV to establish a RVED mouse model. Consequently, we found that mice previously inoculated with FIRSV showed obvious weight loss and extensive pneumonia, as well as T helper 2 cells (Th2)-biased immunity and suppressed CD8+T cell immunity after viral exposure, suggesting that we have successfully established a RVED mouse model. Then based on this model, we further added Poly(U) (TLR7/8 agonist) and CpG (TLR9 agonist) in FIRSV to see if RVED could be ameliorated. As a result, mice inoculated with FIRSV supplemented with Poly(U) and CpG had a much relieved weight loss and pneumonia, as well as suppressed Th2-biased immunity and strengthened CD8+T cell function. Thus, the insufficient stimulation of TLR7/8 and (or) TLR9 might play a role in the development of RVED, which could provide evidence for using TLR agonists as vaccine adjuvants to confer a protective immune response against RSV.
Collapse
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University
| | - Xiaozhen Liang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Zhiwu Sun
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University
| | - Lingbing Tan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University
| | - Liyun Su
- Department of Clinical Laboratory, Children's Hospital of Fudan University
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University
| |
Collapse
|
25
|
Qiao L, Zhang Y, Chai F, Tan Y, Huo C, Pan Z. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res 2016; 131:131-40. [PMID: 27154395 DOI: 10.1016/j.antiviral.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
To investigate the feasibility and efficacy of a virus-like particle (VLP) vaccine composed of the conserved antigenic epitopes of respiratory syncytial virus (RSV), the chimeric RSV VLPs HBcΔ-tG and HBcΔ-tG/M282-90 were generated based on the truncated hepatitis B virus core protein (HBcΔ). HBcΔ-tG consisted of HBcΔ, the conserved region (aa 144-204) of the RSV G protein. HBcΔ-tG was combined with a single peptide (aa 82-90) of the M2 protein to generate HBcΔ-tG/M282-90. Immunization of mice with the HBcΔ-tG or HBcΔ-tG/M282-90 VLPs elicited RSV-specific IgG and neutralizing antibody production and conferred protection against RSV infection. Compared with HBcΔ-tG, HBcΔ-tG/M282-90 induced decreased Th2 cytokine production (IL-4 and IL-5), increased Th1 cytokine response (IFN-γ, TNF-α, and IL-2), and increased ratios of IgG2a/IgG1 antibodies, thereby relieving pulmonary pathology upon subsequent RSV infection. Our results demonstrated that chimeric HBcΔ-tG/M282-90 VLPs represented an effective RSV subunit vaccine candidate.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yiluo Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunling Huo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
26
|
Farrag MA, Almajhdi FN. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression. Viral Immunol 2015; 29:11-26. [PMID: 26679242 DOI: 10.1089/vim.2015.0098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed.
Collapse
Affiliation(s)
- Mohamed A Farrag
- Department of Botany and Microbiology, King Saud University , Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Acosta PL, Caballero MT, Polack FP. Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:189-95. [PMID: 26677198 PMCID: PMC4783420 DOI: 10.1128/cvi.00609-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experienced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became infected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection with wild-type RSV. The enhanced disease was initially characterized as a "peribronchiolar monocytic infiltration with some excess in eosinophils." Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not processed in the cytoplasm, resulting in a nonprotective antibody response and CD4(+) T helper priming in the absence of cytotoxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune complex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vaccine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the risk of ERD in new vaccine candidates.
Collapse
Affiliation(s)
- Patricio L Acosta
- Fundacion INFANT, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando P Polack
- Fundacion INFANT, Buenos Aires, Argentina Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Wu TYH, Singh M, Miller AT, De Gregorio E, Doro F, D'Oro U, Skibinski DAG, Mbow ML, Bufali S, Herman AE, Cortez A, Li Y, Nayak BP, Tritto E, Filippi CM, Otten GR, Brito LA, Monaci E, Li C, Aprea S, Valentini S, Calabrό S, Laera D, Brunelli B, Caproni E, Malyala P, Panchal RG, Warren TK, Bavari S, O'Hagan DT, Cooke MP, Valiante NM. Rational design of small molecules as vaccine adjuvants. Sci Transl Med 2015; 6:263ra160. [PMID: 25411473 DOI: 10.1126/scitranslmed.3009980] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.
Collapse
Affiliation(s)
- Tom Y-H Wu
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Manmohan Singh
- Novartis Vaccines, 45 Sidney Street, Cambridge, MA 02139, USA
| | - Andrew T Miller
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | - Ugo D'Oro
- Novartis Vaccines, Via Florentina 1, 53100 Siena, Italy
| | | | - M Lamine Mbow
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Simone Bufali
- Novartis Vaccines, Via Florentina 1, 53100 Siena, Italy
| | - Ann E Herman
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Alex Cortez
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yongkai Li
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | - Elaine Tritto
- Novartis Vaccines, Via Florentina 1, 53100 Siena, Italy
| | - Christophe M Filippi
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Gillis R Otten
- Novartis Vaccines, 45 Sidney Street, Cambridge, MA 02139, USA
| | - Luis A Brito
- Novartis Vaccines, 45 Sidney Street, Cambridge, MA 02139, USA
| | | | - Chun Li
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Susanna Aprea
- Novartis Vaccines, Via Florentina 1, 53100 Siena, Italy
| | | | | | | | | | - Elena Caproni
- Novartis Vaccines, Via Florentina 1, 53100 Siena, Italy
| | - Padma Malyala
- Novartis Vaccines, 45 Sidney Street, Cambridge, MA 02139, USA
| | - Rekha G Panchal
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Travis K Warren
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Sina Bavari
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Derek T O'Hagan
- Novartis Vaccines, 45 Sidney Street, Cambridge, MA 02139, USA.
| | - Michael P Cooke
- The Genomics Institute of Novartis Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
29
|
Abstract
Respiratory syncytial virus (RSV) can induce severe lower respiratory tract infections in infants and is the leading cause of bronchiolitis in children worldwide. RSV-induced inflammation is believed to contribute substantially to the severity of disease. T helper (Th)2-, Th9-, and Th17-related cytokines are all observed in infants hospitalized following a severe RSV infection. These cytokines cause an influx of inflammatory cells, resulting in mucus production and reduced lung function. Consistent with the data from RSV-infected infants, CD4 T cell production of Interleukin (IL)-9, IL-13, and IL-17 has all been shown to contribute to RSV-induced disease in a murine model of RSV infection. Conversely, murine studies indicate that the combined actions of regulatory factors such as CD4 regulatory T cells and IL-10 inhibit the inflammatory cytokine response and limit RSV-induced disease. In support of this, IL-10 polymorphisms are associated with susceptibility to severe disease in infants. Insufficient regulation and excess inflammation not only impact disease following primary RSV infection it can also have a major impact following vaccination. Prior immunization with a formalin-inactivated (FI-RSV) vaccine resulted in enhanced disease in infants following a natural RSV infection. A Th2 CD4 T cell response has been implicated to be a major contributor in mediating vaccine-enhanced disease. Thus, future RSV vaccines must induce a balanced CD4 T cell response in order to facilitate viral clearance while inducing proper regulation of the immune response.
Collapse
|
30
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|
31
|
Buitendijk M, Eszterhas SK, Howell AL. Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 2014; 30:457-67. [PMID: 24328502 DOI: 10.1089/aid.2013.0199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.
Collapse
Affiliation(s)
- Maarten Buitendijk
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Physiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Susan K. Eszterhas
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Alexandra L. Howell
- Department of Veterans Affairs, Veterans Health Administration, Biomedical Laboratory Research and Development, White River Junction, Vermont
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
32
|
Fox CB, Sivananthan SJ, Duthie MS, Vergara J, Guderian JA, Moon E, Coblentz D, Reed SG, Carter D. A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. J Nanobiotechnology 2014; 12:17. [PMID: 24766820 PMCID: PMC4014409 DOI: 10.1186/1477-3155-12-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
Background Recent reports that TLR4 and TLR7 ligands can synergistically trigger Th1 biased immune responses suggest that an adjuvant that contains both ligands would be an excellent candidate for co-administration with vaccine antigens for which heavily Th1 biased responses are desired. Ligands of each of these TLRs generally have disparate biochemical properties, however, and straightforward co-formulation may represent an obstacle. Results We show here that the TLR7 ligand, imiquimod, and the TLR4 ligand, GLA, synergistically trigger responses in human whole blood. We combined these ligands in an anionic liposomal formulation where the TLR7 ligand is in the interior of the liposome and the TLR4 ligand intercalates into the lipid bilayer. The new liposomal formulations are stable for at least a year and have an attractive average particle size of around 140 nm allowing sterile filtration. The synergistic adjuvant biases away from Th2 responses, as seen by significantly reduced IL-5 and enhanced interferon gamma production upon antigen-specific stimulation of cells from immunized mice, than any of the liposomal formulations with only one TLR agonist. Qualitative alterations in antibody responses in mice demonstrate that the adjuvant enhances Th1 adaptive immune responses above any adjuvant containing only a single TLR ligand as well. Conclusion We now have a manufacturable, synergistic TLR4/TLR7 adjuvant that is made with excipients and agonists that are pharmaceutically acceptable and will have a straightforward path into human clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Darrick Carter
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA.
| |
Collapse
|
33
|
Garg R, Shrivastava P, van Drunen Littel-van den Hurk S. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2013; 11:1441-57. [PMID: 23252388 DOI: 10.1586/erv.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.
Collapse
Affiliation(s)
- Ravendra Garg
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
34
|
Shafique M, Meijerhof T, Wilschut J, de Haan A. Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice: effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses. PLoS One 2013; 8:e61287. [PMID: 23593453 PMCID: PMC3620164 DOI: 10.1371/journal.pone.0061287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies, capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for intramuscular injection with intrinsic adjuvant properties mediated by an incorporated lipophilic Toll-like receptor 2 (TLR2) ligand. However, it has not been investigated whether this virosomal RSV vaccine candidate would be suitable for use in mucosal immunization strategies and if additional incorporation of other innate receptor ligands, like NOD2-ligand, could further enhance the immunogenicity and protective efficacy of the vaccine. Objective To explore if intranasal (IN) immunization with a virosomal RSV vaccine, supplemented with TLR2 and/or NOD2-ligands, is an effective strategy to induce RSV-specific immunity. Methods We produced RSV-virosomes carrying TLR2 (Pam3CSK4) and/or NOD2 (L18-MDP) ligands. We tested the immunopotentiating properties of these virosomes in vitro, using TLR2- and/or NOD2-ligand-responsive murine and human cell lines, and in vivo by assessing induction of protective antibody and cellular responses upon IN immunization of BALB/c mice. Results Incorporation of Pam3CSK4 and/or L18-MDP potentiates the capacity of virosomes to activate (antigen-presenting) cells in vitro, as demonstrated by NF-κB induction. In vivo, incorporation of Pam3CSK4 in virosomes boosted serum IgG antibody responses and mucosal antibody responses after IN immunization. While L18-MDP alone was ineffective, incorporation of L18-MDP in Pam3CSK4-carrying virosomes further boosted mucosal antibody responses. Finally, IN immunization with adjuvanted virosomes, particularly Pam3CSK4/L18-MDP-adjuvanted-virosomes, protected mice against infection with RSV, without priming for enhanced disease. Conclusion Mucosal immunization with RSV-virosomes, supplemented with incorporated TLR2- and/or NOD2-ligands, represents a promising approach to induce effective and safe RSV-specific immunity.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Aalzen de Haan
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Barik S. Respiratory syncytial virus mechanisms to interfere with type 1 interferons. Curr Top Microbiol Immunol 2013; 372:173-91. [PMID: 24362690 DOI: 10.1007/978-3-642-38919-1_9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) is a member of the Paramyxoviridae family that consists of viruses with nonsegmented negative-strand RNA genome. Infection by these viruses triggers the innate antiviral response of the host, mainly type I interferon (IFN). Essentially all other viruses of this family produce IFN suppressor functions by co-transcriptional RNA editing. In contrast, RSV has evolved two unique nonstructural proteins, NS1 and NS2, to effectively serve this purpose. Together, NS1 and NS2 degrade or sequester multiple signaling proteins that affect both IFN induction and IFN effector functions. While the mechanism of action of NS1 and NS2 is a subject of active research, their effect on adaptive immunity is also being recognized. In this review, we discuss various aspects of NS1 and NS2 function with implications for vaccine design.
Collapse
Affiliation(s)
- Sailen Barik
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA,
| |
Collapse
|
36
|
Mukherjee S, Lukacs NW. Innate immune responses to respiratory syncytial virus infection. Curr Top Microbiol Immunol 2013; 372:139-54. [PMID: 24362688 DOI: 10.1007/978-3-642-38919-1_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The innate immune response has a critical role in the initial stages of respiratory syncytial virus (RSV) infection and provides important instructional control that determines the direction of the acquired immune response and the severity of subsequent disease. Contributions to innate immunity include responses initiated in epithelial cells, dendritic cells, and macrophages. The initiation and the intensity of the response depends upon the recognition of pathogen-associated molecular patterns (PAMPs) that activate various pattern recognition receptors (PRRs) such as toll-like receptors (TLR), RIG-I-like receptors (RLR), and NOD-like receptors (NLR), that induce innate cytokines and chemokines that promote inflammation and direct the recruitment of immune cells as well as promote anti-viral responses. In this review, we summarize the results of numerous studies that have characterized the innate immune responses that contribute to the RSV-induced responses and may be important considerations for the development of efficacious vaccine strategies.
Collapse
Affiliation(s)
- Sumanta Mukherjee
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
37
|
Pohar J, Pirher N, Benčina M, Manček-Keber M, Jerala R. The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J Biol Chem 2012; 288:442-54. [PMID: 23166319 DOI: 10.1074/jbc.m112.413922] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Translocation of nucleic acid-sensing (NAS) Toll-like receptors (TLRs) to endosomes is essential for response to microbial nucleic acids as well as for prevention of the autoimmune response. The accessory protein UNC93B1 is indispensable for activation of NAS TLRs because it regulates their response through trafficking to endosomes. We observed that poly(I:C) up-regulates transcription of UNC93B1 and promotes trafficking of TLR3 to the plasma membrane in human epithelial cell line. Up-regulation of UNC93B1 is triggered through TLR3 activation by poly(I:C). Further studies revealed that expression of UNC93B1 promotes trafficking of differentially glycosylated TLR3, but not other NAS TLRs, to the plasma membrane. UNC93B1 promoter region contains binding sites for poly(I:C)- and type I interferon-inducible regulatory elements. UNC93B1 also increases the protein lifetime of TLR3 and TLR9 and augments signaling of all NAS TLRs. Furthermore, we discovered that poly(I:C) pretreatment primes B-cells to the activation by ssDNA via up-regulation of UNC93B1. Our findings identified TLR3 as the important regulator of UNC93B1 that in turn governs the responsiveness of all NAS TLRs.
Collapse
Affiliation(s)
- Jelka Pohar
- National Institute of Chemistry, Hajdrihova 19, Slovenia
| | | | | | | | | |
Collapse
|
38
|
Zeng R, Cui Y, Hai Y, Liu Y. Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines. Virus Res 2012; 167:138-45. [PMID: 22698878 DOI: 10.1016/j.virusres.2012.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 12/25/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response has been implicated in both the protection and immunopathological mechanisms. Pattern recognition receptors (PRRs) expressed on innate immune cells during RSV infection recognize the RSV-associated molecular patterns and activate innate immune cells as well as mediate airway inflammation, protective immune response, and pulmonary immunopathology. The resident and recruited innate immune cells play important roles in the protection and pathogenesis of an RSV disease by expressing these PRRs. Agonist-binding PRRs are the basis of many adjuvants that are essential for most vaccines. In the present review, we highlight recent advances in the innate immune recognition of and responses to RSV through PRRs, including toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We also describe the role of PRRs in the design of RSV vaccines.
Collapse
Affiliation(s)
- Ruihong Zeng
- Department of Immunology, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China.
| | | | | | | |
Collapse
|
39
|
Functionally Distinct Subpopulations of CpG-Activated Memory B Cells. Sci Rep 2012; 2:345. [PMID: 22468229 PMCID: PMC3315693 DOI: 10.1038/srep00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/15/2012] [Indexed: 12/12/2022] Open
Abstract
During the human B cell (Bc) recall response, rapid cell division results in multiple Bc subpopulations. The TLR-9 agonist CpG oligodeoxynucleotide, combined with cytokines, causes Bc activation and division in vitro and increased CD27 surface expression in a sub-population of Bc. We hypothesized that the proliferating CD27lo subpopulation, which has a lower frequency of antibody-secreting cells (ASC) than CD27hi plasmablasts, provides alternative functions such as cytokine secretion, costimulation, or antigen presentation. We performed genome-wide transcriptional analysis of CpG activated Bc sorted into undivided, proliferating CD27lo and proliferating CD27hi subpopulations. Our data supported an alternative hypothesis, that CD27lo cells are a transient pre-plasmablast population, expressing genes associated with Bc receptor editing. Undivided cells had an active transcriptional program of non-ASC B cell functions, including cytokine secretion and costimulation, suggesting a link between innate and adaptive Bc responses. Transcriptome analysis suggested a gene regulatory network for CD27lo and CD27hi Bc differentiation.
Collapse
|
40
|
Shafique M, Wilschut J, de Haan A. Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands. Vaccine 2011; 30:597-606. [PMID: 22120195 DOI: 10.1016/j.vaccine.2011.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/13/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most important viral cause of severe respiratory disease in infants and children worldwide and also forms a serious threat in the elderly. The development of RSV vaccine, however, has been hampered by the disastrous outcome of an earlier trial using an inactivated and parenterally administered RSV vaccine which did not confer protection but rather primed for enhanced disease upon natural infection. Mucosal administration does not seem to prime for enhanced disease, but non-replicating RSV antigen does not induce a strong mucosal immune response. We therefore investigated if mucosal immunization with inactivated RSV supplemented with innate receptor ligands, TLR9 (CpG ODN) and NOD2 (L18-MDP) through the upper or total respiratory tract is an effective and safe approach to induce RSV-specific immunity. Our data show that beta-propiolactone (BPL) inactivated RSV (BPL-RSV) supplemented with CpG ODN and L18-MDP potentiates activation of antigen-presenting cells (APC) in vitro, as demonstrated by NF-κB induction in a model APC cell line. In vivo, BPL-RSV supplemented with CpG ODN/L18-MDP ligands induces local IgA responses and augments Th1-signature IgG2a subtype responses after total respiratory tract (TRT), but less efficient after upper respiratory tract (intranasal, IN) immunization. Addition of TLR9/NOD2 ligands to the inactivated RSV also promoted affinity maturation of RSV-specific IgG antibodies and shifted T cell responses from mainly IL-5-secreting cells to predominantly IFN-γ-producing cells, indicating a Th1-skewed response. This effect was seen for both IN and TRT immunization. Finally, BPL-RSV supplemented with TLR9/NOD2 ligands significantly improved the protection efficacy against a challenge with infectious virus, without stimulating enhanced disease as evidenced by lack of eotaxin mRNA expression and eosinophil infiltration in the lung. We conclude that mucosal immunization with inactivated RSV antigen supplemented with TLR9/NOD2 ligands is a promising approach to induce effective RSV-specific immunity without priming for enhanced disease.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
Siddiqui RA, Krawczak M, Platzer M, Sauermann U. Association of TLR7 variants with AIDS-like disease and AIDS vaccine efficacy in rhesus macaques. PLoS One 2011; 6:e25474. [PMID: 22022401 PMCID: PMC3192768 DOI: 10.1371/journal.pone.0025474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023] Open
Abstract
In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP) as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV)-infected male rhesus macaques, including an 'MHC adjusted' subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i) that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii) the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T), located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype.
Collapse
Affiliation(s)
- Roman A. Siddiqui
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian–Albrechts University, Kiel, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany
| | - Ulrike Sauermann
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
42
|
McDermott DS, Weiss KA, Knudson CJ, Varga SM. Central role of dendritic cells in shaping the adaptive immune response during respiratory syncytial virus infection. Future Virol 2011; 6:963-973. [PMID: 21887154 DOI: 10.2217/fvl.11.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.
Collapse
Affiliation(s)
- Daniel S McDermott
- Interdisciplinary Graduate Program in Immunology, 51 Newton Road, 3-532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
43
|
Lugade AA, Bianchi-Smiraglia A, Pradhan V, Elkin G, Murphy TF, Thanavala Y. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling. PLoS One 2011; 6:e19781. [PMID: 21611194 PMCID: PMC3096640 DOI: 10.1371/journal.pone.0019781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/04/2011] [Indexed: 01/21/2023] Open
Abstract
The cross-talk between the innate and the adaptive immune system is facilitated
by the initial interaction of antigen with dendritic cells. As DCs express a
large array of TLRs, evidence has accumulated that engagement of these molecules
contributes to the activation of adaptive immunity. We have evaluated the
immunostimulatory role of the highly-conserved outer membrane lipoprotein P6
from non-typeable Haemophilus influenzae (NTHI) to determine
whether the presence of the lipid motif plays a critical role on its
immunogenicity. We undertook a systematic analysis of the role that the lipid
motif plays in the activation of DCs and the subsequent stimulation of
antigen-specific T and B cells. To facilitate our studies, recombinant P6
protein that lacked the lipid motif was generated. Mice immunized with
non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of
the lipid motif on P6 was also required for proliferation and cytokine secretion
by antigen-specific T cells. Upregulation of T cell costimulatory molecules was
abrogated in DCs exposed to non-lipidated rP6 and in
TLR2−/− DCs exposed to native P6, thereby resulting
in diminished adaptive immune responses. Absence of either the lipid motif on
the antigen or TLR2 expression resulted in diminished cytokine production from
stimulated DCs. Collectively; our data suggest that the lipid motif of the
lipoprotein antigen is essential for triggering TLR2 signaling and effective
stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid
motif on activating both innate and adaptive immune responses to an otherwise
poorly immunogenic protein antigen.
Collapse
Affiliation(s)
- Amit A. Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Anna Bianchi-Smiraglia
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo,
New York, United States of America
| | - Vandana Pradhan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Galina Elkin
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
| | - Timothy F. Murphy
- Department of Medicine, University at Buffalo, State University of New
York, Buffalo, New York, United States of America
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New
York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bueno SM, González PA, Riedel CA, Carreño LJ, Vásquez AE, Kalergis AM. Local cytokine response upon respiratory syncytial virus infection. Immunol Lett 2010; 136:122-9. [PMID: 21195729 DOI: 10.1016/j.imlet.2010.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 11/28/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalization and respiratory distress and has been recognized for several decades as a major health and economic burden worldwide. This virus has developed several virulence mechanisms to impair the establishment of a protective immune response to re-infection. Accordingly, inefficient immunological memory is usually generated after exposure to this pathogen. Furthermore, it has been shown that RSV can actively promote the induction of an inadequate cellular immune response at the site of infection that causes exacerbated inflammation in the respiratory tract. Such an inflammatory response is both inefficient for clearing the virus and can be responsible for detrimental symptoms, such as asthma and wheezing. Recent data suggest that RSV possesses molecular mechanisms to induce the secretion of pro-inflammatory cytokines that modulate the immune response and impair viral clearance by reducing IFN-γ production. Here, we discuss recent research leading to the identification of RSV virulence factors that are responsible of promoting a pro-inflammatory environment at the airways and their implications on pathogenicity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
45
|
How innate immune mechanisms contribute to antibody-enhanced viral infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1829-35. [PMID: 20876821 DOI: 10.1128/cvi.00316-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preexisting antibodies may enhance viral infections. In dengue, nonneutralizing antibodies raised by natural infection with one of four dengue viruses (DENVs) may enhance infection with a different virus by a process we term "intrinsic antibody-dependent enhancement" (iADE). In addition, nonprotective antibodies raised by formalin-inactivated respiratory syncytial virus (RSV) and measles virus vaccines have led to enhanced disease during breakthrough infections. Infections under iADE conditions not only facilitate the process of viral entry into monocytes and macrophages but also modify innate and adaptive intracellular antiviral mechanisms, suppressing type 1 interferon (IFN) production and resulting in enhanced DENV replication. The suppression observed in vitro has been documented in patients with severe (dengue hemorrhagic fever [DHF]) but not in patient with mild (dengue fever [DF]) secondary dengue virus infections. Important veterinary viral infections also may exhibit iADE. It is thought that use of formalin deconforms viral epitopes of RSV, resulting in poor Toll-like receptor (TLR) stimulation; suboptimal maturation of dendritic cells with reduced production of activation factors CD40, CD80, and CD86; decreased germinal center formation in lymph nodes; and the production of nonprotective antibodies. These antibodies fail to neutralize RSV, allowing replication with secondary stimulation of RSV-primed Th2 cells producing more low-avidity antibody, resulting in immune complexes deposited into affected tissue. However, when formalin-inactivated RSV was administered with a TLR agonist to mice, they were protected against wild-type virus challenge. Safe and effective vaccines against RSV/measles virus and dengue virus may benefit from a better understanding of how innate immune responses can promote production of protective antibodies.
Collapse
|