1
|
Soares da Veiga GT, Donassolo RA, Forcellini S, Ferraboli JW, Kujbida Junior MA, Nisimura LM, Bassai LW, Kessler RL, Serpeloni M, Bittencourt NC, Salazar YEAR, Guimarães LFF, Louzada J, Barros DKADS, Lopes SCP, Carvalho LH, Nóbrega de Sousa T, Kano FS, Costa FTM, Fanini Wowk P, Albrecht L. Exploring the naturally acquired response to Pvs47 gametocyte antigen. Front Immunol 2024; 15:1455454. [PMID: 39450180 PMCID: PMC11499161 DOI: 10.3389/fimmu.2024.1455454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria represents a challenging global public health task, with Plasmodium vivax being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against P. vivax malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed in silico methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP119, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between P. vivax blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the in silico characterization and antigenicity of Pvs47 provide crucial insights for potential integration into P. vivax vaccine formulations.
Collapse
Affiliation(s)
| | - Rafael Amaral Donassolo
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Sofia Forcellini
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Julia Weber Ferraboli
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Mario Antonio Kujbida Junior
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Líndice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | | | | | | | - Najara Carneiro Bittencourt
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Yanka Evellyn Alves R. Salazar
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Luiz Felipe Ferreira Guimarães
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Jaime Louzada
- Laboratório de Parasitologia e Monitoramento de Artrópodes Vetores na Amazônia, Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR), Boa Vista, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Luzia Helena Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Tais Nóbrega de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Flora Satiko Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| |
Collapse
|
2
|
Cao Y, Hayashi CTH, Araujo MDS, Tripathi AK, Andrade AO, Medeiros JF, Vinetz J, Kumar N. Evaluation of combination vaccines targeting transmission of Plasmodium falciparum and P. vivax. Vaccine 2024; 42:126140. [PMID: 39033079 PMCID: PMC11338703 DOI: 10.1016/j.vaccine.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Transmission-blocking vaccines interrupting malaria transmission within mosquitoes represent an ideal public health tool to eliminate malaria at the population level. Plasmodium falciparum and P. vivax account for more than 90% of the global malaria burden, co-endemic in many regions of the world. P25 and P48/45 are two leading candidates for both species and have shown promising transmission-blocking activity in preclinical and clinical studies. However, neither of these target antigens as individual vaccines has induced complete transmission inhibition in mosquitoes. In this study, we assessed immunogenicity of combination vaccines based on P25 and P48/45 using a DNA vaccine platform to broaden vaccine specificity against P. falciparum and P. vivax. Individual DNA vaccines encoding Pvs25, Pfs25, Pvs48/45 and Pfs48/45, as well as various combinations including (Pvs25 + Pvs48/45), (Pfs25 + Pfs48/45), (Pvs25 + Pfs25), and (Pvs48/45 + Pfs48/45), were evaluated in mice using in vivo electroporation. Potent antibody responses were induced in mice immunized with individual and combination DNA vaccines, and specific antibody responses were not compromised when combinations of DNA vaccines were evaluated against individual DNA vaccines. The anti-Pvs25 IgG from individual and combination groups revealed concentration-dependent transmission-reducing activity (TRA) in direct membrane feeding assays (DMFA) using blood from P. vivax-infected donors in Brazil and independently in ex vivo MFA using Pvs25-transgenic P. berghei. Similarly, anti-Pfs25 and anti-Pfs48/45 IgGs from mice immunized with Pfs25 and Pfs48/45 DNA vaccines individually and in various combinations revealed antibody dose-dependent TRA in standard membrane feeding assays (SMFA) using culture-derived P. falciparum gametocytes. However, antibodies induced by immunization with Pvs48/45 DNA vaccines were ineffective in DMFA and require further vaccine construct optimization, considering the possibility of induction of both transmission-blocking and transmission-enhancing antibodies revealed by competition ELISA. These studies provide a rationale for combining multiple antigens to simultaneously target transmission of malaria caused by P. falciparum and P. vivax.
Collapse
MESH Headings
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Animals
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Falciparum/immunology
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Malaria, Vivax/immunology
- Mice
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/blood
- Female
- Vaccines, Combined/immunology
- Vaccines, Combined/administration & dosage
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Mice, Inbred BALB C
- Humans
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA
| | - Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Alice Oliveira Andrade
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia 76812-245, Brazil
| | - Joseph Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Sciences, Faculty of Sciences, and Alexander von Humboldt Institute of Tropical Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA.
| |
Collapse
|
3
|
Cao Y, Hayashi CTH, Kumar N. A Novel Ex Vivo Assay to Evaluate Functional Effectiveness of Plasmodium vivax Transmission-Blocking Vaccine Using Pvs25 Transgenic Plasmodium berghei. J Infect Dis 2024; 229:1894-1903. [PMID: 38408353 PMCID: PMC11175679 DOI: 10.1093/infdis/jiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Balam S, Miura K, Ayadi I, Konaté D, Incandela NC, Agnolon V, Guindo MA, Diakité SA, Olugbile S, Nebie I, Herrera SM, Long C, Kajava AV, Diakité M, Corradin G, Herrera S, Herrera MA. Cross-reactivity of r Pvs48/45, a recombinant Plasmodium vivax protein, with sera from Plasmodium falciparum endemic areas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588966. [PMID: 38659832 PMCID: PMC11042229 DOI: 10.1101/2024.04.10.588966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.
Collapse
Affiliation(s)
- Saidou Balam
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Imen Ayadi
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Drissa Konaté
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland aaaa
| | - Merepen A Guindo
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seidina A.S. Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sope Olugbile
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Issa Nebie
- Groupe de Recherche Action Santé (GRAS), Burkina Faso, West Africa
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, France
| | - Mahamadou Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Socrates Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | |
Collapse
|
5
|
Bansal GP, Kumar N. Immune mechanisms targeting malaria transmission: opportunities for vaccine development. Expert Rev Vaccines 2024; 23:645-654. [PMID: 38888098 PMCID: PMC11472754 DOI: 10.1080/14760584.2024.2369583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination. AREAS COVERED In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector. EXPERT OPINION To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.
Collapse
Affiliation(s)
- Geetha P. Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70122, USA
| | - Nirbhay Kumar
- Department of Global Health, The Milken Institute School of Public Health, George Washington University, Washington DC, 20052, USA
| |
Collapse
|
6
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
7
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
8
|
Tebeje SK, Chali W, Hailemeskel E, Ramjith J, Gashaw A, Ashine T, Nebret D, Esayas E, Emiru T, Tsegaye T, Teelen K, Lanke K, Takashima E, Tsuboi T, Salinas ND, Tolia NH, Narum D, Drakeley C, Witkowski B, Vantaux A, Jore MM, Stone WJR, Hansen IS, Tadesse FG, Bousema T. Naturally acquired antibodies to gametocyte antigens are associated with reduced transmission of Plasmodium vivax gametocytes to Anopheles arabiensis mosquitoes. Front Cell Infect Microbiol 2023; 12:1106369. [PMID: 36726645 PMCID: PMC9885094 DOI: 10.3389/fcimb.2022.1106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Naturally acquired antibodies may reduce the transmission of Plasmodium gametocytes to mosquitoes. Here, we investigated associations between antibody prevalence and P. vivax infectivity to mosquitoes. A total of 368 microscopy confirmed P. vivax symptomatic patients were passively recruited from health centers in Ethiopia and supplemented with 56 observations from asymptomatic P. vivax parasite carriers. Direct membrane feeding assays (DMFA) were performed to assess mosquito infectivity; for selected feeds these experiments were also performed after replacing autologous plasma with malaria naïve control serum (n=61). The prevalence of antibodies against 6 sexual stage antigens (Pvs47, Pvs48/45, Pvs230, PvsHAP2, Pvs25 and PvCelTOS) and an array of asexual antigens was determined by ELISA and multiplexed bead-based assays. Gametocyte (ρ< 0.42; p = 0.0001) and parasite (ρ = 0.21; p = 0.0001) densities were positively associated with mosquito infection rates. Antibodies against Pvs47, Pvs230 and Pvs25 were associated with 23 and 34% reductions in mosquito infection rates (p<0.0001), respectively. Individuals who showed evidence of transmission blockade in serum-replacement DMFAs (n=8) were significantly more likely to have PvsHAP2 or Pvs47 antibodies. Further studies may demonstrate causality for the observed associations, improve our understanding of the natural transmission of P. vivax and support vaccine development.
Collapse
Affiliation(s)
- Surafel K. Tebeje
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wakweya Chali
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elifaged Hailemeskel
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Biology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Abrham Gashaw
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Temesgen Ashine
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Desalegn Nebret
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Endashaw Esayas
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Tadele Emiru
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Tizita Tsegaye
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Nichole D. Salinas
- Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Niraj H. Tolia
- Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - David Narum
- Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Amelie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Matthijs M. Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Ivo S. Hansen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research Institute, Malaria and Neglected Tropical Disease Directorate, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Bai J, Liu F, Yang F, Zhao Y, Jia X, Thongpoon S, Roobsoog W, Sattabongkot J, Zheng L, Cui Z, Zheng W, Cui L, Cao Y. Evaluation of transmission-blocking potential of Pv22 using clinical Plasmodium vivax infections and transgenic Plasmodium berghei. Vaccine 2023; 41:555-563. [PMID: 36503858 PMCID: PMC9812905 DOI: 10.1016/j.vaccine.2022.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Antigens expressed during the sexual development of malaria parasites are transmission-blocking vaccine (TBV) targets. Pb22, a protein expressed and localized to the plasma membrane of gametes and ookinetes in Plasmodium berghei, is an excellent TBV candidate. Here, we evaluated the TB potential of the Plasmodium vivax ortholog Pv22 using a transgenic P. berghei parasite line and P. vivax clinical isolates. The full-length recombinant Pv22 (rPv22) protein was produced and used to immunize mice and rabbits to obtain antibodies. We generated a transgenic P. berghei line (TrPv22Pb) by inserting the pv22 gene into the pb22 locus and showed that Pv22 expression completely rescued the defects in male gametogenesis of the pb22 deletion parasite. Since Pv22 in the transgenic parasite showed similar expression and localization patterns to Pb22, we used the TrPv22Pb parasite as a surrogate to evaluate the TB potential of Pv22. In mosquito feeding assays, mosquitoes feeding on rPv22-immunized mice infected with TrPv22Pb parasites showed a 49.3-53.3 % reduction in the oocyst density compared to the control group. In vitro assays showed that the rPv22 immune sera significantly inhibited exflagellation and ookinete formation of the TrPv22Pb parasites. In a direct membrane feeding assay using three clinical P. vivax isolates, the rabbit anti-rPv22 antibodies also significantly decreased the oocyst density by 53.7, 30.2, and 26.2 %, respectively. This study demonstrated the feasibility of using transgenic P. berghei parasites expressing P. vivax antigens as a potential tool to evaluate TBV candidates. However, the much weaker TB activity of Pv22 obtained from two complementary assays suggest that Pv22 may not be a promising TBV candidate for P. vivax.
Collapse
Affiliation(s)
- Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoog
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zeshi Cui
- College of Pharmacy, China Medical University, Shenyang, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Fontecha G, Escobar D, Ortiz B, Pinto A. A PCR-RFLP Technique to Assess the Geographic Origin of Plasmodium falciparum Strains in Central America. Trop Med Infect Dis 2022; 7:tropicalmed7080149. [PMID: 35893657 PMCID: PMC9394469 DOI: 10.3390/tropicalmed7080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The elimination of malaria requires strengthening diagnosis and offering adequate and timely treatment. Imported cases of falciparum malaria represent a major challenge for pre-elimination areas, such as Central America, where chloroquine and primaquine continue to be used as first-line treatment. The pfs47 gene has been previously described as a precise molecular marker to track the geographic origin of the parasite. The aim of this study was to design a simple and low-cost technique using the polymorphic region of pfs47 to assess the geographic origin of P. falciparum strains. A PCR-RFLP technique was developed and evaluated using the MseI enzyme that proved capable of discriminating, with reasonable precision, the geographical origin of the parasites. This method could be used by national surveillance laboratories and malaria elimination programs in countries such as Honduras and Nicaragua in cases of malaria where an origin outside the Central American isthmus is suspected.
Collapse
|
11
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
12
|
Molina-Cruz A, Barillas-Mury C. Pfs47 as a Malaria Transmission-Blocking Vaccine Target. Am J Trop Med Hyg 2022; 107:tpmd211325. [PMID: 35895390 DOI: 10.4269/ajtmh.21-1325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/06/2022] [Indexed: 02/18/2024] Open
Abstract
Transmission-blocking vaccines (TBVs), pioneered by Richard Carter and others, aim to prevent parasite development in the mosquito vector and are a promising new tool for malaria elimination. Pfs47, recently identified as a TBV target, is a three-domain 6-cysteine protein on the surface of Plasmodium falciparum sexual stages. Pfs47 allows the parasite to evade mosquito immunity and is key for P. falciparum infection of the dominant malaria vectors Anopheles gambiae, Anopheles dirus, and Anopheles albimanus. Antibodies against Pfs47 domain 2 (D2) have significant transmission-blocking activity that prevents Plasmodium ookinete development and is independent of human complement. Strong transmission-blocking activity has been mapped to a region of 52 amino acids in Pfs47 D2. Efforts to optimize the immunogenicity of the Pfs47 D2 antigen with a viral-like particle have been successful, and the efficacy of a P47-based TBV was confirmed in vivo with Pbs47, the orthologue of Pfs47 in the mouse malaria parasite Plasmodium berghei. The current evidence warrants further development and clinical testing of a Pfs47-based TBV.
Collapse
|
13
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
White M, Chitnis CE. Potential role of vaccines in elimination of Plasmodium vivax. Parasitol Int 2022; 90:102592. [PMID: 35489701 DOI: 10.1016/j.parint.2022.102592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.
Collapse
Affiliation(s)
- Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université de Paris, Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, Paris, France.
| |
Collapse
|
15
|
Takashima E, Tachibana M, Morita M, Nagaoka H, Kanoi BN, Tsuboi T. Identification of Novel Malaria Transmission-Blocking Vaccine Candidates. Front Cell Infect Microbiol 2021; 11:805482. [PMID: 34917521 PMCID: PMC8670312 DOI: 10.3389/fcimb.2021.805482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Control measures have significantly reduced malaria morbidity and mortality in the last two decades; however, the downward trends have stalled and have become complicated by the emergence of COVID-19. Significant efforts have been made to develop malaria vaccines, but currently only the RTS,S/AS01 vaccine against Plasmodium falciparum has been recommended by the WHO, for widespread use among children in sub-Saharan Africa. The efficacy of RTS,S/AS01 is modest, and therefore the development of more efficacious vaccines is still needed. In addition, the development of transmission-blocking vaccines (TBVs) to reduce the parasite transmission from humans to mosquitoes is required toward the goal of malaria elimination. Few TBVs have reached clinical development, and challenges include low immunogenicity or high reactogenicity in humans. Therefore, novel approaches to accelerate TBV research and development are urgently needed, especially novel TBV candidate discovery. In this mini review we summarize the progress in TBV research and development, novel TBV candidate discovery, and discuss how to accelerate novel TBV candidate discovery.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
16
|
Tachibana M, Takashima E, Morita M, Sattabongkot J, Ishino T, Culleton R, Torii M, Tsuboi T. Plasmodium vivax transmission-blocking vaccines: Progress, challenges and innovation. Parasitol Int 2021; 87:102525. [PMID: 34896614 DOI: 10.1016/j.parint.2021.102525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Existing control measures have significantly reduced malaria morbidity and mortality in the last two decades, although these reductions are now stalling. Significant efforts have been undertaken to develop malaria vaccines. Recently, extensive progress in malaria vaccine development has been made for Plasmodium falciparum. To date, only the RTS,S/AS01 vaccine has been tested in Phase 3 clinical trials and is now under implementation, despite modest efficacy. Therefore, the development of a malaria transmission-blocking vaccine (TBV) will be essential for malaria elimination. Only a limited number of TBVs have reached pre-clinical or clinical development with several major challenges impeding their development, including low immunogenicity in humans. TBV development efforts against P. vivax, the second major cause of malaria morbidity, lag far behind those for P. falciparum. In this review we summarize the latest progress, challenges and innovations in P. vivax TBV research and discuss how to accelerate its development.
Collapse
Affiliation(s)
- Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan; Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
17
|
Onyango SA, Ochwedo KO, Machani MG, Omondi CJ, Debrah I, Ogolla SO, Lee MC, Zhou G, Kokwaro E, Kazura JW, Afrane YA, Githeko AK, Zhong D, Yan G. Genetic diversity and population structure of the human malaria parasite Plasmodium falciparum surface protein Pfs47 in isolates from the lowlands in Western Kenya. PLoS One 2021; 16:e0260434. [PMID: 34843560 PMCID: PMC8629314 DOI: 10.1371/journal.pone.0260434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum parasites have evolved genetic adaptations to overcome immune responses mounted by diverse Anopheles vectors hindering malaria control efforts. Plasmodium falciparum surface protein Pfs47 is critical in the parasite’s survival by manipulating the vector’s immune system hence a promising target for blocking transmission in the mosquito. This study aimed to examine the genetic diversity, haplotype distribution, and population structure of Pfs47 and its implications on malaria infections in endemic lowlands in Western Kenya. Cross-sectional mass blood screening was conducted in malaria endemic regions in the lowlands of Western Kenya: Homa Bay, Kombewa, and Chulaimbo. Dried blood spots and slide smears were simultaneously collected in 2018 and 2019. DNA was extracted using Chelex method from microscopic Plasmodium falciparum positive samples and used to genotype Pfs47 using polymerase chain reaction (PCR) and DNA sequencing. Thirteen observed haplotypes of the Pfs47 gene were circulating in Western Kenya. Population-wise, haplotype diversity ranged from 0.69 to 0.77 and the nucleotide diversity 0.10 to 0.12 across all sites. All the study sites displayed negative Tajima’s D values although not significant. However, the negative and significant Fu’s Fs statistical values were observed across all the study sites, suggesting population expansion or positive selection. Overall genetic differentiation index was not significant (FST = -0.00891, P > 0.05) among parasite populations. All Nm values revealed a considerable gene flow in these populations. These results could have important implications for the persistence of high levels of malaria transmission and should be considered when designing potential targeted control interventions.
Collapse
Affiliation(s)
- Shirley A. Onyango
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Collince J. Omondi
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Elizabeth Kokwaro
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
- * E-mail: (DZ); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
- * E-mail: (DZ); (GY)
| |
Collapse
|
18
|
Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int 2021; 87:102497. [PMID: 34748969 DOI: 10.1016/j.parint.2021.102497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.
Collapse
Affiliation(s)
- Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Hisham Imad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
19
|
Zhang Y, Liu F, Zhao Y, Yang F, Bai J, Jia X, Roobsoong W, Sattabongkot J, Cui L, Cao Y, Luo E, Wang M. Evaluation of two Plasmodium vivax sexual stage antigens as transmission-blocking vaccine candidates. Parasit Vectors 2021; 14:407. [PMID: 34399829 PMCID: PMC8366161 DOI: 10.1186/s13071-021-04909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax transmission-blocking vaccines (TBVs) are receiving increasing attention. Based on excellent transmission-blocking activities of the PbPH (PBANKA_0417200) and PbSOP26 (PBANKA_1457700) antigens in Plasmodium berghei, their orthologs in P. vivax, PVX_098655 (PvPH) and PVX_101120 (PvSOP26), were selected for the evaluation of their potential as TBVs. METHODS Fragments of PvPH (amino acids 22-304) and PvSOP26 (amino acids 30-272) were expressed in the yeast expression system. The recombinant proteins were used to immunize mice to obtain antisera. The transmission-reducing activities of these antisera were evaluated using the direct membrane feeding assay (DMFA) using Anopheles dirus mosquitoes and P. vivax clinical isolates. RESULTS The recombinant proteins PvPH and PvSOP26 induced robust antibody responses in mice. The DMFA showed that the anti-PvSOP26 sera significantly reduced oocyst densities by 92.0 and 84.1% in two parasite isolates, respectively, whereas the anti-PvPH sera did not show evident transmission-reducing activity. The variation in the DMFA results was unlikely due to the genetic polymorphisms of the two genes since their respective sequences were identical in the clinical P. vivax isolates. CONCLUSION PvSOP26 could be a promising TBV candidate for P. vivax, which warrants further evaluation.
Collapse
Affiliation(s)
- Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Meilian Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
20
|
Asali S, Raz A, Turki H, Mafakher L, Razmjou E, Solaymani-Mohammadi S. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development. INFECTION GENETICS AND EVOLUTION 2021; 89:104710. [PMID: 33421653 DOI: 10.1016/j.meegid.2021.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A → G at nucleotide position 77 (46.7%), whereas the least frequent was C → T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.
Collapse
Affiliation(s)
- Soheila Asali
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
21
|
Evaluation and modeling of direct membrane-feeding assay with Plasmodium vivax to support development of transmission blocking vaccines. Sci Rep 2020; 10:12569. [PMID: 32724063 PMCID: PMC7387523 DOI: 10.1038/s41598-020-69513-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Standard and direct membrane-feeding assays (SMFA and DMFA) are fundamental assays to evaluate efficacy of transmission-blocking intervention (TBI) candidates against Plasmodium falciparum and vivax. To compare different candidates precisely, it is crucial to understand the error range of measured activity, usually expressed as percent inhibition in either oocyst intensity (% transmission reducing activity, %TRA), or in prevalence of infected mosquitoes (% transmission blocking activity, %TBA). To this end, mathematical models have been proposed for P. falciparum SMFA (PfSMFA), but such study for DMFA is limited. In this study, we analyzed P. vivax DMFA (PvDMFA) data from 22,236 mosquitoes tested from 96 independent assays. While the two assays are quite different, a zero-inflated negative binomial (ZINB) model could reasonably explain the PvDMFA results, as it has for PfSMFA. Our simulation studies based on the ZINB model revealed it is better to report %TRA values with a proper error range, rather than observed %TBA both in SMFA and DMFA. Furthermore, the simulations help in designing a better assay and aid in estimating an error range of a %TRA value when the uncertainty is not reported. This study strongly supports future TBI development by providing a rational method to compare different candidates.
Collapse
|
22
|
Skwarczynski M, Chandrudu S, Rigau-Planella B, Islam MT, Cheong YS, Liu G, Wang X, Toth I, Hussein WM. Progress in the Development of Subunit Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030373. [PMID: 32664421 PMCID: PMC7563759 DOI: 10.3390/vaccines8030373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/02/2022] Open
Abstract
Malaria is a life-threatening disease and one of the main causes of morbidity and mortality in the human population. The disease also results in a major socio-economic burden. The rapid spread of malaria epidemics in developing countries is exacerbated by the rise in drug-resistant parasites and insecticide-resistant mosquitoes. At present, malaria research is focused mainly on the development of drugs with increased therapeutic effects against Plasmodium parasites. However, a vaccine against the disease is preferable over treatment to achieve long-term control. Trials to develop a safe and effective immunization protocol for the control of malaria have been occurring for decades, and continue on today; still, no effective vaccines are available on the market. Recently, peptide-based vaccines have become an attractive alternative approach. These vaccines utilize short protein fragments to induce immune responses against malaria parasites. Peptide-based vaccines are safer than traditional vaccines, relatively inexpensive to produce, and can be composed of multiple T- and B-cell epitopes integrated into one antigenic formulation. Various combinations, based on antigen choice, peptide epitope modification and delivery mechanism, have resulted in numerous potential malaria vaccines candidates; these are presently being studied in both preclinical and clinical trials. This review describes the current landscape of peptide-based vaccines, and addresses obstacles and opportunities in the production of malaria vaccines.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Saranya Chandrudu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Berta Rigau-Planella
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Md. Tanjir Islam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Yee S. Cheong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Genan Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (I.T.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (S.C.); (B.R.-P.); (M.T.I.); (Y.S.C.); (G.L.); (X.W.)
- Correspondence: (I.T.); (W.M.H.)
| |
Collapse
|
23
|
Tachibana M, Baba M, Takashima E, Tsuboi T, Torii M, Ishino T. The C-terminal region of the Plasmodium yoelii microgamete surface antigen PyMiGS induces potent anti-malarial transmission-blocking immunity in mice. Vaccine 2020; 38:3129-3136. [PMID: 32147299 DOI: 10.1016/j.vaccine.2020.02.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/18/2020] [Indexed: 11/26/2022]
Abstract
Malaria transmission-blocking vaccines (TBVs) aim to inhibit parasite fertilization or further development within the mosquito midgut. Because TBV-immunized individuals reduce the transmission of malaria parasites to mosquito vectors, TBVs could serve as a promising strategy to eliminate malaria. We previously reported that a male specific protein, PyMiGS (Plasmodium yoelii microgamete surface protein), is localized to the surface of microgametes and anti-PyMiGS antibodies have strong transmission-blocking activity. In this study we determine a region of PyMiGS that contains epitopes inducing potent transmission-blocking antibodies. PyMiGS excluding the N-terminal signal sequence and C-terminal hydrophobic region (PyMiGS-full) was divided into five overlapping regions, named I through V, and corresponding truncated recombinant proteins were produced. Anti-region V antibody, affinity-purified from anti-PyMiGS-full rabbit antiserum, significantly reduced the number of oocysts in a mosquito membrane-feeding assay. Antibodies from mice immunized with PyMiGS-V recognized the microgamete surface and showed higher transmission-blocking efficacy than antibodies obtained by PyMiGS-full immunization. These results indicate that the major epitopes for transmission-blocking antibodies are within region V at the C-terminal region of PyMiGS. Therefore, region V of MiGS could be a promising pre-fertilization TBV candidate antigen.
Collapse
Affiliation(s)
- Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan; Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
24
|
Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle. PLoS Negl Trop Dis 2020; 14:e0008104. [PMID: 32119669 PMCID: PMC7067476 DOI: 10.1371/journal.pntd.0008104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/12/2020] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Approximately one-third of the global population is at risk of Plasmodium vivax infection, and an estimated 7.51 million cases were reported in 2017. Although, P. vivax research is currently limited by the lack of a robust continuous in vitro culture system for this parasite, recent work optimizing short-term ex vivo culture of P. vivax from cryopreserved isolates has facilitated quantitative assays on synchronous parasites. Pairing this improved culture system with low-input Smart-seq2 RNAseq library preparation, we sought to determine whether transcriptional profiling of P. vivax would provide insight into the differential survival of parasites in different culture media. To this end we probed the transcriptional signature of three different ex vivo P. vivax samples in four different culture media using only 1000 cells for each time point taken during the course of the intraerythrocytic development cycle (IDC). Using this strategy, we achieved similar quality transcriptional data to previously reported P. vivax transcriptomes. We found little effect with varying culture media on parasite transcriptional signatures, identified many novel gametocyte-specific genes from transcriptomes of FACS-isolated gametocytes, and determined invasion ligand expression in schizonts in biological isolates and across the IDC. In total, these data demonstrate the feasibility and utility of P. vivax RNAseq-based transcriptomic studies using minimal biomass input to maximize experimental capacity. Plasmodium vivax is the most prevalent malaria-causing parasite species outside of Sub-Saharan Africa and has many unique and poorly understood biological characteristics that make it particularly challenging to study and combat. Transcriptomic profiling of P. vivax under various conditions has the potential to unlock new experimental abilities and aid in elucidating biology and the development of clinical interventions. However, a lack of a robust in vitro culture system for this parasite has restricted transcriptomic studies to researchers with timely access to fresh human isolates from clinics, which often are in resource-poor settings, as well as nearby, well-equipped laboratories for sample processing. This study aimed to gain insight into the differential survival of P. vivax in various culture media from the parasites transcriptional signature in each media. By implementing low-input RNA library preparation strategies, this study obtains robust transcriptomic data at various parasite development stages and in different culture conditions from just 1000 FACS-purified, P. vivax-infected erythrocytes from viable cryopreserved patient isolates. With these data, we find culture media has little effect on transcriptional profile, we characterize invasion ligand expression across intraerythrocytic development and between clinical isolates, and we define the transcriptome of sexual, transmissible stages of the P. vivax parasite. These results highlight the establishment and utility of a powerful platform for studying the transcriptomic biology of this particularly challenging parasite.
Collapse
|
25
|
Aitken EH, Mahanty S, Rogerson SJ. Antibody effector functions in malaria and other parasitic diseases: a few needles and many haystacks. Immunol Cell Biol 2020; 98:264-275. [DOI: 10.1111/imcb.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| | - Siddhartha Mahanty
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| | - Stephen J Rogerson
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| |
Collapse
|
26
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
27
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
28
|
Nikolaeva D, Illingworth JJ, Miura K, Alanine DGW, Brian IJ, Li Y, Fyfe AJ, Da DF, Cohuet A, Long CA, Draper SJ, Biswas S. Functional Characterization and Comparison of Plasmodium falciparum Proteins as Targets of Transmission-blocking Antibodies. Mol Cell Proteomics 2020; 19:155-166. [PMID: 29089373 PMCID: PMC6944241 DOI: 10.1074/mcp.ra117.000036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Oxford UK; Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Iona J Brian
- The Jenner Institute, University of Oxford, Oxford UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Oxford UK
| | - Alex J Fyfe
- The Jenner Institute, University of Oxford, Oxford UK
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Carole A Long
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford UK.
| |
Collapse
|
29
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bharti PK, Bansal D, Mohapatra PK, Mahanta J, Sultan AA. Exploration of genetic diversity of Plasmodium vivax circumsporozoite protein (Pvcsp) and Plasmodium vivax sexual stage antigen (Pvs25) among North Indian isolates. Malar J 2019; 18:308. [PMID: 31492135 PMCID: PMC6731556 DOI: 10.1186/s12936-019-2939-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the important vector-borne diseases with high fatality rates in tropical countries. The pattern of emergence and spread of novel antigenic variants, leading to escape of vaccine-induced immunity might be factors responsible for severe malaria. A high level of polymorphism has been reported among malarial antigens which are under selection pressure imposed by host immunity. There are limited reports available on comparative stage-specific genetic diversity among Plasmodium vivax candidate genes in complicated vivax malaria. The present study was planned to study genetic diversity (Pvcsp and Pvs25) among complicated and uncomplicated P. vivax isolates. METHODS Pvcsp and Pvs2-specific PCRs and DNA sequencing were performed on P. vivax PCR positive samples. Genetic diversity was analysed using appropriate software. RESULTS The present study was carried out on 143 P. vivax clinical isolates, collected from Postgraduate Institute of Medical Education and Research, Chandigarh. Among the classic and variant types of Pvcsp, the VK210 (99%; 115/116) was found to be predominant in both complicated and uncomplicated group isolates. Out of the various peptide repeat motifs (PRMs) observed, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) was the most widely distributed among the P. vivax isolates. Whereas among the Pvs25 isolates, 100% of double mutants (E97Q/I130T) in both the complicated (45/45) as well as in the uncomplicated (81/81) group was observed. CONCLUSION An analysis of genetic variability enables an understanding of the role of genetic variants in severe vivax malaria.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Nagpur Road, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar.,Ministry of Public Health, Doha, Qatar
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
31
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
32
|
Kim A, Popovici J, Menard D, Serre D. Plasmodium vivax transcriptomes reveal stage-specific chloroquine response and differential regulation of male and female gametocytes. Nat Commun 2019; 10:371. [PMID: 30670687 PMCID: PMC6342968 DOI: 10.1038/s41467-019-08312-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Studies of Plasmodium vivax gene expression are complicated by the lack of in vitro culture system and the difficulties associated with studying clinical infections that often contain multiple clones and a mixture of parasite stages. Here, we characterize the transcriptomes of P. vivax parasites from 26 malaria patients. We show that most parasite mRNAs derive from trophozoites and that the asynchronicity of P. vivax infections is therefore unlikely to confound gene expression studies. Analyses of gametocyte genes reveal two distinct clusters of co-regulated genes, suggesting that male and female gametocytes are independently regulated. Finally, we analyze gene expression changes induced by chloroquine and show that this antimalarial drug efficiently eliminates most P. vivax parasite stages but, in contrast to P. falciparum, does not affect trophozoites.
Collapse
Affiliation(s)
- Adam Kim
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724, Paris, France
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
33
|
Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2018; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
|
34
|
Tachibana M, Ishino T, Tsuboi T, Torii M. The Plasmodium yoelii microgamete surface antigen (PyMiGS) induces anti-malarial transmission blocking immunity that reduces microgamete motility/release from activated male gametocytes. Vaccine 2018; 36:7463-7471. [DOI: 10.1016/j.vaccine.2018.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023]
|
35
|
Functional Conservation of P48/45 Proteins in the Transmission Stages of Plasmodium vivax (Human Malaria Parasite) and P. berghei (Murine Malaria Parasite). mBio 2018; 9:mBio.01627-18. [PMID: 30181253 PMCID: PMC6123445 DOI: 10.1128/mbio.01627-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sexual-stage proteins have a distinct function in the mosquito vector during transmission and also represent targets for the development of malaria transmission-blocking vaccine. P48/45, a leading vaccine candidate, is critical for male gamete fertility and shows >50% similarity across various species of Plasmodium We evaluated functional conservation of P48/45 in Plasmodium vivax and P. berghei with the motivation to establish transgenic P. berghei strains expressing P. vivax P48/45 (Pvs48/45) in an in vivo assay to evaluate the transmission-blocking activity of antibodies elicited by Pvs48/45. Homologous recombination was employed to target P. bergheis48/45 (pbs48/45) for knockout (KO) or for its replacement by two different forms of P. vivaxs48/45 (pvs48/45) (the full-length gene and a chimeric gene consisting of pbs48/45 5' signal and 3' anchor sequences flanking pvs48/45). Expression of Pvs48/45 in transgenic parasites and lack of expression of any P48/45 in KO parasites were confirmed by reverse transcription-PCR (RT-PCR) and Western blotting. Both transgenic and knockout parasites revealed asexual growth kinetics in mice comparable to that seen with wild-type parasites. When employed in mosquito infection experiments, both transgenic parasite strains remained transmission competent and developed into infectious sporozoites, whereas the knockout parasites were incapable of establishing mosquito-stage infection. These results indicate the functional conservation of P48/45 protein during transmission, and the transgenic parasites generated in this study represent a valuable tool to evaluate the protective efficacy of transmission-blocking antibodies elicited by Pvs48/45-based vaccines using an in vivo mouse animal assay instead of ex vivo membrane feeding assays (MFA) relying on access to P. vivax gametocytes from infected patients.IMPORTANCE Malaria transmission depends upon successful sexual differentiation and maturation of parasites in the vertebrate host and further development in the mosquito midgut. Stage-specific proteins in the sexual stages have been shown to play a critical role in development and successful transmission through the anopheline mosquito vector. Studies presented in the current manuscript evaluated functional conservation of one such protein, P48/45, in two diverse species (P. berghei and P. vivax). Replacement of endogenous pbs48/45 in P. berghei with pvs48/45 (P. vivax homologue) did not affect the viability of the parasites, and the transgenic parasites expressing Pvs48/45 remained transmission competent. These studies establish not only the functional conservation of P48/45 in P. berghei and P. vivax but also offer an opportunity to develop an in vivo test model for Pvs48/45-based P. vivax transmission-blocking vaccines, currently under development.
Collapse
|
36
|
Canepa GE, Molina-Cruz A, Yenkoidiok-Douti L, Calvo E, Williams AE, Burkhardt M, Peng F, Narum D, Boulanger MJ, Valenzuela JG, Barillas-Mury C. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines 2018; 3:26. [PMID: 30002917 PMCID: PMC6039440 DOI: 10.1038/s41541-018-0065-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
Transmission-blocking vaccines are based on eliciting antibody responses in the vertebrate host that disrupt parasite development in the mosquito vector and prevent malaria transmission. The surface protein Pfs47 is present in Plasmodium falciparum gametocytes and female gametes. The potential of Pfs47 as a vaccine target was evaluated. Soluble full-length recombinant protein, consisting of three domains, was expressed in E. coli as a thioredoxin fusion (T-Pfs47). The protein was immunogenic, and polyclonal and monoclonal antibodies (mAb) were obtained, but they did not confer transmission blocking activity (TBA). All fourteen mAb targeted either domains 1 or 3, but not domain 2 (D2), and immune reactivity to D2 was also very low in polyclonal mouse IgG after T-Pfs47 immunization. Disruption of the predicted disulfide bond in D2, by replacing cysteines for alanines (C230A and C260A), allowed expression of recombinant D2 protein in E. coli. A combination of mAbs targeting D2, and deletion proteins from this domain, allowed us to map a central 52 amino acid (aa) region where antibody binding confers strong TBA (78-99%). This 52 aa antigen is immunogenic and well conserved, with only seven haplotypes world-wide that share 96-98% identity. Neither human complement nor the mosquito complement-like system are required for the observed TBA. A dramatic reduction in ookinete numbers and ookinete-specific transcripts was observed, suggesting that the antibodies are interacting with female gametocytes and preventing fertilization.
Collapse
Affiliation(s)
- Gaspar E. Canepa
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Lampouguin Yenkoidiok-Douti
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Fangni Peng
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2 Canada
| | - David Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2 Canada
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| |
Collapse
|
37
|
Martins-Campos KM, Kuehn A, Almeida A, Duarte APM, Sampaio VS, Rodriguez ÍC, da Silva SGM, Ríos-Velásquez CM, Lima JBP, Pimenta PFP, Bassat Q, Müller I, Lacerda M, Monteiro WM, Barbosa Guerra MDGV. Infection of Anopheles aquasalis from symptomatic and asymptomatic Plasmodium vivax infections in Manaus, western Brazilian Amazon. Parasit Vectors 2018; 11:288. [PMID: 29728152 PMCID: PMC5935932 DOI: 10.1186/s13071-018-2749-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Asymptomatic individuals are one of the major challenges for malaria elimination programs in endemic areas. In the absence of clinical symptoms and with a lower parasite density they constitute silent reservoirs considered important for maintaining transmission of human malaria. Studies from Brazil have shown that infected individuals may carry these parasites for long periods. Results Patients were selected from three periurban endemic areas of the city of Manaus, in the western Brazilian Amazon. Symptomatic and asymptomatic patients with positive thick blood smear and quantitative real-time PCR (qPCR) positive for Plasmodium vivax were invited to participate in the study. A standardised pvs25 gene amplification by qPCR was used for P. vivax gametocytes detection. Anopheles aquasalis were fed using membrane feeding assays (MFA) containing blood from malaria patients. Parasitemia of 42 symptomatic and 25 asymptomatic individuals was determined by microscopic examination of blood smears and qPCR. Parasitemia density and gametocyte density were assessed as determinants of infection rates and oocysts densities. A strong correlation between gametocyte densities (microscopy and molecular techniques) and mosquito infectivity (P < 0.001) and oocysts median numbers (P < 0.05) was found in both groups. The ability to infect mosquitoes was higher in the symptomatic group (41%), but infectivity in the asymptomatic group was also seen (1.42%). Conclusions Although their infectivity to mosquitoes is relatively low, given the high prevalence of P. vivax asymptomatic carriers they are likely to play and important role in malaria transmission in the city of Manaus. The role of asymptomatic infections therefore needs to be considered in future malaria elimination programs in Brazil. Electronic supplementary material The online version of this article (10.1186/s13071-018-2749-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keillen M Martins-Campos
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Andrea Kuehn
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anne Almeida
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Ana Paula M Duarte
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | - Íria C Rodriguez
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Sara G M da Silva
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | | | - Paulo Filemon Paolucci Pimenta
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Müller
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Walter and Eliza Hall Institute, Parkville, Australia
| | - Marcus Lacerda
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Wuelton M Monteiro
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maria das Graças V Barbosa Guerra
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil. .,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.
| |
Collapse
|
38
|
Martin TCS, Vinetz JM. Asymptomatic Plasmodium vivax parasitaemia in the low-transmission setting: the role for a population-based transmission-blocking vaccine for malaria elimination. Malar J 2018; 17:89. [PMID: 29466991 PMCID: PMC5822557 DOI: 10.1186/s12936-018-2243-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax remains an important cause of morbidity and mortality across the Americas, Horn of Africa, East and South East Asia. Control of transmission has been hampered by emergence of chloroquine resistance and several intrinsic characteristics of infection including asymptomatic carriage, challenges with diagnosis, difficulty eradicating the carrier state and early gametocyte appearance. Complex human-parasite-vector immunological interactions may facilitate onward infection of mosquitoes. Given these challenges, new therapies are being explored including the development of transmission to mosquito blocking vaccines. Herein, the case supporting the need for transmission-blocking vaccines to augment control of P. vivax parasite transmission and explore factors that are limiting eradication efforts is discussed.
Collapse
Affiliation(s)
- Thomas C S Martin
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium P47: a key gene for malaria transmission by mosquito vectors. Curr Opin Microbiol 2017; 40:168-174. [PMID: 29229188 PMCID: PMC5739336 DOI: 10.1016/j.mib.2017.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
Malaria is caused by infection with Plasmodium parasites that have a complex life cycle. The parasite protein P47 is critical for disease transmission. P47 mediates mosquito immune evasion in both Plasmodium berghei (Pbs47) and Plasmodium falciparum (Pfs47), and has been shown to be important for optimal female gamete fertility in P. berghei. Pfs47 presents strong geographic structure in natural P. falciparum populations, consistent with natural selection of Pfs47 haplotypes by the mosquito immune system as the parasite adapted to new vector species worldwide. These key functions make Plasmodium P47 an attractive target to disrupt malaria transmission.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| | - Gaspar E Canepa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| |
Collapse
|
40
|
Diez Benavente E, Ward Z, Chan W, Mohareb FR, Sutherland CJ, Roper C, Campino S, Clark TG. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PLoS One 2017; 12:e0177134. [PMID: 28493919 PMCID: PMC5426636 DOI: 10.1371/journal.pone.0177134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. RESULTS We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. CONCLUSIONS This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Zoe Ward
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- The Bioinformatics Group, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | - Wilson Chan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fady R. Mohareb
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin J. Sutherland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Cally Roper
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Susana Campino
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
41
|
Datta D, Bansal GP, Gerloff DL, Ellefsen B, Hannaman D, Kumar N. Immunogenicity and malaria transmission reducing potency of Pfs48/45 and Pfs25 encoded by DNA vaccines administered by intramuscular electroporation. Vaccine 2017; 35:264-272. [PMID: 27912985 PMCID: PMC5192010 DOI: 10.1016/j.vaccine.2016.11.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
Abstract
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | - Geetha P Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | | | - Barry Ellefsen
- ICHOR Medical Systems Inc., San Diego, CA, United States
| | - Drew Hannaman
- ICHOR Medical Systems Inc., San Diego, CA, United States
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
42
|
Griffin P, Pasay C, Elliott S, Sekuloski S, Sikulu M, Hugo L, Khoury D, Cromer D, Davenport M, Sattabongkot J, Ivinson K, Ockenhouse C, McCarthy J. Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission. PLoS Negl Trop Dis 2016; 10:e0005139. [PMID: 27930652 PMCID: PMC5145139 DOI: 10.1371/journal.pntd.0005139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes. METHODS Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7-9 days. RESULTS The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds. CONCLUSION The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions. Further work is required to validate transmission and increase its prevalence. TRIAL REGISTRATION Anzctr.org.au ACTRN12613001008718.
Collapse
Affiliation(s)
- Paul Griffin
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- Q-Pharm Pty Ltd, Brisbane, Australia
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Cielo Pasay
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | | | - Silvana Sekuloski
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Maggy Sikulu
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Leon Hugo
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - David Khoury
- University of New South Wales, Sydney, Australia
| | | | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen Ivinson
- PATH, Malaria Vaccine Initiative, Washington, DC, United States
| | | | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| |
Collapse
|
43
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
44
|
Lee SK, Wang B, Han JH, Nyunt MH, Muh F, Chootong P, Ha KS, Park WS, Hong SH, Park JH, Han ET. Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:385-91. [PMID: 27658588 PMCID: PMC5040082 DOI: 10.3347/kjp.2016.54.4.385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/29/2016] [Accepted: 05/29/2016] [Indexed: 11/27/2022]
Abstract
The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jeong-Hyun Park
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
45
|
Zheng L, Pang W, Qi Z, Luo E, Cui L, Cao Y. Effects of transmission-blocking vaccines simultaneously targeting pre- and post-fertilization antigens in the rodent malaria parasite Plasmodium yoelii. Parasit Vectors 2016; 9:433. [PMID: 27502144 PMCID: PMC4977633 DOI: 10.1186/s13071-016-1711-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites. Methods We tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25. Results Immunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates, respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group. Conclusions This result suggested that vaccination with the two DNA constructs did not achieve a synergistic effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important implications for future design of composite vaccines targeting different sexual antigens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, People's Republic of China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, People's Republic of China
| | - Zanmei Qi
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, People's Republic of China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA, 16802, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
46
|
Cao Y, Bansal GP, Merino K, Kumar N. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross-Boosting of Immune Responses. PLoS One 2016; 11:e0158212. [PMID: 27438603 PMCID: PMC4954667 DOI: 10.1371/journal.pone.0158212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/13/2016] [Indexed: 01/25/2023] Open
Abstract
In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites.
Collapse
Affiliation(s)
- Yi Cao
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Geetha P. Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Kristen Merino
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
- * E-mail:
| |
Collapse
|
47
|
Vallejo AF, Martinez NL, Tobon A, Alger J, Lacerda MV, Kajava AV, Arévalo-Herrera M, Herrera S. Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45. Malar J 2016; 15:202. [PMID: 27067024 PMCID: PMC4828788 DOI: 10.1186/s12936-016-1263-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Background Plasmodium vivax 48/45 protein is expressed on the surface of gametocytes/gametes and plays a key role in gamete fusion during fertilization. This protein was recently expressed in Escherichia coli host as a recombinant product that was highly immunogenic in mice and monkeys and induced antibodies with high transmission-blocking activity, suggesting its potential as a P. vivax transmission-blocking vaccine candidate. To determine sequence polymorphism of natural parasite isolates and its potential influence on the protein structure, all pvs48/45 sequences reported in databases from around the world as well as those from low-transmission settings of Latin America were compared. Methods Plasmodium vivax parasite isolates from malaria-endemic regions of Colombia, Brazil and Honduras (n = 60) were used to sequence the Pvs48/45 gene, and compared to those previously reported to GenBank and PlasmoDB (n = 222). Pvs48/45 gene haplotypes were analysed to determine the functional significance of genetic variation in protein structure and vaccine potential. Results Nine non-synonymous substitutions (E35K, Y196H, H211N, K250N, D335Y, E353Q, A376T, K390T, K418R) and three synonymous substitutions (I73, T149, C156) that define seven different haplotypes were found among the 282 isolates from nine countries when compared with the Sal I reference sequence. Nucleotide diversity (π) was 0.00173 for worldwide samples (range 0.00033–0.00216), resulting in relatively high diversity in Myanmar and Colombia, and low diversity in Mexico, Peru and South Korea. The two most frequent substitutions (E353Q: 41.9 %, K250N: 39.5 %) were predicted to be located in antigenic regions without affecting putative B cell epitopes or the tertiary protein structure. Conclusions There is limited sequence polymorphism in pvs48/45 with noted geographical clustering among Asian and American isolates. The low genetic diversity of the protein does not influence the predicted antigenicity or protein structure and, therefore, supports its further development as transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - Jackeline Alger
- Facultad de Ciencias Médicas, Hospital Escuela Universitario, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Marcus V Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Andrey V Kajava
- Centre de Recherches Biochimie Macromoléculaire (CRBM), Institut de Biologie Computationnelle (IBC), CNRS, University of Montpellier, Montpellier, France.,Institute of Bioengineering, University ITMO, Saint Petersburg, Russia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia.,School of Health, Universidad del Valle, Cali, Colombia
| | | |
Collapse
|
48
|
Kou X, Zheng W, Du F, Liu F, Wang M, Fan Q, Cui L, Luo E, Cao Y. Characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine. Parasit Vectors 2016; 9:190. [PMID: 27038925 PMCID: PMC4818878 DOI: 10.1186/s13071-016-1459-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 12/01/2022] Open
Abstract
Background Transmission-blocking vaccines (TBVs) are a promising strategy for malaria control and elimination. However, candidate TBV antigens are currently limited, highlighting the urgency of identifying new antigens for TBV development. Methods Using a combination of bioinformatic analysis and functional studies in the rodent malaria model Plasmodium berghei, we identified a conserved Plasmodium protein PbPH (PBANKA_041720) containing a pleckstrin homology (PH) domain. The expression of PbPH was detected by Western blot and indirect immunofluorescence assay (IFA). The function of PbPH was tested by genetic knockout. The TB activity was confirmed by in vitro ookinete conversion assay and mosquito feeding. Results PbPH was detected in Western blot as highly expressed in sexual stages (gametocytes and ookinetes). IFA revealed localizations of PbPH on the surface of gametes, zygotes, and ookinetes. Deletion of the pbph gene did not affect asexual growth, but significantly reduced the formation of gametocytes, ookinetes, and oocysts, indicating that PbPH protein is required for parasite sexual development. Recombinant PbPH expressed and purified from bacteria elicited strong antibody responses in mice and the antibodies significantly inhibited exflagellation of male gametocytes and formation of ookinetes in a concentration-dependent manner. Mosquito feeding experiments confirmed that mosquitoes fed on mice immunized with PbPH had 13 % reduction in the prevalence of infection and almost 48 % reduction in oocyst density. Conclusions Pbph is a highly conserved Plasmodium gene and is required for parasite sexual development. PbPH protein is expressed on the surface of gametes and ookinetes. Immunization of mice against the recombinant PbPH protein induced strong antibody responses that effectively reduced the formation of male gametes and ookinetes in vitro and blocked transmission of the parasites to mosquitoes. These results highlight PbPH as a potential TBV candidate that is worth future investigations in human malaria parasites. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1459-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Kou
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China.,College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | - Wenqi Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng Du
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Meilian Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
49
|
Du F, Wang S, Zhao C, Cao YM, Luo EJ. Immunogenicity and immunizing protection effect of GAMA gene DNA vaccine on Plasmodium berghei. ASIAN PAC J TROP MED 2016; 9:158-63. [PMID: 26919947 DOI: 10.1016/j.apjtm.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore the effect of immunogenicity and immunizing protection of GAMA gene DNA vaccine, which was related with merozoite, ookinete and sporozoite invasion. METHODS Gene fragments were obtained using PCR technique and eukaryotic expression vector (containing immunostimulatory sequence) was built. BALB/c mice were divided into PBS control group, empty vector control group and study group and were immunized at week 0, 3 and 6 respectively. Blood was collected 2 weeks after each immunization and serum was separated to detect the IgG, IgG1 and IgG2a levels. Spleen of mice was obtained for preparation of splenic mononuclear cell and the cytokine IL-4 and IFN-γ levels were detected. Indirect immunofluorescence and western blot were employed to verify the specificity of antiserum. Sporozoite and merozoite invasion were used respectively to detect the immune protective effect 2 weeks after the third immunization. Ookinete conversion rate in vitro and oocyst numbers of mosquito stomach were observed to evaluate the transmission-blocking levels. RESULTS In GAMA DNA vaccine group: antiserum could be combined with recombinant protein specifically and green fluorescence signals of merozoite, ookinete and sporozoite were observable, while specific fragments and fluorescence signals were not observable in empty vector group. Compared with control group, specific IgG in DNA vaccine immunity group significantly increased (P < 0.01), and IgG1 and IgG2a all increased (P < 0.01). IL-4, IFN-γ content in study group significantly increased, compared with control group (P < 0.01). GAMA DNA vaccine immunity could not obviously block the erythrocyte-stage infection (caused by sporozoite invasion); compared with control group, liver worm load was slightly reduced (P < 0.05), and antiserum ookinete numbers (cultured in vitro) had no significant difference with oocyst numbers of mosquito stomach in DNA vaccine group. CONCLUSIONS GAMA has good antigenicity, which could stimulate the body to produce specific immune responses; while DNA vaccine immunity could not play a good protective effect, the effect of which is only limited to the slight reduction of liver worm load, and has no obvious erythrocyte-stage protective effect and transmission-blocking effect. Therefore, trying other immunization strategies for further research on the value of GAMA (as multi-stage antigen vaccine and multi-stage combined vaccine components of the life-cycle of plasmodium) is necessary.
Collapse
Affiliation(s)
- Feng Du
- Department of Pathogen Biology, Basic Medical College of China Medical University, Shenyang City, Liaoning, China
| | - Si Wang
- Department of Pathogen Biology, Basic Medical College of China Medical University, Shenyang City, Liaoning, China
| | - Chen Zhao
- Inspection Institute of Jilin Medical College, China
| | - Ya-Ming Cao
- Department of Immunology, Basic Medical College of China Medical University, Shenyang City, Liaoning, China
| | - En-Jie Luo
- Department of Pathogen Biology, Basic Medical College of China Medical University, Shenyang City, Liaoning, China.
| |
Collapse
|
50
|
Feng H, Gupta B, Wang M, Zheng W, Zheng L, Zhu X, Yang Y, Fang Q, Luo E, Fan Q, Tsuboi T, Cao Y, Cui L. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China. Parasit Vectors 2015; 8:615. [PMID: 26627683 PMCID: PMC4665908 DOI: 10.1186/s13071-015-1232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. Methods We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Results Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright’s fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Conclusions Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1232-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Bhavna Gupta
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| | - Meilian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Wenqi Zheng
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Yimei Yang
- Department of Parasitology, College of Basic Medical Sciences, Dali Medical College, Dali, Yunnan, China.
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui, China.
| | - Enjie Luo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China.
| | - Takafumi Tsuboi
- Cell-free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China. .,Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| |
Collapse
|