1
|
Sutton C, Baffour K, Soard C, Ramanujam S, Patel R, Santra S, Banerjee T. Plasmonic Nanoceria: A Plasmon-Enhanced Nanohybrid for Rapid and Sensitive Detection of Ebola Glycoprotein. ACS APPLIED NANO MATERIALS 2025; 8:9604-9612. [PMID: 40370499 PMCID: PMC12070368 DOI: 10.1021/acsanm.5c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Frequent Ebola outbreaks on an unprecedented scale in resource-limited countries have resulted in higher fatality rates for the human population. Thereby, the development of a biosensor platform that can be used for point-of-care (PoC) tests and simultaneously features high sensitivity and selectivity is urgently needed. Herein, an approach for formulating multifunctional nanocomposite materials, plasmonic nanoceria (PNC), is presented, and its application as a sensing platform for the detection of Ebolavirus glycoprotein (EGP) of the Zaire strain is demonstrated. The synthetic strategy for PNC allows optical tunability, a unique approach to amplify detection sensitivity introduced by encapsulating gold nanoparticles (GNPs) within the polymeric coatings of cerium oxide nanoparticles (NC). Through altered optical characteristics of GNPs within the PNC, which include changes in localized surface plasmon resonance (SPR), higher detection sensitivity is achieved. Following surface conjugation of PNC with EGP-specific antibodies, a quantitative detection limit as low as 10 pM (0.7 ng/mL) is achieved. Moreover, antibody-functionalized PNC exhibits faster, reproducible, and highly sensitive colorimetric readouts, with a detectable SPR shift in the presence of EGP. Importantly, the limit of detection of EGP evaluated in complex sample matrices was comparable to as attained in a simple buffer. Specificity studies suggest that the developed PNC nanoplatform allows for both detection and differentiation between Ebola virus subtypes. Overall, the formulated PNC holds great potential for the rapid, ultrasensitive, and on-site detection of biomarker EGP of the Zaire strain and can be customized for the detection of other pathogens.
Collapse
Affiliation(s)
- Carissa Sutton
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Kristos Baffour
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Cassidy Soard
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Sneha Ramanujam
- Department
of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Rishi Patel
- Jordan
Valley Innovation Center, Missouri State
University, 542 N. Boonville
Avenue, Springfield, Missouri 65806, United States
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| |
Collapse
|
2
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
3
|
Messingham KN, Richards PT, Fleck A, Patel RA, Djurkovic M, Elliff J, Connell S, Crowe TP, Munoz Gonzalez J, Gourronc F, Dillard JA, Davey RA, Klingelhutz A, Shtanko O, Maury W. Multiple cell types support productive infection and dynamic translocation of infectious Ebola virus to the surface of human skin. SCIENCE ADVANCES 2025; 11:eadr6140. [PMID: 39742475 DOI: 10.1126/sciadv.adr6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Ebola virus (EBOV) causes severe human disease. During late infection, EBOV virions are on the skin's surface; however, the permissive skin cell types and the route of virus translocation to the epidermal surface are unknown. We describe a human skin explant model and demonstrate that EBOV infection of human skin via basal media increases in a time-dependent and dose-dependent manner. In the dermis, cells of myeloid, endothelial, and fibroblast origin were EBOV antigen-positive whereas keratinocytes harbored virus in the epidermis. Infectious virus was detected on the apical epidermal surface within 3 days, indicating that virus propagates and traffics through the explants. Purified human fibroblasts and keratinocytes supported EBOV infection ex vivo and both cell types required the phosphatidylserine receptor, AXL, and the endosomal protein, NPC1, for virus entry. This platform identified susceptible cell types and demonstrated dynamic trafficking of EBOV virions. These findings may explain person-to-person transmission via skin contact.
Collapse
Affiliation(s)
- Kelly N Messingham
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Paige T Richards
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Anthony Fleck
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Radhika A Patel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Marija Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jonah Elliff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel Connell
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Tyler P Crowe
- Department of Dermatology, University of Iowa, Iowa City, IA 52242, USA
| | - Juan Munoz Gonzalez
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Francoise Gourronc
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob A Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Wendy Maury
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Chicano Wust I. Viral interactions with host factors (TIM-1, TAM -receptors, Glut-1) are related to the disruption of glucose and ascorbate transport and homeostasis, causing the haemorrhagic manifestations of viral haemorrhagic fevers. F1000Res 2024; 12:518. [PMID: 39931159 PMCID: PMC11809632 DOI: 10.12688/f1000research.134121.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 02/13/2025] Open
Abstract
The haemorrhagic features of viral haemorrhagic fevers may be caused by common patterns of metabolic disturbances of the glucose and ascorbate homeostasis. Haemorrhages and vasculature disfunctions are a clinical feature not only of viral haemorrhagic fevers, but also in scurvy, diabetes and thrombotic microangiopathic haemolytic anaemia. Interestingly, the expression of glucose and ascorbate transporter Glut-1 on the erythrocyte membrane is associated with the inability to synthesize ascorbate and is restricted to that very species that are susceptible to filoviruses (primates, humans and fruit bats). Glut-1 may play a pivotal role in haemorrhagic fever pathogenesis. TIM-1 and TAM receptors have been recognized to enhance entry of Ebola, Lassa and Dengue viruses and viral interferences with TIM-1 could disturb its function, disturbing the expression of Glut-1. In those species not able to synthesize ascorbate and expressing Glut-1 on erythrocytes virus could interact with Glut-1 or other functionally related protein, and the influx of glucose into the cells would be severely impaired. As a consequence, transient hyperglycemia and a marked oxidative stress coupled with the high levels of glucose in plasma would be established, and then promote the activation of NF-κB transcription, exacerbating a pro-inflammatory response mediated by cytokines and chemokines: The inability to synthesize ascorbate is an Achilles Heel when trying to counteract the oxidative stress.
Collapse
Affiliation(s)
- Ivan Chicano Wust
- Universidad Nacional de Educacion a Distancia, Madrid, Community of Madrid, Spain
| |
Collapse
|
5
|
Hou D, Mu Q, Chen W, Cao W, Zhang XF. Nano-Biomechanical Investigation of Phosphatidylserine-Mediated Ebola Viral Attachment via Human Gas6 and Axl. Viruses 2024; 16:1700. [PMID: 39599815 PMCID: PMC11599018 DOI: 10.3390/v16111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex.
Collapse
Affiliation(s)
- Decheng Hou
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Qian Mu
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Wenpeng Cao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Xiaohui Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| |
Collapse
|
6
|
Shekunov EV, Efimova SS, Kever LV, Ishmanov TF, Ostroumova OS. Lipid Selectivity of Membrane Action of the Fragments of Fusion Peptides of Marburg and Ebola Viruses. Int J Mol Sci 2024; 25:9901. [PMID: 39337389 PMCID: PMC11432738 DOI: 10.3390/ijms25189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The life cycle of Ebola and Marburg viruses includes a step of the virion envelope fusion with the cell membrane. Here, we analyzed whether the fusion of liposome membranes under the action of fragments of fusion peptides of Ebola and Marburg viruses depends on the composition of lipid vesicles. A fluorescence assay and electron microscopy were used to quantify the fusogenic activity of the virus fusion peptides and to identify the lipid determinants affecting membrane merging. Differential scanning calorimetry of lipid phase transitions revealed alterations in the physical properties of the lipid matrix produced by virus fusion peptides. Additionally, we found that plant polyphenols, quercetin, and myricetin inhibited vesicle fusion induced by the Marburg virus fusion peptide.
Collapse
Affiliation(s)
- Egor V Shekunov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Lyudmila V Kever
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Tagir F Ishmanov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
7
|
Negi V, Kuhn RJ, Fekete DM. Exploring the Expression and Function of cTyro3, a Candidate Zika Virus Receptor, in the Embryonic Chicken Brain and Inner Ear. Viruses 2023; 15:247. [PMID: 36680287 PMCID: PMC9867072 DOI: 10.3390/v15010247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The transmembrane protein Axl was proposed as an entry receptor for Zika virus (ZIKV) infection in vitro, but conflicting results from in vivo studies have made it difficult to establish Axl as a physiologically relevant ZIKV receptor. Both the functional redundancy of receptors and the experimental model used can lead to variable results. Therefore, it can be informative to explore alternative animal models to analyze ZIKV receptor candidates as an aid in discovering antivirals. This study used chicken embryos to examine the role of chicken Tyro3 (cTyro3), the equivalent of human Axl. Results show that endogenous cTyro3 mRNA expression overlaps with previously described hot spots of ZIKV infectivity in the brain and inner ear. We asked if ectopic expression or knockdown of cTyro3 influenced ZIKV infection in embryos. Tol2 vectors or replication-competent avian retroviruses were used in ovo to introduce full-length or truncated (presumed dominant-negative) cTyro3, respectively, into the neural tube on embryonic day two (E2). ZIKV was delivered to the brain 24 h later. cTyro3 manipulations did not alter ZIKV infection or cell death in the E5/E6 brain. Moreover, delivery of truncated cTyro3 variants to the E3 otocyst had no effect on inner ear formation on E6 or E10.
Collapse
Affiliation(s)
| | | | - Donna M. Fekete
- Department of Biological Sciences, Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
8
|
Ning K, Zou W, Xu P, Cheng F, Zhang EY, Zhang-Chen A, Kleiboeker S, Qiu J. Identification of AXL as a co-receptor for human parvovirus B19 infection of human erythroid progenitors. SCIENCE ADVANCES 2023; 9:eade0869. [PMID: 36630517 PMCID: PMC9833669 DOI: 10.1126/sciadv.ade0869] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/09/2022] [Indexed: 05/31/2023]
Abstract
Parvovirus B19 (B19V) infects human erythroid progenitor cells (EPCs) and causes several hematological disorders and fetal hydrops. Amino acid (aa) 5-68 of minor capsid protein VP1 (VP1u5-68aa) is the minimal receptor binding domain for B19V to enter EPCs. Here, we carried out a genome-wide CRISPR-Cas9 guide RNA screen and identified tyrosine protein kinase receptor UFO (AXL) as a proteinaceous receptor for B19V infection of EPCs. AXL gene silencing in ex vivo expanded EPCs remarkably decreased B19V internalization and replication. Additions of the recombinant AXL extracellular domain or a polyclonal antibody against it upon infection efficiently inhibited B19V infection of ex vivo expanded EPCs. Moreover, B19V VP1u interacted with the recombinant AXL extracellular domain in vitro at a relatively high affinity (KD = 103 nM). Collectively, we provide evidence that AXL is a co-receptor for B19V infection of EPCs.
Collapse
Affiliation(s)
- Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Zou
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | - Steve Kleiboeker
- Department of Research and Development, ViraCor Eurofins Laboratories, Lenexa, KS 66219, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Zhang M, Wang X, Hu L, Zhang Y, Zheng H, Wu H, Wang J, Luo L, Xiao H, Qiao C, Li X, Huang W, Wang Y, Feng J, Chen G. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol Spectr 2022; 10:e0221221. [PMID: 35384693 PMCID: PMC9241846 DOI: 10.1128/spectrum.02212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
11
|
Gourronc FA, Rebagliati M, Kramer-Riesberg B, Fleck AM, Patten JJ, Geohegan-Barek K, Messingham KN, Davey RA, Maury W, Klingelhutz AJ. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573:12-22. [DOI: 10.1016/j.virol.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
12
|
Acciani MD, Brindley MA. Scrambled or flipped: 5 facts about how cellular phosphatidylserine localization can mediate viral replication. PLoS Pathog 2022; 18:e1010352. [PMID: 35245334 PMCID: PMC8896693 DOI: 10.1371/journal.ppat.1010352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Marissa Danielle Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Melinda Ann Brindley
- Department of Infectious Diseases, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Bohan D, Van Ert H, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Elliff JM, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Kursula P, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009743. [PMID: 34797899 PMCID: PMC8641883 DOI: 10.1371/journal.ppat.1009743] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2. Phosphatidylserine (PS) receptors bind PS and mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. This clever use of this uptake mechanism by enveloped viruses is termed apoptotic mimicry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. PS is readily detectable on the surface of SARS-CoV-2 virions, and contrary to prior reports we were unable to identify any interaction between AXL and SARS-CoV-2 spike. Pharmacological inhibition of AXL activity and knockout of AXL expression suggest it is the preferred PS receptor during SARS-CoV-2 entry. We propose that AXL is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Hanora Van Ert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mohammad Badreddine
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - José A. Aguilar Briseño
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonah M. Elliff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tomasz Stokowy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Hillel Haim
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
14
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2-Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J Thorac Oncol 2021; 16:1821-1839. [PMID: 34274504 PMCID: PMC8282443 DOI: 10.1016/j.jtho.2021.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-β, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carminia Maria Della Corte
- Oncology Division, Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
16
|
Ebola virus requires phosphatidylserine scrambling activity for efficient budding and optimal infectivity. J Virol 2021; 95:e0116521. [PMID: 34319156 DOI: 10.1128/jvi.01165-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebola virus (EBOV) attaches to target cells using two categories of cell surface receptors, C-type lectins and phosphatidylserine (PS) receptors. PS receptors typically bind to apoptotic cell membrane PS and orchestrate the uptake and clearance of apoptotic debris. Many enveloped viruses also contain exposed PS and can therefore exploit these receptors for cell entry. Viral infection can induce PS externalization in host cells, resulting in increased outer PS levels on budding virions. Scramblase enzymes carry out cellular PS externalization, thus, we targeted these proteins in order to manipulate viral envelope PS levels. We investigated two scramblases previously identified to be involved in EBOV PS levels, transmembrane protein 16F and Xk-related protein 8 (XKR8), as possible mediators of cellular and viral envelope surface PS levels during the replication of recombinant vesicular stomatitis virus containing its native glycoprotein (rVSV/G) or the EBOV glycoprotein (rVSV/EBOV-GP). We found that rVSV/G and rVSV/EBOV-GP virions produced in XKR8 knockout cells contain decreased levels of PS on their surfaces, and the PS-deficient rVSV/EBOV-GP virions are 70% less efficient at infecting cells through PS receptors. We also observed reduced rVSV and EBOV virus-like particle (VLP) budding in ΔXKR8 cells. Deleting XKR8 in HAP1 cells reduced rVSV/G and rVSV/EBOV-GP budding by 60% and 65% respectively, and reduced Ebola VLP budding more than 60%. We further demonstrated that caspase cleavage of XKR8 is required to promote budding. This suggests that XKR8, in addition to mediating virion PS levels, may also be critical for enveloped virus budding at the plasma membrane. Importance Within the last decade, countries in western and central Africa have experienced the most widespread and deadly Ebola outbreaks since the virus was identified in 1976. While outbreaks are primarily attributed to zoonotic transfer events, new evidence is emerging that outbreaks may be caused by a combination of spillover events and viral latency or persistence in survivors. The possibility that Ebola can remain dormant then re-emerge in survivors highlights the critical need to prevent the virus from entering and establishing infection in human cells. Thus far, host-cell scramblases TMEM16F and XKR8 have been implicated in Ebola envelope surface phosphatidylserine (PS) and cell entry using PS receptors. We assessed the contributions of these proteins using CRISPR knockout cells and two EBOV models: rVSV/EBOV-GP and EBOV VLPs. We observed that XKR8 is required for optimal EBOV envelope PS levels and infectivity, and particle budding across all viral models.
Collapse
|
17
|
Kirui J, Abidine Y, Lenman A, Islam K, Gwon YD, Lasswitz L, Evander M, Bally M, Gerold G. The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry. Cells 2021; 10:cells10071828. [PMID: 34359995 PMCID: PMC8303237 DOI: 10.3390/cells10071828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.
Collapse
Affiliation(s)
- Jared Kirui
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Yara Abidine
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Lisa Lasswitz
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Gisa Gerold
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
18
|
Bohan D, Ert HV, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine Receptors Enhance SARS-CoV-2 Infection: AXL as a Therapeutic Target for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34159331 PMCID: PMC8219095 DOI: 10.1101/2021.06.15.448419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphatidylserine (PS) receptors are PS binding proteins that mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells and this is termed apoptotic mimicry. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when low concentrations of the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. We demonstrated that this PS receptor enhances SARS-CoV-2 binding to and infection of an array of human lung cell lines and is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Hanora Van Ert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Mohammad Badreddine
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | | | | | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tomasz Stokowy
- Department of Biomedicine, University of Bergen, Bergen Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Bergen Norway.,BerGenBio ASA, Bergen, Norway
| | | | | | - Hillel Haim
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - James B Lorens
- Department of Biomedicine, University of Bergen, Bergen Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
19
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Rutten L, Gilman MSA, Blokland S, Juraszek J, McLellan JS, Langedijk JPM. Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Rep 2021; 30:4540-4550.e3. [PMID: 32234486 PMCID: PMC7118701 DOI: 10.1016/j.celrep.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development. Filovirus GP expression increases by stabilizing mutations in hinge loop and base helix Charged lysine in base helix and GP1 N terminus are trapped in metastable conformation Crystal structure of stabilized Makona Δmucin GP confirms successful stabilization These findings may be useful for understanding fusion mechanisms and vaccine design
Collapse
Affiliation(s)
- Lucy Rutten
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
21
|
Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol 2021; 11:575346. [PMID: 33954117 PMCID: PMC8092360 DOI: 10.3389/fcimb.2021.575346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses, as critically important pathogens, are still major public health problems all over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap island in 2007. DENV was considered by the World Health Organization (WHO) as one of the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be a candidate receptor for flavivirus invasion. In this review, we discuss the molecular structure of ZIKV and DENV, and how they interact with AXL to successfully invade host cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-AXL interaction will provide crucial insights into the virus infection process and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Shengda Xie
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huiru Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenjie Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.28.122291. [PMID: 32577652 PMCID: PMC7302206 DOI: 10.1101/2020.05.28.122291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
mSphere of Influence: Apoptotic Mimicry and Virus Entry. mSphere 2021; 6:6/1/e00034-21. [PMID: 33504657 PMCID: PMC7885316 DOI: 10.1128/msphere.00034-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melinda A. Brindley works in the field of virology with specific interests in understanding how viruses enter cells. In this mSphere of Influence article, she reflects on how the paper "Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells" by J. Mercer and A. Helenius (Science 320:531-535, 2008, https://doi.org/10.1126/science.1155164) made an impact on her by expanding our understanding of virus-host interactions and virus-cell binding.
Collapse
|
25
|
Zhang L, Richard AS, Jackson CB, Ojha A, Choe H. Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis. J Virol 2020; 95:e02079-20. [PMID: 33115868 PMCID: PMC7944455 DOI: 10.1128/jvi.02079-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells-efferocytosis-by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell's outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.
Collapse
Affiliation(s)
- Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
26
|
Kuroda M, Halfmann P, Kawaoka Y. HER2-mediated enhancement of Ebola virus entry. PLoS Pathog 2020; 16:e1008900. [PMID: 33052961 PMCID: PMC7556532 DOI: 10.1371/journal.ppat.1008900] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple cell surface molecules including TAM receptors (TYRO3, AXL, and MERTK), a family of tyrosine kinase receptors, can serve as attachment receptors for Ebola virus (EBOV) entry into cells. The interaction of these receptors with EBOV particles is believed to trigger the initial internalization events that lead to macropinocytosis. However, the details of how these interactions lead to EBOV internalization have yet to be elucidated. Here, we screened receptor tyrosine kinase (RTK) inhibitors for anti-EBOV activity by using our previously established biologically contained Ebola virus that lacks the VP30 gene (EBOVΔVP30) and identified several RTKs, including human epidermal growth factor receptor 2 (HER2), as potential targets of anti-EBOV inhibitors and as novel host factors that have a role in EBOV infection. Of these identified RTKs, it was only HER2 whose knockdown by siRNAs impaired EBOVΔVP30-induced AKT1 phosphorylation, an event that is required for AKT1 activation and subsequent macropinocytosis. Stable expression of HER2 resulted in constitutive activation of AKT1, resulting in the enhancement of EBOVΔVP30 growth, EBOV GP-mediated entry, and macropinocytosis. Moreover, we found that HER2 interacts with the TAM receptors, and in particular forms a complex with TYRO3 and EBOVΔVP30 particles on the cell surface. Interestingly, HER2 was required for EBOVΔVP30-induced TYRO3 and AKT1 activation, but the other TAM receptors (TYRO3 and MERTK) were not essential for EBOVΔVP30-induced HER2 and AKT1 activation. Our findings demonstrate that HER2 plays an important role in EBOV entry and provide novel insights for the development of therapeutics against the virus.
Collapse
Affiliation(s)
- Makoto Kuroda
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Kim JH, Koh B, Ahn DG, Lee SJ, Park TJ, Park JP. A screening study of high affinity peptide as molecular binder for AXL, tyrosine kinase receptor involving in Zika virus entry. Bioelectrochemistry 2020; 137:107670. [PMID: 32971483 DOI: 10.1016/j.bioelechem.2020.107670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
The recent extensive spread of Zika virus has led to increased interest in the development of early diagnostic tests. To the best of our knowledge, this is the first study to demonstrate the successful use of phage display to identify affinity peptides for quantitative analysis of AXL, a tyrosine kinase receptor involved in Zika virus entry. Biopanning of M13 phage library successfully identified a high affinity peptide, with the sequence AHNHTPIKQKYL. To study the feasibility of using free peptides for molecular recognition, we synthesized a series of amino acid-substituted peptides and examined their binding affinity for AXL using electrochemical impedance spectroscopy and square wave voltammetry. Most synthetic peptides had non-identical random coil structures based on circular dichroism spectroscopy. Of the peptides tested, AXL BP1 exhibited nanomolar binding affinity for AXL. To verify whether AXL BP1 could be used as a peptide inhibitor at the cellular level, two functional tests were carried out: a WST assay for cell viability and qRT-PCR for quantification of RNA levels in Zika virus-infected Huh7 cells. The results showed that AXL BP1 had low cytotoxicity and could block Zika virus entry. These results indicate that newly identified affinity peptides could potentially be used for the development of Zika virus entry inhibitors.
Collapse
Affiliation(s)
- Ji Hong Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byumseok Koh
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
28
|
The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Viruses 2020; 12:v12080857. [PMID: 32781509 PMCID: PMC7472032 DOI: 10.3390/v12080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
The zoonotic Old World mammarenavirus Lassa (LASV) causes severe hemorrhagic fever with high mortality and morbidity in humans in endemic regions. The development of effective strategies to combat LASV infections is of high priority, given the lack of a licensed vaccine and restriction on available treatment to off-label use of ribavirin. A better understanding of the fundamental aspects of the virus's life cycle would help to improve the development of novel therapeutic approaches. Host cell entry and restriction factors represent major barriers for emerging viruses and are promising targets for therapeutic intervention. In addition to the LASV main receptor, the extracellular matrix molecule dystroglycan (DG), the phosphatidylserine-binding receptors of the Tyro3/Axl/Mer (TAM), and T cell immunoglobulin and mucin receptor (TIM) families are potential alternative receptors of LASV infection. Therefore, the relative contributions of candidate receptors to LASV entry into a particular human cell type are a complex function of receptor expression and functional DG availability. Here, we describe the role of two receptor tyrosine kinases (RTKs), Axl and hepatocyte growth factor receptor (HGFR), in the presence and absence of glycosylated DG for LASV entry. We found that both RTKs participated in the macropinocytosis-related LASV entry and, regardless of the presence or absence of functional DG, their inhibition resulted in a significant antiviral effect.
Collapse
|
29
|
The Multifaceted Roles of TAM Receptors during Viral Infection. Virol Sin 2020; 36:1-12. [PMID: 32720213 DOI: 10.1007/s12250-020-00264-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors play multiple roles in a myriad of physiological and pathological processes, varying from promoting the phagocytic clearance of apoptotic cells, sustaining the immune and inflammatory homeostasis, maintaining the blood-brain barrier (BBB) integrity and central nervous system (CNS) homeostasis, to mediating cancer malignancy and chemoresistance. Growth arrest-specific protein 6 (Gas6) and protein S (Pros1) are the two ligands that activate TAM receptors. Recently, TAM receptors have been reported to mediate cell entry and infection of multitudinous enveloped viruses in a manner called apoptotic mimicry. Moreover, TAM receptors are revitalized during viral entry and infection, which sequesters innate immune and inflammatory responses, facilitating viral replication and immune evasion. However, accumulating evidence have now proposed that TAM receptors are not required for the infection of these viruses in vivo. In addition, TAM receptors protect mice against the CNS infection of neuroinvasive viruses and relieve the brain lesions during encephalitis. These protective effects are achieved through maintaining BBB integrity, attenuating proinflammatory cytokine production, and promoting neural cell survival. TAM receptors also regulate the programmed cell death modes of virus-infected cells, which have profound impacts on the pathogenesis and outcome of infection. Here, we systematically review the functionalities and underlying mechanisms of TAM receptors and propose the potential application of TAM agonists to prevent severe viral encephalitis.
Collapse
|
30
|
Vasmehjani AA, Salehi-Vaziri M, Azadmanesh K, Nejati A, Pouriayevali MH, Gouya MM, Parsaeian M, Shahmahmoodi S. Efficient production of a lentiviral system for displaying Crimean-Congo hemorrhagic fever virus glycoproteins reveals a broad range of cellular susceptibility and neutralization ability. Arch Virol 2020; 165:1109-1120. [PMID: 32189084 DOI: 10.1007/s00705-020-04576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/02/2020] [Indexed: 11/28/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease with a mortality rate of up to 50% in humans. To avoid safety concerns associated with the use of live virus in virus neutralization assays and to detect human serum neutralizing antibodies, we prepared lentiviral particles containing the CCHF glycoprotein (lenti-CCHFV-GP). Incorporation of the GP into the lentiviral particle was confirmed by electron microscopy and Western blotting. Lenti-CCHFV-GP was found to be able to infect a wide range of cell lines, including BHK-21, HeLa, HepG2, and AsPC-1 cells. In addition, lenti-CCHFV-GP was successfully used as an alternative to CCHFV for the detection of neutralizing antibodies. Sera collected from CCHF survivors neutralized lenti-CCHFV-GP particles in a dose-dependent manner. Our results suggest that the lenti-CCHFV-GP pseudovirus can be used as a safe tool for neutralization assays in low-containment laboratories.
Collapse
Affiliation(s)
- Abbas Ahmadi Vasmehjani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mostafa Salehi-Vaziri
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- National Communicable Disease Control Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahboubeh Parsaeian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran. .,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Mayor J, Torriani G, Rothenberger S, Engler O. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins. Virology 2020; 543:54-62. [PMID: 32056847 DOI: 10.1016/j.virol.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvβ3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.
Collapse
Affiliation(s)
- Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland.
| | | |
Collapse
|
32
|
Lin CK, Tseng CK, Wu YH, Lin CY, Huang CH, Wang WH, Liaw CC, Chen YH, Lee JC. Prostasin Impairs Epithelial Growth Factor Receptor Activation to Suppress Dengue Virus Propagation. J Infect Dis 2020; 219:1377-1388. [PMID: 30476206 DOI: 10.1093/infdis/jiy677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dengue virus (DENV), a common and widely spread arbovirus, causes life-threatening diseases, such as dengue hemorrhagic fever or dengue shock syndrome. There is currently no effective therapeutic or preventive treatment for DENV infection. METHODS Next-generation sequencing analysis revealed that prostasin expression was decreased upon DENV infection. Prostasin expression levels were confirmed by real-time quantitative polymerase chain reaction in patients with dengue fever and a DENV-infected mice model. Short hairpin RNA against EGFR and LY294002 were used to investigate the molecular mechanism. RESULTS Based on clinical studies, we first found relatively low expression of prostasin, a glycosylphosphatidyl inositol-anchored membrane protease, in blood samples from patients with dengue fever compared with healthy individuals and a high correlation of prostasin expression and DENV-2 RNA copy number. DENV infection significantly decreased prostasin RNA levels of in vivo and in vitro models. By contrast, exogenous expression of prostasin could protect ICR suckling mice from life-threatening DENV-2 infection. Mechanistic studies showed that inhibition of DENV propagation by prostasin was due to reducing expression of epithelial growth factor receptor, leading to suppression of the Akt/NF-κB-mediated cyclooxygenase-2 signaling pathway. CONCLUSION Our results demonstrate that prostasin expression is a noteworthy clinical feature and a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Weng-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| | - Jin-Ching Lee
- Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan.,PhD program in Life Sciences, College of Life Science, Kaohsiung Medical University, Taiwan
| |
Collapse
|
33
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Rogers KJ, Brunton B, Mallinger L, Bohan D, Sevcik KM, Chen J, Ruggio N, Maury W. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis 2019; 13:e0007819. [PMID: 31825972 PMCID: PMC6905523 DOI: 10.1371/journal.pntd.0007819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebolavirus (EBOV) outbreaks, while sporadic, cause tremendous morbidity and mortality. No therapeutics or vaccines are currently licensed; however, a vaccine has shown promise in clinical trials. A critical step towards development of effective therapeutics is a better understanding of factors that govern host susceptibility to this pathogen. As macrophages are an important cell population targeted during virus replication, we explore the effect of cytokine polarization on macrophage infection. METHODS/MAIN FINDINGS We utilized a BSL2 EBOV model virus, infectious, recombinant vesicular stomatitis virus encoding EBOV glycoprotein (GP) (rVSV/EBOV GP) in place of its native glycoprotein. Macrophages polarized towards a M2-like anti-inflammatory state by combined IL-4 and IL-13 treatment were more susceptible to rVSV/EBOV GP, but not to wild-type VSV (rVSV/G), suggesting that EBOV GP-dependent entry events were enhanced by these cytokines. Examination of RNA expression of known surface receptors that bind and internalize filoviruses demonstrated that IL-4/IL-13 stimulated expression of the C-type lectin receptor DC-SIGN in human macrophages and addition of the competitive inhibitor mannan abrogated IL-4/IL-13 enhanced infection. Two murine DC-SIGN-like family members, SIGNR3 and SIGNR5, were upregulated by IL-4/IL-13 in murine macrophages, but only SIGNR3 enhanced virus infection in a mannan-inhibited manner, suggesting that murine SIGNR3 plays a similar role to human DC-SIGN. In vivo IL-4/IL-13 administration significantly increased virus-mediated mortality in a mouse model and transfer of ex vivo IL-4/IL-13-treated murine peritoneal macrophages into the peritoneal cavity of mice enhanced pathogenesis. SIGNIFICANCE These studies highlight the ability of macrophage polarization to influence EBOV GP-dependent virus replication in vivo and ex vivo, with M2a polarization upregulating cell surface receptor expression and thereby enhancing virus replication. Our findings provide an increased understanding of the host factors in macrophages governing susceptibility to filoviruses and identify novel murine receptors mediating EBOV entry.
Collapse
Affiliation(s)
- Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Laura Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Kristina M. Sevcik
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Jing Chen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
- * E-mail:
| |
Collapse
|
35
|
Ebola Virus Uptake into Polarized Cells from the Apical Surface. Viruses 2019; 11:v11121117. [PMID: 31810353 PMCID: PMC6949903 DOI: 10.3390/v11121117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever with high mortality rates. EBOV can infect many types of cells. During severe EBOV infection, polarized epithelial and endothelial cells are damaged, which promotes vascular instability and dysregulation. However, the mechanism causing these symptoms is largely unknown. Here, we studied virus infection in polarized Vero C1008 cells grown on semipermeable Transwell by using EGFP-labeled Ebola virus-like particles (VLPs). Our results showed that Ebola VLPs preferred to enter polarized Vero cells from the apical cell surface. Furthermore, we showed that the EBOV receptors TIM-1 and Axl were distributed apically, which could be responsible for mediating efficient apical viral entry. Macropinocytosis and intracellular receptor Niemann–Pick type C1 (NPC1) had no polarized distribution, although they played roles in virus entry. This study provides a new view of EBOV uptake and cell polarization, which facilitates a further understanding of EBOV infection and pathogenesis.
Collapse
|
36
|
Chua BA, Ngo JA, Situ K, Morizono K. Roles of phosphatidylserine exposed on the viral envelope and cell membrane in HIV-1 replication. Cell Commun Signal 2019; 17:132. [PMID: 31638994 PMCID: PMC6805584 DOI: 10.1186/s12964-019-0452-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylserine (PtdSer) is usually present only in the inner leaf of the lipid bilayers of the cell membrane, but is exposed on the outer leaf when cells are activated and/or die. Exposure of PtdSer has physiological functions. For example, the PtdSer exposed on dead cells can serve as “eat-me signals” for phagocytes to clear dead cells by phagocytosis, which prevents autoimmune reactions and inflammation. HIV-1 induces PtdSer exposure on infected and target cells and it also exposes PtdSer on its envelope. Recent studies showed that PtdSer exposed on the HIV-1 envelope and infected and target cells can facilitate or inhibit multiple steps of HIV-1 replication. At the virus binding and entry steps, interaction of the envelope PtdSer and the host’s PtdSer-binding molecules can enhance HIV-1 infection of cells by facilitating virus attachment. At the virus budding step, HIV-1 can be trapped on the cell surface by one family of PtdSer-binding receptors, T-cell immunoglobulin mucin domain proteins (TIM)-1, 3, and 4 expressed on virus producer cells. Although this trapping can inhibit release of HIV-1, one of the HIV-1 accessory gene products, Negative Factor (Nef), can counteract virus trapping by TIM family receptors (TIMs) by inducing the internalization of these receptors. HIV-1 infection can induce exposure of PtdSer on infected cells by inducing cell death. A soluble PtdSer-binding protein in serum, protein S, bridges PtdSer exposed on HIV-1-infected cells and a receptor tyrosine kinase, Mer, expressed on macrophages and mediate phagocytic clearance of HIV-1 infected cells. HIV-1 can also induce exposure of PtdSer on target cells at the virus binding step. Binding of HIV-1 envelope proteins to its receptor (CD4) and co-receptors (CXCR4 or CCR5) elicit signals that induce PtdSer exposure on target cells by activating TMEM16F, a phospholipid scramblase. PtdSer exposed on target cells enhances HIV-1 infection by facilitating fusion between the viral envelope and target cell membrane. Because various other phospholipid channels mediating PtdSer exposure have recently been identified, it will be of interest to examine how HIV-1 actively interacts with these molecules to manipulate PtdSer exposure levels on cells and viral envelope to support its replication.
Collapse
|
37
|
Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses 2019; 11:v11030275. [PMID: 30893855 PMCID: PMC6466046 DOI: 10.3390/v11030275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Filoviruses infect a wide range of cell types with the exception of lymphocytes. The intracellular proteins cathepsin B and L, two-pore channel 1 and 2, and bona fide receptor Niemann–Pick Disease C1 (NPC1) are essential for the endosomal phase of cell entry. However, earlier steps of filoviral infection remain poorly characterized. Numerous plasma membrane proteins have been implicated in attachment but it is still unclear which ones are sufficient for productive entry. To define a minimal set of host factors required for filoviral glycoprotein-driven cell entry, we screened twelve cell lines and identified the nonlymphocytic cell line SH-SY5Y to be specifically resistant to filovirus infection. Heterokaryons of SH-SY5Y cells fused to susceptible cells were susceptible to filoviruses, indicating that SH-SY5Y cells do not express a restriction factor but lack an enabling factor critical for filovirus entry. However, all tested cell lines expressed functional intracellular factors. Global gene expression profiling of known cell surface entry factors and protein expression levels of analyzed attachment factors did not reveal any correlation between susceptibility and expression of a specific host factor. Using binding assays with recombinant filovirus glycoprotein, we identified cell attachment as the step impaired in filovirus entry in SH-SY5Y cells. Individual overexpression of attachment factors T-cell immunoglobulin and mucin domain 1 (TIM-1), Axl, Mer, or dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) rendered SH-SY5Y cells susceptible to filovirus glycoprotein-driven transduction. Our study reveals that a lack of attachment factors limits filovirus entry and provides direct experimental support for a model of filoviral cell attachment where host factor usage at the cell surface is highly promiscuous.
Collapse
|
38
|
Salata C, Calistri A, Alvisi G, Celestino M, Parolin C, Palù G. Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses 2019; 11:v11030274. [PMID: 30893774 PMCID: PMC6466262 DOI: 10.3390/v11030274] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola Virus Disease (EVD) is one of the most lethal transmissible infections, characterized by a high fatality rate, and caused by a member of the Filoviridae family. The recent large outbreak of EVD in Western Africa (2013–2016) highlighted the worldwide threat represented by the disease and its impact on global public health and the economy. The development of highly needed anti-Ebola virus antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, allowing to screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to study Ebola virus entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus-like particles, tremendously boosted both our knowledge of the viral life cycle and the identification of promising antiviral compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Michele Celestino
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| |
Collapse
|
39
|
Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M. Review of computational methods for virus-host protein interaction prediction: a case study on novel Ebola-human interactions. Brief Funct Genomics 2018; 17:381-391. [PMID: 29028879 PMCID: PMC7109800 DOI: 10.1093/bfgp/elx026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of potential virus-host interactions is useful and vital to control the highly infectious virus-caused diseases. This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been published. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for prediction of novel virus-host interactions for infectious diseases followed by a case study on EBOV-human interactions. The assessment result shows that the predicted human host proteins are highly similar with known human interaction partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways and host-pathogen relationships.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Pritha Dutta
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mahantapas Kundu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, India
| |
Collapse
|
40
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Rogers KJ, Maury W. The role of mononuclear phagocytes in Ebola virus infection. J Leukoc Biol 2018; 104:717-727. [PMID: 30095866 DOI: 10.1002/jlb.4ri0518-183r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
The filovirus, Zaire Ebolavirus (EBOV), infects tissue macrophages (Mϕs) and dendritic cells (DCs) early during infection. Viral infection of both cells types is highly productive, leading to increased viral load. However, virus infection of these two cell types results in different consequences for cellular function. Infection of Mϕs stimulates the production of proinflammatory and immunomodulatory cytokines and chemokines, leading to the production of a cytokine storm, while simultaneously increasing tissue factor production and thus facilitating disseminated intravascular coagulation. In contrast, EBOV infection of DCs blocks DC maturation and antigen presentation rendering these cells unable to communicate with adaptive immune response elements. Details of the known interactions of these cells with EBOV are reviewed here. We also identify a number of unanswered questions that remain about interactions of filoviruses with these cells.
Collapse
Affiliation(s)
- Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
42
|
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 2018; 92:JVI.00093-18. [PMID: 29875238 DOI: 10.1128/jvi.00093-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Collapse
|
43
|
Shin JS, Jung E, Kim M, Baric RS, Go YY. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro. Viruses 2018; 10:v10060283. [PMID: 29795047 PMCID: PMC6024778 DOI: 10.3390/v10060283] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Jin Soo Shin
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| |
Collapse
|
44
|
Fedeli C, Moreno H, Kunz S. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses. J Mol Biol 2018; 430:1839-1852. [PMID: 29705070 DOI: 10.1016/j.jmb.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review.
Collapse
Affiliation(s)
- Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Héctor Moreno
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland.
| |
Collapse
|
45
|
Fedeli C, Torriani G, Galan-Navarro C, Moraz ML, Moreno H, Gerold G, Kunz S. Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. J Virol 2018; 92:e01613-17. [PMID: 29237830 PMCID: PMC5809728 DOI: 10.1128/jvi.01613-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Fatal infection with the highly pathogenic Lassa virus (LASV) is characterized by extensive viral dissemination, indicating broad tissue tropism. The major cellular receptor for LASV is the highly conserved extracellular matrix receptor dystroglycan (DG). Binding of LASV depends on DG's tissue-specific posttranslational modification with the unusual O-linked polysaccharide matriglycan. Interestingly, functional glycosylation of DG does not always correlate with viral tropism observed in vivo The broadly expressed phosphatidylserine (PS) receptors Axl and Tyro3 were recently identified as alternative LASV receptor candidates. However, their role in LASV entry is not entirely understood. Here, we examine LASV receptor candidates in primary human cells and found coexpression of Axl with differentially glycosylated DG. To study LASV receptor use in the context of productive arenavirus infection, we employed recombinant lymphocytic choriomeningitis virus expressing LASV glycoprotein (rLCMV-LASV GP) as a validated biosafety level 2 (BSL2) model. We confirm and extend previous work showing that Axl can contribute to LASV entry in the absence of functional DG using "apoptotic mimicry" in a way similar to that of other enveloped viruses. We further show that Axl-dependent LASV entry requires receptor activation and involves a pathway resembling macropinocytosis. Axl-mediated LASV entry is facilitated by heparan sulfate and critically depends on the late endosomal protein LAMP-1 as an intracellular entry factor. In endothelial cells expressing low levels of functional DG, both receptors are engaged by the virus and can contribute to productive entry. In sum, we characterize the role of Axl in LASV entry and provide a rationale for targeting Axl in antiviral therapy.IMPORTANCE The highly pathogenic arenavirus Lassa virus (LASV) represents a serious public health problem in Africa. Although the principal LASV receptor, dystroglycan (DG), is ubiquitously expressed, virus binding critically depends on DG's posttranslational modification, which does not always correlate with tissue tropism. The broadly expressed phosphatidylserine receptor Axl was recently identified as an alternative LASV receptor candidate, but its role in LASV entry is unclear. Here, we investigate the exact role of Axl in LASV entry as a function of DG's posttranslational modification. We found that in the absence of functional DG, Axl can mediate LASV entry via apoptotic mimicry. Productive entry requires virus-induced receptor activation, involves macropinocytosis, and critically depends on LAMP-1. In endothelial cells that express low levels of glycosylated DG, both receptors can promote LASV entry. In sum, our study defines the roles of Axl in LASV entry and provides a rationale for targeting Axl in antiviral therapy.
Collapse
Affiliation(s)
- Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Clara Galan-Navarro
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Hector Moreno
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gisa Gerold
- TWINCORE, Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, Hannover, Germany
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
46
|
Dutta P, Halder AK, Basu S, Kundu M. A survey on Ebola genome and current trends in computational research on the Ebola virus. Brief Funct Genomics 2017; 17:374-380. [DOI: 10.1093/bfgp/elx020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
47
|
Yu DS, Weng TH, Wu XX, Wang FX, Lu XY, Wu HB, Wu NP, Li LJ, Yao HP. The lifecycle of the Ebola virus in host cells. Oncotarget 2017; 8:55750-55759. [PMID: 28903457 PMCID: PMC5589696 DOI: 10.18632/oncotarget.18498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
Ebola haemorrhagic fever causes deadly disease in humans and non-human primates resulting from infection with the Ebola virus (EBOV) genus of the family Filoviridae. However, the mechanisms of EBOV lifecycle in host cells, including viral entry, membrane fusion, RNP formation, GP-tetherin interaction, and VP40-inner leaflet association remain poorly understood. This review describes the biological functions of EBOV proteins and their roles in the lifecycle, summarizes the factors related to EBOV proteins or RNA expression throughout the different phases, and reviews advances with regards to the molecular events and mechanisms of the EBOV lifecycle. Furthermore, the review outlines the aspects remain unclear that urgently need to be solved in future research.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Frederick X.C. Wang
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Dallas, TX, USA
| | - Xiang-Yun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
48
|
Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. J Virol 2017; 91:JVI.00479-17. [PMID: 28615211 DOI: 10.1128/jvi.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.
Collapse
|
49
|
Shelby T, Banerjee T, Zegar I, Santra S. Highly Sensitive, Engineered Magnetic Nanosensors to Investigate the Ambiguous Activity of Zika Virus and Binding Receptors. Sci Rep 2017; 7:7377. [PMID: 28785095 PMCID: PMC5547150 DOI: 10.1038/s41598-017-07620-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this research is twofold: 1) to shed light on zika's binding and entry mechanism while 2) demonstrating the effectiveness of our magnetic relaxation platform to achieve this goal. Magnetic relaxation-sensitive nanoparticles (MRNPs) are used in a novel fashion to analyze binding interactions between the zika envelope protein (ZENV) and proposed host cell receptors: AXL, HSP70, and TIM-1. Computational analysis is also utilized to examine these binding interactions for the first time. In addition, the role of crizotinib as a potential binding inhibitor is demonstrated and the possibility of ligand-independent phosphatidylserine-mediated binding is explored. Our findings suggest that while the extracellular domain of AXL has the highest affinity for ZENV; HSP70, TIM-1, and phosphatidylserine might also play active roles in zika tropism, which offers a potential explanation for the variety of zika-associated symptoms. This is, to our knowledge, the first time that MRNPs have been used to examine and quantify host-zika interactions. Our magnetic relaxation platform allows for timely and sensitive analysis of these intricate binding relationships, and it is easily customizable for further examination of additional host-pathogen interactions.
Collapse
Affiliation(s)
- Tyler Shelby
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Irene Zegar
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA.
| |
Collapse
|
50
|
Lemke G. Phosphatidylserine Is the Signal for TAM Receptors and Their Ligands. Trends Biochem Sci 2017; 42:738-748. [PMID: 28734578 DOI: 10.1016/j.tibs.2017.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
Nature repeatedly repurposes, in that molecules that serve as metabolites, energy depots, or polymer subunits are at the same time used to deliver signals within and between cells. The preeminent example of this repurposing is ATP, which functions as a building block for nucleic acids, an energy source for enzymatic reactions, a phosphate donor to regulate intracellular signaling, and a neurotransmitter to control the activity of neurons. A series of recent studies now consolidates the view that phosphatidylserine (PtdSer), a common phospholipid constituent of membrane bilayers, is similarly repurposed for use as a signal between cells and that the ligands and receptors of the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases (RTKs) are prominent transducers of this signal.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|