1
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Anft M, Wiemers L, Rosiewicz KS, Doevelaar A, Skrzypczyk S, Kurek J, Kaliszczyk S, Seidel M, Stervbo U, Seibert FS, Westhoff TH, Babel N. Effect of immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS. Mol Ther 2025:S1525-0016(25)00011-5. [PMID: 39797400 DOI: 10.1016/j.ymthe.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Autoantibodies (AABs) are currently being investigated as causative or aggravating factors during post-COVID. In this study, we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptor (ANSR) autoantibodies and neurological impairments. We found that following immunoadsorption therapy, the ANSR AABs were nearly eliminated from the patients' blood. The removal of immunoglobulin G antibodies was accompanied by a decrease of pro-inflammatory cytokines including interleukin (IL)-4, IL-2, IL-1β, tumor necrosis factor, and IL-17A serum levels, and a significant reduction of soluble spike protein. Notably, a strong positive correlation between pro-inflammatory cytokines and ASNR-AABs β1, β2, M3, and M4 was observed in spike protein-positive patients, whereas no such correlation was evident in spike protein-negative patients. Thirty days post-immunoadsorption therapy, patients exhibited notable improvement in neuropsychological function and a modest but statistically significant amelioration of hand grip strength was observed. However, neither self-reported symptoms nor scores on ME/CFS questionnaires showed a significant improvement and a rebound of the removed proteins occurring within a month.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Lea Wiemers
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Kamil S Rosiewicz
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adrian Doevelaar
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Julia Kurek
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sviatlana Kaliszczyk
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maximilian Seidel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix S Seibert
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
3
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Vats D, Rani G, Arora A, Sharma V, Rathore I, Mubeen SA, Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb) 2024; 149:102567. [PMID: 39305817 DOI: 10.1016/j.tube.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024]
Abstract
Tuberculosis is a global threat and is still a leading cause of death due to an infectious agent. The infection is spread through inhalation of M. tb containing aerosol droplets. Bacteria after reaching the lung alveoli are engulfed by alveolar macrophages, leading to an immune response. Then, pro-inflammatory cytokines are released by these macrophages, recruiting other antigen-presenting cells like dendritic cells. These cells phagocytose the bacteria and present mycobacterial antigens to naïve T cells. After activation by DCs, T cells differentiate into various T cells subsets, viz. CD4+, CD8+, Th17, Treg, Tfh cells and others display enormous diversification in their characteristics and functions. This review comprises a comprehensive literature on conventional and unconventional T cells, highlighting the polyfunctional T cells as well, their role in controlling TB infection, and their implications in the spectrum of TB infection. While some subsets such as CD4+ T cells are extensively studied, some T cell subsets such as gamma delta T cells and Tfh cells remain poorly understood in the pathophysiology of tuberculosis, despite having significant potential implications. The goal of TB eradication can be assisted by development of better vaccines against TB, which can effectively induce a robust and long-term T cells memory. The same has been discussed in the latter part of this review. BCG being the standalone commercialised TB vaccine so far has its limitations. Strategies for the enhancement of BCG along with novel studies in vaccine development, has also been discussed in great detail. Lastly, T cells display a complex interplay of an adaptive immune response against TB, with activation and enhancement of the innate immune responses. Therefore, it is critical to fully understand the role of various T cells subsets in pathophysiology of tuberculosis to provide better therapeutic inventions and improve patient care.
Collapse
Affiliation(s)
- Deepak Vats
- All India Institute of Medical Sciences, New Delhi, India
| | - Geeta Rani
- All India Institute of Medical Sciences, New Delhi, India
| | - Alisha Arora
- All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Isha Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Archana Singh
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Mischke J, Klein S, Cornberg M, Kraft ARM. MitoTempo treatment as an approach to cure persistent viral infections? Virology 2024; 600:110280. [PMID: 39492087 DOI: 10.1016/j.virol.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Chronic viral infections are characterized by exhausted virus-specific T cells. Exhaustion is associated with mitochondrial dysfunction, revealing a possible target for treatment. Targeting these metabolic processes may interfere with the exhaustion process of immune cells during infection. It has been shown that the mitochondria-targeted antioxidant MitoTempo could restore hepatitis-B-virus-specific T cells in vitro. Thus, we investigated MitoTempo as a treatment option using the chronic lymphocytic choriomeningitis virus (LCMVcl13) mouse model. MitoTempo treatment of chronically LCMVcl13 infected mice resulted in a transient reduction of LCMV titer. However, no obvious restoration of functional LCMV-specific T cells was observed, beside subtle changes in phenotype of GP33- and NP205-specific T cells. However, these changes did not translate into significantly more functional responses. Our study showed a transient antiviral effect of MitoTempo, but no profound effect on exhausted T cell responses, although further studies are needed to further elucidate the mechanism and use of MitoTempo.
Collapse
Affiliation(s)
- Jasmin Mischke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Sebastian Klein
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
6
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
7
|
Biradar S, Agarwal Y, Das A, Shu ST, Samal J, Ho S, Kelly N, Mahesh D, Teredesai S, Castronova I, Mussina L, Mailliard RB, Smithgall TE, Bility MT. Nef defect attenuates HIV viremia and immune dysregulation in the bone marrow-liver-thymus-spleen (BLTS) humanized mouse model. Virology 2024; 598:110192. [PMID: 39106585 PMCID: PMC11458258 DOI: 10.1016/j.virol.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Antu Das
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmine Samal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Nickolas Kelly
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Deepika Mahesh
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Shreya Teredesai
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - London Mussina
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA; Department of Microbiology, Howard University, Washington, DC, USA.
| |
Collapse
|
8
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
Al Ageeli E, Abdulhakim JA, Hussein MH, Alnoman MM, Alkhalil SS, Issa PP, Nemr NA, Abdelmaksoud A, Alenizi DA, Fawzy MS, Toraih EA. The HCV-Melanoma Paradox: First Multi-Cohort and Molecular Net-Work Analysis Reveals Lower Incidence but Worse Outcomes-Integrating Clinical, Real-World, and In Silico Data. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1531. [PMID: 39336572 PMCID: PMC11433761 DOI: 10.3390/medicina60091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The relationship between hepatitis C virus (HCV) infection and melanoma remains poorly understood. This study aimed to investigate the association between HCV and melanoma, assess outcomes in patients with both conditions, and explore potential molecular mechanisms connecting the two diseases. Materials and Methods: We conducted a retrospective cohort study of 142 melanoma patients, including 29 with HCV-related cirrhosis, and analyzed their clinical outcomes. For external validation, we used the TriNetX Global Collaborative Network database, comprising 219,960 propensity-matched patients per group. An in silico analysis was performed to identify the molecular pathways linking HCV and melanoma. Results: In the retrospective cohort, HCV-positive melanoma patients showed an increased risk of early relapse (41.4% vs. 18.6%, p = 0.014), recurrence (65.5% vs. 39.8%, p = 0.020), and mortality (65.5% vs. 23.0%, p < 0.001) compared to HCV-negative patients. TriNetX data analysis revealed that HCV-positive patients had a 53% lower risk of developing melanoma (RR = 0.470, 95% CI: 0.443-0.498, p < 0.001). However, HCV-positive melanoma patients had higher all-cause mortality (HR = 1.360, 95% CI: 1.189-1.556, p < 0.001). An in silico analysis identified key molecular players, including IL-6 and CTLA4, in the HCV-melanoma network. Conclusions: While HCV infection may be associated with a lower risk of melanoma development, HCV-positive patients who develop melanoma have poorer outcomes. The identified molecular pathways provide potential targets for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Jawaher A. Abdulhakim
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | | | - Maryam M. Alnoman
- Department of Biology, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Peter P. Issa
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Nader A. Nemr
- Endemic and Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed Abdelmaksoud
- Department of Internal Medicine, University of California, Riverside, CA 92521, USA;
| | - Dhaifallah A. Alenizi
- Department of Medicine, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
11
|
Lara-Aguilar V, Llamas-Adán M, Brochado-Kith Ó, Crespo-Bermejo C, Grande-García S, Arca-Lafuente S, de Los Santos I, Prado C, Alía M, Sainz-Pinós C, Fernández-Rodríguez A, Martín-Carbonero L, Madrid R, Briz V. Low-level HIV-1 viremia affects T-cell activation and senescence in long-term treated adults in the INSTI era. J Biomed Sci 2024; 31:80. [PMID: 39160510 PMCID: PMC11334306 DOI: 10.1186/s12929-024-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Around 10% of people with HIV (PWH) exhibit a low-level viremia (LLV) under antiretroviral therapy (ART). However, its origin and clinical significance are largely unknown, particularly at viremias between 50 and 200 copies/mL and under modern ART based on integrase strand transfer inhibitors (INSTIs). Our aim was to characterize their poor immune response against HIV in comparison to individuals with suppressed viremia (SV) and non-HIV controls (NHC). METHODS Transversal observational study in 81 matched participants: 27 PWH with LLV, 27 PWH with SV, and 27 NHC. Activation (CD25, HLA-DR, and CD38) and senescence [CD57, PD1, and HAVCR2 (TIM3)] were characterized in peripheral T-cell subsets by spectral flow cytometry. 45 soluble biomarkers of systemic inflammation were evaluated by immunoassays. Differences in cell frequencies and plasma biomarkers among groups were evaluated by a generalized additive model for location, scale, and shape (GAMLSS) and generalized linear model (GLM) respectively, adjusted by age, sex at birth, and ART regimen. RESULTS The median age was 53 years and 77.8% were male. Compared to NHC, PWH showed a lower CD4+/CD8+ ratio and increased activation, senescence, and inflammation, highlighting IL-13 in LLV. In addition, LLV showed a downtrend in the frequency of CD8+ naive and effector memory (EM) type 1 compared to SV, along with higher activation and senescence in CD4+ and CD8+ EM and terminally differentiated effector memory RA+ (TEMRA) subpopulations. No significant differences in systemic inflammation were observed between PWH groups. CONCLUSION LLV between 50 and 200 copies/mL leads to reduced cytotoxic activity and T-cell dysfunction that could affect cytokine production, being unable to control and eliminate infected cells. The increase in senescence markers suggests a progressive loss of immunological memory and a reduction in the proliferative capacity of immune cells. This accelerated immune aging could lead to an increased risk of developing future comorbidities. These findings strongly advocate for heightened surveillance of these PWH to promptly identify potential future complications.
Collapse
Affiliation(s)
| | - Manuel Llamas-Adán
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Óscar Brochado-Kith
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | | | | | - Sonia Arca-Lafuente
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Ignacio de Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- La Princesa University Hospital, Madrid, Spain
| | - Carmen Prado
- Flow Cytometry Unit, Institute of Health Carlos III, Madrid, Spain
| | - Mario Alía
- Flow Cytometry Unit, Institute of Health Carlos III, Madrid, Spain
| | - Coral Sainz-Pinós
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Luz Martín-Carbonero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- La Paz University Hospital (IdiPAZ), Madrid, Spain
| | | | - Verónica Briz
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
14
|
de Castro FDOF, Guilarde AO, Souza LCS, Guimarães RF, Pereira AJCS, Romão PRT, Pfrimer IAH, Fonseca SG. Polarization of HIV-1- and CMV-Specific IL-17-Producing T Cells among People with HIV under Antiretroviral Therapy with Cannabis and/or Cocaine Usage. Pharmaceuticals (Basel) 2024; 17:465. [PMID: 38675425 PMCID: PMC11054529 DOI: 10.3390/ph17040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE This study evaluated the influence of cannabis and/or cocaine use in human immunodeficiency virus (HIV)- and cytomegalovirus (CMV)-specific T-cell responses of people with HIV (PWH). RESULTS There was a higher percentage of IL-17-producing HIV-Gag-specific CD8+ T-cells in all drug users than that in PWH non-drug users. Stratifying the drug-user groups, increased percentages of IL-17-producing HIV-Gag-specific CD4+ and CD8+ T-cells were found in PWH cannabis plus cocaine users compared to PWH non-drug users. In response to CMV, there were higher percentage of IL-17-producing CMV-specific CD8+ T-cell in PWH cocaine users than that in PWH non-drug users. Considering all drug users together, there was a higher percentage of SEB-stimulated IL-17-producing CD4+ T-cells than that in PWH non-drug users, whereas cannabis users had higher percentages of IL-17-producing CD4+ T-cells compared to non-drug users. METHODS Cryopreserved peripheral blood mononuclear cells from 37 PWH undergoing antiretroviral therapy (ART) using cannabis (10), cocaine (7), or cannabis plus cocaine (10) and non-drug users (10) were stimulated with HIV-1 Gag or CMV-pp65 peptide pools, or staphylococcal enterotoxin B (SEB) and evaluated for IFN-γ- and/or IL-17A-producing CD4+ and CD8+ T-cells using flow cytometry. CONCLUSIONS Cannabis plus cocaine use increased HIV-specific IL-17 producing T-cells and cocaine use increased IL-17 CMV-specific CD8+ T-cell responses which could favor the inflammatory conditions associated with IL-17 overproduction.
Collapse
Affiliation(s)
- Fernanda de Oliveira Feitosa de Castro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia 74605-140, GO, Brazil
| | - Adriana Oliveira Guilarde
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
| | - Luiz Carlos Silva Souza
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
| | | | | | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, RS, Brazil;
| | | | - Simone Gonçalves Fonseca
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
- iii-INCT-Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, São Paulo 05403-900, SP, Brazil
| |
Collapse
|
15
|
Laudanski K, Mahmoud MA, Ahmed AS, Susztak K, Mathew A, Chen J. Immunological Signatures in Blood and Urine in 80 Individuals Hospitalized during the Initial Phase of COVID-19 Pandemic with Quantified Nicotine Exposure. Int J Mol Sci 2024; 25:3714. [PMID: 38612525 PMCID: PMC11011256 DOI: 10.3390/ijms25073714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024] Open
Abstract
This research analyzes immunological response patterns to SARS-CoV-2 infection in blood and urine in individuals with serum cotinine-confirmed exposure to nicotine. Samples of blood and urine were obtained from a total of 80 patients admitted to hospital within 24 h of admission (tadm), 48 h later (t48h), and 7 days later (t7d) if patients remained hospitalized or at discharge. Serum cotinine above 3.75 ng/mL was deemed as biologically significant exposure to nicotine. Viral load was measured with serum SARS-CoV-2 S-spike protein. Titer of IgG, IgA, and IgM against S- and N-protein assessed specific antiviral responses. Cellular destruction was measured by high mobility group box protein-1 (HMGB-1) serum levels and heat shock protein 60 (Hsp-60). Serum interleukin 6 (IL-6), and ferritin gauged non-specific inflammation. The immunological profile was assessed with O-link. Serum titers of IgA were lower at tadm in smokers vs. nonsmokers (p = 0.0397). IgM at t48h was lower in cotinine-positive individuals (p = 0.0188). IgG did not differ between cotinine-positive and negative individuals. HMGB-1 at admission was elevated in cotinine positive individuals. Patients with positive cotinine did not exhibit increased markers of non-specific inflammation and tissue destruction. The blood immunological profile had distinctive differences at admission (MIC A/B↓), 48 h (CCL19↓, MCP-3↓, CD28↑, CD8↓, IFNγ↓, IL-12↓, GZNB↓, MIC A/B↓) or 7 days (CD28↓) in the cotinine-positive group. The urine immunological profile showed a profile with minimal overlap with blood as the following markers being affected at tadm (CCL20↑, CXCL5↑, CD8↑, IL-12↑, MIC A/B↑, GZNH↑, TNFRS14↑), t48h (CCL20↓, TRAIL↓) and t7d (EGF↑, ADA↑) in patients with a cotinine-positive test. Here, we showed a distinctive immunological profile in hospitalized COVID-19 patients with confirmed exposure to nicotine.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55902, USA;
| | - Mohamed A. Mahmoud
- Department of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN 55902, USA; (M.A.M.); (A.S.A.)
| | - Ahmed Sayed Ahmed
- Department of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN 55902, USA; (M.A.M.); (A.S.A.)
| | - Kaitlin Susztak
- Department of Nephrology, University of Pennsylvania, Philadelphia, PA 19146, USA;
| | - Amal Mathew
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| | - James Chen
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55902, USA;
| |
Collapse
|
16
|
Vecchio F, Carré A, Korenkov D, Zhou Z, Apaolaza P, Tuomela S, Burgos-Morales O, Snowhite I, Perez-Hernandez J, Brandao B, Afonso G, Halliez C, Kaddis J, Kent SC, Nakayama M, Richardson SJ, Vinh J, Verdier Y, Laiho J, Scharfmann R, Solimena M, Marinicova Z, Bismuth E, Lucidarme N, Sanchez J, Bustamante C, Gomez P, Buus S, You S, Pugliese A, Hyoty H, Rodriguez-Calvo T, Flodstrom-Tullberg M, Mallone R. Coxsackievirus infection induces direct pancreatic β cell killing but poor antiviral CD8 + T cell responses. SCIENCE ADVANCES 2024; 10:eadl1122. [PMID: 38446892 PMCID: PMC10917340 DOI: 10.1126/sciadv.adl1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Coxsackievirus B (CVB) infection of pancreatic β cells is associated with β cell autoimmunity and type 1 diabetes. We investigated how CVB affects human β cells and anti-CVB T cell responses. β cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with β cell antigen GAD. Infected β cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.
Collapse
Affiliation(s)
- Federica Vecchio
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Daniil Korenkov
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Soile Tuomela
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - John Kaddis
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Jutta Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Michele Solimena
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Zuzana Marinicova
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
| | - Nadine Lucidarme
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
| | - Janine Sanchez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carmen Bustamante
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Patricia Gomez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - the nPOD-Virus Working Group
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heikki Hyoty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
17
|
Song M, Liu X, Shen W, Wang Z, Wu J, Jiang J, Liu Y, Xu T, Bian T, Zhang M, Sun W, Huang M, Ji N. IFN-γ decreases PD-1 in T lymphocytes from convalescent COVID-19 patients via the AKT/GSK3β signaling pathway. Sci Rep 2024; 14:5038. [PMID: 38424104 PMCID: PMC10904811 DOI: 10.1038/s41598-024-55191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Post-COVID-19 syndrome may be associated with the abnormal immune status. Compared with the unexposed age-matched elder group, PD-1 in the CD8+ T cells from recovered COVID-19 patients was significantly lower. IFN-γ in the plasma of COVID-19 convalescent patients was increased, which inhibited PD-1 expression in CD8+ T cells from COVID-19 convalescent patients. scRNA-seq bioinformatics analysis revealed that AKT/GSK3β may regulate the INF-γ/PD-1 axis in CD8+ T cells from COVID-19 convalescent patients. In parallel, an IFN-γ neutralizing antibody reduced AKT and increased GSK3β in PBMCs. An AKT agonist (SC79) significantly decreased p-GSK3β. Moreover, AKT decreased PD-1 on CD8+ T cells, and GSK3β increased PD-1 on CD8+ T cells according to flow cytometry analysis. Collectively, we demonstrated that recovered COVID-19 patients may develop long COVID. Increased IFN-γ in the plasma of recovered Wuhan COVID-19 patients contributed to PD-1 downregulation on CD8+ T cells by regulating the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Meijuan Song
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Weiyu Shen
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| |
Collapse
|
18
|
Ratnasiri K, Zheng H, Toh J, Yao Z, Duran V, Donato M, Roederer M, Kamath M, Todd JPM, Gagne M, Foulds KE, Francica JR, Corbett KS, Douek DC, Seder RA, Einav S, Blish CA, Khatri P. Systems immunology of transcriptional responses to viral infection identifies conserved antiviral pathways across macaques and humans. Cell Rep 2024; 43:113706. [PMID: 38294906 PMCID: PMC10915397 DOI: 10.1016/j.celrep.2024.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaying Toh
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhiyuan Yao
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Veronica Duran
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Michele Donato
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirit Einav
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Khansalar S, Faghih Z, Barani S, Kalani M, Ataollahi MR, Mohammadi Z, Namdari S, Kalantar K. IFN-γ, IL-17, IL-22 + CD4 + subset in patients with hepatitis C virus and correlation with clinical factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:43-52. [PMID: 38496355 PMCID: PMC10944356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND CD4+ T cell responses in HCV infection have a crucial role in the immunopathology of hepatitis C virus (HCV) infection. Our aim was to investigate the frequency of Th1, Th17, and Th22 cells in HCV-infected patients and elucidate their role in the progression of the disease. METHODS Twenty-six HCV-infected patients and 26 healthy individuals were recruited. Peripheral blood mononuclear cells (PBMCs) were stained to separate CD4, IFN-γ, IL-17, and IL-22 producing cells using flow cytometry. RESULTS Results showed that the mean expression of IL-22 in CD4+ T cells was significantly lower in HCV-infected patients compared to healthy controls. About correlation with clinical factor and T subsets, a negative correlation between the frequency of CD4+ IFN-γ+ cells and Thyroxine level (T4) was observed in the patients. The data showed a positive link between thyroid-stimulating hormone (TSH), cholesterol levels, and the frequency of Th17 cells. In addition, a positive correlation was seen between serum creatinine level with both Th1 and Th17. Ultimately, it was found that there was a positive link between viral burden and IL-17+ IL-22+ cells and a negative correlation between viral load and pure Th22. CONCLUSIONS Our findings indicate that Th22 cells may play a part in the immunopathology of HCV and show the associations between Thelper subsets and the clinical signs of the disease.
Collapse
Affiliation(s)
- Soolmaz Khansalar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Shaghik Barani
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical SciencesShiraz, Iran
| | | | - Zeinab Mohammadi
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Sepideh Namdari
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical SciencesShiraz, Iran
- Department of Bacteriology and Immunology and The Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University HospitalHelsinki, Finland
| |
Collapse
|
20
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Kareva I, Gevertz JL. Mitigating non-genetic resistance to checkpoint inhibition based on multiple states of immune exhaustion. NPJ Syst Biol Appl 2024; 10:14. [PMID: 38336968 PMCID: PMC10858190 DOI: 10.1038/s41540-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Despite the revolutionary impact of immune checkpoint inhibition on cancer therapy, the lack of response in a subset of patients, as well as the emergence of resistance, remain significant challenges. Here we explore the theoretical consequences of the existence of multiple states of immune cell exhaustion on response to checkpoint inhibition therapy. In particular, we consider the emerging understanding that T cells can exist in various states: fully functioning cytotoxic cells, reversibly exhausted cells with minimal cytotoxicity, and terminally exhausted cells. We hypothesize that inflammation augmented by drug activity triggers transitions between these phenotypes, which can lead to non-genetic resistance to checkpoint inhibitors. We introduce a conceptual mathematical model, coupled with a standard 2-compartment pharmacometric (PK) model, that incorporates these mechanisms. Simulations of the model reveal that, within this framework, the emergence of resistance to checkpoint inhibitors can be mitigated through altering the dose and the frequency of administration. Our analysis also reveals that standard PK metrics do not correlate with treatment outcome. However, we do find that levels of inflammation that we assume trigger the transition from the reversibly to terminally exhausted states play a critical role in therapeutic outcome. A simulation of a population that has different values of this transition threshold reveals that while the standard high-dose, low-frequency dosing strategy can be an effective therapeutic design for some, it is likely to fail a significant fraction of the population. Conversely, a metronomic-like strategy that distributes a fixed amount of drug over many doses given close together is predicted to be effective across the entire simulated population, even at a relatively low cumulative drug dose. We also demonstrate that these predictions hold if the transitions between different states of immune cell exhaustion are triggered by prolonged antigen exposure, an alternative mechanism that has been implicated in this process. Our theoretical analyses demonstrate the potential of mitigating resistance to checkpoint inhibitors via dose modulation.
Collapse
Affiliation(s)
- Irina Kareva
- Quantitative Pharmacology Department, EMD Serono, Merck KGaA, Billerica, MA, USA.
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA.
| | - Jana L Gevertz
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| |
Collapse
|
22
|
Lai J, Liang J, Zhang Y, Zhang B, Wei J, Fan J, Chen L, Chen Z, Li Q, Guo D, Lin J, Chen Q. A drug-delivery depot for epigenetic modulation and enhanced cancer immunotherapy. Biomed Pharmacother 2023; 168:115687. [PMID: 37837882 DOI: 10.1016/j.biopha.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) have found widespread application in the management of cancer. Zebularine (Zeb), functioning as a demethylating agent, has exhibited notable advantages and enhanced therapeutic efficacy in the realm of tumour immunotherapy. Nevertheless, due to its lack of targeted functionality, standalone Zeb therapy necessitates the administration of a substantially higher dosage. In this investigation, we have devised an innovative nanodrug formulation, comprising the DNA methyltransferase inhibitor Zeb and pH-responsive chitosan (CS), hereinafter referred to as CS-Zeb nanoparticles (NPs). Our findings have unveiled that CS-Zeb NPs manifest heightened drug release within an acidic milieu (pH 5.5) in comparison to a neutral environment (pH 7.4). Furthermore, in vivo studies have conclusively affirmed that, in contrast to equivalent quantities of Zeb in isolation, the nanocomplex significantly curtailed tumour burden and protracted the survival duration of the B16F10 tumour-bearing murine model. Additionally, CS-Zeb NPs elicited an augmentation of CD8+ T cells within the peripheral circulation of mice and tumour-infiltrating lymphocytes (TILs). Notably, the dosage of CS-Zeb NPs was reduced by a remarkable 70-fold when juxtaposed with Zeb administered in isolation. To summarise, our study underscores the potential of CS-Zeb NPs as an alternative chemotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Bingchen Zhang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, PR China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China.
| |
Collapse
|
23
|
Caraballo Cortés K, Osuch S, Perlejewski K, Radkowski M, Janiak M, Berak H, Rauch A, Fehr JS, Hoffmann M, Günthard HF, Metzner KJ. T-Cell Exhaustion in HIV-1/Hepatitis C Virus Coinfection Is Reduced After Successful Treatment of Chronic Hepatitis C. Open Forum Infect Dis 2023; 10:ofad514. [PMID: 37953817 PMCID: PMC10633785 DOI: 10.1093/ofid/ofad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Background T-cell responses during chronic viral infections become exhausted, which is reflected by upregulation of inhibitory receptors (iRs) and increased interleukin 10 (IL-10). We assessed 2 iRs-PD-1 (programmed cell death protein 1) and Tim-3 (T-cell immunoglobulin and mucin domain-containing protein 3)-and IL-10 mRNAs in peripheral blood mononuclear cells (PBMCs) and their soluble analogs (sPD-1, sTim-3, and IL-10) in plasma in chronic HIV-1/hepatitis C virus (HCV) coinfection and explored the effect of HCV treatment on these markers. We also aimed to establish whether iR expression may be determined by the HCV CD8+ T-cell immunodominant epitope sequence. Methods Plasma and PBMCs from 31 persons with chronic HIV-1/HCV coinfection from the Swiss HIV Cohort Study were collected before and after HCV treatment. As controls, 45 persons who were HIV-1 negative with chronic HCV infection were recruited. Exhaustion markers were assessed by enzyme-linked immunosorbent assay in plasma and by quantitative reverse transcription polymerase chain reaction in PBMCs. Analysis of an HCV epitope sequence was conducted by next-generation sequencing: HLA-A*02-restricted NS31073-1081 and NS31406-1415 and HLA-A*01-restricted NS31436-1444. Results The study revealed higher plasma sPD-1 (P = .0235) and IL-10 (P = .002) levels and higher IL-10 mRNA in PBMCs (P = .0149) in HIV-1/HCV coinfection. A decrease in plasma sPD-1 (P = .0006), sTim-3 (P = .0136), and IL-10 (P = .0003) and Tim-3 mRNA in PBMCs (P = .0210) was observed following successful HCV treatment. Infection with the HLA-A*01-restricted NS31436-1444 ATDALMTGY prototype variant was related to higher sTim-3 levels than infection with the ATDALMTGF escape variant (P = .0326). Conclusions The results underscore the synergistic effect of coinfection on expression of exhaustion markers, their reduction following successful HCV treatment and imply that iR levels may operate on an epitope-specific manner.
Collapse
Affiliation(s)
- Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Janiak
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan S Fehr
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital Olten, Olten, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Tian Z, Yang Z, Jin M, Ding R, Wang Y, Chai Y, Wu J, Yang M, Zhao W. Identification of cytokine-predominant immunosuppressive class and prognostic risk signatures in glioma. J Cancer Res Clin Oncol 2023; 149:13185-13200. [PMID: 37479756 DOI: 10.1007/s00432-023-05173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE The advent of immune checkpoint blockade (ICB) therapies this year has changed the way glioblastoma (GBM) is treated. Meanwhile, some patients with strong PD-L1 expression remain immune checkpoint resistant. To better understand the molecular processes that influence the immune environment, there is an urgent need to characterize the immunosuppressive tumor microenvironment and identify biomarkers to predict patient survival outcomes. PATIENTS AND METHODS Our study analyzed RNA-sequencing data from 178 GBM samples. Their unique gene expression patterns in the tumor microenvironment were analyzed by an unsupervised clustering algorithm. Through these expression patterns, a panel of T-cell exhaustion signatures, immunosuppressive cells, and clinical features correlates with immunotherapy response. The presence or absence of immune status and prognostic signatures was then validated with the test dataset. RESULTS 38.2% of GBM patients showed increased expression of anti-inflammatory cytokines, significant enrichment of T cell exhaustion signals, higher proportion of immunosuppressive cells (macrophages and CD4 regulatory T cells) and nine inhibitory checkpoints (CTLA4, PDCD1, LAG3, BTLA, TIGIT, HAVCR2, IDO1, SIGLEC7, and VISTA). The immunodepleted class (IDC) was used to classify these immunocompromised individuals. Despite the high density of tumor-infiltrating lymphocytes shown by IDC, such patients have a poor prognosis. Although PD-L1 was highly expressed in IDC, it suggested that there might be ICB resistance. There are many IDC predictive signatures to discover. CONCLUSION PD-1 is strongly expressed in a novel immunosuppressive class of GBM, but this cluster may be resistant to ICB therapy. A comprehensive description of this drug-resistant tumor microenvironment could provide new insights into drug resistance mechanisms and improved immunotherapy techniques.
Collapse
Affiliation(s)
- Ziyue Tian
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhongyi Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Meng Jin
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
| | - Yuhan Wang
- School of Medical Informatics Engineering, Changchun University of Chinese Medicine, Changchun, 130118, Jilin, China
| | - Yuying Chai
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jinpu Wu
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Miao Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Weimin Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
25
|
Pokoyski C, Baars W, Windheim M, Reubold TF, Zischke J, Brinkmann A, Kay-Fedorov PC, Schwinzer R. Expression of viral CD45 ligand E3/49K on porcine cells reduces human anti-pig immune responses. Sci Rep 2023; 13:17218. [PMID: 37821577 PMCID: PMC10567836 DOI: 10.1038/s41598-023-44316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Transgenic expression of protective molecules in porcine cells and tissues is a promising approach to prevent xenograft rejection. Viruses have developed various strategies to escape the host's immune system. We generated porcine B cells (B cell line L23) expressing the human adenovirus protein E3/49K or the human cytomegalovirus protein pUL11 and investigated how human T, NK and B cell responses are affected by the expression of the viral proteins. Binding studies revealed that E3/49K and pUL11 interact with CD45 on human but not porcine peripheral blood mononuclear cells. T cell proliferation in response to L23-E3/49K cells was significantly reduced and accompanied by development of an anti-inflammatory cytokine milieu (low: TNF-alpha, IFN-gamma, IL-6; high: IL-4, IL-10). Human peripheral blood mononuclear cells which had been primed for four weeks by L23-E3/49K cells included an extended population of regulatory T cells. Cytotoxicity of effector T and natural killer cells against L23 cells was significantly reduced (40 to 50%) by E3/49K expression. B cell activation and antibody production to E3/49K expressing cells was also diminished. Surprisingly, pUL11 expression showed no effects. Reduction of human anti-pig immune responses by transgenic expression of selected viral genes may be a novel approach for protection of porcine xenografts.
Collapse
Affiliation(s)
- Claudia Pokoyski
- Surgical Research Laboratory, Hannover Medical School, Hannover, Germany.
| | - Wiebke Baars
- Surgical Research Laboratory, Hannover Medical School, Hannover, Germany
| | - Mark Windheim
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, and German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
| | - Antje Brinkmann
- Surgical Research Laboratory, Hannover Medical School, Hannover, Germany
| | - Penelope C Kay-Fedorov
- Institute of Virology, Hannover Medical School, and German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
| | - Reinhard Schwinzer
- Surgical Research Laboratory, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Zhao M, Li L, Kiernan CH, Castro Eiro MD, Dammeijer F, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Aerts JG, Mueller YM, Katsikis PD. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition. Sci Rep 2023; 13:15678. [PMID: 37735204 PMCID: PMC10514027 DOI: 10.1038/s41598-023-42871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Ling Li
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Melisa D Castro Eiro
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Merel E P Wilmsen
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
28
|
Zhong J, Qiu M, Meng Y, Wang P, Chen S, Wang L. Single-cell multi-omics sequencing reveals the immunological disturbance underlying STAT3-V637M Hyper-IgE syndrome. Int Immunopharmacol 2023; 122:110624. [PMID: 37480751 DOI: 10.1016/j.intimp.2023.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by, among others, the excessive production of IgE and repetitive bacterial/fungal infections. Mutations in STAT3, a transcription factor that orchestrates immune responses, may cause HIES, but the underlying mechanisms are not fully understood. Here, we used multi-omic approaches to comprehensively decipher the immune disturbance in a male HIES patient harboring STAT3-V637M. In his peripheral blood mononuclear cell (PBMC) we found significant clonal expansion of CD8 T cells (with increased CD8 subunits expression, potentially enhancing responsiveness to MHC I molecules), but not in his CD4 T cells and B cells. Although his B cells exhibited a higher potential in producing immunoglobulin, elevated SPIC binding might bias the products toward IgE isotype. Immune checkpoint inhibitors, including CTLA4, LAG3, were overexpressed in his PBMC-CD4 T cells, accompanied by reduced CD28 and IL6ST (gp130) expression. In his CD4 T cells, integrative analyses predicted upstream transcription factors (including ETV6, KLF13, and RORA) for LAG3, IL6ST, and CD28, respectively. The down-regulation of phagocytosis and nitric oxide synthesis-related genes in his PBMC-monocytes seem to be the culprit of his disseminated bacterial/fungal infection. Counterintuitively, in his PBMC we predicted increased STAT3 binding in both naïve and mature CD4 compartments, although this was not observed in most of his PBMC. In his bronchoalveolar lavage fluid (BALF), we found two macrophage subtypes with anti-bacterial properties, which were identified by CXCL8/S100A8/S100A9, or SOD2, respectively. Together, we described how the immune cell landscape was disturbed in STAT3-V637M HIES, providing a resource for further studies.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China
| | - Minzhi Qiu
- Health Management Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yu Meng
- Department of Quality Control, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China
| | - Peizhong Wang
- Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shanze Chen
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| | - Lingwei Wang
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
29
|
Lurain K, Polizzotto MN, Krug LT, Shoemaker G, Singh A, Jensen SMR, Wyvill KM, Ramaswami R, Uldrick TS, Yarchoan R, Sereti I. Immunophenotypic analysis in participants with Kaposi sarcoma following pomalidomide administration. AIDS 2023; 37:1693-1703. [PMID: 37352498 PMCID: PMC10527758 DOI: 10.1097/qad.0000000000003627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate baseline differences by HIV status and the impact of pomalidomide on lymphocyte counts and T-cell subsets in patients with Kaposi sarcoma. DESIGN We prospectively evaluated CD4 + and CD8 + T-cell phenotypes in 19 participants with Kaposi sarcoma enrolled on a phase 1/2 study of pomalidomide (NCT01495598), seven without HIV and 12 with HIV on antiretroviral therapy. METHODS Trial participants received pomalidomide 5 mg orally for 21 days of 28-day cycles for up to 1 year. Flow cytometry was performed on peripheral blood mononuclear cells at baseline, after three cycles, and at end-of-treatment. Lymphocyte count and T-cell subset comparisons were evaluated by Wilcoxon signed-rank and Mann--Whitney tests. RESULTS At baseline, HIV + participants had lower CD4 + cell counts (median 416 vs. 742 CD4 + T cells/μl, P = 0.006), and a decreased proportion of CD57 + (senescent) CD8 + T cells ( P = 0.007) compared with HIV - participants. After three cycles, pomalidomide led to an increased proportion of CD45RO + CD27 + (central memory) CD4 + ( P = 0.002) and CD8 + ( P = 0.002) T cells, a decrease in CD45RO - CD27 - (effector) CD4 + cells ( P = 0.0002), and expansion of CD38 + /HLADR + (activated) CD4 + ( P = 0.002) and CD8 + ( P ≤ 0.0001) T cells. Increased numbers of activated CD8 + T cells persisted at end-of-treatment ( P = 0.002). After three cycles and at end-of-treatment, there was reduction in the proportion of CD57 + (senescent) CD4 + ( P = 0.001, 0.0006), and CD8 + ( P = < 0.0001, 0.0004) T cells. CONCLUSION Administration of pomalidomide decreased T-cell senescence and increased T-cell activation in patients with Kaposi sarcoma, suggesting pomalidomide activity in Kaposi sarcoma stems in part from its immunomodulatory effects.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV & AIDS Malignancy Branch, Center for Cancer Research (CCR), NCI
| | | | - Laurie T Krug
- HIV & AIDS Malignancy Branch, Center for Cancer Research (CCR), NCI
| | | | - Amrit Singh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Stig M R Jensen
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | | | - Ramya Ramaswami
- HIV & AIDS Malignancy Branch, Center for Cancer Research (CCR), NCI
| | - Thomas S Uldrick
- HIV & AIDS Malignancy Branch, Center for Cancer Research (CCR), NCI
| | - Robert Yarchoan
- HIV & AIDS Malignancy Branch, Center for Cancer Research (CCR), NCI
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| |
Collapse
|
30
|
Kim J, Kim C, Lee JA, Lee SJ, Lee KH, Kim JH, Ahn JY, Jeong SJ, Ku NS, Choi JY, Yeom JS, Song YG. Long-term prognosis and overall mortality in patients with progressive multifocal leukoencephalopathy. Sci Rep 2023; 13:14291. [PMID: 37652945 PMCID: PMC10471597 DOI: 10.1038/s41598-023-41147-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare but fatal opportunistic infection and mainly occurs in patients with immunosuppressive conditions. Despite the increasing number of patients receiving immunosuppressive treatments, studies on PML are still lacking due to its low prevalence and incidence. We retrospectively reviewed patients diagnosed with PML in two tertiary hospitals in South Korea from 1999 to 2021. Total of 47 PML patients were included. Of 27 patients (57.4%) were diagnosed with human immunodeficiency virus (HIV). Median last follow-up modified Rankin Scale (mRS) score was higher in the non-HIV PML group than that in the HIV group (5 vs. 4, p = 0.020). Median survival duration was lower in the non-HIV group (184 vs. 1,564 days). The 1-year and overall mortality rates of PML patients were significantly higher in the non-HIV group than that in HIV group (60.0% vs. 25.9%, p = 0.019; 80.0% vs. 40.7%, p = 0.007). Initial mRS score (HR 1.685, p = 0.038) and highly active antiretroviral therapy (HAART) in HIV patients (HR 0.374, p = 0.013) had a significant effect on overall mortality. Our findings suggest that early detection of PML with low mRS score and early initiation of HAART in patients with HIV may improve prognosis.
Collapse
Affiliation(s)
- Jinnam Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Changhyup Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Se Ju Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hyun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Vecchio F, Carré A, Korenkov D, Zhou Z, Apaolaza P, Tuomela S, Burgos-Morales O, Snowhite I, Perez-Hernandez J, Brandao B, Afonso G, Halliez C, Kaddis J, Kent SC, Nakayama M, Richardson SJ, Vinh J, Verdier Y, Laiho J, Scharfmann R, Solimena M, Marinicova Z, Bismuth E, Lucidarme N, Sanchez J, Bustamante C, Gomez P, Buus S, You S, Pugliese A, Hyoty H, Rodriguez-Calvo T, Flodstrom-Tullberg M, Mallone R. Coxsackievirus infection induces direct pancreatic β-cell killing but poor anti-viral CD8+ T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553954. [PMID: 37662376 PMCID: PMC10473604 DOI: 10.1101/2023.08.19.553954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Coxsackievirus B (CVB) infection of pancreatic β cells is associated with β-cell autoimmunity. We investigated how CVB impacts human β cells and anti-CVB T-cell responses. β cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the β-cell antigen GAD. Infected β cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.
Collapse
Affiliation(s)
- Federica Vecchio
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Daniil Korenkov
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Soile Tuomela
- Center for Infectious Medicine, Department of medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - John Kaddis
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sally C. Kent
- University of Massachusetts Medical Chan School, Diabetes Center of Excellence, Department of Medicine, Worcester, MA, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Jutta Laiho
- Tampere University, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere, Finland
| | | | - Michele Solimena
- Paul Langerhans Institute, Technical University Dresden, Germany
| | | | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
| | - Nadine Lucidarme
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
| | - Janine Sanchez
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Carmen Bustamante
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Patricia Gomez
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Soren Buus
- Panum Institute, Department of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | | | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heikki Hyoty
- Tampere University, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere, Finland
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
32
|
Maya J. Surveying the Metabolic and Dysfunctional Profiles of T Cells and NK Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023; 24:11937. [PMID: 37569313 PMCID: PMC10418326 DOI: 10.3390/ijms241511937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Millions globally suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The inflammatory symptoms, illness onset, recorded outbreak events, and physiological variations provide strong indications that ME/CFS, at least sometimes, has an infectious origin, possibly resulting in a chronic unidentified viral infection. Meanwhile, studies exposing generalized metabolic disruptions in ME/CFS have stimulated interest in isolated immune cells with an altered metabolic state. As the metabolism dictates the cellular function, dissecting the biomechanics of dysfunctional immune cells in ME/CFS can uncover states such as exhaustion, senescence, or anergy, providing insights into the consequences of these phenotypes in this disease. Despite the similarities that are seen metabolically between ME/CFS and other chronic viral infections that result in an exhausted immune cell state, immune cell exhaustion has not yet been verified in ME/CFS. This review explores the evidence for immunometabolic dysfunction in ME/CFS T cell and natural killer (NK) cell populations, comparing ME/CFS metabolic and functional features to dysfunctional immune cell states, and positing whether anergy, exhaustion, or senescence could be occurring in distinct immune cell populations in ME/CFS, which is consistent with the hypothesis that ME/CFS is a chronic viral disease. This comprehensive review of the ME/CFS immunometabolic literature identifies CD8+ T cell exhaustion as a probable contender, underscores the need for further investigation into the dysfunctional state of CD4+ T cells and NK cells, and explores the functional implications of molecular findings in these immune-cell types. Comprehending the cause and impact of ME/CFS immune cell dysfunction is critical to understanding the physiological mechanisms of ME/CFS, and developing effective treatments to alleviate the burden of this disabling condition.
Collapse
Affiliation(s)
- Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
33
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
35
|
Ding R, Wang Y, Fan J, Tian Z, Wang S, Qin X, Su W, Wang Y. Identification of immunosuppressive signature subtypes and prognostic risk signatures in triple-negative breast cancer. Front Oncol 2023; 13:1108472. [PMID: 37377907 PMCID: PMC10292819 DOI: 10.3389/fonc.2023.1108472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/10/2023] [Indexed: 06/29/2023] Open
Abstract
Purpose Immune checkpoint blockade (ICB) therapy has transformed the treatment of triple-negative breast cancer (TNBC) in recent years. However, some TNBC patients with high programmed death-ligand 1 (PD-L1) expression levels develop immune checkpoint resistance. Hence, there is an urgent need to characterize the immunosuppressive tumor microenvironment and identify biomarkers to construct prognostic models of patient survival outcomes in order to understand biological mechanisms operating within the tumor microenvironment. Patients and methods RNA sequence (RNA-seq) data from 303 TNBC samples were analyzed using an unsupervised cluster analysis approach to reveal distinctive cellular gene expression patterns within the TNBC tumor microenvironment (TME). A panel of T cell exhaustion signatures, immunosuppressive cell subtypes and clinical features were correlated with the immunotherapeutic response, as assessed according to gene expression patterns. The test dataset was then used to confirm the occurrence of immune depletion status and prognostic features and to formulate clinical treatment recommendations. Concurrently, a reliable risk prediction model and clinical treatment strategy were proposed based on TME immunosuppressive signature differences between TNBC patients with good versus poor survival status and other clinical prognostic factors. Results Significantly enriched TNBC microenvironment T cell depletion signatures were detected in the analyzed RNA-seq data. A high proportion of certain immunosuppressive cell subtypes, 9 inhibitory checkpoints and enhanced anti-inflammatory cytokine expression profiles were noted in 21.4% of TNBC patients that led to the designation of this group of immunosuppressed patients as the immune depletion class (IDC). Although IDC group TNBC samples contained tumor-infiltrating lymphocytes present at high densities, IDC patient prognosis was poor. Notably, PD-L1 expression was relatively elevated in IDC patients that indicated their cancers were resistant to ICB treatment. Based on these findings, a set of gene expression signatures predicting IDC group PD-L1 resistance was identified then used to develop risk models for use in predicting clinical therapeutic outcomes. Conclusion A novel TNBC immunosuppressive tumor microenvironment subtype associated with strong PD-L1 expression and possible resistance to ICB treatment was identified. This comprehensive gene expression pattern may provide fresh insights into drug resistance mechanisms for use in optimizing immunotherapeutic approaches for TNBC patients.
Collapse
Affiliation(s)
- Ran Ding
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuhan Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinyan Fan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyue Tian
- The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Shuang Wang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiujuan Qin
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wei Su
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanbo Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
36
|
Vimali J, Yong YK, Murugesan A, Tan HY, Zhang Y, Ashwin R, Raju S, Balakrishnan P, Larsson M, Velu V, Shankar EM. Chronic viral infection compromises the quality of circulating mucosal-invariant T cells and follicular T helper cells via expression of both activating and inhibitory receptors. RESEARCH SQUARE 2023:rs.3.rs-2862719. [PMID: 37163092 PMCID: PMC10168456 DOI: 10.21203/rs.3.rs-2862719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic viral infection results in impaired immune responses rendering viral persistence. Here, we investigated the role of immune activation and compared the quality of T-cell responses in chronic HBV, HCV, and HIV infections. Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and peripheral CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression. The activation marker CD69 was significantly increased in CD4+ hi T cells, while CD8+ MAIT cells expressing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+ lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+ hi T cells, PD-1+CD8+ T cells, Ki67+CD4+ MAIT cells were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL. Chronic viral infection negatively impacts the quality of peripheral MAIT cells and TFH cells via expression of both activating and inhibitory receptors.
Collapse
Affiliation(s)
- Jaisheela Vimali
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | | | | | - Rajeev Ashwin
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Esaki M Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
37
|
Zhao Y, Cai H, Ding X, Zhou X. An integrative analysis of the single-cell transcriptome identifies DUSP4 as an exhaustion-associated gene in tumor-infiltrating CD8+ T cells. Funct Integr Genomics 2023; 23:136. [PMID: 37086337 DOI: 10.1007/s10142-023-01056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Yu Zhao
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China.
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.
| |
Collapse
|
38
|
Rousseau BA, Bhaduri-McIntosh S. Inflammation and Epstein-Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023; 15:949. [PMID: 37112929 PMCID: PMC10141000 DOI: 10.3390/v15040949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have strengthened the evidence for Epstein-Barr Virus (EBV) as an important contributing factor in the development of multiple sclerosis (MS). Chronic inflammation is a key feature of MS. EBV+ B cells can express cytokines and exosomes that promote inflammation, and EBV is known to be reactivated through the upregulation of cellular inflammasomes. Inflammation is a possible cause of the breakdown of the blood-brain barrier (BBB), which allows the infiltration of lymphocytes into the central nervous system. Once resident, EBV+ or EBV-specific B cells could both plausibly exacerbate MS plaques through continued inflammatory processes, EBV reactivation, T cell exhaustion, and/or molecular mimicry. Another virus, SARS-CoV-2, the cause of COVID-19, is known to elicit a strong inflammatory response in infected and immune cells. COVID-19 is also associated with EBV reactivation, particularly in severely ill patients. Following viral clearance, continued inflammation may be a contributor to post-acute sequelae of COVID-19 infection (PASC). Evidence of aberrant cytokine activation in patients with PASC supports this hypothesis. If unaddressed, long-term inflammation could put patients at risk for reactivation of EBV. Determining mechanisms by which viruses can cause inflammation and finding treatments for reducing that inflammation may help reduce the disease burden for patients suffering from PASC, MS, and EBV diseases.
Collapse
Affiliation(s)
- Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
39
|
Souquette A, Allen EK, Oshansky CM, Tang L, Wong SS, Jeevan T, Shi L, Pounds S, Elias G, Kuan G, Balmaseda A, Zapata R, Shaw-Saliba K, Damme PV, Tendeloo VV, Dib JC, Ogunjimi B, Webby R, Schultz-Cherry S, Pekosz A, Rothman R, Gordon A, Thomas PG. Integrated Drivers of Basal and Acute Immunity in Diverse Human Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534227. [PMID: 36993205 PMCID: PMC10055315 DOI: 10.1101/2023.03.25.534227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.
Collapse
|
40
|
Kharbanda KK, Chokshi S, Tikhanovich I, Weinman SA, New-Aaron M, Ganesan M, Osna NA. A Pathogenic Role of Non-Parenchymal Liver Cells in Alcohol-Associated Liver Disease of Infectious and Non-Infectious Origin. BIOLOGY 2023; 12:255. [PMID: 36829532 PMCID: PMC9953685 DOI: 10.3390/biology12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 8AF, UK
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Research Service, Kansas City Veterans Administration Medical Center, Kansas City, MO 64128, USA
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
41
|
Gamerith G, Mildner F, Merkel PA, Harris K, Cooney L, Lim N, Spiera R, Seo P, Langford CA, Hoffman GS, St Clair EW, Fervenza FC, Monach P, Ytterberg SR, Geetha D, Amann A, Wolf D, Specks U, Stone JH, Kronbichler A. Association of baseline soluble immune checkpoints with the risk of relapse in PR3-ANCA vasculitis following induction of remission. Ann Rheum Dis 2023; 82:253-261. [PMID: 35973802 DOI: 10.1136/ard-2022-222479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES We investigated whether soluble immune checkpoints (sICPs) predict treatment resistance, relapse and infections in patients with antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV). METHODS Plasma sICP concentrations from available samples obtained during conduct of the RAVE trial were measured by immunoabsorbent assays from patients with either proteinase 3 (PR3) or myeloperoxidase (MPO)-ANCA vasculitis and were correlated with clinical outcomes, a set of biomarkers and available flow cytometry analyses focusing on T cell subsets. Log-rank test was used to evaluate survival benefits, and optimal cut-off values of the marker molecules were calculated using Yeldons J. RESULTS Analysis of 189 plasma samples at baseline revealed higher concentrations of sTim-3, sCD27, sLag-3, sPD-1 and sPD-L2 in patients with MPO-ANCA vasculitis (n=62) as compared with PR3-ANCA vasculitis (n=127). Among patients receiving rituximab induction therapy (n=95), the combination of lower soluble (s)Lag-3 (<90 pg/mL) and higher sCD27 (>3000 pg/mL) predicted therapy failure. Twenty-four out of 73 patients (32.9%) in the rituximab arm reaching remission at 6 months relapsed during follow-up. In this subgroup, high baseline values of sTim-3 (>1200 pg/mL), sCD27 (>1250 pg/mL) and sBTLA (>1000 pg/mL) were associated with both sustained remission and infectious complications. These findings could not be replicated in 94 patients randomised to receive cyclophosphamide/azathioprine. CONCLUSIONS Patients with AAV treated with rituximab achieved remission less frequently when concentrations of sLag-3 were low and concentrations of sCD27 were high. Higher concentrations of sTim-3, sCD27 and sBTLA at baseline predicted relapse in patients treated with rituximab. These results require confirmation but may contribute to a personalised treatment approach of AAV.
Collapse
Affiliation(s)
- Gabriele Gamerith
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Finn Mildner
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Peter A Merkel
- Division of Rheumatology and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Laura Cooney
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - Noha Lim
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - Robert Spiera
- Hospital for Special Surgery, New York City, New York, USA
| | - Philip Seo
- Department of Internal Medicine, Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carol A Langford
- Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Gary S Hoffman
- Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - E William St Clair
- Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Monach
- VA Boston Healthcare System, West Roxbury, Massachusetts, USA
| | | | - Duvuru Geetha
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arno Amann
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, New York, USA
| | - John H Stone
- Rheumatology Unit, Division of Rheumatology Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
42
|
Moretto MM, Chen J, Meador M, Phan J, Khan IA. A Lower Dose of Infection Generates a Better Long-Term Immune Response against Toxoplasma gondii. Immunohorizons 2023; 7:177-190. [PMID: 36883950 PMCID: PMC10563383 DOI: 10.4049/immunohorizons.2300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.
Collapse
Affiliation(s)
- Magali M. Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jie Chen
- Department of Medicine, The George Washington University, Washington, DC
| | - Morgan Meador
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jasmine Phan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Imtiaz A. Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
43
|
Baliashvili D, Blumberg HM, Benkeser D, Kempker RR, Shadaker S, Averhoff F, Gvinjilia L, Adamashvili N, Magee M, Kamkamidze G, Zakalashvili M, Tsertsvadze T, Sharvadze L, Chincharauli M, Tukvadze N, Gandhi NR. Association of Treated and Untreated Chronic Hepatitis C With the Incidence of Active Tuberculosis Disease: A Population-Based Cohort Study. Clin Infect Dis 2023; 76:245-251. [PMID: 36134743 PMCID: PMC10194043 DOI: 10.1093/cid/ciac786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection causes dysregulation and suppression of immune pathways involved in the control of tuberculosis (TB) infection. However, data on the role of chronic hepatitis C as a risk factor for active TB are lacking. We sought to evaluate the association between HCV infection and the development of active TB. METHODS We conducted a cohort study in Georgia among adults tested for HCV antibodies (January 2015-September 2020) and followed longitudinally for the development of newly diagnosed active TB. Data were obtained from the Georgian national programs of hepatitis C and TB. The exposures of interest were untreated and treated HCV infection. A Cox proportional hazards model was used to calculate adjusted hazard ratios (aHRs). RESULTS A total of 1 828 808 adults were included (median follow-up time: 26 months; IQR: 13-39 months). Active TB was diagnosed in 3163 (0.17%) individuals after a median of 6 months follow-up (IQR: 1-18 months). The incidence rate per 100 000 person-years was 296 among persons with untreated HCV infection, 109 among those with treated HCV infection, and 65 among HCV-negative persons. In multivariable analysis, both untreated (aHR = 2.9; 95% CI: 2.4-3.4) and treated (aHR = 1.6; 95% CI: 1.4-2.0) HCV infections were associated with a higher hazard of active TB, compared with HCV-negative persons. CONCLUSIONS Adults with HCV infection, particularly untreated individuals, were at higher risk of developing active TB disease. Screening for latent TB infection and active TB disease should be part of clinical evaluation of people with HCV infection, especially in high-TB-burden areas.
Collapse
Affiliation(s)
- Davit Baliashvili
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Henry M Blumberg
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shaun Shadaker
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Francisco Averhoff
- Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lia Gvinjilia
- Eastern Europe and Central Asia Regional Office, Centers for Disease Control and Prevention, Tbilisi, Georgia
| | | | - Matthew Magee
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | | | | | - Tengiz Tsertsvadze
- Infectious Diseases, AIDS and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Lali Sharvadze
- Clinic “Hepa”, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | | | - Nestan Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Neel R Gandhi
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
45
|
Harabuchi S, Khan O, Bassiri H, Yoshida T, Okada Y, Takizawa M, Ikeda O, Katada A, Kambayashi T. Manipulation of diacylglycerol and ERK-mediated signaling differentially controls CD8 + T cell responses during chronic viral infection. Front Immunol 2022; 13:1032113. [PMID: 36846018 PMCID: PMC9951774 DOI: 10.3389/fimmu.2022.1032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Activation of T cell receptor (TCR) signaling is critical for clonal expansion of CD8+ T cells. However, the effects of augmenting TCR signaling during chronic antigen exposure is less understood. Here, we investigated the role of diacylglycerol (DAG)-mediated signaling downstream of the TCR during chronic lymphocytic choriomeningitis virus clone 13 (LCMV CL13) infection by blocking DAG kinase zeta (DGKζ), a negative regulator of DAG. Methods We examined the activation, survival, expansion, and phenotype of virus-specific T cell in the acute and chronic phases of LCMV CL13-infected in mice after DGKζ blockade or selective activation of ERK. Results Upon LCMV CL13 infection, DGKζ deficiency promoted early short-lived effector cell (SLEC) differentiation of LCMV-specific CD8+ T cells, but this was followed by abrupt cell death. Short-term inhibition of DGKζ with ASP1570, a DGKζ-selective pharmacological inhibitor, augmented CD8+ T cell activation without causing cell death, which reduced virus titers both in the acute and chronic phases of LCMV CL13 infection. Unexpectedly, the selective enhancement of ERK, one key signaling pathway downstream of DAG, lowered viral titers and promoted expansion, survival, and a memory phenotype of LCMV-specific CD8+ T cells in the acute phase with fewer exhausted T cells in the chronic phase. The difference seen between DGKζ deficiency and selective ERK enhancement could be potentially explained by the activation of the AKT/mTOR pathway by DGKζ deficiency, since the mTOR inhibitor rapamycin rescued the abrupt cell death seen in virus-specific DGKζ KO CD8+ T cells. Discussion Thus, while ERK is downstream of DAG signaling, the two pathways lead to distinct outcomes in the context of chronic CD8+ T cell activation, whereby DAG promotes SLEC differentiation and ERK promotes a memory phenotype.
Collapse
Affiliation(s)
- Shohei Harabuchi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Omar Khan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hamid Bassiri
- Division of Infectious Diseases, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Yoshida
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Yohei Okada
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Masaomi Takizawa
- Research Program Management-Applied Research Management, Astellas Pharma Inc., Tokyo, Japan
| | - Osamu Ikeda
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Liu Y, Zhu Y, Liu W, Wan C, Guo Q. Death from human cytomegalovirus infection in a girl with congenital thymic dysplasia. Virol J 2022; 19:179. [PMID: 36348432 PMCID: PMC9643964 DOI: 10.1186/s12985-022-01915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
We report the case of a girl with congenital thymic dysplasia and refractory disseminated Human Cytomegalovirus (CMV) infection diagnosed by autopsy. Additionally, she was diagnosed with T-cell lymphopenia immunodeficiency and received antiviral therapy with ganciclovir (GCV) /valganciclovir (V-GCV) and enhanced foscarnet. The CMV viral load (VL) monitoring was elevated with retinitis, interstitial pneumonia, and hepatitis. The phenotype of T-cell lymphopenia was uncertain, which limited any alternative therapy by whole-exome sequencing (WES) and lymphocyte subset panel until autopsy. The girl died of progressive respiratory failure and septic shock at ten months of age. Severe disseminated CMV infection typically develops in infants with primary maternal infections and occurs earlier during gestation and in people with a weakened host immune system. Individuals with CMV infection with initial immunodeficiency are associated with a poor prognosis, which is similar to patients with secondary immunodeficiency. This case describes the difficult treatment and prognosis of CMV infection in patients with congenital immunodeficiency, highlighting the importance of early aggressive anti-CMV antiviral therapy in immunodeficiencies, VL monitoring, drug resistance and the role of T-cells in CMV infection.
Collapse
|
47
|
Viel KR. Response to 'Reduced Cell Surface Levels of C-C Chemokine Receptor 5 and Immunosuppression in Long Coronavirus Disease 2019 Syndrome'. Clin Infect Dis 2022; 75:1485-1486. [PMID: 35819236 PMCID: PMC9384431 DOI: 10.1093/cid/ciac389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kevin R Viel
- Department of Genomics, Histonis Incorporated, Manchester, New Hampshire, USA
| |
Collapse
|
48
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
49
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
50
|
Sayın Ekinci N, Darbaş Ş, Uçar F. CXCR5+CD8+ Follicular Cytotoxic T Cell Biology and Its Relationship with Diseases. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|