1
|
Yuan B, Guo M, Zhou X, Li M, Xie S. Spatiotemporal patterns and co-occurrence patterns of dissimilatory nitrate reduction to ammonium community in sediments of the Lancang River cascade reservoirs. Front Microbiol 2024; 15:1411753. [PMID: 38962138 PMCID: PMC11219630 DOI: 10.3389/fmicb.2024.1411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate reduction pathway in freshwater sediments. Many studies have focused on the DNRA process in various natural habitats. However, the joint operation of cascade reservoirs will affect the physical and chemical properties of sediments, which may change the DNRA process and bacterial community pattern in the surface sediments of cascade reservoirs. Our study was the first to investigate the spatiotemporal distribution patterns of potential DNRA rate, nrfA gene abundances, and DNRA bacterial community diversity in surface sediments of the Lancang River cascade reservoirs. The results of slurry incubation experiments combined with the 15N isotope tracer experiment ascertained that the potential rates of DNRA were 0.01-0.15 nmol-N cm-3 h-1, and qPCR results indicated that the abundance range of nrfA was 1.08 × 105-2.51 × 106 copies g-1 dry weight. High throughput sequencing of the nrfA gene revealed that the relative abundance of Anaeromyxobacter (4.52% on average), Polyangium (4.09%), Archangium (1.86%), Geobacter (1.34%), and Lacunisphaera (1.32%) were high. Pearson and RDA correlation analysis exhibited that nrfA gene abundance was positively correlated with altitude, pH, OC, and sand concentration. Anaeromyxobacter was positively correlated with reservoir age and DNRA potential rate. The deterministic environmental selection process plays a crucial role in the formation of the DNRA bacterial community. Network analysis displayed that the dominant DNRA genus was the key population of the DNRA microbial community in the sediments of Lancang River cascade reservoirs. This study reveals that the variation of DNRA bacterial activity and community structure is largely driven by the construction of cascade reservoirs, and provides a new idea for further understanding the characteristics of the DNRA community in the cascade reservoir ecosystem.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Mengjing Guo
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xiaode Zhou
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Miaojie Li
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
2
|
Cai L, Lu Y, Zhu H, Liu B, Li X, Jia T, Wang J, Wang X, Li P. Impact of bioelectricity on DNRA process and microbial community composition within cathodic biofilms in dual-chambered bioelectrode microbial fuel cell (MFC). BIORESOURCE TECHNOLOGY 2024; 400:130693. [PMID: 38608785 DOI: 10.1016/j.biortech.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The synchronous bioelectricity generation and dissimilatory nitrate reduction to ammonium (DNRA) pathway in Klebsiella variicola C1 was investigated. The presence of bioelectricity facilitated cell growth on the anodic biofilms, consequently enhancing the nitrate removal efficiency decreasing total nitrogen levels and causing a negligible accumulation of NO2- in the supernatant. Genomic analysis revealed that K. variicola C1 possessed a complete DNRA pathway and largely annotated electron shuttles. The up-regulated expression of genes narG and nirB, encoding nitrite oxidoreductase and nitrite reductase respectively, was closely associated with increased extracellular electron transfer (EET). High-throughput sequencing analysis was employed to investigate the impact of bioelectricity on microbial community composition within cathodic biofilms. Results indicated that Halomonas, Marinobacter and Prolixibacteraceae were enriched at the cathode electrodes. In conclusion, the integration of a DNRA strain with MFC facilitated the efficient removal of wastewater containing high concentrations of NO3- and enabled the environmentally friendly recovery of NH4+.
Collapse
Affiliation(s)
- Luhan Cai
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yubiao Lu
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Haiguang Zhu
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Binxin Liu
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xinyi Li
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tianbo Jia
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jianxin Wang
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xueting Wang
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Peng Li
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
3
|
Yoon S, Heo H, Han H, Song DU, Bakken LR, Frostegård Å, Yoon S. Suggested role of NosZ in preventing N 2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023; 14:e0154023. [PMID: 37737639 PMCID: PMC10653820 DOI: 10.1128/mbio.01540-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.
Collapse
Affiliation(s)
- Sojung Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hokwan Heo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dong-Uk Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
4
|
Yuan H, Cai Y, Wang H, Liu E, Zeng Q. Impact of seasonal change on dissimilatory nitrate reduction to ammonium (DNRA) triggering the retention of nitrogen in lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118050. [PMID: 37141713 DOI: 10.1016/j.jenvman.2023.118050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
5
|
Chen Y, Su X, Wan Y, Lyu H, Dong W, Shi Y, Zhang Y. Quantifying the effect of the nitrogen biogeochemical processes on the distribution of ammonium in the riverbank filtration system. ENVIRONMENTAL RESEARCH 2023; 216:114358. [PMID: 36210547 DOI: 10.1016/j.envres.2022.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4+) enrichment of riverbank filtration (RBF) systems is gaining popularity. However, most previous research has concentrated on NO3- removal efficiencies, while the mechanisms of NH4+ enrichment remain unknown. A nitrogen biogeochemical process model was developed for the quantitative analysis of NH4+ enrichment in the Kaladian well field in northwest Songyuan City, NE China. Data from laboratory experiments and in-situ monitoring were used to determine initial values and calibrate the thermodynamic/kinetic parameters representing nitrogen (N) biogeochemical reactions. (1) The NO3- from river was subjected to denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) within 10-14 m of the shore, whereas the NH4+ in groundwater was caused by DNRA, organic nitrogen mineralization (MIN), and mixing with laterally recharged high NH4+ groundwater. (2) DNF and DNRA were regulated by hydrodynamic processes, with the ranges of these processes being more significant in the wet season due to a higher hydraulic gradient. MIN occurred widely throughout the water flow path, with temperature primarily controlling the rates of the three reactions. (3) DNRA activity was relatively higher in the wet season when the water temperature was higher within 10-14 m of the shore. In the wet season, DNRA contributed 25%-30% to NO3- reduction, which was higher than in the dry season (5%-10%). DNRA contributed at least 40% and 15% to NH4+ enrichment in the wet and dry seasons, respectively. (4). Organic N in media gradually released NH4+ into groundwater via MIN and desorption across the entire flow path, with contributions to NH4+ enrichment reaching 75% and 85%, respectively, in the wet and dry seasons.
Collapse
Affiliation(s)
- Yaoxuan Chen
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; China Institute of Geo-Environmental Monitoring, Beijing, 100081, China
| | - Xiaosi Su
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China
| | - Yuyu Wan
- College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China.
| | - Hang Lyu
- College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China
| | - Weihong Dong
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China
| | - Yakun Shi
- No. 1 Institute of Geo-environment Survey of Henan, Zhengzhou, 450000, China
| | - Yiwu Zhang
- Nanjing Center, China Geological Survey, Nanjing, 210000, China
| |
Collapse
|
6
|
Zhang M, Peng Y, Yan P, Huang JC, He S, Sun S, Bai X, Tian Y. Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients. ENVIRONMENTAL RESEARCH 2022; 215:114235. [PMID: 36055394 DOI: 10.1016/j.envres.2022.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
This study explored the microbial nitrogen transformation and removal potential in the plant rhizosphere of seven artificial tidal wetlands under different salinity gradients (0-30‰). Molecular biological and stable isotopic analyses revealed the existence of simultaneous anammox (anaerobic ammonium oxidation), nitrification, DNRA (dissimilatory nitrate reduction to ammonium) and denitrification processes, contributing to nitrogen loss in rhizosphere soil. The microbial abundances were 2.87 × 103-9.12 × 108 (nitrogen functional genes) and 1.24 × 108-8.43 × 109 copies/g (16S rRNA gene), and the relative abundances of dissimilatory nitrate reduction and nitrification genera ranged from 6.75% to 24.41% and from 0.77% to 1.81%, respectively. The bacterial 16S rRNA high-throughput sequencing indicated that Bacillus, Zobellella and Paracoccus had obvious effects on nitrogen removal by heterotrophic nitrifying/aerobic denitrifying process (HN-AD), and autotrophic nitrification (Nitrosomonas, Nitrospira and Nitrospina), conventional denitrification (Bradyrhizobium, Burkholderia and Flavobacterium), anammox (Candidatus Brocadia and Candidatus Scalindua) and DNRA (Clostridium, Desulfovibrio and Photobacterium) organisms co-existed with HN-AD bacteria. The potential activities of DNRA, nitrification, anammox and denitrification were 1.23-9.23, 400.03-755.91, 3.12-35.24 and 30.51-300.04 nmolN2·g-1·d-1, respectively. The denitrification process contributed to 73.59-88.65% of NOx- reduction, compared to 0.71-13.20% and 8.20-15.42% via DNRA and anammox, as 83.83-90.74% of N2 production was conducted by denitrification, with the rest through anammox. Meanwhile, the nitrification pathway accounted for 95.28-99.23% of NH4+ oxidation, with the rest completed by anammox bacteria. Collectively, these findings improved our understanding on global nitrogen cycles, and provided a new idea for the removal of contaminants in saline water treatment.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaohui Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
7
|
Su X, Zheng Z, Chen Y, Wan Y, Lyu H, Dong W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157198. [PMID: 35810902 DOI: 10.1016/j.scitotenv.2022.157198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Riverbank filtration (RBF) is a well-established technique worldwide, and is critical for the maintenance of groundwater quality and production of clean drinking water. Evaluation of the decay of exogenous nitrate (NO3-) in river water and the enrichment of ammonium (NH4+) in groundwater during RBF is important; these two processes are mainly influenced by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) controlled by the groundwater carbon load. In this study, the effects of carbon load (organic carbon [OC]: NO3-) on the competing nitrate reduction (DNRA and DNF) were assessed during RBF using field monitoring and a laboratory batch experiment. Results show the groundwater OC: NO3- ratio did not directly affect the reaction rate of DNRA and DNF, however, it could control the competitive partitioning between the two. In the near-shore zone, the groundwater OC: NO3- ratio shows significant seasonal variations along the filtration path owing to the changing conditions of redox, OC-rich, and NO3--limited. A greater proportion of NO3- would be available for DNRA in the wet season with higher OC: NO3- ratio (> 10), resulting in a significantly NH4+-N enrichment rate (from 1.43 × 10-3 to 9.54 × 10-4 mmol L-1 d-1) in the near-shore zone where the zone of Mn (IV) oxide reduction. However, the activity of DNRA was suppressed with lower OC: NO3- ratio (< 10) in the dry season, resulting in a stable NH4+-N enrichment rate (from 3.12 × 10-4 to 1.30 × 10-4 mmol L-1 d-1). Benefiting from seasonal variation of OC-rich and NO3--limited conditions, DNRA bacteria outcompeted denitrifiers, which eventually led to seasonal differences in NO3- reduction in the near-shore zone. Overall, under the effect of DNRA induced by continuous high carbon load in RBF systems, nitrogen input is not permanently removed but rather retained in groundwater during RBF.
Collapse
Affiliation(s)
- Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Zhuyan Zheng
- College of Construction Engineering, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Yaoxuan Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China.
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|
8
|
Chen A, Zhang D, Wang H, Cui R, Khoshnevisan B, Guo S, Wang P, Liu H. Shallow groundwater fluctuation: An ignored soil N loss pathway from cropland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154554. [PMID: 35302037 DOI: 10.1016/j.scitotenv.2022.154554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution originating from agricultural land is among the major threats to shallow groundwater (SG). Soil N losses due to the SG table fluctuation are neglected, although a large number of studies have been conducted to evaluate N losses through leaching and runoff. Herein, the characteristics of N losses driven by SG table fluctuation were investigated using the microcosm experiment and surveyed data from the croplands around Erhai Lake. According to the results achieved, the total N (TN) loss mainly occurred during the initial 12 days when the soil was flooded, then presented N immobilized by soil and finally, basically balanced between influent and effluent after 50 days. The results demonstrated that 1.7% of the original soil TN storage (0-100 cm) was lost. The alternation of drying and flooding could greatly increase TN loss up to 1086 kg hm-2, which was 2.72 times as much as that of continuous flooding flow. The amount of soil N losses to groundwater was closely related to the soil profile biochemical characteristics (water content, soil microbial immobilization, mineralization, nitrification, and denitrification processes). Soil N loss from crop fields driven by SG table fluctuation is 26 and 6 times of the runoff and leaching losses, respectively, while the soil N loss from the vegetable fields is 33 and 4 times of the runoff and leaching losses. The total amount of N losses from the croplands around the Erhai Lake caused by flooding of shallow groundwater (SG) in 2016 was estimated at 3506 Mg. The estimations showed that N losses would decrease by 16% if vegetables are replaced with staple food crops. These results imply that the adjustment of the planting structure was the key measure to reduce soil N storage and mitigate groundwater contamination.
Collapse
Affiliation(s)
- Anqiang Chen
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Dan Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyuan Wang
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Rongyang Cui
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, Sichuan Province, China
| | - Benyamin Khoshnevisan
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark
| | - Shufang Guo
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Panlei Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Zhang T, Zhuang X, Ahmad S, Lee T, Cao C, Ni SQ. Investigation of dissimilatory nitrate reduction to ammonium (DNRA) in urban river network along the Huangpu River, China: rates, abundances, and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23823-23833. [PMID: 34820753 DOI: 10.1007/s11356-021-17475-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an essential intermediate step in the nitrogen cycle, and different sediment physicochemical properties can affect the DNRA process. But the detailed research on the environmental nitrogen cycling in urban river networks based on DNRA communities and the functional gene nrfA is lacking. In this study, the flow line of the Huangpu River in Shanghai was analyzed using isotope tracer, quantitative real-time PCR, and high-throughput sequencing techniques to evaluate the role of DNRA on the stability of the river network and marine. The significant positive correlation between the rate of DNRA and sediment organic carbon was identified. At the genus level, Anaeromyxobacter is the most dominant. Notably, both heterotrophic and autotrophic DNRA species were discovered. This study added diversity to the scope of urban freshwater river network ecosystem studies by investigating the distribution of DNRA bacteria along the Huangpu River. It provided new insights into the biological nitrogen cycle of typical urban inland rivers in eastern China.
Collapse
Affiliation(s)
- Tong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan, 609-735, Republic of Korea
| | - Chengbo Cao
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China.
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China.
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China.
| |
Collapse
|
10
|
Cheng Y, Elrys AS, Merwad ARM, Zhang H, Chen Z, Zhang J, Cai Z, Müller C. Global Patterns and Drivers of Soil Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3791-3800. [PMID: 35226464 DOI: 10.1021/acs.est.1c07997] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), the nearly forgotten process in the terrestrial nitrogen (N) cycle, can conserve N by converting the mobile nitrate into non-mobile ammonium avoiding nitrate losses via denitrification, leaching, and runoff. However, global patterns and controlling factors of soil DNRA are still only rudimentarily known. By a meta-analysis of 231 observations from 85 published studies across terrestrial ecosystems, we find a global mean DNRA rate of 0.31 ± 0.05 mg N kg-1 day-1, being significantly greater in paddy soils (1.30 ± 0.59) than in forests (0.24 ± 0.03), grasslands (0.52 ± 0.15), and unfertilized croplands (0.18 ± 0.04). Soil DNRA was significantly enhanced at higher altitude and lower latitude. Soil DNRA was positively correlated with precipitation, temperature, pH, soil total carbon, and soil total N. Precipitation was the main stimulator for soil DNRA. Total carbon and pH were also important factors, but their effects were ecosystem-specific as total carbon stimulates DNRA in forest soils, whereas pH stimulates DNRA in unfertilized croplands and paddy soils. Higher temperatures inhibit soil DNRA via decreasing total carbon. Moreover, nitrous oxide (N2O) emissions were negatively related to soil DNRA. Thus, future changes in climate and land-use may interact with management practices that alter soil substrate availability and/or soil pH to enhance soil DNRA with positive effects on N conservation and lower N2O emissions.
Collapse
Affiliation(s)
- Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| | - Ahmed S Elrys
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdel-Rahman M Merwad
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huimin Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoxiong Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Sun L, Liang X, Jin M, Zhang X. Sources and fate of excessive ammonium in the Quaternary sediments on the Dongting Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150479. [PMID: 34583081 DOI: 10.1016/j.scitotenv.2021.150479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Excessive ammonia-nitrogen (N) in aquifers has caused groundwater pollution on the Dongting Plain (DTP), which seriously threatens the safety of drinking water. It is urgent and necessary to determine the sources and enrichment mechanisms of ammonia-N in groundwater. Carrying out water and soil collaborative research on a three-dimensional scale can more comprehensively analyze the sources of N, including natural and anthropogenic sources. In this study, surface and groundwater quality characteristics were examined from a total of 77 sites on the DTP. Two subsequent boreholes were drilled in the high ammonia concentration area and normal groundwater area, respectively, to compare the effects of anthropogenic activities. Indicators from hydrogeochemical and pedogeochemical analyses, as well as various isotopes, including δ15N-NH4+, δ15N-TON, δ15N-NO3-, δ18O-NO3-, δ18O-H2O, δD-H2O, and δ13C-TOC were used to identify ammonium sources and transformation mechanisms in the strata. We found that the sediments were contaminated by manure and sewage in the aquifers, and part of the shallow groundwater was additionally contaminated by nitrogen fertilizers. Excessive ammonium-N was also detected in the deep aquitards and sediments, which were mainly dominated by mineralization. Ammonia oxidation (with weak hydroxylamine oxidation) is an important biogeochemical process in which ammonia and nitrate do not accumulate in oxidizing groundwater environments. However, heterotrophic nitrification (HN) and anaerobic ammonium oxidation (ANAMMOX) are the release mechanisms for excessive ammonium-N under reducing conditions. In addition, organic matter (OM) on the DTP had a wide range of biogeochemical proxies generated by phytoplankton within a lake, and the comparatively resilient terrestrial organic residues washed in from the surrounding terrestrial area. This study breaks through the conventional mechanisms for the release of excessive ammonium from sediments to aquifers, which provides new ideas for research on ammonium in sediments and ammonia in groundwater.
Collapse
Affiliation(s)
- Liqun Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xing Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Menggui Jin
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Xin Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
12
|
Ping X, Wang J, Jin M. Experimental analysis of natural organic matter controls on nitrogen reduction during bank storage. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103866. [PMID: 34388487 DOI: 10.1016/j.jconhyd.2021.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Particulate organic carbon (POC) significantly influences nitrogen processes in riparian zones. However, the role of different types of natural organic matter (e.g., plant leaves and mud deposits) in nitrate reduction during the hydraulically driven mixing between rivers and groundwater within bank storage (BS) is not well known. Here, we used laboratory columns filled with 30 cm of riparian soil and buried with POC of varying quantity and quality (leaf litter, mud deposit, a mixture of both and a sediment control) on the soil surface in the column to investigate the effects of POC addition on nitrate reduction in low-permeable media. Pore waters were collected and measured periodically to compare the physicochemical differences among these treatments over time during scenarios of downward and upward flow. The leaf litter treatment had a larger amount of POC and higher reactivity, driving pore water to be in suboxic conditions with lower Eh and pH values. Nitrate reduction occurred immediately with downward surface water, and NO3- was removed in the POC buried layer. Due to the low POC content and low reactivity of the carbon source in the mud deposit, denitrification primarily occurred in the deeper sediment during the downwelling stage, as well as when groundwater returned to the POC buried layer with longer travel times. Both POC quantity and POC quality had strong effects on nitrate reduction. Our results suggested that the leaf litter treatment was preferential for nitrate reduction over the mud deposit treatment, with a higher NO3- reduction rate and less NH4+ accumulation during the complete BS process.
Collapse
Affiliation(s)
- Xue Ping
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Junyu Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Menggui Jin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, PR China.
| |
Collapse
|
13
|
Wang Q, Han Y, Lan S, Hu C. Metagenomic Insight Into Patterns and Mechanism of Nitrogen Cycle During Biocrust Succession. Front Microbiol 2021; 12:633428. [PMID: 33815315 PMCID: PMC8009985 DOI: 10.3389/fmicb.2021.633428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
The successional ecology of nitrogen cycling in biocrusts and the linkages to ecosystem processes remains unclear. To explore this, four successional stages of natural biocrust with five batches of repeated sampling and three developmental stages of simulated biocrust were studied using relative and absolute quantified multi-omics methods. A consistent pattern across all biocrust was found where ammonium assimilation, mineralization, dissimilatory nitrite to ammonium (DNiRA), and assimilatory nitrate to ammonium were abundant, while denitrification medium, N-fixation, and ammonia oxidation were low. Mathematic analysis showed that the nitrogen cycle in natural biocrust was driven by dissolved organic N and NO3–. pH and SO42– were the strongest variables affecting denitrification, while C:(N:P) was the strongest variable affecting N-fixation, DNiRA, nitrite oxidation, and dissimilatory nitrate to nitrite. Furthermore, N-fixation and DNiRA were closely related to elemental stoichiometry and redox balance, while assimilatory nitrite to ammonium (ANiRA) and mineralization were related to hydrological cycles. Together with the absolute quantification and network models, our results suggest that responsive ANiRA and mineralization decreased during biocrust succession; whereas central respiratory DNiRA, the final step of denitrification, and the complexity and interaction of the whole nitrogen cycle network increased. Therefore, our study stresses the changing environmental functions in the biocrust N-cycle, which are succession-dependent.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Zhang H, Ahmad Z, Shao Y, Yang Z, Jia Y, Zhong H. Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10519-10535. [PMID: 33443738 DOI: 10.1007/s11356-020-12319-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
As one of the low-impact development measures, bioretention plays an important role in reducing the runoff peak flow and minimizing runoff pollutants, such as heavy metals, suspended solids, and nutrients. However, the efficiency of nitrogen removal in the bioretention system is unstable, owing to the different chemical properties of various forms of nitrogen and the limitations of current bioretention system for nitrogen transformation. This review article summarizes the recent advances in bioretention system in treatment of urban stormwater and agricultural runoff for nitrogen removal. The microbial characteristics and main processes of nitrogen transformation in bioretention are reviewed. The operational conditions affecting nitrogen removal, including climatic conditions, pH, wet-dry alternation, influent loads and nitrogen concentration, and hydraulic residence time are discussed. Finally, measures or strategies for increasing nitrogen removal efficiency are proposed from the perspectives of structural improvement of the bioretention system, optimization of medium composition, and enhancement of the nitrogen removal reaction processes.
Collapse
Affiliation(s)
- Hongwei Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yalu Shao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhonghua Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yufei Jia
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
15
|
Yan L, Xie C, Liang A, Jiang R, Che S. Effects of revetments on soil denitrifying communities in the urban river-riparian interface. CHEMOSPHERE 2021; 263:128077. [PMID: 33297077 DOI: 10.1016/j.chemosphere.2020.128077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
The river-riparian interface plays an important role in removal of nitrogen pollution. Many revetments have been built in urban riparian zones, which has affected soil denitrification function of river-riparian interface. However, the impacts of revetments on denitrifying communities of soil in the river-riparian interface are still unclear. In this study, in the case of eliminating the influence of plants, three modes of revetments (No Revetments (NR), Impervious Masonry Revetments (IR), and Permeable Concrete Imitation Pile Revetments (PR)) were employed to determine the influence of revetments on denitrifying communities of soil among three distances from revetments (1.0, 0.6 and 0.3 m). It was shown in comparison with IR and NR, PR promoted the abundance, diversity and relative abundance of major strains in nirS and nirK denitrifying bacteria (P < 0.05), but these effects decreased as distances increased. Compared with the IR (2.95 ± 1.15 × 105 copies g-1) and NR (4.13 ± 2.14 × 105 copies g-1), abundances of nirK denitrifying bacteria adjacent to PR (6.19 ± 1.89 × 105 copies g-1) were significantly higher (P < 0.05). Rubrivivax and Bradyrhizobium were the dominant bacterial genera, accounting for 16.02-23.94% and 29.25%-38.25% of nirS- and nirK- denitrifying bacteria, respectively. SOC and nitrogen availability were the primary factors which influence the gene richness of nirK and nirS, while soil bulk density, sand content and WFPS as the major elements were impacting compositions of nirK and nirS communities. The results will improve the comprehension of theoretical process of denitrification affected by revetment types.
Collapse
Affiliation(s)
- Lubing Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changkun Xie
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anze Liang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruiyuan Jiang
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengquan Che
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Li Q, Bu C, Ahmad HA, Guimbaud C, Gao B, Qiao Z, Ding S, Ni SQ. The distribution of dissimilatory nitrate reduction to ammonium bacteria in multistage constructed wetland of Jining, Shandong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4749-4761. [PMID: 32951167 DOI: 10.1007/s11356-020-10709-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important process of nitrate reduction in the environment. The distribution of DNRA bacteria and the relationships with environmental factors in multistage constructed wetland were investigated in this study. The quantitative real-time polymerase chain reaction analysis showed that the abundance of DNRA bacteria at all sites ranged from 2.10 × 1010 to 1.10 × 1011 copies/g of dry sediments. The Anaeromyxobacter (belong to Deltaproteobacteria) was the most abundant DNRA bacteria at all sites. The Geobater known as DNRA bacteria was also identified in this study. The abundances of DNRA bacteria, denitrifying bacteria, and anammox bacteria were conspicuously negatively correlated with Eh and positively correlated with the NO3--N removal efficency by statistical analysis.
Collapse
Affiliation(s)
- Qianxia Li
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, People's Republic of China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Hafz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Christophe Guimbaud
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071, Orléans Cedex 2, France
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, People's Republic of China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, People's Republic of China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Su Z, Zhang Y, Jia X, Xiang X, Zhou J. Research on enhancement of zero-valent iron on dissimilatory nitrate/nitrite reduction to ammonium of Desulfovibrio sp. CMX. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141126. [PMID: 32750580 DOI: 10.1016/j.scitotenv.2020.141126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The process of nitrate dissimilation to ammonium (DNRA) is an important way for storing nitrogen in nature and DNRA is a key step in efficient recovery of nitrogen in wastewater. However, in view of the low conversion efficiency of DNRA, zero-valent iron (ZVI) was used to enhance the DNRA process of Desulfovibrio sp. CMX. ZVI can obviously promote the nitrate/nitrite reduction. The experiment indicated that 5 g/L 300 mesh ZVI could convert 5 mmol/L nitrate or nitrite to ammonium in 48 h or 36 h respectively, and the conversion ratio of NO2- to NH4+ could reach more than 90%. The ZVI provided a suitable growth environment for the Desulfovibrio sp. CMX through chemical reduction of nitrite, production of divalent iron (Fe2+), reduction of oxidation-reduction potential (ORP) and adjustment of pH, which strengthened the DNRA performance. This experiment is advantageous for increasing efficiency of DNRA and provides a new idea for efficient recovery of nitrogen resources.
Collapse
Affiliation(s)
- Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xue Jia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xuemin Xiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
18
|
Wang J, Ma R, Guo Z, Qu L, Yin M, Zheng C. Experiment and multicomponent model based analysis on the effect of flow rate and nitrate concentration on denitrification in low-permeability media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103727. [PMID: 33068999 DOI: 10.1016/j.jconhyd.2020.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
To better understand the combined effects of flow rate and NO3- concentration on denitrification rate and NO3- removal efficiency in the low-permeability media, a set of column experiments with different flow rates and injected NO3- concentrations were conducted. Denitrification processes under these different conditions were simulated using the PHREEQC code that couples the biogeochemical reactions and hydrological transport processes. In these reactive transport models, Monod kinetics were applied to describe the denitrification process. It was found that, among the experiments conducted in this study, the low flow rate (0.023 m/d) resulted in the low denitrification rate but high NO3- removal efficiency. Meanwhile, NO3- removal efficiency was the highest (85%) under moderate NO3- concentration of 1.29 mmol/L, although denitrification rate increased in response to the increase of NO3- concentration. The model results also indicated that NO3- removal efficiency of 97% can be achieved with relatively low flow rate and high influent NO3- concentration. The results in this study provide insights into NO3- remediation, and the temporal and spatial flow rate, as well as NO3- concentration distribution, should be pre-evaluated for the effective removal strategies.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rui Ma
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Zhilin Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le Qu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Maosheng Yin
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Liang Y, Ma R, Wang Y, Wang S, Qu L, Wei W, Gan Y. Hydrogeological controls on ammonium enrichment in shallow groundwater in the central Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140350. [PMID: 32886962 DOI: 10.1016/j.scitotenv.2020.140350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The controlling processes of excessive ammonium in surface water and groundwater in the central Yangtze River Basin remain unclear. In this study, monitoring of water levels and temporal-spatial distributions of major N compounds were implemented at the large Jiangshan plain and at the local site scale in the central Yangtze River Basin. The results indicate that the recharge, movement and transformation of ammonium were controlled by hydrogeological conditions. Manure and sewage from anthropogenic activities were identified as the main source of nitrogen compounds. The nitrogen loading into aquifers were governed by water table and groundwater flow. After entering subsurface soils, nitrification and dissimilatory nitrate reduction to ammonium (DNRA) were proposed as the ammonium consumption and production mechanisms, respectively, by combining the concentrations of ammonium‑nitrogen and nitrate‑nitrogen with the corresponding isotopic compositions. These microbially mediated processes controlling transport and transformation of nitrogen compounds were influenced by the seasonally varying groundwater flow regime that changed the redox conditions in the aquifers. In the subsurface environments, ammonium was converted to nitrate when sufficient oxygen supply was available, and this process was reversed under anoxic conditions along the groundwater flow path. A conceptual model for the reactive transport of nitrogen compounds jointly controlled by the vertical groundwater flows and biogeochemical processes was proposed, which provides new insights into the genesis of high ammonium groundwater.
Collapse
Affiliation(s)
- Ying Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rui Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuo Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Le Qu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenhao Wei
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; MOE Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
20
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
21
|
Han X, Huang C, Khan S, Zhang Y, Chen Y, Guo J. nirS-type denitrifying bacterial communities in relation to soil physicochemical conditions and soil depths of two montane riparian meadows in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28899-28911. [PMID: 32418104 DOI: 10.1007/s11356-020-09171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Mountain riparian zones are excellent buffers for protecting aquatic ecosystems from nutrient runoff in nitrogen deposition processes due to fertilization and manure. Denitrification is a critical process for transferring soil N to the atmosphere. Denitrifying bacterial communities in soil are indicative of the soil quality of a functional ecosystem. We investigated the effects of physicochemical properties of soil on the diversity and activity of denitrifiers in the top-soil and sub-soil of two typical montane riparian meadows: a multi-colored and a flood-plain meadow. Illumina MiSeq 2500 sequencing of nirS showed that the multi-colored meadow had greater diversity and abundance of nirS-type denitrifiers than the flood-plain meadow and that the total N content, ammonium content, and denitrification enzyme activity (DEA) in soil differed significantly between the two types of meadows. The abundances of dominant denitrifiers at phylum and genus levels showed different responses to the two soil layers of the two meadow types. In top-soils, the highest abundance of Firmicutes was recorded in the multi-colored meadow, while in the flood-plain meadow, there was the highest abundance of Proteobacteria. The Actinobacteria abundance was the highest in top-soil and sub-soil of the flood-plain meadow. The abundance of Chloroflexi was the highest in top-soil of the flood-plain meadow and in sub-soil of the multi-colored meadow. The diversity of denitrifying bacteria was strongly influenced by variations of soil properties down the soil profile. Spearman's rank correlation analyses showed that the diversity and community composition of denitrifying bacteria were strongly associated with most of the soil properties. Therefore, physicochemical soil properties, and particularly the organic carbon, nitrate, and ammonium contents, influence the diversity and abundance of denitrifiers in soil.
Collapse
Affiliation(s)
- Xiaoli Han
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, 030801, China
| | - Chunguo Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shahbaz Khan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, 030801, China
| | - Yinglong Chen
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of Sciences, Yangling, 712100, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China.
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, 030801, China.
| |
Collapse
|
22
|
Wang S, Liu C, Wang X, Yuan D, Zhu G. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: Widespread but low contribution. WATER RESEARCH 2020; 179:115877. [PMID: 32402861 DOI: 10.1016/j.watres.2020.115877] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Recent reports on the occurrence and contribution of dissimilatory nitrate reduction to ammonium (DNRA) in marine, inland water, and soil systems have greatly improved our understanding of the global nitrogen (N) cycle. This also promoted the investigation of the role and ecological features of DNRA in anthropogenic ecosystems. However, so far, the use of DNRA in municipal wastewater treatment plants (WWTPs), which are one of the most common and largest biotechnologically artificial water ecosystems, has not been investigated. Accordingly, this study focused on the abundance, activity, community structure, and diversity of DNRA bacteria in full-scale WWTPs. DNRA bacteria were detected in all treatment units in six tested municipal WWTPs, even in aerobic zones (dissolved oxygen > 2 mg L-1). Although the relative abundance of DNRA bacteria (0.2-4.0%) was less than that of denitrifying bacteria (0.7-10.1%) among all investigated samples, the abundance of DNRA bacteria still reaches 109 gene copies g-1. However, 15N-isotope tracing indicated that the potential DNRA rates were significantly lower (0.4-2.1 nmol N g-1 h-1) than those of denitrification (9.5-15.7 nmol N g-1 h-1), but higher than anammox rate (0.3-1.3 nmol N g-1 h-1). The DNRA bacterial community structure was primarily affected by temperature gradient despite the treatment process. High-throughput sequencing analysis targeting the DNRA nrfA gene showed that Nitrospira accounted for the largest proportion of nrfA genes among all samples (6.2-36.3%), followed by Brocadia (5.9-22.1%). Network analysis further indicated that Nitrospira played an important role in both the DNRA bacterial community and entire bacterial community in municipal WWTPs. These results suggest that the ecological habitats of DNRA bacteria in anthropogenic ecosystems were far more abundant than previously assumed. However, the contribution to N transformation by the widespread DNRA was not significant in traditional municipal WWTPs.
Collapse
Affiliation(s)
- Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongdan Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Zhao Y, Bu C, Yang H, Qiao Z, Ding S, Ni SQ. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China. CHEMOSPHERE 2020; 250:126195. [PMID: 32092567 DOI: 10.1016/j.chemosphere.2020.126195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) process is an important nitrate reduction pathway in the environment. Numerous studies focused on the DNRA, especially in various natural habitats. However, little is known about the envrionmental parameters driving the DNRA process in anthropogenic ecosystem. Human activities put forward significant influence on nitrogen cycle and bacterial communities of sediment. This study aimed to assess the DNRA potential rates, nrfA gene abundance, DNRA bacterial community's diversity and influencing factors in a national wetland park near the Yangtze River estuary, Shanghai. The results of 15N isotope tracer experiments showed that DNRA potential rates from 0.13 to 0.44 μmol N/kg/h and contribution of nitrate reduction varied from 1.56% to 7.47%. The quantitative real-time PCR results showed that DNRA functional gene nrfA abundances ranged from 9.87E+10 to 1.98E+11 copies/g dry weight. The results of nrfA gene pyrosequencing analysis showed that Lacunisphaera (10.4-13.4%), Sorangium (7.1-10.7%), Aeromonas (4.2-6.8%), Corallococcus (1.8-6.9%), and Geobacter (3.3-6.6%) showed higher relative abundances in their genus levels. Combined with environmental parameters of sediments, redundancy analysis indicated that the nrfA functional gene was positively correlated with moisture content, the concentration of NO2--N and NO3-N; the DNRA rates was positively correlated with sediment organic carbon (SOC), C/NO3- ratio and salinity (ranked by explains %). This study is the first simultaneous determination of nitrate reduction pathways including denitrification, anammox and DNRA rates to assess the role of DNRA in a national wetland park and revealed the community abundance, diversity of DNRA bacteria and its relationship with environmental factors.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
| | - Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | | | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China.
| |
Collapse
|
24
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
25
|
Wang S, Pi Y, Song Y, Jiang Y, Zhou L, Liu W, Zhu G. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. WATER RESEARCH 2020; 173:115539. [PMID: 32065936 DOI: 10.1016/j.watres.2020.115539] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 05/24/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), an important intermediate process in the N-cycle, links N-compound oxidation and reduction processes. Hence, the oxic-anoxic interface would be the hotspot of the DNRA process. In freshwater ecosystems, the riparian zone is the most typical carrier of the oxic-anoxic interface. Here we report spatio-temporal evidence of a higher abundance and rate of DNRA in the riparian zone than in the open water sediments based on molecular and 15N isotopic-tracing technologies, hence signifying a hotspot for the DNRA process. These abudance and rates were significantly higher than those in open water sediments. 15N isotopic paring technology revealed that the DNRA hotspot promoted higher rates of N-compound oxidation (NO2-), reduction (NO3- and DNRA), and N2 production (anammox and denitrification) in the riparian zone than those in open water sediment. However, high-through sequencing analysis showed that the DNRA bacteria in the riparian zone and openwater sediments were insignificantly different. Network and correlation analysis showed that the DNRA abundance and rates were significantly positively correlated with TOM, TC/NH4+, and TC/NO2-, but not with the dominant genera (Anaeromyxobacter, Lacunisphaera, and Sorangium), which played different roles on the connection in the respective community networks. The DNRA process in the riparian zone could be driven mainly by the related environmental biogeochemical characteristics induced by anthropogenic changes, followed by microbial processes. This result provides valuable information for the management of riparian zones because anthropogenic changes in the riparian water table are expected to increase, inducing consequent changes in the reduction from NO3- to NH4+.
Collapse
Affiliation(s)
- Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanxia Pi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yiping Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yingying Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liguang Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Weiyue Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Xin J, Liu Y, Chen F, Duan Y, Wei G, Zheng X, Li M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. WATER RESEARCH 2019; 165:114977. [PMID: 31446294 DOI: 10.1016/j.watres.2019.114977] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Intensive agriculture and urbanization have led to the excessive and repeated input of nitrogen (N) into soil and further increased the amount of nitrate (NO3-) leaching into groundwater, which has become an environmental problem of widespread concern. This review critically examines both the recent advances and remaining knowledge gaps with respect to the N cycle in the vadose zone-groundwater system. The key aspects regarding the N distribution, transformation, and budget in this system are summarized. Three major missing N pieces (N in dissolved organic form, N in the deep vadose zone, and N in the nonagricultural system), which are crucial for closing the N cycle yet has been previously assumed to be insignificant, are put forward and discussed. More work is anticipated to obtain accurate information on the chemical composition, transformation mechanism, and leaching flux of these missing N pieces in the vadose zone-groundwater system. These are essential to support the assessment of global N stocks and management of N contamination risks.
Collapse
Affiliation(s)
- Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yang Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fei Chen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yijun Duan
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Guanli Wei
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Miao Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Rahman MM, Roberts KL, Grace MR, Kessler AJ, Cook PLM. Role of organic carbon, nitrate and ferrous iron on the partitioning between denitrification and DNRA in constructed stormwater urban wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:608-617. [PMID: 30807951 DOI: 10.1016/j.scitotenv.2019.02.225] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) are two competing nitrate reduction pathways that remove or recycle nitrogen, respectively. However, factors controlling the partitioning between these two pathways are manifold and our understanding of these factors is critical for the management of N loads in constructed wetlands. An important factor that controls DNRA in an aquatic ecosystem is the electron donor, commonly organic carbon (OC) or alternatively ferrous iron and sulfide. In this study, we investigated the role of natural organic carbon (NOC) and acetate at different OC/NO3- ratios and ferrous iron on the partitioning between DNF and DNRA using the 15N-tracer method in slurries from four constructed stormwater urban wetlands in Melbourne, Australia. The carbon and nitrate experiments revealed that DNF dominated at all OC/NO3- ratios. The higher DNF and DNRA rates observed after the addition of NOC indicates that nitrate reduction was enhanced more by NOC than acetate. Moreover, addition of NOC in slurries stimulated DNRA more than DNF. Interestingly, slurries amended with Fe2+ showed that Fe2+ had significant control on the balance between DNF and DNRA. From two out of four wetlands, a significant increase in DNRA rates (p < .05) at the cost of DNF in the presence of available Fe2+ suggests DNRA is coupled to Fe2+ oxidation. Rates of DNRA increased 1.5-3.5 times in the Fe2+ treatment compared to the control. Overall, our study provides direct evidence that DNRA is linked to Fe2+ oxidation in some wetland sediments and highlights the role of Fe2+ in controlling the partitioning between removal (DNF) and recycling (DNRA) of bioavailable N in stormwater urban constructed wetlands. In our study we also measured anammox and found that it was always <0.05% of total nitrate reduction in these sediments.
Collapse
Affiliation(s)
- Md Moklesur Rahman
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Keryn L Roberts
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Michael R Grace
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Adam J Kessler
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| |
Collapse
|
28
|
Hoagland B, Schmidt C, Russo TA, Adams R, Kaye J. Controls on nitrogen transformation rates on restored floodplains along the Cosumnes River, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:979-994. [PMID: 30179826 DOI: 10.1016/j.scitotenv.2018.08.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Levee construction results in the systematic replumbing of river systems and reduces the frequency of floodplain inundation, which impacts nutrient delivery and transformations in floodplains. Floodplain restoration via levee removal affects downstream water quality by restoring soil microbial metabolic pathways such as denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA). Although these metabolisms are important for the nitrogen cycle, few studies have quantified the contribution of all three pathways to nitrate retention or loss in restored floodplains. The objectives of this study were to quantify the relevance of denitrification, anammox and DNRA to nitrogen retention, characterize the hydrologic conditions most favorable to each pathway, and estimate the potential for floodplain restoration to improve nitrogen cycling in the Cosumnes River watershed. To address these goals, we simulated flood conditions in soil mesocosms collected from two floodplains where levees were breached in 1997 and 2014 along the Lower Cosumnes River in the San Joaquin Basin of California. River water enriched with K15NO3 tracer was pumped into each mesocosm at a constant rate for a period of 3 months. Samples were collected from the surface water and soil pore water for measurements of NO3-, NO2-, and NH4+ concentrations, and δ15N of dissolved gases (N2 and N2O). To the best of our knowledge, this study reports the highest relative contribution to N2 production due to anammox for freshwater systems (41 to 84%) to date. High anammox rates were associated with heterogeneous grain size distribution across depth and high nitrification rates. We quantify the capacity of restored floodplain soils with distinct textural and chemical characteristics to retain or release nitrogen during large and small floods in a particular water year.
Collapse
Affiliation(s)
- B Hoagland
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA.
| | - C Schmidt
- Department of Environmental Sciences, University of San Francisco, San Francisco, CA, USA
| | - T A Russo
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA; Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - R Adams
- Department of Environmental Sciences, University of San Francisco, San Francisco, CA, USA
| | - J Kaye
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Li S, Luo Z, Ji G. Seasonal function succession and biogeographic zonation of assimilatory and dissimilatory nitrate-reducing bacterioplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1518-1525. [PMID: 29801245 DOI: 10.1016/j.scitotenv.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
The dominance of different nitrate-reducing pathways determines nitrogen cycling patterns. Denitrification (DNF) has been widely studied, but assimilatory nitrate reduction (ANR) and dissimilatory nitrate reduction to ammonium (DNRA) have received much less attention. Their ecological patterns and responsible microbes are poorly understood. Here, we studied the structure and function succession of the three functional groups in the middle route of the South-to-North Water Diversion Project, which is a 1230 km canal spanning 8 degrees of latitude. The results reflected a nitrogen-removing pattern dominated by DNF in the summer and a nitrogen-retaining pattern dominated by ANR and DNRA in the winter. Stenotrophomonas, a typical denitrifier, was the keystone species in the summer and contributed to N2O production. Clostridium, a genus able to conduct ANR and DNRA, was the keystone species in the winter. Notably, a significant zonation pattern was discovered. According to the community structure, the system could be separated into two biogeographic zones, and the Yellow River (about latitude 35°N) is an important cut-off line. This bacterial biogeography followed different water characteristics and ecological processes. ANR was found to be an important process and seasonally transformed its habitat from the northern zone to the southern zone. DNRA bacteria were acclimated to the northern zone and favored at this region in both seasons. The generation of N2O, a strong greenhouse gas, also exhibited this zonation pattern. This is the first study to consider assimilatory and dissimilatory nitrate reducers together at a molecular level, and provides new insights into the underlying patterns of a nitrate-reducing bacterioplankton community.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Reverey F, Ganzert L, Lischeid G, Ulrich A, Premke K, Grossart HP. Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:985-996. [PMID: 29426223 DOI: 10.1016/j.scitotenv.2018.01.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Understanding interrelations between an environment's hydrological past and its current biogeochemistry is necessary for the assessment of biogeochemical and microbial responses to changing hydrological conditions. The question how previous dry-wet events determine the contemporary microbial and biogeochemical state is addressed in this study. Therefore, sediments exposed to the atmosphere of areas with a different hydrological past within one kettle hole, i.e. (1) the predominantly inundated pond center, (2) the pond margin frequently desiccated for longer periods and (3) an intermediate zone, were incubated with the same rewetting treatment. Physicochemical and textural characteristics were related to structural microbial parameters regarding carbon and nitrogen turnover, i.e. abundance of bacteria and fungi, denitrifiers (targeted by the nirK und nirS functional genes) and nitrate ammonifiers (targeted by the nrfA functional gene). Our study reveals that, in combination with varying sediment texture, the hydrological history creates distinct microbial habitats with defined boundary conditions within the kettle hole, mainly driven by redox conditions, pH and organic matter (OM) composition. OM mineralization, as indicated by CO2-outgassing, was most efficient in exposed sediments with a less stable hydrological past. The potential for nitrogen retention via nitrate ammonification was highest in the hydrologically rather stable pond center, counteracting nitrogen loss due to denitrification. Therefore, the degree of hydrological stability is an important factor leaving a microbial and biogeochemical legacy, which determines carbon and nitrogen losses from small lentic freshwater systems in the long term run.
Collapse
Affiliation(s)
- Florian Reverey
- Leibniz Centre for Agricultural Landscape Research, Working Group: Small Water Bodies in Agricultural Landscapes, Eberswalder Str. 84, 15374 Müncheberg, Germany; Potsdam University, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Lars Ganzert
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Experimental Limnology, Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany
| | - Gunnar Lischeid
- Leibniz Centre for Agricultural Landscape Research, Working Group: Small Water Bodies in Agricultural Landscapes, Eberswalder Str. 84, 15374 Müncheberg, Germany; Potsdam University, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research, Working Group: Microbial Biogeochemistry, Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Katrin Premke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry, Müggelseedamm 310, 12587 Berlin, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Experimental Limnology, Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany; Potsdam University, Institute for Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
31
|
张 新. Dominant Factors of Dissimilatory Nitrate Reduction to Ammonia (DNRA) in Activated Sludge System: A Comment. ACTA ACUST UNITED AC 2018. [DOI: 10.12677/aep.2018.82012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Ribas D, Calderer M, Marti V, Johnsen AR, Aamand J, Nilsson B, Jensen JK, Engesgaard P, Morici C. Subsurface nitrate reduction under wetlands takes place in narrow superficial zones. ENVIRONMENTAL TECHNOLOGY 2017; 38:2725-2732. [PMID: 28004595 DOI: 10.1080/09593330.2016.1276220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study aims to investigate the depth distribution of the Nitrate Reduction Potential (NRP) on a natural and a re-established wetland. The obtained NRP provides a valuable data of the driving factors affecting denitrification, the Dissimilatory Nitrate Reduction to Ammonium (DNRA) process and the performance of a re-established wetland. Intact soil cores were collected and divided in slices for the determination of Organic Matter (OM) through Loss of Ignition (LOI) as well as Dissolved Organic Carbon (DOC) and NRP spiking nitrate in batch tests. The Nitrate Reduction (NR) was fitted as a pseudo-first order rate constant (k) from where NRPs were obtained. NR took place in a narrow superficial zone showing a dropping natural logarithmic trend along depth. The main driving factor of denitrification, besides depth, was OM. Although, DOC and LOI could not express by themselves and absolute correlation with NRP, high amounts of DOC ensured enough quantity and quality of labile OM for NR. Besides, high concentration of LOI but a scarce abundance of DOC failed to drive NR. DNRA was only important in superficial samples with high contents of OM. Lastly, the high NRP of the re-established wetland confirms that wetlands can be restored satisfactorily.
Collapse
Affiliation(s)
- D Ribas
- a CTM Technological Centre , Manresa , Spain
- b Department of Chemical Engineering , Technical University of Catalonia (UPC), ETSEIB , Barcelona , Spain
| | - M Calderer
- a CTM Technological Centre , Manresa , Spain
| | - V Marti
- a CTM Technological Centre , Manresa , Spain
- b Department of Chemical Engineering , Technical University of Catalonia (UPC), ETSEIB , Barcelona , Spain
| | - A R Johnsen
- c Geological Survey of Denmark and Greenland (GEUS) , Copenhagen , Denmark
| | - J Aamand
- c Geological Survey of Denmark and Greenland (GEUS) , Copenhagen , Denmark
| | - B Nilsson
- c Geological Survey of Denmark and Greenland (GEUS) , Copenhagen , Denmark
| | - J K Jensen
- c Geological Survey of Denmark and Greenland (GEUS) , Copenhagen , Denmark
- d Capital Region of Denmark , Centre for Regional Development , Hillerød , Denmark
| | - P Engesgaard
- e Department of Geosciences and Natural Resource Management , University of Copenhagen , Copenhagen , Denmark
| | - C Morici
- f Department of Environmental Engineering and Territory , University of Palermo , Palermo , Italy
| |
Collapse
|
33
|
Flávio HM, Ferreira P, Formigo N, Svendsen JC. Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:378-395. [PMID: 28448914 DOI: 10.1016/j.scitotenv.2017.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Agriculture is widespread across the EU and has caused considerable impacts on freshwater ecosystems. To revert the degradation caused to streams and rivers, research and restoration efforts have been developed to recover ecosystem functions and services, with the European Water Framework Directive (WFD) playing a significant role in strengthening the progress. Analysing recent peer-reviewed European literature (2009-2016), this review explores 1) the conflicts and difficulties faced when restoring agriculturally impacted streams, 2) the aspects relevant to effectively reconcile agricultural land uses and healthy riverine ecosystems and 3) the effects and potential shortcomings of the first WFD management cycle. Our analysis reveals significant progress in restoration efforts, but it also demonstrates an urgent need for a higher number and detail of restoration projects reported in the peer-reviewed literature. The first WFD cycle ended in 2015 without reaching the goal of good ecological status in many European water-bodies. Addressing limitations reported in recent papers, including difficulties in stakeholder integration and importance of small headwater streams, is crucial. Analysing recent developments on stakeholder engagement through structured participatory processes will likely reduce perception discrepancies and increase stakeholder interest during the next WFD planning cycle. Despite an overall dominance of nutrient-related research, studies are spreading across many important topics (e.g. stakeholder management, land use conflicts, climate change effects), which may play an important role in guiding future policy. Our recommendations are important for the second WFD cycle because they 1) help secure the development and dissemination of science-based restoration strategies and 2) provide guidance for future research needs.
Collapse
Affiliation(s)
- H M Flávio
- Department of Biology, Faculty of Sciences, University of Porto, R. do Campo Alegre s/n, Porto, Portugal.
| | - P Ferreira
- Laboratory of Molecular EcoPhysiology, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - N Formigo
- Department of Biology, Faculty of Sciences, University of Porto, R. do Campo Alegre s/n, Porto, Portugal
| | - J C Svendsen
- Section for Ecosystem based Marine Management, National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Charlottenlund 2920, Denmark
| |
Collapse
|
34
|
Bu C, Wang Y, Ge C, Ahmad HA, Gao B, Ni SQ. Dissimilatory Nitrate Reduction to Ammonium in the Yellow River Estuary: Rates, Abundance, and Community Diversity. Sci Rep 2017; 7:6830. [PMID: 28754970 PMCID: PMC5533712 DOI: 10.1038/s41598-017-06404-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate reduction process in estuarine sediments. This study reports the first investigation of DNRA in the Yellow River Estuary located in Eastern Shandong, China. Saltwater intrusion could affect the physicochemical characteristics and change the microbial community structure of sediments. In this study, the activity, abundance and community diversity of DNRA bacteria were investigated during saltwater intrusion. The slurry incubation experiments combined with isotope-tracing techniques and qPCR results showed that DNRA rates and nrfA (the functional gene of DNRA bacteria) gene abundance varied over wide ranges across different sites. DNRA rates had a positive and significant correlation with sediment organic content and extractable NH4+, while DNRA rates were weakly correlated with nrfA gene abundance. In comparison, the activities and abundance of DNRA bacteria did not change with a trend along salinity gradient. Pyrosequencing analysis of nrfA gene indicated that delta-proteobacteria was the most abundant at all sites, while epsilon-proteobacteria was hardly found. This study reveals that variability in the activities and community structure of DNRA bacteria is largely driven by changes in environmental factors and provides new insights into the characteristics of DNRA communities in estuarine ecosystems.
Collapse
Affiliation(s)
- Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Chenghao Ge
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
35
|
Cao W, Yang J, Li Y, Liu B, Wang F, Chang C. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China. MARINE POLLUTION BULLETIN 2016; 110:155-161. [PMID: 27368926 DOI: 10.1016/j.marpolbul.2016.06.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/30/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system.
Collapse
Affiliation(s)
- Wenzhi Cao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, Xiamen University, Xiang'an South Road, Xiamen 361102, China.
| | - Jingxin Yang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Ying Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Baoli Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Feifei Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Changtang Chang
- Department of Environmental Engineering, National I-Lan University, 1 Sheen Long Road, I-Lan 260, Taiwan
| |
Collapse
|
36
|
Enrich-Prast A, Figueiredo V, Esteves FDA, Nielsen LP. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons. PLoS One 2016; 11:e0155586. [PMID: 27175907 PMCID: PMC4866711 DOI: 10.1371/journal.pone.0155586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-.
Collapse
Affiliation(s)
- Alex Enrich-Prast
- Laboratório de Biogeoquímica, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Environmental Change, Linköping University, Linköping, Sweden
| | - Viviane Figueiredo
- Laboratório de Biogeoquímica, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- * E-mail:
| | - Francisco de Assis Esteves
- Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Chen H, Chen QQ, Jiang XY, Hu HY, Shi ML, Jin RC. Insight into the short- and long-term effects of Cu(II) on denitrifying biogranules. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:448-456. [PMID: 26610098 DOI: 10.1016/j.jhazmat.2015.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/16/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the short- and long-term effects of Cu(2+) on the activity and performance of denitrifying bacteria. The short-term effects of various concentrations of Cu(2+) on the denitrifying bacteria were evaluated using batch assays. The specific denitrifying activity (SDA) decreased from 14.3 ± 2.2 (without Cu(2+)) to 6.1 ± 0.1 mg N h(-1)g(-1) VSS (100 mg Cu(2+)L(-1)) when Cu(2+) increased from 0 to 100 mg L(-1) with an increment of 10 mg Cu(2+)L(-1). A non-competitive inhibition model was used to calculate the 50% inhibition concentration (IC50) of Cu(2+) on denitrifying sludge (30.6 ± 2.5 mg L(-1)). Monod and Luong models were applied to investigate the influence of the initial substrate concentration, and the results suggested that the maximum substrate removal rate would be reduced with Cu(2+) supplementation. Pre-exposure to Cu(2+) could lead to an 18.2-46.2% decrease in the SDA and decreasing percentage of the SDA increased with both exposure time and concentration. In the continuous-flow test, Cu(2+) concentration varied from 1 to 75 mg L(-1); however, no clear deterioration was observed in the reactor, and the reactor was kept stable, with the total nitrogen removal efficiency and total organic carbon efficiency greater than 89.0 and 85.0%, respectively. The results demonstrated the short-term inhibition of Cu(2+) upon denitrification, and no notable adversity was observed during the continuous-flow test after long-term acclimation.
Collapse
Affiliation(s)
- Hui Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian-Qian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiao-Yan Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Hai-Yan Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Man-Ling Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
38
|
Sgouridis F, Ullah S. Relative Magnitude and Controls of in Situ N2 and N2O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using (15)N Tracers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14110-14119. [PMID: 26509488 DOI: 10.1021/acs.est.5b03513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Denitrification is the most uncertain component of the nitrogen (N) cycle, hampering our ability to assess its contribution to reactive N (Nr) removal. This uncertainty emanates from the difficulty in measuring in situ soil N2 production and from the high spatiotemporal variability of the process itself. In situ denitrification was measured monthly between April 2013 and October 2014 in natural (organic and forest) and seminatural ecosystems (semi-improved and improved grasslands) in two UK catchments. Using the (15)N-gas flux method with low additions of (15)NO3(-) tracer, a minimum detectable flux rate of 4 μg N m(-2) h(-1) and 0.2 ng N m(-2) h(-1) for N2 and N2O, respectively, was achieved. Denitrification rates were lower in organic and forest (8 and 10 kg N ha(-1) y(-1), respectively) than in semi-improved and improved grassland soils (13 and 25 kg N ha(-1) y(-1), respectively). The ratio of N2O/N2 + N2O was low and ranged from <1% to 7% across the sites. Variation in denitrification was driven by differences in soil respiration, nitrate, C:N ratio, bulk density, moisture, and pH across the sites. Overall, the contribution of denitrification to Nr removal in natural ecosystems was ~50% of the annual atmospheric Nr deposition, making these ecosystems vulnerable to chronic N saturation.
Collapse
Affiliation(s)
- Fotis Sgouridis
- School of Physical and Geographical Sciences, Keele University , Staffordshire ST5 5BG, United Kingdom
| | - Sami Ullah
- School of Physical and Geographical Sciences, Keele University , Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
39
|
Rong JC, Liu M, Li Y, Sun TY, Xie BB, Shi M, Chen XL, Qin QL. Insight into the genome sequence of a sediment-adapted marine bacterium Neptunomonas antarctica S3-22(T) from Antarctica. Mar Genomics 2015; 25:29-31. [PMID: 26585344 DOI: 10.1016/j.margen.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022]
Abstract
Neptunomonas antarctica S3-22(T) was isolated from marine sediment of the Nella Fjord, Antarctica. Here we report the draft genome sequence of N. antarctica, which comprises 4,568,828 bp with a mean G+C content of 45.7%. We found numerous genes related to resistance, motility and chemotaxis, nitrogen metabolism, aromatic compound metabolism and stress response. These metabolic features and related genes revealed genetic basis for the adaptation to the marine sediment environment in Antarctica. The genome sequence of N. antarctica S3-22(T) may also provide further insights into the ecological role of the genus Neptunomonas.
Collapse
Affiliation(s)
- Jin-Cheng Rong
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Tian-Yong Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
40
|
Huang P, Goel R. Response of a sludge-minimizing lab-scale BNR reactor when the operation is changed to real primary effluent from synthetic wastewater. WATER RESEARCH 2015; 81:301-310. [PMID: 26086148 DOI: 10.1016/j.watres.2015.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The activated sludge process is the most widely used treatment method for municipal wastewater. However, the excessive amount of biomass generated during the process is a major drawback. Earlier studies using the activated sludge process running in a biomass fasting and feasting mode demonstrated both nutrient removal and a minimization of biomass production. However, these studies were conducted using synthetic wastewater. In this study, we report findings from a lab-scale sludge-minimizing biological nutrient removing (BNR) reactor when its operation was changed from synthetic to real wastewater (primary effluent). Two lab-scale sequencing batch reactors, one in sludge minimization mode (hereafter called modified-SBR), and the other in conventional activated sludge mode (referred as control-SBR), were operated for more than 300 days. Both reactors were started and operated with synthetic feed. Gradually the feed to both reactors was changed to 100% primary effluent collected from a local full-scale wastewater treatment plant. Irrespective of the feed composition, more than 98% NH3-N removal was recorded in both SBRs. However, while 89% of the total dissolved phosphorus was removed from the 100% synthetic feed, only 80% of the total dissolved phosphorus was removed from the 100% primary effluent in both SBRs. The overall observed sludge reduction in the modified-SBR as compared to the control-SBR also decreased from 65% to 39% when the feed was changed from 100% synthetic to 100% primary effluent. The specific oxygen uptake rate for the modified-SBR was 80% higher than that for the control-SBR when the SBRs were fed with primary effluent wastewater. The modified-SBR showed a greater diversity of ammonia-oxidizing bacteria (AOBs) with synthetic wastewater as well as during the transition period than the control-SBR. Yet when the reactors were running on 100% real wastewater, only Nitrosomonas europaea/eutropha were identified in both SBRs. The nitrite-oxidizing bacterial community and the polyphosphate accumulating organisms (PAOs) responded in a similar way in both SBRs.
Collapse
Affiliation(s)
- Pei Huang
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, United States
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, United States.
| |
Collapse
|
41
|
Chen H, He LL, Liu AN, Guo Q, Zhang ZZ, Jin RC. Start-up of granule-based denitrifying reactors with multiple magnesium supplementation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 155:204-211. [PMID: 25837295 DOI: 10.1016/j.jenvman.2015.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
In the present work, the effect of Mg(2+) supplementation on the start-up of a denitrification process and the granulation of denitrifying sludge was investigated in three upflow anaerobic sludge blanket (UASB) reactors. The reactors R1 and R2 were continuously and intermittently, respectively, supplied with 50 mg L(-1) Mg(2+), whereas R0 was used as the control. The nitrogen loading rate (NLR) and organic loading rate (OLR) gradually increased, and extremely high values were obtained (36.0 kgN m(-3) d(-1) and 216.0 kgCOD m(-3) d(-1), respectively). Granulation occurred in R1 first, but the reactor capacities were comparable. Suffering from starvation, the R0-R2 performances were comparable. At the end of the experiment, the average diameter of the granules in R0, R1, and R2 were 1.67, 1.72 and 1.68 mm, respectively, and the settling velocities of the granules in R1 and R2 were 1.14-fold the speed of R0. The specific denitrifying activity (SDA) of the sludge from the reactors supplied with Mg(2+) was greater than the reactor without Mg(2+). Intermittent Mg(2+) supplementation was identified as the best choice to be utilized to cultivate denitrifying granules, which was consistent with kinetic analysis.
Collapse
Affiliation(s)
- Hui Chen
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Li-Ling He
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - An-Na Liu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qiong Guo
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Zhe Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
42
|
Sander EM, Virdis B, Freguia S. Dissimilatory nitrate reduction to ammonium as an electron sink during cathodic denitrification. RSC Adv 2015. [DOI: 10.1039/c5ra19241b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrate reduction to ammonium is shown as a competitive pathway during cathodic denitrification at low potential, and is dependent on biofilm age and electron uptake capacity.
Collapse
Affiliation(s)
- Elisa M. Sander
- Advanced Water Management Centre
- The University of Queensland, Level 4
- Brisbane
- Australia
| | - Bernardino Virdis
- Advanced Water Management Centre
- The University of Queensland, Level 4
- Brisbane
- Australia
- Centre for Microbial Electrochemical Systems
| | - Stefano Freguia
- Advanced Water Management Centre
- The University of Queensland, Level 4
- Brisbane
- Australia
- Centre for Microbial Electrochemical Systems
| |
Collapse
|
43
|
Mander U, Well R, Weymann D, Soosaar K, Maddison M, Kanal A, Lõhmus K, Truu J, Augustin J, Tournebize J. Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11910-11918. [PMID: 25264900 DOI: 10.1021/es501727h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Known as biogeochemical hotspots in landscapes, riparian buffer zones exhibit considerable potential concerning mitigation of groundwater contaminants such as nitrate, but may in return enhance the risk for indirect N2O emission. Here we aim to assess and to compare two riparian gray alder forests in terms of gaseous N2O and N2 fluxes and dissolved N2O, N2, and NO3(-) in the near-surface groundwater. We further determine for the first time isotopologue ratios of N2O dissolved in the riparian groundwater in order to support our assumption that it mainly originated from denitrification. The study sites, both situated in Estonia, northeastern Europe, receive contrasting N loads from adjacent uphill arable land. Whereas N2O emissions were rather small at both sites, average gaseous N2-to-N2O ratios inferred from closed-chamber measurements and He-O laboratory incubations were almost four times smaller for the heavily loaded site. In contrast, groundwater parameters were less variable among sites and between landscape positions. Campaign-based average (15)N site preferences of N2O (SP) in riparian groundwater ranged between 11 and 44 ‰. Besides the strong prevalence of N2 emission over N2O fluxes and the correlation pattern between isotopologue and water quality data, this comparatively large range highlights the importance of denitrification and N2O reduction in both riparian gray alder stands.
Collapse
Affiliation(s)
- Ulo Mander
- Institute of Ecology and Earth Sciences, University of Tartu , 51014 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sgouridis F, Ullah S. Denitrification potential of organic, forest and grassland soils in the Ribble-Wyre and Conwy River catchments, UK. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1551-1562. [PMID: 24690876 DOI: 10.1039/c3em00693j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soil denitrification activity can be highly variable due to the effects of varied land use management practices within catchments on the biogeochemical regulators of denitrification. To test this assumption in the context of mixed-use rural catchments, it was hypothesised that the relative magnitude of denitrification activity may be regulated, among others, by a gradient of soil nitrate (low to high) between organic (peat bog, heathland, and acid grassland), forest (coniferous and deciduous), and grassland (improved and semi-improved) rural land use types. The denitrification potential (DP) of organic, forest and grassland soils, in two UK catchments was measured in the laboratory. Land use type significantly (p < 0.05) influenced the DP, which ranged between 0.02 and 63.3 mg N m(-2) h(-1). The averaged DP of organic and forest soils (1.08 mg N m(-2) h(-1)) was 3 and 10 times less than the DP of semi-improved (4.06 mg N m(-2) h(-1)) and improved (12.09 mg N m(-2) h(-1)) grassland soils, respectively; and among others, nitrate correlated positively (p < 0.05) with the DP. The results indicated that the difference in soil nitrate concentration between organic (naturally low in nitrate availability) and grassland soils (nitrate enriched due to land management) partially regulated the extent of DP. In the absence of N fertilisation, except for the atmospheric N deposition, the relatively low net nitrification potential (as a source of nitrate for denitrifiers) of organic and forest soils alone seem to have resulted in lower denitrifier's activity compared to grassland soils. Moreover, the interactions between soil organic carbon, pH, bulk density, water filled pore space, and texture, as these are influenced by the relative degree of land management, exerted additional controls on the DP. The results suggest that land management can have significant effects on denitrification, and thus needs to be considered when modelling and/or predicting the response of denitrification to land use change.
Collapse
Affiliation(s)
- Fotis Sgouridis
- School of Physical and Geographical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | | |
Collapse
|
45
|
González-Alcaraz MN, Conesa HM, Álvarez-Rogel J. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:964-972. [PMID: 23892281 DOI: 10.1016/j.jenvman.2013.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 06/02/2023]
Abstract
Wetlands are highly effective systems in removing large amounts of N from waters, preventing eutrophication processes. However, when wetlands are polluted by metal-mine wastes their capacity to act as green filters may be diminished. The objective of this study was to evaluate the effect of liming and plants (Sarcocornia fruticosa and Phragmites australis) on the removal of NO3(-) from eutrophic water in slightly acidic, wetland soils polluted by metal-mine wastes. Simulated soil profiles were constructed and six treatments were assayed: (1) no liming + no plant, (2) no liming + S. fruticosa, (3) no liming + P. australis, (4) liming + no plant, (5) liming + S. fruticosa and (6) liming + P. australis. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The eutrophic water used to flood the soil profiles was enriched in N and organic carbon (pH ~ 7.5, electrical conductivity ~ 11 dS m(-1), NO3(-) ~ 234 mg L(-1) and dissolved organic carbon ~ 106 mg L(-1)). The pH, Eh and concentrations of dissolved organic carbon (DOC), N-NO3(-) and N-NH4(+) were measured regularly for 18 weeks. Liming stimulated the growth of plants, especially for S. fruticosa (20-fold more plant biomass than without liming), increased the soil pH and favoured the decline of the Eh values, enhancing the removal of NO3(-) via denitrification. Of all the treatments assayed, liming + S. fruticosa was the only treatment that removed almost completely the high concentration of NO3(-) from the eutrophic flooding water, reaching ~1 mg L(-1) N-NO3(-) at the end of the experiment, at all depths. The higher content of DOC in the pore water of this treatment could explain this behaviour, since more labile carbon was available to the soil microorganisms in the rhizosphere, favouring NO3(-) removal through denitrification processes. However, the treatment liming + P. australis (2-fold more plant biomass that without liming) did not remove completely the high concentrations of NO3(-) from the eutrophic water, except in the C2 horizon - which was permanently under water. Hence, our results show that the effectiveness of liming, regarding the removal of NO3(-) from eutrophic flooding water in wetland soils polluted by metal-mine wastes, depends on the presence of plants, their growth and the production of organic compounds in the rhizospheric environment.
Collapse
Affiliation(s)
- María Nazaret González-Alcaraz
- Departamento de Ciencia y Tecnología Agraria, Área de Edafología y Química Agrícola, E.T.S. de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, Cartagena, 30203 Murcia, Spain.
| | | | | |
Collapse
|
46
|
Shrestha J, Niklaus PA, Frossard E, Samaritani E, Huber B, Barnard RL, Schleppi P, Tockner K, Luster J. Soil nitrogen dynamics in a river floodplain mosaic. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:2033-2045. [PMID: 23128760 DOI: 10.2134/jeq2012.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots.
Collapse
Affiliation(s)
- J Shrestha
- Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng D, Deng LW, Fan ZH, Liu GJ, Chen C, Yang H, Liu Y. Influence of sand layer depth on partial nitritation as pretreatment of anaerobically digested swine wastewater prior to anammox. BIORESOURCE TECHNOLOGY 2012; 104:274-279. [PMID: 22153598 DOI: 10.1016/j.biortech.2011.11.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
This work aimed to investigate the influence of sand layer depth on partial nitritation performance as a preparative step for anaerobic ammonium oxidation (anammox) process in treating anaerobically digested effluent of swine wastewater. A lab-scale biological sand filter system was constructed and partial nitritation was successfully maintained with nitrogen loading rate (NLR) of approximately 50 g NH(4)(+)-N m(-3) d(-1). An average NH(4)(+)-N removal efficiency of 61.34% and conversion efficiency of NH(4)(+)-N to NO(2)(-)-N of 79.77% were achieved with a sand layer depth of 32 cm. An effluent with a NH(4)(+)-N concentration of 242.52 mg L(-1) and a NO(2)(-)-N concentration of 306.39 mg L(-1) was achieved when the sand layer depth was 32 cm, giving a NO(2)(-)-N/NH(4)(+)-N ratio close to 1.32, as required by anammox. Overall, using a biological sand filter system to treat anaerobically digested effluent of swine wastewater by partial nitritation pretreatment prior to anammox is feasible.
Collapse
Affiliation(s)
- Dan Zheng
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|