1
|
Denpetkul T, Pumkaew M, Sittipunsakda O, Srathongneam T, Mongkolsuk S, Sirikanchana K. Risk-based critical concentrations of enteric pathogens for recreational water criteria and recommended minimum sample volumes for routine water monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175234. [PMID: 39102962 DOI: 10.1016/j.scitotenv.2024.175234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Concerns are rising about the contamination of recreational waters from human and animal waste, along with associated risks to public health. However, existing guidelines for managing pathogens in these environments have not yet fully integrated risk-based pathogen-specific criteria, which, along with recent advancements in indicators and markers, are essential to improve the protection of public health. This study aimed to establish risk-based critical concentration benchmarks for significant enteric pathogens, i.e., norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Applying a 0.036 risk benchmark to both marine and freshwater environments, the study identified the lowest critical concentrations for children, who are the most susceptible group. Norovirus, C. jejuni, and Cryptosporidium presented lowest median critical concentrations for virus, bacteria, and protozoa, respectively: 0.74 GC, 1.73 CFU, and 0.39 viable oocysts per 100 mL in freshwater for children. These values were then used to determine minimum sample volumes corresponding to different recovery rates for culture method, digital polymerase chain reaction and quantitative PCR methods. The results indicate that for children, norovirus required the largest sample volumes of freshwater and marine water (52.08 to 178.57 L, based on the 5th percentile with a 10 % recovery rate), reflecting its low critical concentration and high potential for causing illness. In contrast, adenovirus and rotavirus required significantly smaller volumes (approximately 0.24 to 1.33 L). C. jejuni and Cryptosporidium, which required the highest sampling volumes for bacteria and protozoa, needed 1.72 to 11.09 L and 4.17 to 25.51 L, respectively. Additionally, the presented risk-based framework could provide a model for establishing pathogen thresholds, potentially guiding the creation of extensive risk-based criteria for various pathogens in recreational waters, thus aiding public health authorities in decision-making, strengthening pathogen monitoring, and improving water quality testing accuracy for enhanced health protection.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Monchai Pumkaew
- Environmental Engineering and Disaster Management Program, School of Multidisciplinary, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Jayme G, Liu JL, Galvez JH, Reiling SJ, Celikkol S, N’Guessan A, Lee S, Chen SH, Tsitouras A, Sanchez-Quete F, Maere T, Goitom E, Hachad M, Mercier E, Loeb SK, Vanrolleghem PA, Dorner S, Delatolla R, Shapiro BJ, Frigon D, Ragoussis J, Snutch TP. Combining Short- and Long-Read Sequencing Technologies to Identify SARS-CoV-2 Variants in Wastewater. Viruses 2024; 16:1495. [PMID: 39339971 PMCID: PMC11437403 DOI: 10.3390/v16091495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
During the COVID-19 pandemic, the monitoring of SARS-CoV-2 RNA in wastewater was used to track the evolution and emergence of variant lineages and gauge infection levels in the community, informing appropriate public health responses without relying solely on clinical testing. As more sublineages were discovered, it increased the difficulty in identifying distinct variants in a mixed population sample, particularly those without a known lineage. Here, we compare the sequencing technology from Illumina and from Oxford Nanopore Technologies, in order to determine their efficacy at detecting variants of differing abundance, using 248 wastewater samples from various Quebec and Ontario cities. Our study used two analytical approaches to identify the main variants in the samples: the presence of signature and marker mutations and the co-occurrence of signature mutations within the same amplicon. We observed that each sequencing method detected certain variants at different frequencies as each method preferentially detects mutations of distinct variants. Illumina sequencing detected more mutations with a predominant lineage that is in low abundance across the population or unknown for that time period, while Nanopore sequencing had a higher detection rate of mutations that are predominantly found in the high abundance B.1.1.7 (Alpha) lineage as well as a higher sequencing rate of co-occurring mutations in the same amplicon. We present a workflow that integrates short-read and long-read sequencing to improve the detection of SARS-CoV-2 variant lineages in mixed population samples, such as wastewater.
Collapse
Affiliation(s)
- Gabrielle Jayme
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ju-Ling Liu
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
| | - Sarah Julia Reiling
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Sukriye Celikkol
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Arnaud N’Guessan
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Research Centre, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Sally Lee
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shu-Huang Chen
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Alexandra Tsitouras
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | | - Thomas Maere
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Mounia Hachad
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Peter A. Vanrolleghem
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - B. Jesse Shapiro
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Dominic Frigon
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Hart JJ, Jamison MN, Porter AM, McNair JN, Szlag DC, Rediske RR. Fecal Impairment Framework, A New Conceptual Framework for Assessing Fecal Contamination in Recreational Waters. ENVIRONMENTAL MANAGEMENT 2024; 73:443-456. [PMID: 37658902 DOI: 10.1007/s00267-023-01878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Fecal pollution of surface water is a pervasive problem that negatively affects waterbodies concerning both public health and ecological functions. Current assessment methods monitor fecal indicator bacteria (FIB) to identify pollution sources using culture-based quantification and microbial source tracking (MST). These types of information assist stakeholders in identifying likely sources of fecal pollution, prioritizing them for remediation, and choosing appropriate best management practices. While both culture-based quantification and MST are useful, they yield different kinds of information, potentially increasing uncertainty in prioritizing sources for management. This study presents a conceptual framework that takes separate human health risk estimates based on measured MST and E. coli concentrations as inputs and produces an estimate of the overall fecal impairment risk as its output. The proposed framework is intended to serve as a supplemental screening tool for existing monitoring programs to aid in identifying and prioritizing sites for remediation. In this study, we evaluated the framework by applying it to two primarily agricultural watersheds and several freshwater recreational beaches using existing routine monitoring data. Based on a combination of E. coli and MST results, the proposed fecal impairment framework identified four sites in the watersheds as candidates for remediation and identified temporal trends in the beach application. As these case studies demonstrate, the proposed fecal impairment framework is an easy-to-use and cost-effective supplemental screening tool that provides actionable information to managers using existing routine monitoring data, without requiring specialized expertize.
Collapse
Affiliation(s)
- John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Megan N Jamison
- Department of Chemistry, Oakland University, 146 Library Dr., Rochester, MI, 48309, USA
- The Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA
| | - Alexis M Porter
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA
| | - David C Szlag
- Department of Chemistry, Oakland University, 146 Library Dr., Rochester, MI, 48309, USA
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA
| |
Collapse
|
5
|
Sun T, Liu Y, Gao S, Qin X, Lin Z, Dou X, Wang X, Zhang H, Dong Q. Distribution-based maximum likelihood estimation methods are preferred for estimating Salmonella concentration in chicken when contamination data are highly left-censored. Food Microbiol 2023; 113:104283. [PMID: 37098436 DOI: 10.1016/j.fm.2023.104283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Salmonella is a common chicken-borne pathogen that causes human infections. Data below the detection limit, referred to as left-censored data, are frequently encountered in the detection of pathogens. The approach of handling the censored data was regarded to affect the estimation accuracy of microbial concentration. In this study, a set of Salmonella contamination data was collected from chilled chicken samples using the most probable number (MPN) method, which consisted of 90.42% (217/240) non-detect values. Two simulated datasets with fixed censoring degrees of 73.60% and 90.00% were generated based on the real-sampling Salmonella dataset for comparison. Three methodologies were applied for handling left-censored data: (i) substitution with different alternatives, (ii) the distribution-based maximum likelihood estimation (MLE) method, and (iii) the multiple imputation (MI) method. For each dataset, the negative binomial (NB) distribution-based MLE and zero-modified NB distribution-based MLE were preferable for highly censored data and resulted in the least root mean square error (RMSE). Replacing the censored data with half the limit of quantification was the next best method. The mean concentration of Salmonella monitoring data estimated by the NB-MLE and zero-modified NB-MLE methods was 0.68 MPN/g. This study provided an available statistical method for handling bacterial highly left-censored data.
Collapse
Affiliation(s)
- Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shufei Gao
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zijie Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Dou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Xie Y, Challis JK, Oloye FF, Asadi M, Cantin J, Brinkmann M, McPhedran KN, Hogan N, Sadowski M, Jones PD, Landgraff C, Mangat C, Servos MR, Giesy JP. RNA in Municipal Wastewater Reveals Magnitudes of COVID-19 Outbreaks across Four Waves Driven by SARS-CoV-2 Variants of Concern. ACS ES&T WATER 2022; 2:1852-1862. [PMID: 37552734 PMCID: PMC8887651 DOI: 10.1021/acsestwater.1c00349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.
Collapse
Affiliation(s)
- Yuwei Xie
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Jonathan K. Challis
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Femi F. Oloye
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
| | - Jenna Cantin
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Markus Brinkmann
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Kerry N. McPhedran
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Natacha Hogan
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- College of Agriculture and Bioresources, Department of
Animal and Poultry Sciences, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department,
City of Saskatoon, Saskatoon, Saskatchewan S7M 1X5,
Canada
| | - Paul D. Jones
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology
Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
R3E 3R2, Canada
- Food Science Department, University of
Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chand Mangat
- Antimicrobial Resistance and Nosocomial Infections,
National Microbiology Laboratory, Public Health Agency of
Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Mark R. Servos
- Department of Biology, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - John P. Giesy
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Department of Veterinary Biomedical Sciences,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4,
Canada
- Department of Environmental Sciences,
Baylor University, Waco, Texas 76706, United
States
- Department of Zoology and Center for Integrative
Toxicology, Michigan State University, East Lansing, Michigan
48824, United States
| |
Collapse
|
7
|
Nyika J, Dinka M. A scientometric study on quantitative microbial risk assessment in water quality analysis across 6 years (2016-2021). JOURNAL OF WATER AND HEALTH 2022; 20:329-343. [PMID: 36366990 DOI: 10.2166/wh.2022.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water contamination by microbes is a growing environmental challenge that has exacerbated the apparent scarcity of safe drinking water. To alleviate this challenge, it is important to screen water for pathogens to reduce the risk of contracting waterborne diseases among consumers. The use of the quantitative microbial risk assessment (QMRA) tool to approximate illness possibility from exposure to microorganisms using dose-response models between pathogens and their associated health impacts is, therefore, recommended. The aim of this study was to explore the use of QMRA in water quality assessment using a scientometric approach and data sourced from the Web of Science (WoS) database for the period between 2016 and 2021. Articles were searched in the WoS databases before downloading the content for a bibliometric analysis using the VOSviewer software. Additionally, Microsoft Excel was used to analyze the inter-relationships of the searched results. Journal articles had the highest results from the searched query at 90.6% compared to other forms of output. High-impact journals such as the Science of the Total Environment and Water Research had the highest number of publications at 11.056 and 7.5%, respectively. Keyword analysis showed the multidisciplinary nature of the search query based on the clustered themes. The USA and China showed greater publication output with a total of 51.7% of total publications compared to developing countries due to their high research potential and extensive collaborative networks. A similar trend was evident in the institutional analysis with the University of California, USA, and the Chinese Academy of Sciences being the highest research contributors with 8% of the searched output. The study highlighted the need to extend research inputs to developing countries of Africa and Asia to improve their research and development capacity, productivity and share knowledge on QMRA in water quality assessment.
Collapse
Affiliation(s)
- Joan Nyika
- Department of Civil Engineering Science, University of Johannesburg, APK Campus 2006, Johannesburg, South Africa E-mail:
| | - Megersa Dinka
- Department of Civil Engineering Science, University of Johannesburg, APK Campus 2006, Johannesburg, South Africa E-mail:
| |
Collapse
|
8
|
Gallard-Gongora J, Lobos A, Conrad JW, Peraud J, Harwood VJ. An assessment of three methods for extracting bacterial DNA from beach sand. J Appl Microbiol 2021; 132:2990-3000. [PMID: 34932856 DOI: 10.1111/jam.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Beach water quality is regulated by faecal indicator bacteria levels, sand is not, despite known human health risk from exposure to beach sand. We compared the performance of three methods to extract bacterial DNA from beach sand as a step toward a standard method. METHODS AND RESULTS The analytical sensitivity of quantitative polymerase chain reaction (qPCR) for Enterococcus was compared for the slurry (suspension, agitation, membrane filtration of supernatant), versus direct extraction using PowerSoil™ or PowerMax Soil™ kits. The slurry method had the lowest limit of detection at 20-80 gene copies g-1 , recovered significantly more DNA, and the only method that detected Enterococcus by qPCR in all samples; therefore, the only method used in subsequent experiments. The slurry method reflected the spatial variability of Enterococcus in individual transect samples. Mean recovery efficiency of the microbial source tracking marker HF183 from wastewater spiked marine and freshwater beach sand was 100.8% and 64.1%, respectively, but varied, indicating that the mixing protocol needs improvement. CONCLUSIONS Among the three methods, the slurry method had the best analytical sensitivity and produced extracts that were useful for culture or molecular analysis. SIGNIFICANCE AND IMPACT OF STUDY Standardization of methods for extraction of bacterial DNA from sand facilitates comparisons among studies, and ultimately contributes to the safety of recreational beaches.
Collapse
Affiliation(s)
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - James W Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Imprints of Lockdown and Treatment Processes on the Wastewater Surveillance of SARS-CoV-2: A Curious Case of Fourteen Plants in Northern India. WATER 2021. [DOI: 10.3390/w13162265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study investigated the detection of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) genomes at each treatment stage of 14 aerobic wastewater treatment plants (WWTPs) serving the major municipalities in two states of Rajasthan and Uttarakhand in Northern India. The untreated, primary, secondary and tertiary treated wastewater samples were collected over a time frame ranging from under-lockdown to post-lockdown conditions. The results showed that SARS-CoV-2 RNA was detected in 13 out of 40 wastewater samples in Jaipur district, Rajasthan and in 5 out of 14 wastewater samples in the Haridwar District, Uttarakhand with the E gene predominantly observed as compared to the N and RdRp target genes in later time-points of sampling. The Ct values of genes present in wastewater samples were correlated with the incidence of patient and community cases of COVID-19. This study further indicates that the viral RNA could be detected after the primary treatment but was not present in secondary or tertiary treated samples. This study implies that aerobic biological wastewater treatment systems such as moving bed biofilm reactor (MBBR) technology and sequencing batch reactor (SBR) are effective in virus removal from the wastewater. This work might present a new indication that there is little to no risk in relation to SARS-CoV-2 while reusing the treated wastewater for non-potable applications. In contrast, untreated wastewater might present a potential route of viral transmission through WWTPs to sanitation workers and the public. However, there is a need to investigate the survival and infection rates of SARS-CoV-2 in wastewater.
Collapse
|
10
|
Borchardt MA, Boehm AB, Salit M, Spencer SK, Wigginton KR, Noble RT. The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR Quality and Reporting for Environmental Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10210-10223. [PMID: 34286966 DOI: 10.1021/acs.est.1c01767] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Real-time quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) methods have revolutionized environmental microbiology, yielding quantitative organism-specific data of nucleic acid targets in the environment. Such data are essential for characterizing interactions and processes of microbial communities, assessing microbial contaminants in the environment (water, air, fomites), and developing interventions (water treatment, surface disinfection, air purification) to curb infectious disease transmission. However, our review of recent qPCR and dPCR literature in our field of health-related environmental microbiology showed that many researchers are not reporting necessary and sufficient controls and methods, which would serve to strengthen their study results and conclusions. Here, we describe the application, utility, and interpretation of the suite of controls needed to make high quality qPCR and dPCR measurements of microorganisms in the environment. Our presentation is organized by the discrete steps and operations typical of this measurement process. We propose systematic terminology to minimize ambiguity and aid comparisons among studies. Example schemes for batching and combining controls for efficient work flow are demonstrated. We describe critical reporting elements for enhancing data credibility, and we provide an element checklist in the Supporting Information. Additionally, we present several key principles in metrology as context for laboratories to devise their own quality assurance and quality control reporting framework. Following the EMMI guidelines will improve comparability and reproducibility among qPCR and dPCR studies in environmental microbiology, better inform engineering and public health actions for preventing disease transmission through environmental pathways, and for the most pressing issues in the discipline, focus the weight of evidence in the direction toward solutions.
Collapse
Affiliation(s)
- Mark A Borchardt
- Environmentally Integrated Dairy Management Research Unit, USDA Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Marc Salit
- Departments of Pathology and Bioengineering, Stanford University, Stanford, California 94305, United States
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Susan K Spencer
- Environmentally Integrated Dairy Management Research Unit, USDA Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Rachel T Noble
- Insitute for the Environment, University of North Carolina, Chapel Hill, North Carolina 27517, United States
| |
Collapse
|
11
|
Hata A, Shirasaka Y, Ihara M, Yamashita N, Tanaka H. Spatial and temporal distributions of enteric viruses and indicators in a lake receiving municipal wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146607. [PMID: 33773350 DOI: 10.1016/j.scitotenv.2021.146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
12
|
Balboa S, Mauricio-Iglesias M, Rodriguez S, Martínez-Lamas L, Vasallo FJ, Regueiro B, Lema JM. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33556806 DOI: 10.1101/2020.05.25.20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SARS-CoV-2 genetic material is detectable in the faeces of a considerable part of COVID-19 cases and hence, in municipal wastewater. This fact was confirmed early during the spread of the COVID-19 pandemic and prompted several studies that proposed monitoring its incidence by wastewater. This paper studies the fate of SARS-CoV-2 genetic material in wastewater treatment plants using RT-qPCR with a two-fold goal: i) to check its presence in the water effluent and in the produced sludge and ii) based on the understanding of the virus particles fate, to identify the most suitable spots for detecting the incidence of COVID-19 and monitor its evolution. On the grounds of the affinity of enveloped virus towards biosolids, we hypothesized that the sludge line acts as a concentrator of SARS-CoV-2 genetic material. Sampling several spots in primary, secondary and sludge treatment at the Ourense (Spain) WWTP in 5 different days showed that, in effect, most of SARS-CoV-2 particles cannot be detected in the water effluent as they are retained by the sludge line. We identified the sludge thickener as a suitable spot for detecting SARS-CoV-2 particles thanks to its higher solids concentration (more virus particles) and longer residence time (less sensitive to dilution caused by precipitation). These findings could be useful to develop a suitable strategy for early warning of COVID-19 incidence based on WWTP monitoring.
Collapse
Affiliation(s)
- Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain.
| | | | - Lucía Martínez-Lamas
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Francisco J Vasallo
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain; Department of Microbiology, Universidade de Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
13
|
Balboa S, Mauricio-Iglesias M, Rodriguez S, Martínez-Lamas L, Vasallo FJ, Regueiro B, Lema JM. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145268. [PMID: 33556806 PMCID: PMC7980226 DOI: 10.1016/j.scitotenv.2021.145268] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 genetic material is detectable in the faeces of a considerable part of COVID-19 cases and hence, in municipal wastewater. This fact was confirmed early during the spread of the COVID-19 pandemic and prompted several studies that proposed monitoring its incidence by wastewater. This paper studies the fate of SARS-CoV-2 genetic material in wastewater treatment plants using RT-qPCR with a two-fold goal: i) to check its presence in the water effluent and in the produced sludge and ii) based on the understanding of the virus particles fate, to identify the most suitable spots for detecting the incidence of COVID-19 and monitor its evolution. On the grounds of the affinity of enveloped virus towards biosolids, we hypothesized that the sludge line acts as a concentrator of SARS-CoV-2 genetic material. Sampling several spots in primary, secondary and sludge treatment at the Ourense (Spain) WWTP in 5 different days showed that, in effect, most of SARS-CoV-2 particles cannot be detected in the water effluent as they are retained by the sludge line. We identified the sludge thickener as a suitable spot for detecting SARS-CoV-2 particles thanks to its higher solids concentration (more virus particles) and longer residence time (less sensitive to dilution caused by precipitation). These findings could be useful to develop a suitable strategy for early warning of COVID-19 incidence based on WWTP monitoring.
Collapse
Affiliation(s)
- Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain.
| | | | - Lucía Martínez-Lamas
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Francisco J Vasallo
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain; Department of Microbiology, Universidade de Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
14
|
Balboa S, Mauricio-Iglesias M, Rodriguez S, Martínez-Lamas L, Vasallo FJ, Regueiro B, Lema JM. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145268. [PMID: 33556806 DOI: 10.1101/2020.05.25.20112706v1.article-metrics] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 05/28/2023]
Abstract
SARS-CoV-2 genetic material is detectable in the faeces of a considerable part of COVID-19 cases and hence, in municipal wastewater. This fact was confirmed early during the spread of the COVID-19 pandemic and prompted several studies that proposed monitoring its incidence by wastewater. This paper studies the fate of SARS-CoV-2 genetic material in wastewater treatment plants using RT-qPCR with a two-fold goal: i) to check its presence in the water effluent and in the produced sludge and ii) based on the understanding of the virus particles fate, to identify the most suitable spots for detecting the incidence of COVID-19 and monitor its evolution. On the grounds of the affinity of enveloped virus towards biosolids, we hypothesized that the sludge line acts as a concentrator of SARS-CoV-2 genetic material. Sampling several spots in primary, secondary and sludge treatment at the Ourense (Spain) WWTP in 5 different days showed that, in effect, most of SARS-CoV-2 particles cannot be detected in the water effluent as they are retained by the sludge line. We identified the sludge thickener as a suitable spot for detecting SARS-CoV-2 particles thanks to its higher solids concentration (more virus particles) and longer residence time (less sensitive to dilution caused by precipitation). These findings could be useful to develop a suitable strategy for early warning of COVID-19 incidence based on WWTP monitoring.
Collapse
Affiliation(s)
- Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain.
| | | | - Lucía Martínez-Lamas
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Francisco J Vasallo
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-Universidade de Vigo, Spain; Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain; Department of Microbiology, Universidade de Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
15
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33508669 DOI: 10.1016/j.scitotenv.2021.145319l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
16
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145319. [PMID: 33508669 PMCID: PMC7826013 DOI: 10.1016/j.scitotenv.2021.145319] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 04/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
17
|
Kongprajug A, Denpetkul T, Chyerochana N, Mongkolsuk S, Sirikanchana K. Human Fecal Pollution Monitoring and Microbial Risk Assessment for Water Reuse Potential in a Coastal Industrial-Residential Mixed-Use Watershed. Front Microbiol 2021; 12:647602. [PMID: 33959110 PMCID: PMC8093506 DOI: 10.3389/fmicb.2021.647602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Rapid economic development has caused industrial expansion into residential communities, leading to higher fecal pollution loads that could be discharged into aquatic environments. However, little is known regarding the potential microbial impact on human health. This study investigated microbial contamination from coastal industrial–residential community areas in nine sampling sites in waterways during three dry events. A general microbial source tracking (MST) marker, GenBac3, was detected in all samples from all three events, indicating continuing fecal pollution in the area, mostly from human sewage contamination. This was shown by the human-specific genetic marker crAssphage (88.9%) and human polyomavirus (HPyVs; 92.6%) detection. Enteric human adenovirus (HAdV40/41) showed three positive results only from residential sites in the first event. No spatial difference was observed for MST markers and traditional fecal indicators (total coliforms and Escherichia coli) in each event. Still, a significantly lower abundance of GenBac3, HPyVs, and total coliforms in the first sampling event was detected. Spearman’s rho analysis indicated a strong correlation among certain pairs of microbial parameters. Multivariate analysis revealed two clusters of samples separated by land use type (industrial vs. residential). According to factor analysis of mixed data, the land use parameter was more associated with physicochemical parameters (i.e., salinity, conductivity, water temperature, and dissolved oxygen). A Quantitative Microbial Risk Assessment (QMRA) was then conducted to estimate the annual infection risks of HAdV40/41 for non-potable water reuse purposes using predicted concentrations from crAssphage and HPyVs. The highest risks (95th percentiles) were ranked by food crop irrigation, aquaculture, and toilet flushing, at 10–1, 10–2, and 10–3 per person per year (pppy). Required treatment levels to achieve a 10–4 pppy annual infection risk were estimated. QMRA-based water treatment scenarios were suggested, including chlorination for toilet flushing reuse and depth filtration prior to chlorination for aquaculture and food crop irrigation. Microbial monitoring combined with a QMRA could provide better insights into fecal pollution patterns and the associated risks, facilitating effective water quality management and appropriate prior treatments for water reuse.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
18
|
D'Aoust PM, Mercier E, Montpetit D, Jia JJ, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Langlois MA, Servos MR, MacKenzie M, Figeys D, MacKenzie AE, Graber TE, Delatolla R. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. WATER RESEARCH 2021; 188:116560. [PMID: 33137526 PMCID: PMC7583624 DOI: 10.1016/j.watres.2020.116560] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
19
|
D'Aoust PM, Mercier E, Montpetit D, Jia JJ, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Langlois MA, Servos MR, MacKenzie M, Figeys D, MacKenzie AE, Graber TE, Delatolla R. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. WATER RESEARCH 2021. [PMID: 33137526 DOI: 10.1101/2020.08.11.20173062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
20
|
Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F, Campiglia P, Belgiorno V, Korshin G, Naddeo V. Viruses in wastewater: occurrence, abundance and detection methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140910. [PMID: 32758747 PMCID: PMC7368910 DOI: 10.1016/j.scitotenv.2020.140910] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 04/14/2023]
Abstract
This paper presents an updated and comprehensive review on the different methods used for detection and quantification of viruses in wastewater treatment systems. The analysis of viability of viruses in wastewater and sludge is another thrust of this review. Recent studies have mostly focused on determining the abundance and diversity of viruses in wastewater influents, in samples from primary, secondary, and tertiary treatment stages, and in final effluents. A few studies have also examined the occurrence and diversity of viruses in raw and digested sludge samples. Recent efforts to improve efficiency of virus detection and quantification methods in the complex wastewater and sludge matrices are highlighted in this review. A summary and a detailed comparison of the pre-treatment methods that have been utilized for wastewater and sludge samples are also presented. The role of metagenomics or sequencing analysis in monitoring wastewater systems to predict disease outbreaks, to conduct public health surveillance, to assess the efficiency of existing treatment systems in virus removal, and to re-evaluate current regulations regarding pathogenic viruses in wastewater is discussed in this paper. Challenges and future perspectives in the detection of viruses, including emerging and newly emerged viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in wastewater systems are discussed in this review.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Giovanni Vigliotta
- Laboratory of Microbiology, University of Salerno, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| |
Collapse
|
21
|
Hata A, Furumai H, Katayama H. Sequential treatment using a hydrophobic resin and gel filtration to improve viral gene quantification from highly complex environmental concentrates. WATER RESEARCH 2020; 174:115652. [PMID: 32135428 DOI: 10.1016/j.watres.2020.115652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Assays based on the polymerase chain reaction (PCR) are widely applied to quantify enteric viruses in aquatic environments to study their fates and potential infection risks. However, inhibitory substances enriched by virus concentration processes can result in inaccurate quantification. This study aimed to find a method for improving virus quantification by mitigating the effects of inhibitory environmental concentrates, using previous knowledge of the properties of the inhibitory substances. Performances of anion exchange resins, gel filtration, and a hydrophobic resin (DAX-8) were comparatively evaluated using poliovirus and its extracted RNA spiked into humic acid solutions. These solutions served as good representatives of the inhibitory environmental concentrates. A sequential treatment using DAX-8 resin and gel filtration produced the most favorable results, i.e., low virus losses that were stable and a reduced inhibitory effect. Furthermore, the sequential treatment was applied to another set of 15 environmental concentrates. Without the sequential treatment, serious underestimation (>4.0 log10 to 1.1 log10) of a molecular process control (murine norovirus) was measured for eight samples. With the treatment, the control was detected with <1.0 log10 underestimation for all samples. The treatment improved the quantification of seven types of indigenous viruses. In summary, the sequential treatment is effective in improving the viral quantification in various of environmental concentrates.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, 939-0398, Japan.
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
22
|
Owens CEL, Angles ML, Cox PT, Byleveld PM, Osborne NJ, Rahman MB. Implementation of quantitative microbial risk assessment (QMRA) for public drinking water supplies: Systematic review. WATER RESEARCH 2020; 174:115614. [PMID: 32087414 DOI: 10.1016/j.watres.2020.115614] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
In the more than 15 years since its introduction, quantitative microbial risk assessment (QMRA) has become a widely used technique for assessing population health risk posed by waterborne pathogens. However, the variation in approaches taken for QMRA in relation to drinking water supply is not well understood. This systematic review identifies, categorises, and critically synthesises peer-reviewed and academic case studies of QMRA implementation for existing distributed public drinking water supplies. Thirty-nine English-language, peer-reviewed and academic studies published from 2003 to 2019 were identified. Key findings were synthesised in narrative form. The overall designs of the included studies varied widely, as did the assumptions used in risk calculation, especially in relation to pathogen dose. There was also substantial variation in the degree to which the use of location-specific data weighed with the use of assumptions when performing risk calculation. In general, the included studies' complexity did not appear to be associated with greater result certainty. Factors relating to pathogen dose were commonly influential on risk estimates whereas dose-response parameters tended to be of low relative influence. In two of the included studies, use of the 'susceptible fraction' factor was inconsistent with recognised guidance and potentially led to the underestimation of risk. While approaches and assumptions used in QMRA need not be standardised, improvement in the reporting of QMRA results and uncertainties would be beneficial. It is recommended that future authors consider the water supply QMRA reporting checklist developed for the current review. Consideration of the broad types of uncertainty relevant to QMRA is also recommended. Policy-makers should consider emergent discussion on acute microbial health-based targets when setting normative guidelines. The continued representation of QMRA case studies within peer-reviewed and academic literature would also enhance future implementation. Further research is needed on the optimisation of QMRA resourcing given the application context.
Collapse
Affiliation(s)
- Christopher E L Owens
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia; Sydney Water Corporation, Parramatta NSW 2124, Australia.
| | - Mark L Angles
- Water Angles Consulting, Vaucluse NSW 2030, Australia
| | - Peter T Cox
- Sydney Water Corporation, Parramatta NSW 2124, Australia
| | | | - Nicholas J Osborne
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia; School of Public Health, Faculty of Medicine, University of Queensland, Herston QLD 4006, Australia; European Centre for Environment and Human Health, University of Exeter, Royal Cornwall Hospital, Truro TR1 3HD, United Kingdom
| | - Md Bayzid Rahman
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| |
Collapse
|
23
|
Silva-Sales M, Martínez-Puchol S, Gonzales-Gustavson E, Hundesa A, Gironès R. High Prevalence of Rotavirus A in Raw Sewage Samples from Northeast Spain. Viruses 2020; 12:v12030318. [PMID: 32188099 PMCID: PMC7150846 DOI: 10.3390/v12030318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/08/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Rotavirus A (RVA) is the most common virus associated with infantile gastroenteritisworldwide, being a public health threat, as it is excreted in large amounts in stool and can persist inthe environment for extended periods. In this study, we performed the detection of RVA and humanadenovirus (HAdV) by TaqMan qPCR and assessed the circulation of RVA genotypes in threewastewater treatment plants (WWTPs) between 2015 and 2016 in Catalonia, Spain. RVA wasdetected in 90% and HAdV in 100% of the WWTP samples, with viral loads ranging between 3.96 ×104 and 3.30 × 108 RT-PCR Units/L and 9.51 × 104 and 1.16 × 106 genomic copies/L, respectively. RVAVP7 and VP4 gene analysis revealed the circulation of G2, G3, G9, G12, P[4], P[8], P[9] and P[10].Nucleotide sequencing (VP6 fragment) showed the circulation of I1 and I2 genotypes, commonlyassociated with human, bovine and porcine strains. It is important to mention that the RVA strainsisolated from the WWTPs were different from those recovered from piglets and calves living in thesame area of single sampling in 2016. These data highlight the importance of monitoring watermatrices for RVA epidemiology and may be a useful tool to evaluate and predict possibleemergence/reemergence of uncommon strains in a region.
Collapse
|
24
|
Zhang Q, Gallard J, Wu B, Harwood VJ, Sadowsky MJ, Hamilton KA, Ahmed W. Synergy between quantitative microbial source tracking (qMST) and quantitative microbial risk assessment (QMRA): A review and prospectus. ENVIRONMENT INTERNATIONAL 2019; 130:104703. [PMID: 31295713 DOI: 10.1016/j.envint.2019.03.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 05/20/2023]
Abstract
The use of microbial source tracking (MST) marker genes has grown in recent years due to the need to attribute point and non-point fecal contamination to specific sources. Quantitative microbial risk assessment (QMRA) is a modeling approach used to estimate health risks from exposure to feces-contaminated water and associated pathogens. A combination of these approaches [quantitative MST (qMST) and QMRA] can provide additional pathogen-related information for prioritizing and addressing health risks, compared to reliance on conventional fecal indicator bacteria (FIB). To inform expansion of this approach, a review of published qMST-QMRA studies was conducted to summarize the state of the science and to identify research needs. The reviewed studies primarily aimed to identify what levels of MST marker genes in hypothetical recreational waterbodies would exceed the United States Environmental Protection Agency (USEPA) risk benchmarks for primary contact recreators. The QMRA models calculated relationships between MST marker gene(s) and reference pathogens based on published data in the literature. The development of a robust, accurate relationship was identified as an urgent research gap for qMST-QMRA. This metric requires additional knowledge to quantify the relationship between MST marker genes and the degree of variability in decay of pathogens as a dynamic function of environmental conditions and combinations of fecal sources at multiple spatial and temporal scales. Improved characterization of host shedding rates of host-associated microorganisms (i.e., MST marker genes), as well as fate and transport of these microorganisms and their nucleic acids, would facilitate expansion of this approach to other exposure pathways. Incorporation of information regarding the recovery efficiency, and host-specificity of MST marker genes into QMRA model parameters, and the sensitivity analysis, would greatly improve risk management and site-specific water monitoring criteria.
Collapse
Affiliation(s)
- Qian Zhang
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Javier Gallard
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Baolei Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, PR China
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA; Department of Soil, Water & Climate and Department of Plant & Microbial Biology, University of Minnesota, 1991 Upper Buford Ave, St. Paul, MN 55108, USA
| | - Kerry A Hamilton
- School for Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| |
Collapse
|
25
|
Wilson AM, Reynolds KA, Verhougstraete MP, Canales RA. Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:1812-1824. [PMID: 30759318 DOI: 10.1111/risa.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding healthcare viral disease transmission and the effect of infection control interventions will inform current and future infection control protocols. In this study, a model was developed to predict virus concentration on nurses' hands using data from a bacteriophage tracer study conducted in Tucson, Arizona, in an urgent care facility. Surfaces were swabbed 2 hours, 3.5 hours, and 6 hours postseeding to measure virus spread over time. To estimate the full viral load that would have been present on hands without sampling, virus concentrations were summed across time points for 3.5- and 6-hour measurements. A stochastic discrete event model was developed to predict virus concentrations on nurses' hands, given a distribution of virus concentrations on surfaces and expected frequencies of hand-to-surface and orifice contacts and handwashing. Box plots and statistical hypothesis testing were used to compare the model-predicted and experimentally measured virus concentrations on nurses' hands. The model was validated with the experimental bacteriophage tracer data because the distribution for model-predicted virus concentrations on hands captured all observed value ranges, and interquartile ranges for model and experimental values overlapped for all comparison time points. Wilcoxon rank sum tests showed no significant differences in distributions of model-predicted and experimentally measured virus concentrations on hands. However, limitations in the tracer study indicate that more data are needed to instill more confidence in this validation. Next model development steps include addressing viral concentrations that would be found naturally in healthcare environments and measuring the risk reductions predicted for various infection control interventions.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Marc P Verhougstraete
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert A Canales
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Li Q, Qiu Y, Pang XL, Ashbolt NJ. Spiked Virus Level Needed To Correctly Assess Enteric Virus Recovery in Water Matrices. Appl Environ Microbiol 2019; 85:e00111-19. [PMID: 30979836 PMCID: PMC6544825 DOI: 10.1128/aem.00111-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Quantitative microbial risk assessment (QMRA) identifies human enteric viruses in municipal wastewater as the pathogen group requiring the highest log reductions for various reuse applications. However, the performance of methods for estimating virus concentration is not well understood, and without performance assessment, actual risks are likely severely underestimated. To evaluate the efficiency of virus recovery from water, a water sample is often spiked with "known" amounts of virus, and the virus is then recovered after a series of analytical procedures. Yet for water matrices such as wastewater, due to the unknown background concentrations of targeted viruses in the matrix and the variable recovery efficiency between individual processes, only an approximation of the recovery efficiency may be obtained from such spike-and-recovery experiments. In this study, we demonstrated theoretically that for two widely used approximations, the error in estimating virus recovery should be less than the ratio of the amount of target virus in the background sample to that in the spike. Furthermore, we developed an applicable method, based on this new understanding, for deciding on the amount of virus for spiking before conducting a spike-and-recovery experiment, so that the approximation error is restricted to an acceptable level for each individual process. Finally, we applied the method to a set of experimental data for viruses in wastewater, demonstrating its utility and noting its general applicability to other pathogens or water matrices.IMPORTANCE The performance of procedures for pathogen log reduction is at the heart of new risk-based guidance/regulation globally, yet the methods for undertaking assessments of pathogen recovery are not standardized despite their fundamental impacts on assessing log reductions. Here we describe the level of spiking agent(s) that is necessary to correctly assess spiked pathogen/surrogate recovery with whatever method is deployed. The significance of our research lies in identifying the importance of the amount of spiking agents for reducing uncertainty in recovery estimates, which will allow the development of a recommendation for spiking experiments, proactively applying this understanding.
Collapse
Affiliation(s)
- Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Yuanyuan Qiu
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Xiao L Pang
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada
| |
Collapse
|
27
|
Capsid Integrity qPCR—An Azo-Dye Based and Culture-Independent Approach to Estimate Adenovirus Infectivity after Disinfection and in the Aquatic Environment. WATER 2019. [DOI: 10.3390/w11061196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recreational, reclaimed and drinking source waters worldwide are under increasing anthropogenic pressure, and often contain waterborne enteric bacterial, protozoan, and viral pathogens originating from non-point source fecal contamination. Recently, the capsid integrity (ci)-qPCR, utilizing the azo-dyes propidium monoazide (PMA) or ethidium monoazide (EMA), has been shown to reduce false-positive signals under laboratory conditions as well as in food safety applications, thus improving the qPCR estimation of virions of public health significance. The compatibility of two widely used human adenovirus (HAdV) qPCR protocols was evaluated with the addition of a PMA/EMA pretreatment using a range of spiked and environmental samples. Stock suspensions of HAdV were inactivated using heat, UV, and chlorine before being quantified by cell culture, qPCR, and ci-qPCR. Apparent inactivation of virions was detected for heat and chlorine treated HAdV while there was no significant difference between ci-qPCR and qPCR protocols after disinfection by UV. In a follow-up comparative analysis under more complex matrix conditions, 51 surface and 24 wastewater samples pre/post UV treatment were assessed for enteric waterborne HAdV to evaluate the ability of ci-qPCR to reduce the number of false-positive results when compared to conventional qPCR and cell culture. Azo-dye pretreatment of non-UV inactivated samples was shown to improve the ability of molecular HAdV quantification by reducing signals from virions with an accessible genome, thereby increasing the relevance of qPCR results for public health purposes, particularly suited to resource-limited low and middle-income settings.
Collapse
|
28
|
Gonzales-Gustavson E, Rusiñol M, Medema G, Calvo M, Girones R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. WATER RESEARCH 2019; 153:91-99. [PMID: 30703677 DOI: 10.1016/j.watres.2018.12.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 12/31/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is an important resource in water-scarce regions of the world, and its use in agriculture requires the guarantee of acceptable public health risks. The use of fecal indicator bacteria to evaluate safety does not represent viruses, the main potential health hazards. Viral pathogens could complement the use of fecal indicator bacteria in the evaluation of water quality. In this study, we characterized the concentration and removal of human adenovirus (HAdV) and norovirus genogroup II (NoV GII), highly abundant and important viral pathogens found in wastewater, in two wastewater treatment plants (WWTPs) that use different tertiary treatments (constructed wetland vs conventional UV, chlorination and Actiflo® treatments) for a year in Catalonia. The main objective of this study was to develop a Quantitative Microbial Risk Assessment for viral gastroenteritis caused by norovirus GII and adenovirus, associated with the ingestion of lettuce irrigated with tertiary effluents from these WWTPs. The results show that the disease burden of NoV GII and HAdV for the consumption of lettuce irrigated with tertiary effluent from either WWTP was higher than the WHO recommendation of 10-6 DALYs for both viruses. The WWTP with constructed wetland showed a higher viral reduction on average (3.9 and 2.8 logs for NoV GII and HAdV, respectively) than conventional treatment (1.9 and 2.5 logs) but a higher variability than the conventional WWTP. Sensitivity analysis demonstrated that the input parameters used to estimate the viral reduction by treatment and viral concentrations accounted for much of the model output variability. The estimated reductions required to reach the WHO recommended levels in tertiary effluent are influenced by the characteristics of the treatments developed in the WWTPs, and additional average reductions are necessary (in WWTP with a constructed wetland: A total of 6.7 and 5.1 logs for NoV GII and HAdV, respectively; and in the more conventional treatment: 7 and 5.6 logs). This recommendation would be achieved with an average quantification of 0.5 genome copies per 100 mL in reclaimed water for both viruses. The results suggest that the analyzed reclaimed water would require additional treatments to achieve acceptable risk in the irrigation of vegetables with reclaimed water.
Collapse
Affiliation(s)
- Eloy Gonzales-Gustavson
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain; Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, San Marcos University, Carretera Central s/n, El Mantaro, Peru.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Gertjan Medema
- KWR Watercycle Research Institute, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; The Netherlands and Delft University of Technology, the Netherlands.
| | - Miquel Calvo
- Section of Statistics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Girardi V, Mena KD, Albino SM, Demoliner M, Gularte JS, de Souza FG, Rigotto C, Quevedo DM, Schneider VE, Paesi SO, Tarwater PM, Spilki FR. Microbial risk assessment in recreational freshwaters from southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:298-308. [PMID: 30240914 DOI: 10.1016/j.scitotenv.2018.09.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, total coliforms (TC), Escherichia coli, enterovirus (EV), rotavirus (RV), and human mastadenovirus species C and F (HAdV-C and HAdV-F) were evaluated in water samples from Belo Stream. For HAdV-C and F, the infectivity was assessed by integrated cell culture quantitative real-time polymerase chain reaction (ICC-qPCR). Samples were collected monthly (May/2015 to April/2016) at four sites. Viral analyses were performed for both ultracentrifuge-concentrated and unconcentrated samples. For site P4 (used for recreational purposes), QMRA was applied to estimate health risks associated with exposure to E. coli and HAdV-C and F. TC and E. coli were present throughout the collection period. EV and RV were not detected. HAdV-C were present in 8.51% (1.89E + 06 to 2.28E + 07 GC (Genomic Copies)/L) and 21.27% (2.36E + 05 to 1.29E + 07 GC/L) for unconcentrated and concentrated samples, respectively. For HAdV-F were 12.76% (2.77E + 07 to 3.31E + 08 GC/L) and 48.93% (1.10E + 05 to 4.50E + 08 GC/L) for unconcentrated and concentrated samples, respectively. For unconcentrated samples, infectivity for HAdV-C was detected in 37.20% (1st ICC-qPCR) and 25.58% (2nd ICC-qPCR). For HAdV-F, infectivity was detected in 6.97% (1st ICC-qPCR) and 6.97% (2nd ICC-qPCR). For concentrated samples, HAdV-C infectious was observed in 17.02% (1st ICC-qPCR) and in 8.51% (2nd ICC-qPCR). For HAdV-F, were present in 8.51% for both 1st and 2nd ICC-qPCR. Statistical analyzes showed significant difference between the collection sites when analyzed the molecular data of HAdV-F, data of TC and E. coli. Correlation tests showed direct correlation between HAdV-F with E. coli and TC. E. coli concentrations translated to the lowest estimates of infection risks (8.58E-05 to 2.17E-03). HAdV-F concentrations were associated with the highest infection risks at 9.99E-01 and for group C, 1.29E-01 to 9.99E-01. These results show that commonly used bacterial indicators for water quality may not infer health risks associated with viruses in recreational freshwaters.
Collapse
Affiliation(s)
- Viviane Girardi
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil.
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, El Paso, TX 79902, USA
| | - Suelen M Albino
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, no 2600, Porto Alegre, RS, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Juliana S Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Fernanda G de Souza
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, no 6627, Belo Horizonte, MG, Brazil
| | - Caroline Rigotto
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Daniela M Quevedo
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Vania E Schneider
- Instituto de Saneamento Ambiental (ISAM), Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, no 1130, Caxias do Sul, RS 95070-560, Brazil
| | - Suelen O Paesi
- Laboratório de Diagnóstico Molecular, Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, no 1130, Caxias do Sul, RS 95070-560, Brazil
| | - Patrick M Tarwater
- School of Public Health, Department of Biostatistics, The University of Texas Health Science Center at Houston, El Paso, TX 79902, USA
| | - Fernando R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, no 2755, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
30
|
Methods for Handling Left-Censored Data in Quantitative Microbial Risk Assessment. Appl Environ Microbiol 2018; 84:AEM.01203-18. [PMID: 30120116 DOI: 10.1128/aem.01203-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/08/2018] [Indexed: 01/27/2023] Open
Abstract
Data below detection limits, left-censored data, are common in environmental microbiology, and decisions in handling censored data may have implications for quantitative microbial risk assessment (QMRA). In this paper, we utilize simulated data sets informed by real-world enterovirus water data to evaluate methods for handling left-censored data. Data sets were simulated with four censoring degrees (low [10%], medium [35%], high [65%], and severe [90%]) and one real-life censoring example (97%) and were informed by enterovirus data assuming a lognormal distribution with a limit of detection (LOD) of 2.3 genome copies/liter. For each data set, five methods for handling left-censored data were applied: (i) substitution with LOD/[Formula: see text], (ii) lognormal maximum likelihood estimation (MLE) to estimate mean and standard deviation, (iii) Kaplan-Meier estimation (KM), (iv) imputation method using MLE to estimate distribution parameters (MI method 1), and (v) imputation from a uniform distribution (MI method 2). Each data set mean was used to estimate enterovirus dose and infection risk. Root mean square error (RMSE) and bias were used to compare estimated and known doses and infection risks. MI method 1 resulted in the lowest dose and infection risk RMSE and bias ranges for most censoring degrees, predicting infection risks at most 1.17 × 10-2 from known values under 97% censoring. MI method 2 was the next overall best method. For medium to severe censoring, MI method 1 may result in the least error. If unsure of the distribution, MI method 2 may be a preferred method to avoid distribution misspecification.IMPORTANCE This study evaluates methods for handling data with low (10%) to severe (90%) left-censoring within an environmental microbiology context and demonstrates that some of these methods may be appropriate when using data containing concentrations below a limit of detection to estimate infection risks. Additionally, this study uses a skewed data set, which is an issue typically faced by environmental microbiologists.
Collapse
|
31
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
32
|
McMinn BR, Ashbolt NJ, Korajkic A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett Appl Microbiol 2017; 65:11-26. [PMID: 28304098 PMCID: PMC6089083 DOI: 10.1111/lam.12736] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/17/2023]
Abstract
Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Nicholas J. Ashbolt
- University of Alberta, School of Public Health, 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
33
|
Hassard F, Sharp JH, Taft H, LeVay L, Harris JP, McDonald JE, Tuson K, Wilson J, Jones DL, Malham SK. Critical Review on the Public Health Impact of Norovirus Contamination in Shellfish and the Environment: A UK Perspective. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:123-141. [PMID: 28176295 PMCID: PMC5429388 DOI: 10.1007/s12560-017-9279-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/19/2017] [Indexed: 05/04/2023]
Abstract
We review the risk of norovirus (NoV) infection to the human population from consumption of contaminated shellfish. From a UK perspective, risk is apportioned for different vectors of NoV infection within the population. NoV spreads mainly by person-to-person contact or via unsanitary food handling. NoV also enters the coastal zone via wastewater discharges resulting in contamination of shellfish waters. Typically, NoV persists in the marine environment for several days, with its presence strongly linked to human population density, wastewater discharge rate, and efficacy of wastewater treatment. Shellfish bioaccumulate NoV and current post-harvest depuration is inefficient in its removal. While NoV can be inactivated by cooking (e.g. mussels), consumption of contaminated raw shellfish (e.g. oysters) represents a risk to human health. Consumption of contaminated food accounts for 3-11% of NoV cases in the UK (~74,000 cases/year), of which 16% are attributable to oyster consumption (11,800 cases/year). However, environmental and human factors influencing NoV infectivity remain poorly understood. Lack of standard methods for accurate quantification of infective and non-infective (damaged) NoV particles represent a major barrier, hampering identification of an appropriate lower NoV contamination limit for shellfish. Future management strategies may include shellfish quality assessment (at point of harvest or at point of supply) or harvesting controls. However, poor understanding of NoV inactivation in shellfish and the environment currently limits accurate apportionment and risk assessment for NoV and hence the identification of appropriate shellfish or environmental quality standards.
Collapse
Affiliation(s)
- Francis Hassard
- Centre for Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | | | - Helen Taft
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Lewis LeVay
- Centre for Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - John P Harris
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, L69 3GL, UK
| | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Karen Tuson
- Centre for Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - James Wilson
- Bangor Mussel Producers Ltd., Victoria House, Plas Llwyd Terrace, Bangor, Gwynedd, LL57 1UB, UK
| | - David L Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- Centre for Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK.
| |
Collapse
|
34
|
Blanco Fernández MD, Barrios ME, Cammarata RV, Torres C, Taboga OA, Mbayed VA. Comparison of internal process control viruses for detection of food and waterborne viruses. Appl Microbiol Biotechnol 2017; 101:4289-4298. [PMID: 28357543 DOI: 10.1007/s00253-017-8244-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023]
Abstract
Enteric viruses are pathogens associated with food- and waterborne outbreaks. The recovery of viruses from food or water samples is affected by the procedures applied to detect and concentrate them. The incorporation of an internal process control virus to the analyses allows monitoring the performance of the methodology. The aim of this study was to produce a recombinant adenovirus (rAdV) and apply it together with bacteriophage PP7 as process controls. The rAdV carries a DNA construction in its genome to differentiate it from wild-type adenovirus by qPCR. The stability of both control viruses was evaluated at different pH conditions. The rAdV was stable at pH 3, 7, and 10 for 18 h. PP7 infectious particles were stable at pH 7 and showed a 2.14 log reduction at pH 10 and total decay at pH 3 after 18 h. Three virus concentration methods were evaluated: hollow-fiber tap water ultrafiltration, wastewater ultracentrifugation, and elution-PEG precipitation from lettuce. Total and infectious viruses were quantified and their recoveries were calculated. Virus recovery for rAdV and PP7 by ultrafiltration showed a wide range (2.10-84.42 and 13.54-84.62%, respectively), whereas that by ultracentrifugation was 5.05-13.71 and 6.98-13.27%, respectively. The performance of ultracentrifugation to concentrate norovirus and enteroviruses present in sewage was not significantly different to the recovery of control viruses. For detection of viruses from lettuce, genomic copies of PP7 were significantly more highly recovered than adenovirus (14.74-18.82 and 0.00-3.44%, respectively). The recovery of infectious virus particles was significantly affected during sewage ultracentrifugation and concentration from lettuce. The simultaneous use of virus controls with dissimilar characteristics and behaviors might resemble different enteric viruses.
Collapse
Affiliation(s)
- María Dolores Blanco Fernández
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| | - Melina Elizabeth Barrios
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
- Ministerio de Ciencia y Tecnología, Agencia Nacional de Promoción Científica y Tecnológica, Godoy Cruz 2370, 1425, Buenos Aires, Argentina
| | - Robertina Viviana Cammarata
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Oscar Alberto Taboga
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
- Instituto de Biotecnología, INTA, Nicolás Repetto y de los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| |
Collapse
|
35
|
Gonzales-Gustavson E, Cárdenas-Youngs Y, Calvo M, da Silva MFM, Hundesa A, Amorós I, Moreno Y, Moreno-Mesonero L, Rosell R, Ganges L, Araujo R, Girones R. Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa. J Microbiol Methods 2017; 134:46-53. [PMID: 28093213 DOI: 10.1016/j.mimet.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
36
|
Hassard F, Gwyther CL, Farkas K, Andrews A, Jones V, Cox B, Brett H, Jones DL, McDonald JE, Malham SK. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments-a Review. Front Microbiol 2016; 7:1692. [PMID: 27847499 PMCID: PMC5088438 DOI: 10.3389/fmicb.2016.01692] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
Abstract
The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments.
Collapse
Affiliation(s)
| | - Ceri L. Gwyther
- Department of Engineering and Innovation, Open UniversityMilton Keynes, UK
| | - Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | | | | | | - Davey L. Jones
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | |
Collapse
|
37
|
Rames E, Roiko A, Stratton H, Macdonald J. Technical aspects of using human adenovirus as a viral water quality indicator. WATER RESEARCH 2016; 96:308-26. [PMID: 27065054 DOI: 10.1016/j.watres.2016.03.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 05/21/2023]
Abstract
Despite dramatic improvements in water treatment technologies in developed countries, waterborne viruses are still associated with many of cases of illness each year. These illnesses include gastroenteritis, meningitis, encephalitis, and respiratory infections. Importantly, outbreaks of viral disease from waters deemed compliant from bacterial indicator testing still occur, which highlights the need to monitor the virological quality of water. Human adenoviruses are often used as a viral indicator of water quality (faecal contamination), as this pathogen has high UV-resistance and is prevalent in untreated domestic wastewater all year round, unlike enteroviruses and noroviruses that are often only detected in certain seasons. Standard methods for recovering and measuring adenovirus numbers in water are lacking, and there are many variations in published methods. Since viral numbers are likely under-estimated when optimal methods are not used, a comprehensive review of these methods is both timely and important. This review critically evaluates how estimates of adenovirus numbers in water are impacted by technical manipulations, such as during adenovirus concentration and detection (including culturing and polymerase-chain reaction). An understanding of the implications of these issues is fundamental to obtaining reliable estimation of adenovirus numbers in water. Reliable estimation of HAdV numbers is critical to enable improved monitoring of the efficacy of water treatment processes, accurate quantitative microbial risk assessment, and to ensure microbiological safety of water.
Collapse
Affiliation(s)
- Emily Rames
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia
| | - Anne Roiko
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Australia; Smart Water Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Queensland, 4222, Australia
| | - Helen Stratton
- Smart Water Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Queensland, 4222, Australia; School of Natural Sciences, Griffith University, Australia
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia; Division of Experimental Therapeutics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
Petterson SR, Stenström TA, Ottoson J. A theoretical approach to using faecal indicator data to model norovirus concentration in surface water for QMRA: Glomma River, Norway. WATER RESEARCH 2016; 91:31-7. [PMID: 26773482 DOI: 10.1016/j.watres.2015.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 05/24/2023]
Abstract
Monitoring of faecal indicator organisms, such as Escherichia coli, in environmental and drinking waters is inadequate for the protection public health, primarily due to the poor relationship between E. coli and the occurrence of human pathogens, especially viruses, in environmental samples. Nevertheless, measurements of faecal indicator organisms within the risk based approach, can provide valuable information related to the magnitude and variability of faecal contamination, and hence provide insight into the expected level of potential pathogen contamination. In this study, a modelling approach is presented that estimates the concentration of norovirus in surface water relying on indicator monitoring data, combined with specific assumptions regarding the source of faecal contamination. The model is applied to a case study on drinking water treatment intake from the Glomma River in Norway. Norovirus concentrations were estimated in two sewage sources discharging into the river upstream of the drinking water offtake, and at the source water intake itself. The characteristics of the assumed source of faecal contamination, including the norovirus prevalence in the community, the size of the contributing population and the relative treatment efficacy for indicators and pathogens in the sewage treatment plant, influenced the magnitude and variability in the estimated norovirus concentration in surface waters. The modelling exercise presented is not intended to replace pathogen enumeration from environmental samples, but rather is proposed as a complement to better understand the sources and drivers of viruses in surface waters. The approach has the potential to inform sampling regimes by identifying when the best time would be to collect environmental samples; fill in the gaps between sparse datasets; and potentially extrapolate existing datasets in order to model rarer events such as an outbreak in the contributing population. In addition, and perhaps most universally, in the absence of pathogen data, this approach can be used as a first step to predict the source water pathogen concentration under different contamination scenarios for the purpose of quantifying microbial risks.
Collapse
Affiliation(s)
- Susan R Petterson
- Water & Health Pty Ltd, P.O. 648, Salamander Bay, 2317, Australia; Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Campus Ås, P.O. Box 5003, N-1432 ÅS, Norway.
| | - Thor Axel Stenström
- SARChI Chair, IWWT, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Jakob Ottoson
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Box 7026, 75009, Uppsala, Sweden; National Food Agency, Department of Risk and Benefit Assessment, Box 622SE, 751 26, Uppsala, Sweden
| |
Collapse
|
39
|
Petterson SR, Mitchell VG, Davies CM, O'Connor J, Kaucner C, Roser D, Ashbolt N. Evaluation of three full-scale stormwater treatment systems with respect to water yield, pathogen removal efficacy and human health risk from faecal pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:691-702. [PMID: 26615487 DOI: 10.1016/j.scitotenv.2015.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 05/20/2023]
Abstract
In this study, three full-scale, operational stormwater harvesting systems located in Melbourne, Australia were evaluated with respect to water yields; pathogen removal performance by analysis of native surrogate data (Escherichiacoli, somatic coliphages and Clostridium perfringens); and potential human health risk associated with exposures to faecal pathogens using Quantitative Microbial Risk Assessment (QMRA). The water yield assessment confirmed variation between design and measured yields. Faecal contamination of urban stormwater was site specific and variable. Different treatment removal performance was observed between each of the microbial surrogates and varied between event and baseline conditions, with negligible removal of viruses during event conditions. Open storages that provide a habitat for waterfowl may lead to elevated risk due to the potential for zoonotic transmission. Nevertheless, in the Australian urban setting studied, the potential for human faecal contamination of the separated stormwater system was a critical driver of risk. If the integrity of the sewerage system can be ensured, then predicted health risks are dramatically reduced.
Collapse
Affiliation(s)
- Susan R Petterson
- Water & Health Pty Ltd, P.O. Box 648, Salamander Bay 2317, Australia.
| | | | | | | | - Christine Kaucner
- Water Research Centre, School of Civil and Environmental Engineering, University of NSW, Australia
| | - David Roser
- Water Research Centre, School of Civil and Environmental Engineering, University of NSW, Australia
| | - Nicholas Ashbolt
- Water Research Centre, School of Civil and Environmental Engineering, University of NSW, Australia; School of Public Health, University of Alberta, Alberta T6G 2G7, Canada
| |
Collapse
|