1
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Yu Y, Si W, Zhao S, Wang S, Liu M, Fan B, Xue S, Wang J, Xu J. Photodegradation process and mechanism of 2,3,6-trichloronaphthalene on kaolinite surfaces under ultraviolet-A irradiation: Role of fulvic acid and density functional theory calculations. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137481. [PMID: 39922070 DOI: 10.1016/j.jhazmat.2025.137481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Polychlorinated naphthalenes (PCNs), a class of persistent organic pollutants (POPs), pose significant environmental and health risks, with trichloronaphthalene being a predominant congener in atmospheric particulate matter. This study investigates the photodegradation of 2,3,6-trichloronaphthalene (CN-26) on kaolinite surfaces under ultraviolet-A (UV-A) irradiation, focusing on the impact of fulvic acid (FA), temperature, humidity, and pH. The photodegradation mechanism of CN-26 was inferred via radical quenching experiments and density functional theory (DFT) calculations. The optimized degradation rate of CN-26 was 75.57 % at 25 °C, 70 % humidity, and pH 7 when FA was added at a concentration of 30 mg kg-1. Based on the radical quenching experiments, •OH are the primary active species involved in the degradation of CN-26, followed by electrons. In the absence of FA, •OH contributed 82.21 %, while electronic was 17.79 %. Conversely, in the presence of FA, the contribution rates of •OH, and electronic are 68.32 % and 21.21 % respectively. DFT calculations indicated that the 6 C site of CN-26 exhibited the highest susceptibility to radical attack, with the highest FED2HOMO+FED2LUMO value (0.25273), corroborated by averaged local ionization energy (ALIE) analysis. In the analysis of the reaction of •OH with CN-26, the lowest transition state ΔrG value of 1.09 kcal mol-1 was observed for compound 6 C, indicating that this site is the most susceptible to •OH attack. The degradation products of CN-26 were detected using gas chromatography-mass spectrometry (GC-MS), and the possible photodegradation pathways were proposed, which included dechlorination, hydroxylation, and aromatic ring opening. This study would provide insights into the photochemical behaviors of PCNs.
Collapse
Affiliation(s)
- YingTan Yu
- School of Environment, Liaoning University, Shenyang 110036, China
| | - WenBo Si
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Shumeng Zhao
- School of Environment, Liaoning University, Shenyang 110036, China
| | - ShiMeng Wang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - MengDi Liu
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Bing Fan
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Jian Wang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jing Xu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
4
|
Li Q, Huang J, Lin L, Fan G. Regulating cobalt-nitrogen function centers via Cu incorporation enhances ciprofloxacin destruction through peroxymonosulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124683. [PMID: 39111527 DOI: 10.1016/j.envpol.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Metal-nitrogen (M-N) coupling has shown promise as a catalytic active component for various reactions. However, the regulation of heterogeneous catalytic materials with M-N coupling for peroxymonosulfate (PMS) activation to enhance the degradation efficiency and reusability of antibiotics remains a challenge. In this study, an efficient modulation of M-N coupling was achieved through the incorporation of Cu into Co4N to form a Cu-Co4N composite with sea urchin-like morphology assembled by numerous nano-needles using hydrothermal and nitriding processes. This modulation led to enhanced PMS activation for ciprofloxacin (CIP) degradation. The Cu-Co4N/PMS system demonstrated exceptional removal efficiency with a degradation rate of 95.85% within 30 min and can be reused for five time without obvious loss of its initial activity. Additionally, the catalyst displayed a high capacity for degrading various challenging organic pollutants, as well as remarkable stability, resistance to interferences, and adaptability to pH changes. The synergistic effect between Co and Cu facilitated multiple redox cycles, resulting in the generation of reactive oxidized species. The primary active species involved in the catalytic degradation process included 1O2, SO4•-, O2•-, •OH, and e-, with 1O2 and SO4•- playing the most significant roles. The degradation pathways and toxicity of the intermediates for CIP were unveiled. This study offers valuable insights into the regulation of M-N centers for degrading antibiotics through PMS activation.
Collapse
Affiliation(s)
- Qiulin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jieling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Lan Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
5
|
Xu G, Sun L, Tu Y, Teng X, Qi Y, Wang Y, Li A, Xie X, Gu X. Highly stable carbon-coated nZVI composite Fe 0@RF-C for efficient degradation of emerging contaminants. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100457. [PMID: 39161572 PMCID: PMC11331822 DOI: 10.1016/j.ese.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe0@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe0@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe0@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe0@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.
Collapse
Affiliation(s)
- Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
- Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, China
- Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City, Jiangxi Province, 330300, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Liu L, Liu G, Lv Y, Mu X, Zhao S, Tian J. A colorimetric platform using highly active Prussian blue composite nanocubes for the rapid determination of ascorbic acid and acid phosphatase. Mikrochim Acta 2024; 191:682. [PMID: 39432153 DOI: 10.1007/s00604-024-06700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Cobalt-doped Prussian blue composite nanocubes (Co-PB NCs) were synthesized, which can quickly convert O2 to O2•- and 1O2. Due to the presence of cobalt and iron transition metal redox electron pairs, Co-PB NCs with high oxidase mimetic activity can rapidly oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue products (ox-TMB) without the assistance of unstable H2O2. Using ascorbic acid-2-phosphate trisodium salt (AAP) as a substrate, it can be converted to reduced ascorbic acid (AA) under acid phosphatase (ACP) hydrolysis, resulting in suppression of TMB oxidation. Therefore, an enzyme cascade signal amplification strategy for rapid colorimetric detection of AA/ACP was developed based on the high-efficiency oxidase-like activity of Co-PB NCs combined with the hydrolysis effect of ACP. The color changes at low concentrations of AA and ACP could be observed by the naked eye, and the detection limits of AA and ACP were 1.67 μM and 0.0266 U/L, respectively. The developed colorimetric method was applied to the determination of AA in beverages and ACP in human serum, and the RSDs were less than 3%, showing good reproducibility. This work provides a promising strategy for the use of metal-doped Prussian blue composite material for the construction of rapid colorimetric sensing platforms that avoid the use of unstable hydrogen peroxide.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yi Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
An S, Nam SN, Choi JS, Park CM, Jang M, Lee JY, Jun BM, Yoon Y. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: An updated review. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134852. [PMID: 38852250 DOI: 10.1016/j.jhazmat.2024.134852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have seen a recent sustained increase in usage, leading to increasing discharge and accumulation in wastewater. Conventional water treatment and disinfection processes are somewhat limited in effectively addressing this micropollutant issue. Ultrasonication (US), which serves as an advanced oxidation process, is based on the principle of ultrasound irradiation, exposing water to high-frequency waves, inducing thermal decomposition of H2O while using the produced radicals to oxidize and break down dissolved contaminants. This review evaluates research over the past five years on US-based technologies for the effective degradation of EDCs and PPCPs in water and assesses various factors that can influence the removal rate: solution pH, temperature of water, presence of background common ions, natural organic matter, species that serve as promoters and scavengers, and variations in US conditions (e.g., frequency, power density, and reaction type). This review also discusses various types of carbon/non-carbon catalysts, O3 and ultraviolet processes that can further enhance the degradation efficiency of EDCs and PPCPs in combination with US processes. Furthermore, numerous types of EDCs and PPCPs and recent research trends for these organic contaminants are considered.
Collapse
Affiliation(s)
- Sujin An
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
8
|
Duan C, Liu X, Tian G, Zhang D, Wen Y, Che Y, Xie Z, Ni Y. A one-stone-two-birds strategy for cellulose dissolution, regeneration, and functionalization as a photocatalytic composite membrane for wastewater purification. Int J Biol Macromol 2024; 274:133317. [PMID: 38925199 DOI: 10.1016/j.ijbiomac.2024.133317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Photocatalytic membranes integrate membrane separation and photocatalysis to deliver an efficient solution for water purification, while the top priority is to exploit simple, efficient, renewable, and low-cost photocatalytic membrane materials. We herein propose a facile one-stone-two-birds strategy to construct a multifunctional regenerated cellulose composite membrane decorated by Prussian blue analogue (ZnPBA) microspheres for wastewater purification. The hypotheses are that: 1) ZnCl2 not only serves as a cellulose solvent for tuning cellulose dissolution and regeneration, but also functions as a precursor for in-situ growth of spherical-like ZnPBA; 2) More homogeneous reactions including coordination and hydrogen bonding among Zn2+, [Fe(CN)6]3- and cellulose chains contribute to a rapid and uniform anchoring of ZnPBA microspheres on the regenerated cellulose fibrils (RCFs). Consequently, the resultant ZnPBA/RCM features a high loading of ZnPBA (65.3 wt%) and exhibits excellent treatment efficiency and reusability in terms of photocatalytic degradation of tetracycline (TC) (90.3 % removal efficiency and 54.3 % of mineralization), oil-water separation efficiency (>97.8 % for varying oils) and antibacterial performance (99.4 % for E. coli and 99.2 % for S. aureus). This work paves a simple and useful way for exploiting cellulose-based functional materials for efficient wastewater purification.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dong Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yijian Wen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiyang Che
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zengyin Xie
- Yibin Grace Group Co., Ltd, Yibin 644000, China
| | - Yonghao Ni
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
9
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
10
|
Zhang P, Yang Y, Duan X, Wang S. Oxidative polymerization versus degradation of organic pollutants in heterogeneous catalytic persulfate chemistry. WATER RESEARCH 2024; 255:121485. [PMID: 38522399 DOI: 10.1016/j.watres.2024.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Catalytic polymerization pathways in advanced oxidation processes (AOPs) have recently drawn much attention for organic pollutant elimination owing to the rapid removal kinetics, high selectivity, and recovery of organic carbon from wastewater. This work presents a review on the polymerization regimes in AOPs and their applications in wastewater decontamination. The review mainly highlights three critical issues in polymerization reactions induced by persulfate activation (Poly-PS-AOPs), including heterogeneous catalysts, persulfate activation pathways, and properties of organic substrates. The dominant influencing factors on the selection of catalysts, activation regimes of reactive oxygen species, and polymerization processes of organic substrates are discussed in detail. Moreover, we systematically demonstrate the merits and challenges of Poly-PS-AOPs upon pollutant degradation and polymer synthesis. We particularly highlight that Poly-PS-AOPs technology could be promising in the treatment of industrial wastewater containing heterocyclic organics and the synthesis of polymers and polymer-functionalized materials for advanced environmental and energy applications.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
11
|
Dong L, Xia Y, Hu Z, Zhang M, Qiao W, Wang X, Yang S. Research progress of persulfate activation technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31771-31786. [PMID: 38658509 DOI: 10.1007/s11356-024-33404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have been widely investigated by academia and industry due to their high efficiency and selectivity for the removal of trace organic pollutants from complex water substrates. PS-AOPs have been extensively studied for the degradation of pesticides, drugs, halogen compounds, dyes, and other pollutants. Utilizing bibliometric statistics, this review presents a comprehensive overview of persulfate-based advanced oxidation technology research over the past decade. The number of published articles about persulfate activation has steadily increased during this time, reflecting extensive international collaboration. Furthermore, this review introduces the most widely employed strategies for persulfate activation reported in the past 10 years, including carbon material activation, photocatalysis, transition metal activation, electrochemical activation, ultrasonic activation, thermal activation, and alkali activation. Next, the potential activation mechanisms and influencing factors, such as persulfate dosage during activation, are discussed. Finally, the application of PS-AOPs in wastewater treatment and in situ groundwater treatment is examined. This review summarizes the previously reported experiences of persulfate-based advanced oxidation technology and presents the current application status of PS-AOPs in organic pollution removal, with the aim of avoiding misunderstandings and providing a solid foundation for future research on the removal of organic pollutants.
Collapse
Affiliation(s)
- Luyu Dong
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Yujin Xia
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Zhixin Hu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Miao Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Weihan Qiao
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Xueli Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
12
|
Wang J, Yao J, Li Y, Wei Z, Gao C, Jiang L, Wu X. S vacancies-introduced chalcopyrite switch radical to non-radical pathways via peroxymonosulfate activation: Vital roles of S vacancies. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133751. [PMID: 38341884 DOI: 10.1016/j.jhazmat.2024.133751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jia Yao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lisha Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
13
|
Tian M, Ren X, Ding S, Fu N, Wei Y, Yang Z, Yao X. Effective degradation of phenol by activating PMS with bimetallic Mo and Ni Co-doped g C 3N 4 composite catalyst: A Fenton-like degradation process promoted by non-free radical 1O 2. ENVIRONMENTAL RESEARCH 2024; 243:117848. [PMID: 38065396 DOI: 10.1016/j.envres.2023.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3-11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.
Collapse
Affiliation(s)
- Miao Tian
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; School of Petrochemical Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730030, PR China
| | - Xuechang Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China.
| | - Suying Ding
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Ning Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yajun Wei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Zhenyu Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Xiaoqing Yao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| |
Collapse
|
14
|
Ding C, Ye C, Zhu W, Zeng G, Yao X, Ouyang Y, Rong J, Tao Y, Liu X, Deng Y. Engineered hydrochar from waste reed straw for peroxymonosulfate activation to degrade quinclorac and improve solanaceae plants growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119090. [PMID: 37793289 DOI: 10.1016/j.jenvman.2023.119090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (•OH, •SO4-, and •O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ye
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Zhu
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xuemei Yao
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Yu Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Rong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaocheng Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410082, China.
| |
Collapse
|
15
|
Gao L, Wu H, Dang J, Zhang S, Tian S, Zhang Q, Wang W. New insight into the removal process of benzotriazole UV stabilizers by UV/H 2O 2: Integrating quantum chemical calculation with CFD simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132245. [PMID: 37562354 DOI: 10.1016/j.jhazmat.2023.132245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Benzotriazole UV stabilizers (BT-UVs) are important UV absorbers. As high-production chemicals and potential hazards, their ubiquitous presence in aquatic environments is of greatly pressing concern. Herein, the removal of six typical BT-UVs by UV/H2O2 was comprehensively investigated by quantum chemistry calculation integrated with CFD simulation. Utilizing such a micro and macro incorporated model in treating contaminants is the first report. From the micro-view, degradation mechanisms of BT-UVs by •OH oxidation were determined, and corresponding rate constants were obtained with values of 109∼1010 M-1s-1. In a macroscopic aspect, combining the established kinetic model and CFD simulation, the effects of UV lamp power (P), volumetric flow rate (Qv), and H2O2 dosage ([H2O2]0) on removal yields of BT-UVs were expounded, increasing P or [H2O2]0 or decreasing Qv are effective in improving removal yields of BT-UVs, but the enhancement was abated when P or [H2O2]0 increased to a certain level. When [H2O2]0 is 5 mg/L and Qv is decreased from 0.1 to 0.05 m3/h, the removal yields of BT-UVs could achieve more than 95% (P = 150 W) and 99% (P = 250 W), respectively. This work provides a new interdisciplinary insight for investigating organic contaminant removal in potential industrial applications of UV/H2O2 systems.
Collapse
Affiliation(s)
- Li'ao Gao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hongjin Wu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Juan Dang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Shibo Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Shuai Tian
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen 518033, China; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Zhang S, Chen W, Wang Y, Liu L, Jiang L, Feng M. Elucidating sulfate radical-induced oxidizing mechanisms of solid-phase pharmaceuticals: Comparison with liquid-phase reactions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:270-277. [PMID: 37729844 DOI: 10.1016/j.wasman.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
As a class of organic micropollutants of global concern, pharmaceuticals have prevalent distributions in the aqueous environment (e.g., groundwater and surface water) and solid matrices (e.g., soil, sediments, and dried sludge). Their contamination levels have been further aggravated by the annually increased production of expired drugs as emerging harmful wastes worldwide. Sulfate radicals (SO4•-)-based oxidation has attracted increasing attention for abating pharmaceuticals in the environment, whereas the transformation mechanisms of solid-phase pharmaceuticals remain unknown thus far. This investigation presented for the first time that SO4•-, individually produced by mechanical force-activated and heat-activated persulfate treatments, could effectively oxidize three model pharmaceuticals (i.e., methotrexate, sitagliptin, and salbutamol) in both solid and liquid phases. The high-resolution mass spectrometric analysis suggested their distinct transformation products formed by different phases of SO4•- oxidation. Accordingly, the SO4•--mediated mechanistic differences between the solid-phase and liquid-phase pharmaceuticals were proposed. It is noteworthy that the products from both systems were predicted with the remaining persistence, bioaccumulation, and multi-endpoint toxicity. Therefore, some post-treatment strategies need to be considered during practical applications of SO4•--based technologies in remediating different phases of micropollutants. This work has environmental implications for understanding the comparative transformation mechanisms of pharmaceuticals by SO4•- oxidation in remediating the contaminated solid and aqueous matrices.
Collapse
Affiliation(s)
- Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yatong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lixue Liu
- Yantai Eco-Environment Monitoring Center of Shandong Province, Yantai 264003, China
| | - Linke Jiang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Sun J, Chu R, Khan ZUH. A Theoretical Study on the Degradation Mechanism, Kinetics, and Ecotoxicity of Metronidazole (MNZ) in •OH- and SO 4•--Assisted Advanced Oxidation Processes. TOXICS 2023; 11:796. [PMID: 37755806 PMCID: PMC10535747 DOI: 10.3390/toxics11090796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Metronidazole (MNZ), a typical example of nitroimidazole antibiotics, is widely used in the treatment of infectious diseases caused by anaerobic bacteria. The degradation mechanism and kinetics of MNZ in the presence of HO• and SO4•- were studied using density functional theory (DFT). It was confirmed that both HO• and SO4•- easily added to the carbon atom bonded to the NO2 group in the MNZ molecule as the most feasible reaction channel. This study shows that subsequent reactions of the most important product (M-P) include the O2 addition, hydrogen abstraction and bond breakage mechanisms. The rate constants of HO• and SO4•--initiated MNZ in the aqueous phase were calculated in the temperature range of 278-318 K. The total rate constants of MNZ with HO• and SO4•- were determined to be 8.52 × 109 and 1.69 × 109 M-1s-1 at 298 K, which were consistent with experimental values of (3.54 ± 0.42) × 109 and (2.74 ± 0.13) × 109 M-1s-1, respectively. The toxicity of MNZ and its degradation products to aquatic organisms has been predicted. The results proposed that the toxicity of the initial degradation product (M-P) was higher than that of MNZ. However, further degradation products of MNZ induced by HO• were not harmful to three aquatic organisms (fish, daphnia, and green algae). This study provides a comprehensive theoretical basis for understanding the degradation behavior of MNZ.
Collapse
Affiliation(s)
- Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Ruijun Chu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| |
Collapse
|
18
|
Liu B, Wei J, Zhang S, Shad A, Tang X, Allam AA, Wang Z, Qu R. Insights into oxidation of pentachlorophenol (PCP) by low-dose ferrate(VI) catalyzed with α-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131983. [PMID: 37406528 DOI: 10.1016/j.jhazmat.2023.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Asam Shad
- Department of Environmental Sciences, Comsats University, Abbottabad Campus, Islamabad, Pakistan
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
19
|
Tu Z, Qi Y, Tang X, Wang Z, Qu R. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131252. [PMID: 36963191 DOI: 10.1016/j.jhazmat.2023.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, Jiangsu 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
20
|
Liu C, Wang Z, Hua S, Jiao H, Chen Y, Ding D. Sewage sludge derived magnetic biochar effectively activates peroxymonosulfate for the removal of norfloxacin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Ni X, Li Q, Yang K, Deng H, Xia D. Efficient degradation of Congo red by persulfate activated with different particle sizes of zero-valent copper: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27394-3. [PMID: 37147539 DOI: 10.1007/s11356-023-27394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
In this study, Congo red (CR) was degraded by different particle sizes of zero-valent copper (ZVC) activated persulfate (PS) under mild temperature. The CR removal by 50 nm, 500 nm, 15 μm of ZVC activated PS was 97%, 72%, and 16%, respectively. The co-existence of SO42- and Cl- promoted the degradation of CR, and HCO3- and H2PO4- were detrimental to the degradation. With the reduction of ZVC particle size, the effect of coexisting anions on degradation grew stronger. The high degradation efficiency of 50 nm and 500 nm ZVC was achieved at pH=7.0, while the high degradation of 15 μm ZVC was achieved at pH=3.0. It was more favorable to leach copper ions for activating PS to generate reactive oxygen species (ROS) with the smaller particle size of ZVC. The radical quenching experiment and electron paramagnetic resonance (EPR) analysis indicated that SO4-•, •OH and •O2- existed in the reaction. The mineralization of CR reached 80% and three possible paths were suggested for the degradation. Moreover, the degradation of 50 nm ZVC can still reach 96% in the 5th cycle, indicating promising application potential in dyeing wastewater treatment.
Collapse
Affiliation(s)
- Xi Ni
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Kun Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Institute of Spatial Planning of Hubei Province, Wuhan, 430064, China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| |
Collapse
|
22
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
23
|
Yu B, Man Y, Wang P, Wu C, Xie J, Wang W, Jiang H, Zhang L, Zhang Y, Mao L, Zhu L, Zheng Y, Liu X. Catalytic degradation of dimethomorph by nitrogen-doped rice husk biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114908. [PMID: 37080128 DOI: 10.1016/j.ecoenv.2023.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
N-doped biochar is widely used for activating persulfate to degrade organic pollutants. Which type of N atom is the key factor for activation is still unclear and needs to be further explored and analyzed. In this study, four kinds of biochar were prepared using urea and rice husk as precursors, and tested for the catalytic degradation of dimethomorph. Increasing the nitrogen doping level caused the catalytic removal efficiency of dimethomorph in the presence of peroxymonosulfate increased from 16.6% to 86.8%. A correlation analysis showed that the ability of N-doped biochar to activate PMS is mainly related to the content of pyrrole N, graphite N and carbonyl and the degree of defects. In experiments on electron paramagnetic resonance and free radical suppression, the reactive species of SO4•-, 1O2,·OH and O2.- were detected, among which 1O2 was found to be the main agent in the nonradical pathway. The degradation pathways for dimethomorph were analyzed based on a total of 8 degradation products identified by high-performance liquid chromatography-time of flight mass spectrometry (HPLC-Q-TOFMS). The results of this study provide a fundamental basis for using agricultural waste to produce inexpensive and efficient nonmetal catalysts that are highly effective in reducing dimethomorph levels in agricultural lands.
Collapse
Affiliation(s)
- Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xie
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- College of Plant Health and Medicine,and Key Lab of Integrated Crop Disease and Pest Management of Shan-dong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
Alimohamadi M, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Catalytic activation of hydrogen peroxide by Cr 2AlC MAX phase under ultrasound waves for a treatment of water contaminated with organic pollutants. ULTRASONICS SONOCHEMISTRY 2023; 93:106294. [PMID: 36640461 PMCID: PMC9852641 DOI: 10.1016/j.ultsonch.2023.106294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the sonocatalytic activation of hydrogen peroxide (H2O2) using Cr2AlC MAX phase prepared by the reactive sintering process. The hexagonal structure of the crystalline MAX phase was confirmed by X-ray diffraction. Moreover, the compacted layered structure of the MAX phase was observed via scanning electron microscopy and high-resolution transmission electron microscopy. Under the desired operating conditions, Cr2AlC MAX phase (0.75 g/L) showed suitable potential to activate H2O2 (1 mmol/L) under sonication, thereby allowing a considerable removal efficiency for various organic pollutants, including dimethyl phthalate (69.1%), rifampin (94.5%), hydroxychloroquine (100%), and acid blue 7 (91.5%) with initial concentration of 15 mg/L within 120 min of treatment. Kinetic analysis proved that the degradation reaction followed pseudo-first-order kinetics. Scavenging tests demonstrated that hydroxyl radicals and singlet oxygen were effective species during degradation. Furthermore, a probable mechanism for dimethyl phthalate degradation was suggested according to gas chromatography-mass spectroscopy and nuclear magnetic resonance analyses. The obtained results confirmed the capability of the triple Cr2AlC/H2O2/US process as a promising method for treating contaminated water.
Collapse
Affiliation(s)
- Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004 Jinhua, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
25
|
Xie F, Shi Q, Bai H, Liu M, Zhang J, Qi M, Zhang J, Li Z, Zhu W. An anode fabricated by Co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate (PMS) activation. CHEMOSPHERE 2023; 313:137384. [PMID: 36436580 DOI: 10.1016/j.chemosphere.2022.137384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A Co@ZIF-8/CNTs-CF anode for PMS activation was prepared by Co electrodeposition on carbon felt (CF) modified with ZIF-8 and carbon nanotubes (CNTs). The results showed that the fabricated Co@ZIF-8/CNTs-CF anode was an effective peroxymonosulfate (PMS) activator toward tetracycline (TC) removal. Compared with that in reaction system of bare CF anode + PMS, the reaction system of Co@ZIF-8/CNTs-CF anode + PMS exhibited 3.08 times decrease in the activation energy demanded and 4.21 times increase in the reaction rate constant (k), resulting in a kinetic favorable process of PMS activation by the Co@ZIF-8/CNTs-CF anode. The enhanced activation performance of the fabricated anode was ascribed to the high contents of the pyrrolic N and low valence state of Co in the Co@ZIF-8/CNTs-CF anode. Furthermore, the influence factors on the characteristics of transformation among the generated reactive species during the anodic PMS activation process were comprehensively investigated by the quenching experiments and the electron paramagnetic resonance (EPR) tests. The results showed that the SO4•- and reactive oxygen-containing reactive species (O2•- and 1O2) were generated during the activation of PMS by anode and became the major contributors toward TC removal. The production of 1O2 was through the dismutation of O2•-. In addition, the EPR experiments demonstrated that O2•- was generated mainly through the anodic PMS activation but the electrochemically driven molecular oxygen reduction reaction (ORR) process. The fabricated Co@ZIF-8/CNTs-CF anode for PMS activation provided a reference for the wastewater treatment based on the electrochemical advanced oxidation processes (EAOPs).
Collapse
Affiliation(s)
- Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- College of Literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyun Qi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
26
|
Wei J, Pengji Z, Zhang J, Peng T, Luo J, Yang F. Biodegradation of MC-LR and its key bioactive moiety Adda by Sphingopyxis sp. YF1: Comprehensive elucidation of the mechanisms and pathways. WATER RESEARCH 2023; 229:119397. [PMID: 36459892 DOI: 10.1016/j.watres.2022.119397] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (β-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7‑methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3‑methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and β-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zhou Pengji
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
27
|
He L, Yang S, Yang L, Shen S, Li Y, Kong D, Chen Z, Yang S, Wang J, Wu L, Zhang Z. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120620. [PMID: 36372368 DOI: 10.1016/j.envpol.2022.120620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The non-radical pathway of periodate (PI) activation for the removal of persistent organic contaminants has received increasing attention due to its higher stability and oxidative advantages. In this study, the degradation of sulfamethoxazole (SMX) by ball mill treated magnetic sludge biochar (BM-MSBC) through activation of PI by electron transfer mechanism was reported. Experimental and characterization results showed that the ball milling treatment resulted in a better pore and defect structure, which also significantly enhanced the electron transfer capacity of the sludge biochar. The BM-MSBC/PI system exhibited notable dependence of activator concentration and initial pH, while the effect of PI concentration was not significant. The coexisting substances (common anions and natural organic matters) hardly affect the degradation of SMX in the BM-MSBC/PI system. The phytotoxicity experiments suggested that the treatment of BM-MSBC/PI system could significantly reduce the biological toxicity of SMX solution. This study provides a novel, economical, and facile modification method for the application of sludge biochar in advanced oxidation processes.
Collapse
Affiliation(s)
- Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shangding Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dejin Kong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhuqi Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, PR China
| | - Jia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler ABI5 8QH, Aberdeen, UK
| |
Collapse
|
28
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|
29
|
Wang X, Jiang Y, Zhao P, Meng X. Hierarchical structure and electronic effect promoted degradation of phenols over novel MnO2 nanoprisms via non-radical mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Converting Hybrid Mechanisms to Electron Transfer Mechanism by Increasing Biochar Pyrolysis Temperature for the Degradation of Sulfamethoxazole in a Sludge Biochar/Periodate System. Catalysts 2022. [DOI: 10.3390/catal12111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, sludge biochar was prepared under four pyrolysis temperatures (SBC300, SBC500, SBC700, and SBC900) and then was employed to activate periodate (PI) for the degradation of sulfamethoxazole (SMX). Various characterization methods were employed to investigate the effect of pyrolysis temperature on the physicochemical properties of sludge biochar and the activation capacity of periodate. The SMX adsorption capacity of SBCs and the ability of activating PI to degrade SMX increased with the increasing pyrolysis temperature. The degradation of SMX by the SBCs/PI systems was highly dependent on the initial pH of the solution and the dosage of SBCs. Mechanistic studies indicated that the degradation of SMX by the SBCs/PI system was mainly based on an electron-mediated transfer mechanism. Additionally, the electron transfer capacity of the SBCs affected the defects and the degree of graphitization. The contribution of free radicals to SMX degradation decreases with increasing pyrolysis temperature. Toxicity experiments demonstrated that the toxic elimination of SMX by the SBCs/PI system was enhanced with increasing pyrolysis temperature.
Collapse
|
31
|
Gao Y, Gao W, Zhu H, Chen H, Yan S, Zhao M, Sun H, Zhang J, Zhang S. A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14805. [PMID: 36429520 PMCID: PMC9690619 DOI: 10.3390/ijerph192214805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The Persulfate-based advanced oxidation process is the most efficient and commonly used technology to remove organic contaminants in wastewater. Due to the large surface area, unique electronic properties, abundant N functional groups, cost-effectiveness, and environmental friendliness, N-doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses on the NBC for oxidative degradation of organics-contaminated wastewater. Firstly, the preparation and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs and modified NBCs on the oxidation degradation of organic contaminants were discussed with an emphasis on the degradation mechanism. We further summarized the detection technologies of activation mechanisms and the structures of NBCs affecting the PS activation, followed by the specific role of the N configuration of the NBC on its catalytic capacity. Finally, several challenges in the treatment of organics-contaminated wastewater by a persulfate-based advanced oxidation process were put forward and the recommendations for future research were proposed for further understanding of the advanced oxidation process activated by the NBC.
Collapse
Affiliation(s)
- Yaxuan Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenran Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shu Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Qi F, Zeng Z, Wen Q, Huang Z, Wang Y, Xu Y. Asymmetric enhancement of persulfate activation by N-doped carbon microelectrode: Electro-adsorption and activation pathway regulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Zhang Y, Huang K, Chen X, Wei M, Yu X, Su H, Gan P, Yu K. Inactivation of Ciliate Uronema Marinum under UV/Peroxydisulfate Advanced Disinfection System in Marine Water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Zhu M, Chen X, Tang Y, Hou S, Yu Y, Fan X. Piezo-promoted persulfate activation by SrBi 2B 2O 7 for efficient sulfadiazine degradation from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129359. [PMID: 35753295 DOI: 10.1016/j.jhazmat.2022.129359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Combining piezoelectric effect and persulfate (PS) activation is a newly developed strategy for refractory emerging contaminants removal. In this work, borate SrBi2B2O7 (SBBO) is firstly developed as a piezoelectric material to piezo-assisted activation of PS for the removal of sulfadiazine (SDZ) under ultrasonic irradiation (US). SDZ could be efficiently degraded by 85.61 % in the system of PS/SBBO/US with a pseudo-first-order rate constant of 0.0520 min-1, which is faster than that in the systems of PS/SBBO (0.0210 min-1), SBBO/US (0.0041 min-1), PS/US (0.0074 min-1), and PS/BaTiO3/US (0.0120 min-1). The excellent degradation performance of the PS/SBBO/US system is mainly attributed to the piezoelectric effect of the SBBO which plays an important role in PS activation and accelerating reaction. Two oxidation processes, radical process (•O2- and •SO4-) and non-radical process (1O2 and electron transfer), exist during the SDZ degradation. The system of PS/SBBO/US also attains excellent removal efficiency in different SDZ contained water bodies. The possible degradation pathways mainly include cleavage of bonds, ring-opening, and hydroxylation process, and the toxicity of intermediates was predicted by T.E.S.T. software. This study provides new insight into piezoelectric catalysis associated with PS activation for SDZ removal.
Collapse
Affiliation(s)
- Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Sen Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Wu L, Li Z, Cheng P, She Y, Wang W, Tian Y, Ma J, Sun Z. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals. WATER RESEARCH 2022; 223:119013. [PMID: 36041369 DOI: 10.1016/j.watres.2022.119013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA)-based advanced oxidation processes (AOPs) were increasingly identified as the alternative scheme in wastewater treatment. Cost-effective and easily available catalyst for activation of PAA was in urgent demand for promoting engineering application process. In this study, a new type of biochar catalyst derived from pyrolysis of mixture of primary sludge (PSD) and secondary sludge (SSD) was prepared and showed effective PAA activation ability. The degradation of p-chlorophenol (4-CP) improved with PAA activation by mixed sludge derived biochar (PS-SDBC) than secondary sludge derived biochar (S-SDBC) and primary sludge derived biochar (P-SDBC), and the highest removal efficiency achieved by PS-SDBC with the PSD/SSD ratio of 5/5 (kobs=0.057 1/(M·min), pH 9). Correlation analysis firstly indicated that persistent free radicals (PFRs) rather than chemical composition and material structure dominated PAA activation and organic radicals (RO•) was proved to be the major reactive species through electron paramagnetic resonance (EPR) detection. The mixture of PSD and SSD caused the synergy of inorganic metals and organic matters through pyrolysis processes, resulting in larger specific surface area (SSA) (110.71 m2/g), more abundant electron-donating groups (e.g., C = O, -OH) and massive defects (ID/IG = 1.519) of PS-SDBC than P-SDBC and S-SDBC, which eventually promoted PFRs formation. A fascinating phenomenon was observed in PS-SDBC/PAA system that the active sites of PFRs could be regenerated by RO• attacking onto PS-SDBC, which contributed to the wide pH applicability and continuous stability of PS-SDBC/PAA system in practical wastewater treatment. This study not only significantly deepened the understanding of the reaction mechanism between PAA and biochar, but also provided a potential PAA-based AOPs for micropollutants removal in wastewater.
Collapse
Affiliation(s)
- Liying Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuoyu Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Pingtong Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Di S, Wang J, Zhai Y, Chen P, Ning T, Shi C, Yang H, Bao Y, Gao Q, Zhu S. Efficient activation of peroxymonosulfate mediated by Co(II)-CeO 2 as a novel heterogeneous catalyst for the degradation of refractory organic contaminants: Degradation pathway, mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129013. [PMID: 35523092 DOI: 10.1016/j.jhazmat.2022.129013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A series of Co(II)-CeO2 mixed metal oxides were synthesized by a facile hydrothermal-calcination procedure for activating peroxymonosulfate (PMS) and degrading toxic and difficult biodegradable organics. Co(II)-CeO2 showed excellent degradation performance toward rhodamine B (RhB), toluidine blue, methylene blue and diclofenac. RhB is a refractory organic contaminant, and ecotoxicological evaluation unraveled its harmfulness to the biosphere. RhB was selected as the model pollutant to investigate catalytic mechanisms. Parameters affecting degradation performance were profoundly investigated, including Co:Ce feed ratio, initial pH, PMS dosage, catalyst dosage, RhB concentration, coexisting ions and reaction temperature. Reaction mechanisms were proposed based on density functional theory calculations and identifications of reactive oxygen species. Improvements have been achieved in seven aspects compared to previous studies, including 100% degradation ratio in both real water samples and each reuse of the catalyst, ultrafast degradation rate, cost-effectiveness of the catalyst, toxicity-attenuation provided by the developed degradation method, high degree of mineralization for the model pollutant, negligible leaching of active sites, and the enhancement of catalytic performance by utilizing trace leached cobalt, endowing the technique with broad applicability and prospect.
Collapse
Affiliation(s)
- Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Qiang Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
37
|
Liu ZQ, Yang SQ, Lai HH, Fan CJ, Cui YH. Treatment of contaminants by a cathode/Fe III/peroxydisulfate process: Formation of suspended solid organic-polymers. WATER RESEARCH 2022; 221:118769. [PMID: 35752098 DOI: 10.1016/j.watres.2022.118769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Treatment of highly contaminated wastewaters containing refractory or toxic organic contaminants (e.g. industrial wastewaters) is becoming a global challenge. Most technologies focus on efficient degradation of organic contaminants. Here we improve the cathode/FeIII/peroxydisulfate (PDS) technology by turning down the current density and develop an innovative mechanism for organic contaminants abatement, namely polymerization rather than degradation, which allows simultaneous contaminants removal and resource recovery from wastewater. This polymerization leads to organic-particles (suspended solid organic-polymers) formation in bulk solution, which is demonstrated by eight kinds of representative organic contaminants. Taking phenol as a representative, 83% of PDS is saved compared to degradation process, with 87.2% of DOC removal. The formed suspended solid organic-polymers occupy 59.2% of COD of the original organics in solution, and can be easily separated from aqueous solution by sedimentation or filtration. The separated organic-polymers are a series of polymers coupled by phenolic monomers, as confirmed by FTIR and ESI-MS analyzes. The energy contained in the recovered organic polymers (4.76 × 10-5 kWh for 100 mL of 1 mM phenol solution in this study) can fully compensate the consumed electrical energy (2.8 × 10-5 kWh) in the treatment process. A representative polymerization model for this process is established, in which the SO4•- and HO• generated from PDS activation initiate the polymerization and improve the polymerization degree by the production of oligomer intermediates. A practical coking wastewater treatment is carried out to verify the research results and get positive feedback, with 56.0% of DOC abatement and the suspended solid organic-polymers accounts for 42.5% of the total COD in the raw wastewater. The energy consumption (47 kWh/kg COD, including electricity and PDS cost) is lower than the values in previous reports. This study provides a novel method for industrial wastewater treatment based on polymerization mechanism, which is expected to recover resources while removing pollutants with low consumption.
Collapse
Affiliation(s)
- Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Hui-Hui Lai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Cong-Jian Fan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
38
|
Luo M, Zhang H, Zhou P, Peng J, Du Y, Xiong Z, Lai B. Graphite (GP) induced activation of ferrate(VI) for degradation of micropollutants: The crucial reduction role of carbonyl groups on GP surface. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128827. [PMID: 35405605 DOI: 10.1016/j.jhazmat.2022.128827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The sluggish oxidation kinetics of ferrate (Fe(VI)) at neutral and slightly alkaline pH impedes its rapid abatement of micropollutants in practical application. This work discovers that graphite (GP), a metal-free carbonaceous material, can be a promising material to improve the reactivity of Fe(VI) in the pH range of 7.0 - 9.0. The performance of the GP/Fe(VI) process for sulfamethoxazole (SMX) removal was further evaluated via altering the dosages of Fe(VI), GP, and SMX. Probe analysis and quenching experiments identified Fe(IV) and Fe(V) as the primary active species responsible for the removal of organic compounds in the GP/Fe(VI) system. The detailed activation mechanism of GP is discussed via analyzing the surface chemical changes of GP exposed to Fe(VI). It is found that the carbonyl groups on GP surface execute a critical role in Fe(VI) activation. The GP/Fe(VI) system shows powerful anti-interference ability to environmental background substances. Therefore, the new oxidation process proposed in this work holds a great application prospect for contamination remediation. Finally, we discuss the underlying degradation pathways of SMX by the GP/Fe(VI) system. This study not only develops a promising system for the removal of micropollutants but also provides an in-depth insight into the activation mechanism of metal-free carbonaceous material in Fe(VI) oxidation process.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
Ma T, Liu M, Li T, Ren H, Zhou R. Nitrogen-doped carbon nanotubes derived from carbonized polyaniline as a robust peroxydisulfate activator for the oxidation removal of organic pollutants: Singlet oxygen dominated mechanism and structure-activity relationship. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Wu L, Wu T, Liu Z, Tang W, Xiao S, Shao B, Liang Q, He Q, Pan Y, Zhao C, Liu Y, Tong S. Carbon nanotube-based materials for persulfate activation to degrade organic contaminants: Properties, mechanisms and modification insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128536. [PMID: 35245870 DOI: 10.1016/j.jhazmat.2022.128536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Removal of harmful organic matters from environment has great environmental significance. Carbon nanotube (CNT) materials and their composites have been demonstrated to possess excellent catalytic activity towards persulfate (PS) activation for the degradation of organic contaminants. Herein, detailed information concerning the function, modification methods and relevant mechanisms of CNT in persulfate-based advanced oxidation processes (PS-AOPs) for organic pollutant elimination has been reviewed. The activation mechanism of PS by CNT might include radical and nonradical pathways and their synergistic effects. The common strategies to improve the stability and catalytic capability of CNT-based materials have also been put forward. Furthermore, their practical application potential compared with other catalysts has been described. Finally, the challenges faced by CNT in practical application are clearly highlighted. This review should be of value in promoting the research of PS activation by CNT-based materials for degradation of organic pollutants and the corresponding practical applications.
Collapse
Affiliation(s)
- Lin Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Sa Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shehua Tong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
41
|
Liu H, Liang J, Du X, Wang R, Tang T, Tao X, Yin H, Dang Z, Lu G. Degradation of tris(2-chloroethyl) phosphate (TCEP) by thermally activated persulfate: Combination of experimental and theoretical study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152185. [PMID: 34883166 DOI: 10.1016/j.scitotenv.2021.152185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus esters (OPEs), one kind of the emerging contaminants with high frequency of detection, is rather refractory in natural environment, thus posing great threat to human health. This study investigated the feasibility and mechanism of tris(2-chloroethyl) phosphate (TCEP) degradation in thermally activated persulfate (TAP) system. Influence of impact factors, such as PDS dosage, temperature, initial pH, and presence of natural water matrix (Cl-, NO3-, H2PO4-, NH4+, humic acid), were evaluated. Results showed that 100% degradation of TCEP can be achieved in TAP system in 40 min at 60 °C. SO4·- as the dominant oxidant for TCEP degradation was proved by quenching experiment and verified by EPR analysis. Alkaline condition exerted great inhibitory effect by affecting the constituents of oxidative radicals. It is suggested that Cl- and H2PO4- at lower dosages promoted the degradation by stimulating ·OH production and forming oxidative radicals with better selectivity. Intermediates identified by high resolution mass spectrometer was suggested less toxic than TCEP by ECOSAR program. Meanwhile, the illustrated oxidation mechanism mainly involved radical attack at CCl bond and cleavage of CO bond, as further confirmed by frontier electron density calculation and wavefunction analysis. Moreover, cyclic degradation of TCEP indicated the constant release of SO4·- in 450 min, suggesting high efficiency and stability of PDS in TAP system. Four selected OPEs achieved complete removal in TAP system and their degradation discrepancy was further discussed based on the distinctive structures. Altogether, TAP technology can be used as an efficient method in TCEP removal with great potential for application.
Collapse
Affiliation(s)
- He Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
42
|
Zhao X, Cheng P, Borch T, Waigi MG, Peng F, Gao Y. Humidity induces the formation of radicals and enhances photodegradation of chlorinated-PAHs on Fe(III)-montmorillonite. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127210. [PMID: 34555768 DOI: 10.1016/j.jhazmat.2021.127210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated-PAHs (ClPAHs) are widely detected in the soil surface and atmospheric particles. However, the underlying mechanisms of their photodegradation are not well understood. In the present study, the formation of radicals on ClPAHs-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and the impact of relative humidity (RH) was systematically explored. ClPAHs removal (> 75%) was attributed to electron transfer and •OH attack. The degradation easiness of ClPAHs follows: 2-ClNAP >2-ClANT >9-ClPHE >1-ClPYR. Light irradiation significantly improved the generation of reactive oxygen species (ROS, such as •OH and •O2-), and further generate a series of hydroxylated products of ClPAHs. Persistent free radicals (PFRs) were only detected on clay minerals contaminated with 2-ClANT and 1-ClPYR. RH 10-80%, the concentration of •OH and •O2- increased by 1.07 and 62.79 times respectively, which facilitated transformation of PFRs and ClPAHs degradation. The results of quantum chemical calculations indicate that the initial reaction of ClPAHs photodegradation is mediated by the substitution of •OH for chlorine groups. The present work implies that higher humidity may decrease the generation of PFRs on clay minerals and help mitigate the threats of PFRs and ClPAHs to human health.
Collapse
Affiliation(s)
- Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengfei Cheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, United States; Department of Chemistry; Colorado State University, Fort Collins, CO 80523, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fei Peng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
43
|
Qian F, Luo J, Yin H, Liu F, Gao S, Gu X. Carbonaceous composite membranes for peroxydisulfate activation to remove sulfamethoxazole in a real water matrix. CHEMOSPHERE 2022; 288:132597. [PMID: 34666070 DOI: 10.1016/j.chemosphere.2021.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
In this study, we fabricated carbonaceous composite membranes by loading integrated mats of nitrogen-doped graphene, reduced graphene oxide, and carbon nanotubes (NG/rGO/CNTs) on a nylon microfiltration substrate and employed it for in-situ catalytic oxidation by activating peroxydisulfate (PDS) for the removal of sulfamethoxazole (SMX) in a real water matrix. The impact of coexisting organics on the performance of carbonaceous catalysis was investigated in the continuous filtration mode. Reusability testing and radical quenching experiments revealed that the non-radical pathways of surface-activated persulfate mainly contributed to SMX degradation. A stable SMX removal flux (rSMX) of 22.15 mg m-2·h-1 was obtained in 24 h when tap water was filtered continuously under a low pressure of 1.78 bar and in a short contact time of 1.4 s, which was slightly lower than the rSMX of 23.03 mg m-2·h-1 performed with deionized water as the control group. In addition, higher contents of protein-, fulvic acid-, and humic acid-like organics resulted in membrane fouling and significantly suppressed SMX removal during long-term filtration. Changes in the production of sulfate ions and the Raman spectra of carbon mats indicated that organics prevent the structural defects of the carbon matrix from participating in PDS activation. Moreover, NG/rGO/CNTs composite membranes coupled with activated persulfate oxidation exhibited good self-cleaning ability, because membrane fouling could be partly reversed by restoring filtration pressure during operation. This study provides a novel and effective oxidation strategy for efficient SMX removal in water purification, allowing the application of carbonaceous catalysis for the selective degradation of emerging contaminants.
Collapse
Affiliation(s)
- Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China.
| | - Junpeng Luo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Honggui Yin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Xinyu Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| |
Collapse
|
44
|
Wang W, Chen M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J Colloid Interface Sci 2022; 613:57-70. [PMID: 35032777 DOI: 10.1016/j.jcis.2022.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen doping could improve the catalytic performance of carbon materials, in which the nitrogen configuration could be used as active sites for peroxymonosulfate (PMS) activation. Herein, this paper studied how to turn waste to "treasure" by agriculture waste pomelo peel to prepare nitrogen-doped biochar and successfully applied it to advanced oxidation field. The effects of the sodium bicarbonate (NaHCO3), melamine, and pyrolysis temperature on the catalytic activity of biochar for the removal of sulfamethoxazole (SMX) were investigated. The optimized nitrogen-doped biochar (C-N-M 1:3:4) possessed high specific surface area (SSA, 738 m2/g) and high level of nitrogen doping (nitrogen content 13.54 at%). Accordingly, it exhibited great catalytic performance for PMS activation to remove SMX antibiotic, and 95% of SMX was removed within 30 min. High catalytic activity of C-N-M 1:3:4 was attributed to rich defects, carbonyl group, high content of graphitic N and pyrrolic N, and large SSA, in which non-radical oxidation process based on singlet oxygen (1O2) and electron transfer contributed to the SMX degradation. The prepared nitrogen-doped biochar possessed high stability and reusability and the removal efficiency of SMX still reached 80% after four cycles. Additionally, the phytotoxicity assay indicated that the toxicity of degradation intermediates was obviously decreased in the PMS/ C-N-M 1:3:4 system.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
45
|
Si Y, Guo ZY, Meng Y, Li HH, Chen L, Zhang AY, Gu CH, Li WW, Yu HQ. Reusing Sulfur-Poisoned Palladium Waste as a Highly Active, Nonradical Fenton-like Catalyst for Selective Degradation of Phenolic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:564-574. [PMID: 34918924 DOI: 10.1021/acs.est.1c05048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recycling of deactivated palladium (Pd)-based catalysts can not only lower the economic cost of their industrial use but also save the cost for waste disposal. Considering that the sulfur-poisoned Pd (PdxSy) with a strong Pd-S bond is difficult to regenerate, here, we propose a direct reuse of such waste materials as an efficient catalyst for decontamination via Fenton-like processes. Among the PdxSy materials with different poisoning degrees, Pd4S stood out as the most active catalyst for peroxymonosulfate activation, exhibiting pollutant-degradation performance rivaling the Pd and Co2+ benchmarks. Moreover, the incorporated S atom was found to tune the surface electrostatic potentials and charge densities of the Pd active site, triggering a shift in catalytic pathway from surface-bound radicals to predominantly direct electron transfer pathway that favors a highly selective oxidation of phenols. The catalyst stability was also improved due to the formation of strong Pd-S bond that reduces corrosion. Our work paves a new way for upcycling of Pd-based industrial wastes and for guiding the development of advanced oxidation technologies toward higher sustainability.
Collapse
Affiliation(s)
- Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advance Research of USTC, USTC-CityU Joint Advanced Research Center, Suzhou 215123, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advance Research of USTC, USTC-CityU Joint Advanced Research Center, Suzhou 215123, China
| | - Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ai-Yong Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao-Hai Gu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advance Research of USTC, USTC-CityU Joint Advanced Research Center, Suzhou 215123, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Guo D, You S, Li F, Liu Y. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Zhang D, Sun J, Li Q, Song H, Xia D. Cu-Doped magnetic loofah biochar for tetracycline degradation via peroxymonosulfate activation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02885a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu-doped deactivated magnetic biochar exhibited high PMS activation to degrade TC with a high removal rate of 97.6%.
Collapse
Affiliation(s)
- Dajie Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| | - Jiabao Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| | - Haocheng Song
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| |
Collapse
|
48
|
Xie J, Chen L, Luo X, Huang L, Li S, Gong X. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Dong H, Xu Q, Lian L, Li Y, Wang S, Li C, Guan X. Degradation of Organic Contaminants in the Fe(II)/Peroxymonosulfate Process under Acidic Conditions: The Overlooked Rapid Oxidation Stage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15390-15399. [PMID: 34730346 DOI: 10.1021/acs.est.1c04563] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The iron(II)-activated peroxymonosulfate [Fe(II)/PMS] process is effective in degrading organic contaminants with a rapid oxidation stage followed by a slow one. Nevertheless, prior studies have greatly underestimated the degradation rates of organic contaminants in the rapid oxidation stage and ignored the differences in the kinetics and mechanism of organic contaminants degradation in these two oxidation stages. In this work, we investigated the kinetics and mechanisms of organic contaminants in this process under acidic conditions by combining the stopped-flow spectrophotometric method and batch experiments. The organic contaminants were rapidly oxidized with rate constants of 0.18-2.9 s-1 in the rapid oxidation stage. Meanwhile, both Fe(IV) and SO4•- were active oxidants and contributed differently to the degradation of different organic contaminants in this stage. Additionally, the presence of Cl- promoted the degradation of both phenol and estradiol but the effects of Br- and humic acid on phenol degradation differed from those on estradiol degradation in the rapid oxidation stage. In contrast, the degradation of phenol and estradiol was slow and the amounts of Fe(IV) and SO4•- generated were small in the slow oxidation stage. This work updates the fundamental understanding of the degradation of organic contaminants in this process.
Collapse
Affiliation(s)
- Hongyu Dong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghua Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lushi Lian
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cong Li
- College of environment and architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
50
|
Kong D, Fan H, Ding X, Hu H, Zhou L, Li B, Chi C, Wang X, Wang Y, Wang X, wang D, Shen Y, Qiu Z, Cai T, Cui Y, Ren Y, Li X, Xing W. Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|