1
|
Allaire P, Mayer J, Moat L, Gabor R, Shay JW, He J, Zeng C, Bastarache L, Hebbring S. Long-telomeropathy is associated with tumor predisposition syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24318007. [PMID: 39649603 PMCID: PMC11623752 DOI: 10.1101/2024.11.26.24318007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Telomeres protect chromosomal integrity, and telomere length (TL) is influenced by environmental and genetic factors. While short-telomeres are linked to rare telomeropathies, this study explored the hypothesis that a "long-telomeropathy" is associated with a cancer-predisposing syndrome. Using genomic and health data from 113,861 individuals, a trans-ancestry polygenic risk score for TL (PRS TL ) was developed. A phenome-wide association study (PheWAS) identified 65 tumor traits linked to elevated PRS TL . Using this result, a trans-ancestry phenotype risk score for a long-TL (PheRS LTL ) was develop and validated. Rare variant analyses revealed 13 genes associated with PheRS LTL . Individuals who were carriers of these rare variants had a predisposition for long-TL validating original hypothesis. Most of these genes were new to both cancer and telomere biology. In conclusion, this study identified a novel tumor-predisposing syndrome shaped by both common and rare genetic variants, broadening the understanding of telomeropathies to those with a predisposition for long telomeres.
Collapse
|
2
|
Middha P, Kachuri L, Nierenberg JL, Graff RE, Cavazos TB, Hoffmann TJ, Zhang J, Alexeeff S, Habel L, Corley DA, Van Den Eeden S, Kushi LH, Ziv E, Sakoda LC, Witte JS. Unraveling the genetic landscape of susceptibility to multiple primary cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24316326. [PMID: 39574869 PMCID: PMC11581075 DOI: 10.1101/2024.10.29.24316326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
With advances in cancer screening and treatment, there is a growing population of cancer survivors who may develop subsequent primary cancers. While hereditary cancer syndromes account for only a portion of multiple cancer cases, we sought to explore the role of common genetic variation in susceptibility to multiple primary tumors. We conducted a cross-ancestry genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of 10,983 individuals with multiple primary cancers, 84,475 individuals with single cancer, and 420,944 cancer-free controls from two large-scale studies. Our GWAS identified six lead variants across five genomic regions that were significantly associated (P<5×10 -8 ) with the risk of developing multiple primary tumors (overall and invasive) relative to cancer-free controls (at 3q26, 8q24, 10q24, 11q13.3, and 17p13). We also found one variant significantly associated with multiple cancers when comparing to single cancer cases (at 22q13.1). Multi-tissue TWAS detected associations with genes involved in telomere maintenance in two of these regions ( ACTRT3 in 3q26 and SLK and STN1 in 10q24) and the development of multiple cancers. Additionally, the TWAS also identified several novel genes associated with multiple cancers, including two immune-related genes, IRF4 and TNFRSF6B . Telomere maintenance and immune dysregulation emerge as central, common pathways influencing susceptibility to multiple cancers. These findings underscore the importance of exploring shared mechanisms in carcinogenesis, offering insights for targeted prevention and intervention strategies.
Collapse
|
3
|
Liu WS, Wu BS, Yang L, Chen SD, Zhang YR, Deng YT, Wu XR, He XY, Yang J, Feng JF, Cheng W, Xu YM, Yu JT. Whole exome sequencing analyses reveal novel genes in telomere length and their biomedical implications. GeroScience 2024; 46:5365-5385. [PMID: 38837026 PMCID: PMC11336033 DOI: 10.1007/s11357-024-01203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
4
|
Zhao J, Yang K, Lu Y, Zhou L, Fu H, Feng J, Wu J. Proteomic Mendelian randomization to identify protein biomarkers of telomere length. Sci Rep 2024; 14:21594. [PMID: 39284832 PMCID: PMC11405721 DOI: 10.1038/s41598-024-72281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Shortening of telomere length (TL) is correlated with many age-related disorders and is a hallmark of biological aging. This study used proteome-wide Mendelian randomization to identify the protein biomarkers associated with telomere length. Protein quantitative trait loci (pQTL) were derived from two studies, the deCODE Health study (4907 plasma proteins) and the UK Biobank Pharma Proteomics Project (2923 plasma proteins). Summary data from genome-wide association studies (GWAS) for TL were obtained from the UK Biobank (472,174 cases) and GWAS Catalog (418,401 cases). The association between proteins and TL was further assessed using colocalization and summary data-based Mendelian randomization (SMR) analyses. The protein-protein network, druggability assessment, and phenome-wide MR were used to further evaluate the potential biological effects, druggability, and safety of the target proteins. Proteome-wide MR analysis identified 22 plasma proteins that were causally associated with telomere length. Five of these proteins (APOE, SPRED2, MAX, RALY, and PSMB1) had the highest evidence of association with TL and should be prioritized. This study revealed telomere length-related protein biomarkers, providing new insights into the development of new treatment targets for chronic diseases and anti-aging intervention strategies.
Collapse
Affiliation(s)
- Jiaxuan Zhao
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China
| | - Kun Yang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China
| | - Yunfei Lu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China
| | - Haoran Fu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China
| | - Jingbo Feng
- The 982th Hospital of the People's Liberation Army Joint Logistics Support Force, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital, Tangshan, China.
- Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City, Tangshan, China.
| |
Collapse
|
5
|
Burren OS, Dhindsa RS, Deevi SVV, Wen S, Nag A, Mitchell J, Hu F, Loesch DP, Smith KR, Razdan N, Olsson H, Platt A, Vitsios D, Wu Q, Codd V, Nelson CP, Samani NJ, March RE, Wasilewski S, Carss K, Fabre M, Wang Q, Pangalos MN, Petrovski S. Genetic architecture of telomere length in 462,666 UK Biobank whole-genome sequences. Nat Genet 2024; 56:1832-1840. [PMID: 39192095 PMCID: PMC11387196 DOI: 10.1038/s41588-024-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Telomeres protect chromosome ends from damage and their length is linked with human disease and aging. We developed a joint telomere length metric, combining quantitative PCR and whole-genome sequencing measurements from 462,666 UK Biobank participants. This metric increased SNP heritability, suggesting that it better captures genetic regulation of telomere length. Exome-wide rare-variant and gene-level collapsing association studies identified 64 variants and 30 genes significantly associated with telomere length, including allelic series in ACD and RTEL1. Notably, 16% of these genes are known drivers of clonal hematopoiesis-an age-related somatic mosaicism associated with myeloid cancers and several nonmalignant diseases. Somatic variant analyses revealed gene-specific associations with telomere length, including lengthened telomeres in individuals with large SRSF2-mutant clones, compared with shortened telomeres in individuals with clonal expansions driven by other genes. Collectively, our findings demonstrate the impact of rare variants on telomere length, with larger effects observed among genes also associated with clonal hematopoiesis.
Collapse
Affiliation(s)
- Oliver S Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Dhindsa
- Center for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Sri V V Deevi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sean Wen
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Abhishek Nag
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Douglas P Loesch
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Neetu Razdan
- Biosciences COPD & IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Qiang Wu
- Center for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
- Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Ruth E March
- Precision Medicine & Biosamples, Oncology R&D, AstraZeneca, Dublin, Ireland
| | - Sebastian Wasilewski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Margarete Fabre
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Quanli Wang
- Center for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Yu J, Pu F, Yang G, Hao M, Zhang H, Zhang J, Cao X, Zhu L, Wan Y, Wang X, Liu Z. Sex-Specific Association Between Childhood Adversity and Accelerated Biological Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309346. [PMID: 38704685 PMCID: PMC11234451 DOI: 10.1002/advs.202309346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Is childhood adversity associated with biological aging, and if so, does sex modify the association, and do lifestyle and mental health mediate the association? A lifespan analysis is conducted using data on 142 872 participants from the UK Biobank to address these questions. Childhood adversity is assessed through the online mental health questionnaire (2016), including physical neglect, physical abuse, emotional neglect, emotional abuse, sexual abuse, and a cumulative score. Biological aging is indicated by telomere length (TL) measured from leukocyte DNA using qPCR, and the shorter TL indicates accelerated biological aging; a lifestyle score is constructed using body mass index, physical activity, drinking, smoking, and diet; mental disorder is assessed using depression, anxiety, and insomnia at the baseline survey. The results reveal a sex-specific association such that childhood adversity is associated with shorter TL in women after adjusting for covariates including polygenic risk score for TL, but not in men. Unhealthy lifestyle and mental disorder partially mediate the association in women. The proportions of indirect effects are largest for sexual and physical abuse. These findings highlight the importance of behavioral and psychological interventions in promoting healthy aging among women who experienced childhood adversity, particularly sexual and physical abuse.
Collapse
Affiliation(s)
- Jie Yu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fan Pu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Gan Yang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng Hao
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hui Zhang
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
- National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Jingyun Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lijun Zhu
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuhui Wan
- MOE Key Laboratory of Population Health across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, and Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xiaofeng Wang
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
- National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
7
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
8
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL105756 NHLBI NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AI132476 NIAID NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153805 NHLBI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Brown LM, Elbon MC, Bharadwaj A, Damle G, Lachance J. Does Effective Population Size Govern Evolutionary Differences in Telomere Length? Genome Biol Evol 2024; 16:evae111. [PMID: 38771124 PMCID: PMC11140418 DOI: 10.1093/gbe/evae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.
Collapse
Affiliation(s)
- Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mia C Elbon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajay Bharadwaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gargi Damle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Riccio C, Jansen ML, Guo L, Ziegler A. Variant effect predictors: a systematic review and practical guide. Hum Genet 2024; 143:625-634. [PMID: 38573379 PMCID: PMC11098935 DOI: 10.1007/s00439-024-02670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Large-scale association analyses using whole-genome sequence data have become feasible, but understanding the functional impacts of these associations remains challenging. Although many tools are available to predict the functional impacts of genetic variants, it is unclear which tool should be used in practice. This work provides a practical guide to assist in selecting appropriate tools for variant annotation. We conducted a MEDLINE search up to November 10, 2023, and included tools that are applicable to a broad range of phenotypes, can be used locally, and have been recently updated. Tools were categorized based on the types of variants they accept and the functional impacts they predict. Sequence Ontology terms were used for standardization. We identified 118 databases and software packages, encompassing 36 variant types and 161 functional impacts. Combining only three tools, namely SnpEff, FAVOR, and SparkINFERNO, allows predicting 99 (61%) distinct functional impacts. Thirty-seven tools predict 89 functional impacts that are not supported by any other tool, while 75 tools predict pathogenicity and can be used within the ACMG/AMP guidelines in a clinical context. We launched a website allowing researchers to select tools based on desired variants and impacts. In summary, more than 100 tools are already available to predict approximately 160 functional impacts. About 60% of the functional impacts can be predicted by the combination of three tools. Unexpectedly, recent tools do not predict more impacts than older ones. Future research should allow predicting the functionality of so far unsupported variant types, such as gene fusions.URL: https://cardio-care.shinyapps.io/VEP_Finder/ .Registration: OSF Registries on November 10, 2023, https://osf.io/s2gct .
Collapse
Affiliation(s)
- Cristian Riccio
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Max L Jansen
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linlin Guo
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Ziegler
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
11
|
Wong JY, Blechter B, Hubbard AK, Machiela MJ, Shi J, Gadalla SM, Hu W, Rahman ML, Rothman N, Lan Q. Phenotypic and genetically predicted leucocyte telomere length and lung cancer risk in the prospective UK Biobank. Thorax 2024; 79:274-278. [PMID: 38238005 PMCID: PMC10923134 DOI: 10.1136/thorax-2023-220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We investigated phenotypic leucocyte telomere length (LTL), genetically predicted LTL (gTL), and lung cancer risk among 371 890 participants, including 2829 incident cases, from the UK Biobank. Using multivariable Cox regression, we found dose-response relationships between longer phenotypic LTL (p-trendcontinuous=2.6×10-5), longer gTL predicted using a polygenic score with 130 genetic instruments (p-trendcontinuous=4.2×10-10), and overall lung cancer risk, particularly for adenocarcinoma. The associations were prominent among never smokers. Mendelian Randomization analyses supported causal associations between longer telomere length and lung cancer (HRper 1 SD gTL=1.87, 95% CI: 1.49 to 2.36, p=4.0×10-7), particularly adenocarcinoma (HRper 1 SD gTL=2.45, 95%CI: 1.69 to 3.57, p=6.5×10-6).
Collapse
Affiliation(s)
- Jason Yy Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
12
|
Zavala-Paez M, Holliday J, Hamilton JA. Leveraging whole-genome sequencing to estimate telomere length in plants. Mol Ecol Resour 2024; 24:e13899. [PMID: 37966130 DOI: 10.1111/1755-0998.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Changes in telomere length are increasingly used to indicate species' response to environmental stress across diverse taxa. Despite this broad use, few studies have explored telomere length in plants. Thus, evaluation of new approaches for measuring telomeres in plants is needed. Rapid advances in sequencing approaches and bioinformatic tools now allow estimation of telomere content from whole-genome sequencing (WGS) data, a proxy for telomere length. While telomere content has been quantified extensively using quantitative polymerase chain reaction (qPCR) and WGS in humans, no study to date has compared the effectiveness of WGS in estimating telomere length in plants relative to qPCR approaches. In this study, we use 100 Populus clones re-sequenced using short-read Illumina sequencing to quantify telomere length comparing three different bioinformatic approaches (Computel, K-seek and TRIP) in addition to qPCR. Overall, telomere length estimates varied across different bioinformatic approaches, but were highly correlated across methods for individual genotypes. A positive correlation was observed between WGS estimates and qPCR, however, Computel estimates exhibited the greatest correlation. Computel incorporates genome coverage into telomere length calculations, suggesting that genome coverage is likely important to telomere length quantification when using WGS data. Overall, telomere estimates from WGS provided greater precision and accuracy of telomere length estimates relative to qPCR. The findings suggest WGS is a promising approach for assessing telomere length and, as the field of telomere ecology evolves, may provide added value to assaying response to biotic and abiotic environments for plants needed to accelerate plant breeding and conservation management.
Collapse
Affiliation(s)
- Michelle Zavala-Paez
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jason Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Jill A Hamilton
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
13
|
Chang Y, Zhou Y, Zhou J, Li W, Cao J, Jing Y, Zhang S, Shen Y, Lin Q, Fan X, Yang H, Dong X, Zhang S, Yi X, Shuai L, Shi L, Liu Z, Yang J, Ma X, Hao J, Chen K, Li MJ, Wang F, Huang D. Unraveling the causal genes and transcriptomic determinants of human telomere length. Nat Commun 2023; 14:8517. [PMID: 38129441 PMCID: PMC10739845 DOI: 10.1038/s41467-023-44355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Telomere length (TL) shortening is a pivotal indicator of biological aging and is associated with many human diseases. The genetic determinates of human TL have been widely investigated, however, most existing studies were conducted based on adult tissues which are heavily influenced by lifetime exposure. Based on the analyses of terminal restriction fragment (TRF) length of telomere, individual genotypes, and gene expressions on 166 healthy placental tissues, we systematically interrogate TL-modulated genes and their potential functions. We discover that the TL in the placenta is comparatively longer than in other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral TL genome-wide association studies (GWASs) on 644,553 individuals identify 20 newly discovered genetic associations and provide increased polygenic determination of human TL. Next, we integrate the powerful TL GWAS with placental expression quantitative trait locus (eQTL) mapping to prioritize 23 likely causal genes, among which 4 are functionally validated, including MMUT, RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and TRF-based TL improve the prediction performance of human TL. This study deepens our understanding of causal genes and transcriptomic determinants of human TL, promoting the mechanistic research on fine-grained TL regulation.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junrui Zhou
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wen Li
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Jiasong Cao
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yaqing Jing
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Zhang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Shen
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Qimei Lin
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Lei Shi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Wang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China.
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China.
| | - Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
14
|
Wong JY, Shu XO, Hu W, Blechter B, Shi J, Wang K, Cawthon R, Cai Q, Yang G, Rahman ML, Ji BT, Gao Y, Zheng W, Rothman N, Lan Q. Associations between Longer Leukocyte Telomere Length and Increased Lung Cancer Risk among Never Smokers in Urban China. Cancer Epidemiol Biomarkers Prev 2023; 32:1734-1737. [PMID: 37721487 PMCID: PMC10843003 DOI: 10.1158/1055-9965.epi-23-0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The complex relationship between measured leukocyte telomere length (LTL), genetically predicted LTL (gTL), and carcinogenesis is exemplified by lung cancer. We previously reported associations between longer pre-diagnostic LTL, gTL, and increased lung cancer risk among European and East Asian populations. However, we had limited statistical power to examine the associations among never smokers by gender and histology. METHODS To investigate further, we conducted nested case-control analyses on an expanded sample of never smokers from the prospective Shanghai Women's Health Studies (798 cases and 792 controls) and Shanghai Men's Health Studies (161 cases and 162 controls). We broke the case-control matching and used multivariable unconditional logistic regression models to estimate the ORs and 95% confidence intervals (CI) of incident lung cancer and adenocarcinoma (LUAD), in relation to LTL measured using quantitative PCR and gTL determined using a polygenic score. In addition, we conducted Mendelian randomization (MR) using MR-PRESSO. RESULTS We found striking dose-response relationships between longer LTL and gTL, and increased lung cancer risk among never-smoking women (P trendLTL = 4×10-6; P trendgTL = 3×10-4). Similarly, among never-smoking men, longer measured LTL was associated with over triple the risk compared with those with the shortest (OR, 3.48; 95% CI, 1.85-6.57). The overall results were similar for LUAD among women and men. MR analyses supported causal associations with LUAD among women (OR1 SD gTL, 1.19; 95% CI, 1.03-1.37; P = 0.03). CONCLUSIONS Longer pre-diagnostic LTL is associated with increased lung cancer risk among never smokers. IMPACT Our findings firmly support the role of longer telomeres in lung carcinogenesis.
Collapse
Affiliation(s)
- Jason Y.Y. Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Kevin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mohammad L. Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bu-tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yutang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
15
|
Lynch MT, Taub MA, Farfel JM, Yang J, Abadir P, De Jager PL, Grodstein F, Bennett DA, Mathias RA. Evaluating genomic signatures of aging in brain tissue as it relates to Alzheimer's disease. Sci Rep 2023; 13:14747. [PMID: 37679407 PMCID: PMC10484923 DOI: 10.1038/s41598-023-41400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number (mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with Alzheimer's dementia, cognitive function, and pathologic Alzheimer's disease (AD). Epigenetic age and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined dementia, MCI, and level of and change in cognition, pathologic AD, and three quantitative AD traits, as well as measures of other neurodegenerative diseases and cerebrovascular diseases (CVD). We previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic features of AD. Here, we show that those associations are independent of TL. We found TL to be associated with β-amyloid levels (beta = - 0.15, p = 0.023), hippocampal sclerosis (OR = 0.56, p = 0.0015) and cerebral atherosclerosis (OR = 1.44, p = 0.0007). We found strong associations between mtDNAcn and clinical measures of AD. The strongest associations with pathologic measures of AD were with cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles. Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration, accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure alone. These findings highlight for the first time that age acceleration determined on multiple genomic measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD) pathogenesis than single measures.
Collapse
Affiliation(s)
- Megan T Lynch
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter Abadir
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Schuermans A, Nakao T, Uddin MM, Hornsby W, Ganesh S, Shadyab AH, Liu S, Haring B, Shufelt CL, Taub MA, Mathias RA, Kooperberg C, Reiner AP, Bick AG, Manson JE, Natarajan P, Honigberg MC. Age at Menopause, Leukocyte Telomere Length, and Coronary Artery Disease in Postmenopausal Women. Circ Res 2023; 133:376-386. [PMID: 37489536 PMCID: PMC10528840 DOI: 10.1161/circresaha.123.322984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Premature menopause is a risk factor for accelerated cardiovascular aging, but underlying mechanisms remain incompletely understood. This study investigated the role of leukocyte telomere length (LTL), a marker of cellular aging and genomic instability, in the association of premature menopause with cardiovascular disease. METHODS Participants from the UK Biobank and Women's Health Initiative with complete reproductive history and LTL measurements were included. Primary analyses tested the association between age at menopause and LTL using multivariable-adjusted linear regression. Secondary analyses stratified women by history of gynecologic surgery. Mendelian randomization was used to infer causal relationships between LTL and age at natural menopause. Multivariable-adjusted Cox regression and mediation analyses tested the joint associations of premature menopause and LTL with incident coronary artery disease. RESULTS This study included 130 254 postmenopausal women (UK Biobank: n=122 224; Women's Health Initiative: n=8030), of whom 4809 (3.7%) had experienced menopause before age 40. Earlier menopause was associated with shorter LTL (meta-analyzed ß=-0.02 SD/5 years of earlier menopause [95% CI, -0.02 to -0.01]; P=7.2×10-12). This association was stronger and significant in both cohorts for women with natural/spontaneous menopause (meta-analyzed ß=-0.04 SD/5 years of earlier menopause [95% CI, -0.04 to -0.03]; P<2.2×10-16) and was independent of hormone therapy use. Mendelian randomization supported a causal association of shorter genetically predicted LTL with earlier age at natural menopause. LTL and age at menopause were independently associated with incident coronary artery disease, and mediation analyses indicated small but significant mediation effects of LTL in the association of menopausal age with coronary artery disease. CONCLUSIONS Earlier age at menopause is associated with shorter LTL, especially among women with natural menopause. Accelerated telomere shortening may contribute to the heightened cardiovascular risk associated with premature menopause.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shriie Ganesh
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Simin Liu
- Department of Epidemiology and Brown Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Bernhard Haring
- Department of Medicine III, Saarland University Medical Center, Homburg, Saarland, Germany
- Department of Medicine I, University of Wuerzburg, Bavaria, Germany
| | - Chrisandra L. Shufelt
- Division of Internal Medicine, Women’s Health Research Center, Mayo Clinic, Jacksonville, Florida
| | - Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Sihoe ADL, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Hsiung CA, Amos CI, Shen H, Chanock SJ, Rothman N, Kohno T, Lan Q. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat Commun 2023; 14:3043. [PMID: 37236969 PMCID: PMC10220065 DOI: 10.1038/s41467-023-38196-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Young Tae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bao Song
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Maria Pik Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Brian Douglas Richardson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shilan Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Lap Ping Chung
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Yang Yang
- Shanghai Pulmonary Hospital, Shanghai, China
| | - She-Juan An
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yasushi Yatabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jiang Chang
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James Chung Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Shiga, Japan
| | - Minsun Song
- Department of Statistics & Research Institute of Natural Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dean H Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Ohe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihiro Shimizu
- Department of Surgery, Division of General Thoracic Surgery, Shinshu University School of Medicine Asahi, Nagano, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoichi Ohtaki
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Kazumi Tanaka
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jian Su
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, and school of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University, Hwasun, Republic of Korea
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Biyun Qian
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Margaret R Spitz
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Ivan P Gorlov
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Xifeng Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Angela Risch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Helmholtz Center Munich, Institute of Epidemiology, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | | | | | | | - Paul Brennan
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Sanjay S Shete
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hyo-Sung Jeon
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jae Sook Sung
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yoo Jin Jung
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Junwen Wang
- Department of Biochemistry, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Li
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jin Eun Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sook Whan Sung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Wen Tan
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Ying Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yi Young Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jun Suk Kim
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ho-Il Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ping Xu
- Department of Oncology, Wuhan Iron and Steel (Group) Corporation Staff-Worker Hospital, Wuhan, China
| | - Qincheng He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Roel C H Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei-Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, China
| | - Hongyan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hsien-Chih Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhehai Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Sensen Cheng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Ann Chao
- Center for Global Health, National Cancer Institute, Bethesda, MD, USA
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Junjie Zhu
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Ke Fei
- Shanghai Pulmonary Hospital, Shanghai, China
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing, China
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jinming Yu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | | | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Olga Y Gorlova
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
18
|
Byrjalsen A, Brainin AE, Lund TK, Andersen MK, Jelsig AM. Size matters in telomere biology disorders ‒ expanding phenotypic spectrum in patients with long or short telomeres. Hered Cancer Clin Pract 2023; 21:7. [PMID: 37189188 PMCID: PMC10184327 DOI: 10.1186/s13053-023-00251-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
The end of each chromosome consists of a DNA region termed the telomeres. The telomeres serve as a protective shield against degradation of the coding DNA sequence, as the DNA strand inevitably ‒ with each cell division ‒ is shortened. Inherited genetic variants cause telomere biology disorders when located in genes (e.g. DKC1, RTEL1, TERC, TERT) playing a role in the function and maintenance of the telomeres. Subsequently patients with telomere biology disorders associated with both too short or too long telomeres have been recognized. Patients with telomere biology disorders associated with short telomeres are at increased risk of dyskeratosis congenita (nail dystrophy, oral leukoplakia, and hyper- or hypo-pigmentation of the skin), pulmonary fibrosis, hematologic disease (ranging from cytopenia to leukemia) and in rare cases very severe multiorgan manifestations and early death. Patients with telomere biology disorders associated with too long telomeres have in recent years been found to confer an increased risk of melanoma and chronic lymphocytic leukemia. Despite this, many patients have an apparently isolated manifestation rendering telomere biology disorders most likely underdiagnosed. The complexity of telomere biology disorders and many causative genes makes it difficult to design a surveillance program which will ensure identification of early onset disease manifestation without overtreatment.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark.
| | - Anna Engell Brainin
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Thomas Kromann Lund
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, Copenhagen East, 2100, Denmark
| | - Mette Klarskov Andersen
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| |
Collapse
|
19
|
Hill C, Duffy S, Kettyle LM, McGlynn L, Sandholm N, Salem RM, Thompson A, Swan EJ, Kilner J, Rossing P, Shiels PG, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Differential Methylation of Telomere-Related Genes Is Associated with Kidney Disease in Individuals with Type 1 Diabetes. Genes (Basel) 2023; 14:genes14051029. [PMID: 37239390 DOI: 10.3390/genes14051029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Laura M Kettyle
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast BT9 7AE, UK
| | - Liane McGlynn
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Thompson
- School of Medicine, The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elizabeth J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Jill Kilner
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Peter Rossing
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, 8000 Aarhus, Denmark
- Steno Diabetes Center, 2730 Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Paul G Shiels
- School of Molecular Biosciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Lajer
- Steno Diabetes Center, 2730 Gentofte, Denmark
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
20
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
21
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Telomere Length: Implications for Atherogenesis. Curr Atheroscler Rep 2023; 25:95-103. [PMID: 36689071 PMCID: PMC9947063 DOI: 10.1007/s11883-023-01082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of the study is to explore the evidence linking telomere length with atherosclerotic ischemic disease. RECENT FINDINGS There has been a recent expansion in strategies for measuring telomere length, including analyzing genome sequence data and capitalizing on genomic loci that associate with telomere length. These, together with more established approaches, have been used to generate a more complete picture of telomere length relationships with ischemic disease. Whereas earlier meta-analyses suggested an association between short leukocyte telomeres and ischemic disease, several recent large population studies now provide particularly compelling data, including an association with cardiovascular mortality. In addition, whether short leukocyte telomeres might be causally related to ischemic disease has been interrogated using Mendelian randomization strategies, which point to shorter leukocyte telomeres as a determining risk factor. Importantly however, the wide, interindividual variability in telomere length still means that a single assessment of leukocyte telomere length in an individual does not reliably report on a biological aging process. In this regard, recent multi-tissue analyses of telomere length dynamics are providing both new mechanistic insights into how telomere length and shortening rates may participate in atherogenesis and risk prediction opportunities. The balance of evidence indicates that short leukocyte telomeres confer a risk for atherosclerotic cardiovascular disease. Moreover, an integrated analysis of telomere lengths in leukocytes and other tissues may provide a window into individualized telomere dynamics, raising new prospects for risk management.
Collapse
|
23
|
Alonso-Gonzalez A, Tosco-Herrera E, Molina-Molina M, Flores C. Idiopathic pulmonary fibrosis and the role of genetics in the era of precision medicine. Front Med (Lausanne) 2023; 10:1152211. [PMID: 37181377 PMCID: PMC10172674 DOI: 10.3389/fmed.2023.1152211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, rare progressive lung disease, characterized by lung scarring and the irreversible loss of lung function. Two anti-fibrotic drugs, nintedanib and pirfenidone, have been demonstrated to slow down disease progression, although IPF mortality remains a challenge and the patients die after a few years from diagnosis. Rare pathogenic variants in genes that are involved in the surfactant metabolism and telomere maintenance, among others, have a high penetrance and tend to co-segregate with the disease in families. Common recurrent variants in the population with modest effect sizes have been also associated with the disease risk and progression. Genome-wide association studies (GWAS) support at least 23 genetic risk loci, linking the disease pathogenesis with unexpected molecular pathways including cellular adhesion and signaling, wound healing, barrier function, airway clearance, and innate immunity and host defense, besides the surfactant metabolism and telomere biology. As the cost of high-throughput genomic technologies continuously decreases and new technologies and approaches arise, their widespread use by clinicians and researchers is efficiently contributing to a better understanding of the pathogenesis of progressive pulmonary fibrosis. Here we provide an overview of the genetic factors known to be involved in IPF pathogenesis and discuss how they will continue to further advance in this field. We also discuss how genomic technologies could help to further improve IPF diagnosis and prognosis as well as for assessing genetic risk in unaffected relatives. The development and validation of evidence-based guidelines for genetic-based screening of IPF will allow redefining and classifying this disease relying on molecular characteristics and contribute to the implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Tosco-Herrera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- *Correspondence: Carlos Flores,
| |
Collapse
|
24
|
McDonald MLN, Lakshman Kumar P, Srinivasasainagendra V, Nair A, Rocco AP, Wilson AC, Chiles JW, Richman JS, Pinson SA, Dennis RA, Jagadale V, Brown CJ, Pyarajan S, Tiwari HK, Bamman MM, Singh JA. Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank. Nat Genet 2022; 54:1816-1826. [PMID: 36411363 DOI: 10.1038/s41588-022-01221-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.
Collapse
Affiliation(s)
- Merry-Lynn N McDonald
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Preeti Lakshman Kumar
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwathy Nair
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Alison P Rocco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ava C Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Joshua S Richman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah A Pinson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Richard A Dennis
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Vivek Jagadale
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Cynthia J Brown
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), Veterans Affairs Boston Healthcare System (VABHS), Boston, MA, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Florida Institute for Human & Machine Cognition, Pensacola, FL, USA
| | - Jasvinder A Singh
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine at the School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Li Z, Li X, Zhou H, Gaynor SM, Selvaraj MS, Arapoglou T, Quick C, Liu Y, Chen H, Sun R, Dey R, Arnett DK, Auer PL, Bielak LF, Bis JC, Blackwell TW, Blangero J, Boerwinkle E, Bowden DW, Brody JA, Cade BE, Conomos MP, Correa A, Cupples LA, Curran JE, de Vries PS, Duggirala R, Franceschini N, Freedman BI, Göring HHH, Guo X, Kalyani RR, Kooperberg C, Kral BG, Lange LA, Lin BM, Manichaikul A, Manning AK, Martin LW, Mathias RA, Meigs JB, Mitchell BD, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Psaty BM, Raffield LM, Redline S, Reiner AP, Reupena MS, Rice KM, Rich SS, Smith JA, Taylor KD, Taub MA, Vasan RS, Weeks DE, Wilson JG, Yanek LR, Zhao W, Rotter JI, Willer CJ, Natarajan P, Peloso GM, Lin X. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods 2022; 19:1599-1611. [PMID: 36303018 PMCID: PMC10008172 DOI: 10.1038/s41592-022-01640-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.
Collapse
Grants
- R01 DK078616 NIDDK NIH HHS
- U01 HG007417 NHGRI NIH HHS
- KL2 TR001100 NCATS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- N01-HC-95160 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HG010692 NHGRI NIH HHS
- U01-HL054472 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL142711 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-DK071891 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F30 HL149180 NHLBI NIH HHS
- R01 NR019628 NINR NIH HHS
- R01 HL113323 NHLBI NIH HHS
- N01-HC-95166 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1RR033176 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- R01 HL132947 NHLBI NIH HHS
- P30 DK040561 NIDDK NIH HHS
- U01 HL137183 NHLBI NIH HHS
- R01-HL127564 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 CA016672 NCI NIH HHS
- R01-HL071051 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL104135 NHLBI NIH HHS
- T32 HL144442 NHLBI NIH HHS
- R35 CA197449 NCI NIH HHS
- P30 ES010126 NIEHS NIH HHS
- DP5 OD029586 NIH HHS
- R01-NS058700 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL123915 NHLBI NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01HL071259 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL046380 NHLBI NIH HHS
- R01HL071251, R01HL071258, R01HL071259 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 HG003067 NHGRI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- K01 AG059898 NIA NIH HHS
- U01 DK085524 NIDDK NIH HHS
- KL2 TR002542 NCATS NIH HHS
- R01-HL055673-18S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R03 HL141439 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01-MH078143, R01-MH078111, R01-MH083824 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U01 DK062413 NIDDK NIH HHS
- R01 HL109946 NHLBI NIH HHS
- U01-HL054495 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01 HL136700 NHLBI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01 HL080295 NHLBI NIH HHS
- NO1-HC-25195 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HG006703 NHGRI NIH HHS
- UL1-TR-001420 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U01 HG012064 NHGRI NIH HHS
- R35-CA197449 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- P30 ES005605 NIEHS NIH HHS
- R01 AR042742 NIAMS NIH HHS
- R21 HL140385 NHLBI NIH HHS
- HHSN268201800015I NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- R01 HL117191 NHLBI NIH HHS
- R01 HG009974 NHGRI NIH HHS
- U01-HL054473 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 DK113003 NIDDK NIH HHS
- UL1RR033176 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL059367 NHLBI NIH HHS
- R24 AG047115 NIA NIH HHS
- U01-HL137181 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL107202 NHLBI NIH HHS
- NR0224103 U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- P50 HL118006 NHLBI NIH HHS
- U01-HL72518, HL087698, HL49762, HL59684, HL58625, HL071025, HL112064 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL120393 NHLBI NIH HHS
- R01 DK117445 NIDDK NIH HHS
- R01-AG058921 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R03-HL154284 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01 AG058921 NIA NIH HHS
- R01 HL129132 NHLBI NIH HHS
- R01 HL113338 NHLBI NIH HHS
- HHSN268201800012I NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- R01 DK072193 NIDDK NIH HHS
- R01 HL137922 NHLBI NIH HHS
- R01 AI079139 NIAID NIH HHS
- N01-HC-95164 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-DK085524 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U19 AI111224 NIAID NIH HHS
- R35 HL135824 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- R01 DK110113 NIDDK NIH HHS
- N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95165 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138737 NHLBI NIH HHS
- P30 DK079626 NIDDK NIH HHS
- R01 NS058700 NINDS NIH HHS
- R01 HL127564 NHLBI NIH HHS
- T32 HG000040 NHGRI NIH HHS
- DK063491 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 HL141845 NHLBI NIH HHS
- R01 DK075787 NIDDK NIH HHS
- R01 AR072199 NIAMS NIH HHS
- R01 HL120854 NHLBI NIH HHS
- R01 HL163560 NHLBI NIH HHS
- R01HL071258 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-HG009088 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01 HL163972 NHLBI NIH HHS
- K23 HL123778 NHLBI NIH HHS
- U01 HL137181 NHLBI NIH HHS
- R01 MH078111 NIMH NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- N01-HC-95159 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01-HL113323 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141944 NHLBI NIH HHS
- R01 HL119443 NHLBI NIH HHS
- R01-HL071051, R01-HL071205, R01HL071250 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P60-AG10484 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 75N92020D00007 NHLBI NIH HHS
- UM1 AI068634 NIAID NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01-HC-95163 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL071205 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL107066 NHLBI NIH HHS
- R01-HL153805 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL105756 NHLBI NIH HHS
- K01 HL125751 NHLBI NIH HHS
- R01 HL067348 NHLBI NIH HHS
- T32 HL007208 NHLBI NIH HHS
- R01 HL142711 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- R01-HL92301 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM074897 NIGMS NIH HHS
- I01 BX005295 BLRD VA
- 75N92020D00001 NHLBI NIH HHS
- R01 HL113326 NHLBI NIH HHS
- R00 HL129045 NHLBI NIH HHS
- UL1-TR-000040 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- UL1-TR-001079 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U01 HL072524 NHLBI NIH HHS
- R35-HL135818 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL140203 NHLBI NIH HHS
- N01-HC-95162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141601 NHLBI NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- R01-DK117445 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01-AR48797 U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- R56 AG058543 NIA NIH HHS
- U19 AI077439 NIAID NIH HHS
- R01 HL142028 NHLBI NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- HHSN268201800011I NHLBI NIH HHS
- R35 GM127131 NIGMS NIH HHS
- U01 HL137880 NHLBI NIH HHS
- R01 HG010869 NHGRI NIH HHS
- R01-HL133040 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201700003I NHLBI NIH HHS
- R01HL071250 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95168 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL148239 NHLBI NIH HHS
- U01-HL137162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AI132476 NIAID NIH HHS
- T32 GM007205 NIGMS NIH HHS
- HHSN268201800010I NHLBI NIH HHS
- R01-HL092577-06S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1-TR-001881 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01-HL104135-04S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL132320 NHLBI NIH HHS
- U01 DK078616 NIDDK NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01-HL141944 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL137162 NHLBI NIH HHS
- R01 HG005701 NHGRI NIH HHS
- 75N92020D00001, 75N92020D00002, 75N92020D00003, 75N92020D00004 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 HL143221 NHLBI NIH HHS
- R01 HL142992 NHLBI NIH HHS
- K01 HL129039 NHLBI NIH HHS
- R01 HL133870 NHLBI NIH HHS
- R01 DA037904 NIDA NIH HHS
- R21 HL123677 NHLBI NIH HHS
- R01 DK071891 NIDDK NIH HHS
- HHSN268201800001I U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00002 NHLBI NIH HHS
- K01 HL130609 NHLBI NIH HHS
- N01-HC-95167 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007374 NHLBI NIH HHS
- N01-HC-95169 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AR063611 NIAMS NIH HHS
- KL2TR002490 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R03 HL154284 NHLBI NIH HHS
- M01-RR000052 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- 75N92020D00006 NHLBI NIH HHS
- S10 OD020069 NIH HHS
- R01 MD012765 NIMHD NIH HHS
- N01-HC-95161 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201700002I NHLBI NIH HHS
- R01 HL151855 NHLBI NIH HHS
- K23 HL138461 NHLBI NIH HHS
- U01 CA182913 NCI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- F32 HL150992 NHLBI NIH HHS
- R01-MD012765 U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- 75N92020D00005, 75N92020D00006, 75N92020D00007 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 MH101244 NIMH NIH HHS
- U01 HG009088 NHGRI NIH HHS
- N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P42 ES016454 NIEHS NIH HHS
- UM1 DK078616 NIDDK NIH HHS
- U01-HL054509 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35-HL135824 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- M01-RR07122 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- U01 DK105561 NIDDK NIH HHS
- U01-HL072524 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM121334 NIGMS NIH HHS
- N01-HC-95167, N01-HC-95168, N01-HC-95169 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL131565 NHLBI NIH HHS
- R01HL071251 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R13 CA124365 NCI NIH HHS
- R01-HL045522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL132825 NHLBI NIH HHS
- R01 HL118267 NHLBI NIH HHS
- HHSN268201800013I NIMHD NIH HHS
- R01-HL67348 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- R01 HL055673 NHLBI NIH HHS
- HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UM1-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 HL149683 NHLBI NIH HHS
- R01 HL092301 NHLBI NIH HHS
- P30 DK020595 NIDDK NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K08 HL145095 NHLBI NIH HHS
- K01 HL135405 NHLBI NIH HHS
- R03 OD030608 NIH HHS
- HHSN268201800014I NHLBI NIH HHS
- R01-HL113338 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F32-HL085989 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UM1 AI068636 NIAID NIH HHS
- R01 AG057381 NIA NIH HHS
- U19-CA203654 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
- Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Sunitha Selvaraj
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Theodore Arapoglou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaowu Liu
- School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa W Martin
- Division in Cardiology, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniel E Weeks
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Wang C, Gu Y, Zhou J, Zang J, Ling X, Li H, Hu L, Xu B, Zhang B, Qin N, Lv H, Duan W, Jiang Y, He Y, Jiang T, Chen C, Han X, Zhou K, Xu B, Liu X, Tao S, Jiang Y, Du J, Dai J, Diao F, Lu C, Guo X, Huo R, Liu J, Lin Y, Xia Y, Jin G, Ma H, Shen H, Hu Z. Leukocyte telomere length in children born following blastocyst-stage embryo transfer. Nat Med 2022; 28:2646-2653. [PMID: 36522605 DOI: 10.1038/s41591-022-02108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Perinatal and childhood adverse outcomes associated with assisted reproductive technology (ART) has been reported, but it remains unknown whether the initial leukocyte telomere length (LTL), which is an indicator of age-related phenotypes in later life, is affected. Here, we estimated the LTLs of 1,137 individuals from 365 families, including 202 children conceived by ART and 205 children conceived spontaneously from two centers of the China National Birth Cohort, using whole-genome sequencing (WGS) data. One-year-old children conceived by ART had shorter LTLs than those conceived spontaneously (beta, -0.36; P = 1.29 × 10-3) after adjusting for plurality, sex and other potential confounding factors. In particular, blastocyst-stage embryo transfer was associated with shorter LTL (beta, -0.54, P = 2.69 × 10-3) in children conceived by ART. The association was validated in 586 children conceived by ART from five centers using different LTL quantification methods (that is, WGS or qPCR). Blastocyst-stage embryo transfer resulted in shorter telomere lengths in mice at postnatal day 1 (P = 2.10 × 10-4) and mice at 6 months (P = 0.042). In vitro culturing of mice embryos did not result in shorter telomere lengths in the late cleavage stage, but it did suppress telomerase activity in the early blastocyst stage. Our findings demonstrate the need to evaluate the long-term consequences of ART, particularly for aging-related phenotypes, in children conceived by ART.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bei Xu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Zhang
- Center for Reproductive Medicine, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Na Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyu Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China. .,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
27
|
Roberts EK, Boss J, Mukherjee B, Salerno S, Zota A, Needham BL. Persistent organic pollutant exposure contributes to Black/White differences in leukocyte telomere length in the National Health and Nutrition Examination Survey. Sci Rep 2022; 12:19960. [PMID: 36402910 PMCID: PMC9675834 DOI: 10.1038/s41598-022-24316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Despite racial disparities in diseases of aging and premature mortality, non-Hispanic Black Americans tend to have longer leukocyte telomere length (LTL), a biomarker of cellular aging, than non-Hispanic White Americans. Previous findings suggest that exposure to certain persistent organic pollutants (POPs) is both racially-patterned and associated with longer LTL. We examine whether Black/White differences in LTL are explained by differences in exposure to 15 POPs by estimating the indirect effect (IE) of self-reported race on LTL that is mediated through nine polychlorinated biphenyls (PCBs), three furans, and three dioxins, as well as their mixtures. Our study population includes 1,251 adults from the 1999-2000 and 2001-2002 cycles of the cross-sectional National Health and Nutrition Examination Survey. We characterized single-pollutant mediation effects by constructing survey-weighted linear regression models. We also implemented various approaches to quantify a global mediation effect of all POPs, including unpenalized linear regression, ridge regression, and examination of three summary exposure scores. We found support for the hypothesis that exposure to PCBs partially mediates Black/White differences in LTL. In single-pollutant models, there were significant IEs of race on LTL through six individual PCBs (118, 138, 153, 170, 180, and 187). Ridge regression (0.013, CI 0.001, 0.023; 26.0% mediated) and models examining summative exposure scores with linear combinations derived from principal components analysis (0.019, CI 0.009, 0.029; 34.8% mediated) and Toxic Equivalency Quotient (TEQ) scores (0.016, CI 0.005, 0.026; 28.8% mediated) showed significant IEs when incorporating survey weights. Exposures to individual POPs and their mixtures, which may arise from residential and occupational segregation, may help explain why Black Americans have longer LTL than their White counterparts, providing an environmental explanation for counterintuitive race differences in cellular aging.
Collapse
Affiliation(s)
- Emily K Roberts
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA
| | - Stephen Salerno
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ami Zota
- Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Belinda L Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
28
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
29
|
Tummala H, Walne A, Buccafusca R, Alnajar J, Szabo A, Robinson P, McConkie-Rosell A, Wilson M, Crowley S, Kinsler V, Ewins AM, Madapura PM, Patel M, Pontikos N, Codd V, Vulliamy T, Dokal I. Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita. Am J Hum Genet 2022; 109:1472-1483. [PMID: 35931051 PMCID: PMC9388389 DOI: 10.1016/j.ajhg.2022.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.
Collapse
Affiliation(s)
- Hemanth Tummala
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK.
| | - Amanda Walne
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Roberto Buccafusca
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, UK
| | - Jenna Alnajar
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Anita Szabo
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Peter Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | | | - Meredith Wilson
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Suzanne Crowley
- Department of Paediatrics, St George's Healthcare NHS Trust, London, UK
| | - Veronica Kinsler
- Department of Paediatric Dermatology, Great Ormond Street Hospital, The Francis Crick Institute, London, UK
| | - Anna-Maria Ewins
- Haematology/Oncology Department, Royal Hospital for Sick Children, Glasgow, UK
| | - Pradeepa M Madapura
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Manthan Patel
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tom Vulliamy
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Inderjeet Dokal
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK; Barts Health NHS Trust, London, UK
| |
Collapse
|
30
|
Gampawar P, Schmidt R, Schmidt H. Telomere length and brain aging: A systematic review and meta-analysis. Ageing Res Rev 2022; 80:101679. [PMID: 35777725 DOI: 10.1016/j.arr.2022.101679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The current evidence on the association of leukocyte telomere length (LTL) with age-related structural and cognitive changes in the brain is mixed. Herein conforming to PRISMA 2020 guidelines, we performed a systematic review and meta-analysis using data from 27 observational studies in non-demented individuals. We used effect size and p-value based meta-analysis methods considering marked heterogeneity among studies. We found that the longer LTL was associated with higher brain volume (β = 0.43, 95%CI: 0.36-0.50%, p = 0.008, N = 1102) and with higher global cognition (β = 0.01; 95%CI: 0.00-0.02, p = 0.03, N = 19609) by effect size based meta-analysis and with brain volume, hippocampal volume, global cognition, cognitive domains of attention/speed as well as executive functions by p-value based meta-analysis. No significant association of LTL with brain white matter hyperintensities was detected. Furthermore, the evidence strongly suggests a subgroup-specific canonical effect of telomeres, notably in older individuals and females. In conclusion, we provide meta-analytic evidence on the beneficial effect of telomeres on brain structure as well as cognition and advocate for a beneficial subgroup-specific effect that warrants further attention.
Collapse
Affiliation(s)
- Piyush Gampawar
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria.
| |
Collapse
|
31
|
Hill C, Avila-Palencia I, Maxwell AP, Hunter RF, McKnight AJ. Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. FRONTIERS IN NEPHROLOGY 2022; 2:923068. [PMID: 37674991 PMCID: PMC10479694 DOI: 10.3389/fneph.2022.923068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) was the 12th leading cause of death globally in 2017 with the prevalence of CKD estimated at ~9%. Early detection and intervention for CKD may improve patient outcomes, but standard testing approaches even in developed countries do not facilitate identification of patients at high risk of developing CKD, nor those progressing to end-stage kidney disease (ESKD). Recent advances in CKD research are moving towards a more personalised approach for CKD. Heritability for CKD ranges from 30% to 75%, yet identified genetic risk factors account for only a small proportion of the inherited contribution to CKD. More in depth analysis of genomic sequencing data in large cohorts is revealing new genetic risk factors for common diagnoses of CKD and providing novel diagnoses for rare forms of CKD. Multi-omic approaches are now being harnessed to improve our understanding of CKD and explain some of the so-called 'missing heritability'. The most common omic analyses employed for CKD are genomics, epigenomics, transcriptomics, metabolomics, proteomics and phenomics. While each of these omics have been reviewed individually, considering integrated multi-omic analysis offers considerable scope to improve our understanding and treatment of CKD. This narrative review summarises current understanding of multi-omic research alongside recent experimental and analytical approaches, discusses current challenges and future perspectives, and offers new insights for CKD.
Collapse
Affiliation(s)
| | | | | | | | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
32
|
Nakao T, Bick AG, Taub MA, Zekavat SM, Uddin MM, Niroula A, Carty CL, Lane J, Honigberg MC, Weinstock JS, Pampana A, Gibson CJ, Griffin GK, Clarke SL, Bhattacharya R, Assimes TL, Emery LS, Stilp AM, Wong Q, Broome J, Laurie CA, Khan AT, Smith AV, Blackwell TW, Codd V, Nelson CP, Yoneda ZT, Peralta JM, Bowden DW, Irvin MR, Boorgula M, Zhao W, Yanek LR, Wiggins KL, Hixson JE, Gu CC, Peloso GM, Roden DM, Reupena MS, Hwu CM, DeMeo DL, North KE, Kelly S, Musani SK, Bis JC, Lloyd-Jones DM, Johnsen JM, Preuss M, Tracy RP, Peyser PA, Qiao D, Desai P, Curran JE, Freedman BI, Tiwari HK, Chavan S, Smith JA, Smith NL, Kelly TN, Hidalgo B, Cupples LA, Weeks DE, Hawley NL, Minster RL, Deka R, Naseri TT, de las Fuentes L, Raffield LM, Morrison AC, Vries PS, Ballantyne CM, Kenny EE, Rich SS, Whitsel EA, Cho MH, Shoemaker MB, Pace BS, Blangero J, Palmer ND, Mitchell BD, Shuldiner AR, Barnes KC, Redline S, Kardia SL, Abecasis GR, Becker LC, Heckbert SR, He J, Post W, Arnett DK, Vasan RS, Darbar D, Weiss ST, McGarvey ST, de Andrade M, Chen YDI, Kaplan RC, Meyers DA, Custer BS, Correa A, Psaty BM, Fornage M, Manson JE, Boerwinkle E, Konkle BA, Loos RJ, Rotter JI, Silverman EK, Kooperberg C, Danesh J, Samani NJ, Jaiswal S, Libby P, Ellinor PT, Pankratz N, Ebert BL, Reiner AP, Mathias RA, Do R, Natarajan P. Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. SCIENCE ADVANCES 2022; 8:eabl6579. [PMID: 35385311 PMCID: PMC8986098 DOI: 10.1126/sciadv.abl6579] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 05/24/2023]
Abstract
Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.
Collapse
Affiliation(s)
- Tetsushi Nakao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alexander G. Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Md M. Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Cara L. Carty
- Initiative for Research and Education to Advance Community Health, Washington State University, Seattle, WA, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael C. Honigberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua S. Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Akhil Pampana
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Gabriel K. Griffin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shoa L. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Romit Bhattacharya
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Themistocles L. Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Leslie S. Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cecelia A. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Alyna T. Khan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Albert V. Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Thomas W. Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Zachary T. Yoneda
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marguerite R. Irvin
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, AL, USA
| | - Meher Boorgula
- Division of Biomedical Informatics and Personalized Medicine and the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kerri L. Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dan M. Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF, Benioff Children’s Hospital Oakland, Oakland, CA, USA
| | - Solomon K. Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Donald M. Lloyd-Jones
- Division of Cardiology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Barry I. Freedman
- Internal Medicine–Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hemant K. Tiwari
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL, USA
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine and the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart Lung and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Daniel E. Weeks
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola L. Hawley
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT, USA
| | - Ryan L. Minster
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Initiative for Research and Education to Advance Community Health, Washington State University, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, AL, USA
- Division of Biomedical Informatics and Personalized Medicine and the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Ministry of Health, Government of Samoa, Apia, Samoa
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF, Benioff Children’s Hospital Oakland, Oakland, CA, USA
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
- Internal Medicine–Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
- National Heart Lung and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Health, American Samoa Government, Pago Pago, American Samoa, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Dean’s Office, College of Public Health, University of Kentucky, Lexington, KY, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI, USA
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Departments of Medicine and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Bloodworks Northwest, Seattle, WA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ranjan Deka
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Take T. Naseri
- Department of Health, American Samoa Government, Pago Pago, American Samoa, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S. Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Betty S. Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen C. Barnes
- Division of Biomedical Informatics and Personalized Medicine and the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Gonçalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
| | - Wendy Post
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Donna K. Arnett
- Dean’s Office, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Ramachandran S. Vasan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart Lung and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott T. Weiss
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephen T. McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Mariza de Andrade
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Deborah A. Meyers
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Adolfo Correa
- Departments of Medicine and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - JoAnn E. Manson
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Boerwinkle
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Barbara A. Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Bloodworks Northwest, Seattle, WA, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrick T. Ellinor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Initiative for Research and Education to Advance Community Health, Washington State University, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, AL, USA
- Division of Biomedical Informatics and Personalized Medicine and the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Ministry of Health, Government of Samoa, Apia, Samoa
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF, Benioff Children’s Hospital Oakland, Oakland, CA, USA
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
- Internal Medicine–Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
- National Heart Lung and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Health, American Samoa Government, Pago Pago, American Samoa, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Dean’s Office, College of Public Health, University of Kentucky, Lexington, KY, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI, USA
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Departments of Medicine and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Bloodworks Northwest, Seattle, WA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|