1
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Zhang Y, Jiang X, Wu D, Huang H, Jia G, Zhao G. Sema4D deficiency enhances glucose tolerance through GLUT2 retention in hepatocytes. J Transl Med 2024; 22:864. [PMID: 39334386 PMCID: PMC11429007 DOI: 10.1186/s12967-024-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The glucose transporter 2 (GLUT2) is constitutively expressed in pancreatic beta cells and hepatocytes of mice. It is the most important receptor in glucose-stimulated insulin release and hepatic glucose transport. The Sema4D is a signalin receptor on cell membranes. The correlation between Sema4D and GLUT2 has not been reported previously. We investigated whether knockdown of Sema4D could exert a hypoglycemic effect based on the increased GLUT2 expression in Sema4D -/- mice hepatocytes. METHODS The glucose tolerance test and insulin tolerance test in sema4D -/- and sema4D +/+ mice were compared before and after streptozotocin (STZ) injection; the expression of GLUT2 content on the membrane surface of both groups was verified by Western blot. Then, the levels of insulin and C-peptide in the serum of the two groups of mice after STZ injection were measured by ELISA; the differentially expressed mRNAs in the liver of the two groups of mice were analyzed by transcriptomic analysis; then the differences in the expression of GLUT2, glycogen, insulin and glucagon in the two groups of mice were compared by tissue section staining. Finally, metabolomics analysis was performed to analyze the metabolites differentially expressed in the two groups of mice. KEY FINDINGS First, Sema4D -/- male mice exhibited significantly greater glucose tolerance than wild-type mice in a hyperglycemic environment. Secondly, Sema4D -/- mice had more retained GLUT2 in liver membranes after STZ injection according to an immunofluorescence assay. After STZ injection, Sema4D -/- male mice did not exhibit fasting hyperinsulinemia like wild-type mice. Finally, analysis of metabolomic and immunohistochemical data also revealed that Sema4D -/- mice produce hypoglycemic effects by enhancing the pentose phosphate pathway, but not glycogen synthesis. CONCLUSIONS Thus, Sema4D may play an important role in the regulation of glucose homeostasis by affecting GLUT2 synthesis.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Dongsong Wu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Kim K. Rethinking about Metformin: Promising Potentials. Korean J Fam Med 2024; 45:258-267. [PMID: 39182908 PMCID: PMC11427230 DOI: 10.4082/kjfm.24.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Metformin is widely used drugs in the treatment of type 2 diabetes mellitus. However, the mechanisms of action are complex and are still not fully understood yet. Metformin has a dose-dependent blood sugar-lowering effect. The most common adverse reactions of metformin are gastrointestinal symptoms, and women tend to be more experienced than men. A positive correlation between the administration of duration and the daily dose of metformin and the risk of vitamin B12 deficiency is confirmed. Novel glucose-lowering mechanism through the activation of AMP-activated protein kinase and alteration of gut microbiota composition is identified. In addition, metformin has immunomodulatory properties in various mechanisms, including anti-inflammatory actions, and so forth. Metformin improves insulin sensitivity, which may reduce the risk of tumor growth in certain cancers. The antiviral effects of metformin may occur through several mechanisms, including blocking angiotensin converting enzyme 2 receptor, and so forth. These potential mechanisms of metformin are promising in various clinical settings, such as inflammatory diseases, autoimmune diseases, cancer, and coronavirus disease 2019.
Collapse
Affiliation(s)
- Kyunam Kim
- Department of Family Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
4
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
5
|
Nguyen D, Miao X, Taskar K, Magee M, Gorycki P, Moore K, Tai G. No dose adjustment of metformin or substrates of organic cation transporters (OCT)1 and OCT2 and multidrug and toxin extrusion protein (MATE)1/2K with fostemsavir coadministration based on modeling approaches. Pharmacol Res Perspect 2024; 12:e1238. [PMID: 38988092 PMCID: PMC11237172 DOI: 10.1002/prp2.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Abstract
Fostemsavir is an approved gp120-directed attachment inhibitor and prodrug for the treatment of human immunodeficiency virus type 1 infection in combination with other antiretrovirals (ARVs) in heavily treatment-experienced adults with multi-drug resistance, intolerance, or safety concerns with their current ARV regimen. Initial in vitro studies indicated that temsavir, the active moiety of fostemsavir, and its metabolites, inhibited organic cation transporter (OCT)1, OCT2, and multidrug and toxin extrusion transporters (MATEs) at tested concentration of 100 uM, although risk assessment based on the current Food and Drug Administration in vitro drug-drug interaction (DDI) guidance using the mechanistic static model did not reveal any clinically relevant inhibition on OCTs and MATEs. However, a DDI risk was flagged with EMA static model predictions. Hence, a physiologically based pharmacokinetic (PBPK) model of fostemsavir/temsavir was developed to further assess the DDI risk potential of OCT and MATEs inhibition by temsavir and predict changes in metformin (a sensitive OCT and MATEs substrate) exposure. No clinically relevant impact on metformin concentrations across a wide range of temsavir concentrations was predicted; therefore, no dose adjustment is recommended for metformin when co-administered with fostemsavir.
Collapse
|
6
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
7
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|
8
|
Nemeth DV, Iannelli L, Gangitano E, D’Andrea V, Bellini MI. Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation. Biomedicines 2024; 12:1534. [PMID: 39062107 PMCID: PMC11275143 DOI: 10.3390/biomedicines12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization's list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF's effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF's potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Leonardo Iannelli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
9
|
Thomaz MDL, Vieira CP, Caris JA, Marques MP, Rocha A, Paz TA, Rezende REF, Lanchote VL. Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals (Basel) 2024; 17:865. [PMID: 39065716 PMCID: PMC11280093 DOI: 10.3390/ph17070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to evaluate the impact of liver fibrosis stages of chronic infection with hepatitis C virus (HCV) on the in vivo activity of organic cation transporters (hepatic OCT1 and renal OCT2) using metformin (MET) as a probe drug. Participants allocated in Group 1 (n = 15, mild to moderate liver fibrosis) or 2 (n = 13, advanced liver fibrosis and cirrhosis) received a single MET 50 mg oral dose before direct-acting antiviral (DAA) drug treatment (Phase 1) and 30 days after achieving sustained virologic response (Phase 2). OCT1/2 activity (MET AUC0-24) was found to be reduced by 25% when comparing the two groups in Phase 2 (ratio 0.75 (0.61-0.93), p < 0.05) but not in Phase 1 (ratio 0.81 (0.66-0.98), p > 0.05). When Phases 1 and 2 were compared, no changes were detected in both Groups 1 (ratio 1.10 (0.97-1.24), p > 0.05) and 2 (ratio 1.03 (0.94-1.12), p > 0.05). So, this study shows a reduction of approximately 25% in the in vivo activity of OCT1/2 in participants with advanced liver fibrosis and cirrhosis after achieving sustained virologic response and highlights that OCT1/2 in vivo activity depends on the liver fibrosis stage of chronic HCV infection.
Collapse
Affiliation(s)
- Matheus De Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Carolina Pinto Vieira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Juciene Aparecida Caris
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Maria Paula Marques
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Adriana Rocha
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Tiago Antunes Paz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Rosamar Eulira Fontes Rezende
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center, Hepatitis Outpatient Clinic, Municipal Health Secretary, Ribeirão Preto 14049-900, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| |
Collapse
|
10
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
11
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
12
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
13
|
Corleto KA, Strandmo JL, Giles ED. Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals (Basel) 2024; 17:396. [PMID: 38543182 PMCID: PMC10974219 DOI: 10.3390/ph17030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Over the last several decades, a growing body of research has investigated the potential to repurpose the anti-diabetic drug metformin for breast cancer prevention and/or treatment. Observational studies in the early 2000s demonstrated that patients with diabetes taking metformin had decreased cancer risk, providing the first evidence supporting the potential role of metformin as an anti-cancer agent. Despite substantial efforts, two decades later, the exact mechanisms and clinical efficacy of metformin for breast cancer remain ambiguous. Here, we have summarized key findings from studies examining the effect of metformin on breast cancer across the translational spectrum including in vitro, in vivo, and human studies. Importantly, we discuss critical factors that may help explain the significant heterogeneity in study outcomes, highlighting how metformin dose, underlying metabolic health, menopausal status, tumor subtype, membrane transporter expression, diet, and other factors may play a role in modulating metformin's anti-cancer effects. We hope that these insights will help with interpreting data from completed studies, improve the design of future studies, and aid in the identification of patient subsets with breast cancer or at high risk for the disease who are most likely to benefit from metformin treatment.
Collapse
Affiliation(s)
- Karen A. Corleto
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L. Strandmo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
| | - Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Vieira LS, Seguin RP, Xu L, Wang J. Interaction and Transport of Benzalkonium Chlorides by the Organic Cation and Multidrug and Toxin Extrusion Transporters. Drug Metab Dispos 2024; 52:312-321. [PMID: 38307853 PMCID: PMC10955720 DOI: 10.1124/dmd.123.001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1-3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1-3 and hMATE1/2K (IC50 ranging 0.83-25.8 μM). Further, the short-chain BACs (C8 and C10) were identified as substrates of these transporters. Interestingly, although BAC C8 displayed typical Michaelis-Menten kinetics, C10 demonstrated a more complex substrate-inhibition profile. Transwell studies with transfected Madin-Darby canine kidney cells revealed that intracellular accumulation of basally applied BAC C8 and C10 was substantially higher (8.2- and 3.7-fold, respectively) in hOCT2/hMATE1 double-transfected cells in comparison with vector-transfected cells, supporting a role of these transporters in mediating renal accumulation of these compounds in vivo. Together, our results suggest that BACs interact with hOCT1-3 and hMATE1/2K as both inhibitors and substrates and that these transporters may play important roles in tissue-specific accumulation and potential toxicity of short-chain BACs. Our findings have important implications for understanding human exposure and susceptibility to BACs due to environmental exposure. SIGNIFICANCE STATEMENT: Humans are systemically exposed to benzalkonium chlorides (BACs). These compounds broadly distribute through tissues, and their safety has been questioned by the FDA. Our results demonstrate that hOCT2 and hMATE1 contribute to the renal accumulation of BAC C8 and C10 and that hOCT1 and hOCT3 may be involved in the tissue distribution of these compounds. These findings can improve our understanding of BAC disposition and toxicology in humans, as their accumulation could lead to biochemical interactions and deleterious effects.
Collapse
Affiliation(s)
- Letícia Salvador Vieira
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Ryan P Seguin
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Libin Xu
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Adiwidjaja J, Spires J, Brouwer KLR. Physiologically Based Pharmacokinetic (PBPK) Model Predictions of Disease Mediated Changes in Drug Disposition in Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Pharm Res 2024; 41:441-462. [PMID: 38351228 DOI: 10.1007/s11095-024-03664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Simulations Plus, Inc, Lancaster, CA, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Zhi H, Dai Y, Su L, Yang L, Wu W, Wang Z, Zhu X, Liu L, Aa J, Yang H. Thioacetamide-Induced Acute Liver Injury Increases Metformin Plasma Exposure by Downregulating Renal OCT2 and MATE1 Expression and Function. Biomedicines 2023; 11:3314. [PMID: 38137535 PMCID: PMC10741527 DOI: 10.3390/biomedicines11123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin plasma exposure is increased in rats with thioacetamide (TAA)-induced liver failure. The absorption, distribution, and excretion process of metformin is mainly mediated by organic cation transporters (OCTs) and multidrug and toxin extrusion transporters (MATEs). To investigate the mechanisms of the increase in TAA-induced metformin plasma exposure, we employed intestinal perfusion and urinary excretion assays to evaluate the changes in the absorption and excretion of metformin and used Western blotting to investigate the metformin-related transport proteins' expression changes and mechanisms. The results showed that neither intestinal OCT2 expression nor metformin intestinal absorption were significantly altered by TAA-induced liver failure, while significantly decreased expression and function of renal OCT2 and MATE1 as well as impaired metformin excretion were observed in TAA rats. HK-2 cells were used as an in vitro model to explore the mechanism of liver-failure-mediated downregulation in renal OCT2 and MATE1. The results demonstrated that among numerous abnormal substances that changed in acute liver failure, elevated estrogen levels and tumor necrosis factor-α were the main factors mediating the downregulation of OCT2 and MATE1. In conclusion, this study highlights the downregulation of renal OCT2 and MATE1 in liver injury and its regulatory mechanism and reveals its roles in the increase in TAA-mediated metformin plasma exposure.
Collapse
Affiliation(s)
- Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Yidong Dai
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Lin Su
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Lu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Wenhan Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Zehua Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Xinyue Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| |
Collapse
|
17
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
18
|
Ahmed A, Elsadek HM, Shalaby SM, Elnahas HM. Association of SLC22A1, SLC47A1, and KCNJ11 polymorphisms with efficacy and safety of metformin and sulfonylurea combination therapy in Egyptian patients with type 2 diabetes. Res Pharm Sci 2023; 18:614-625. [PMID: 39005567 PMCID: PMC11246114 DOI: 10.4103/1735-5362.389949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Multidrug and toxin extrusion transporter 1 (MATE1), encoded by the SLC47A1 gene and single nucleotide polymorphisms of organic cation transport 1, may impact metformin's responsiveness and side effects. Inward-rectifier potassium channel 6.2 (Kir 6.2) subunits encoded by KCNJ11 may affect the response to sulfonylurea. This study aimed to evaluate the association between SLC22A1 rs72552763 and rs628031, SLC47A1 rs2289669 and KCNJ11 rs5219 genetic variations with sulfonylurea and metformin combination therapy efficacy and safety in Egyptian type 2 diabetes mellitus patients. Experimental approach This study was conducted on 100 cases taking at least one year of sulfonylurea and metformin combination therapy. Patients were genotyped via the polymerase chain reaction-restriction fragment length polymorphism technique. Then, according to their glycated hemoglobin level, cases were subdivided into non-responders or responders. Depending on metformin-induced gastrointestinal tract side effects incidence, patients are classified as tolerant or intolerant. Findings/Results KCNJ11 rs5219 heterozygous and homozygous mutant genotypes, SLC47A1 rs2289669 heterozygous and homozygous mutant genotypes (AA and AG), and mutant alleles of both polymorphisms were significantly related with increased response to combined therapy. Individuals with the SLC22A1 (rs72552763) GAT/del genotype and the SLC22A1 (rs628031) AG and AA genotypes were at a higher risk for metformin-induced gastrointestinal tract adverse effects. Conclusion and implications The results implied a role for SLC47A1 rs2289669 and KCNJ11 rs5219 in the responsiveness to combined therapy. SLC22A1 (rs628031) and (rs72552763) polymorphisms may be associated with increased metformin adverse effects in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Aya Ahmed
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Egypt
| | - Hany M Elsadek
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
19
|
Lee H, Chung JY, Yu KS, Park SJ, Lee S. Pharmacokinetic Comparison Between a Fixed-Dose Combination of Empagliflozin L-Proline/Metformin and Empagliflozin/Metformin in Healthy Korean Subjects. Clin Pharmacol Drug Dev 2023; 12:1156-1163. [PMID: 37489552 DOI: 10.1002/cpdd.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Empagliflozin and metformin are oral antidiabetic drugs commonly used to treat type 2 diabetes mellitus as a combination therapy. This study aimed to compare the pharmacokinetics and safety of a newly developed fixed-dose combination of 5-mg empagliflozin L-proline and 1000-mg metformin with the reference drug. A randomized, open-label, single-dose, 2-period, 2-treatment, crossover study was conducted in healthy Korean subjects. The subjects received a single oral dose of reference drug or test drug at each period. The pharmacokinetic (PK) parameters were calculated using a noncompartmental method. The geometric mean ratios and 90% confidence intervals of the plasma maximum concentration (Cmax ) and area under the concentration-time curve from time zero to the last quantifiable concentration (AUClast ) were calculated. A total of 27 healthy subjects were included in the PK analysis. For empagliflozin, the geometric mean ratios (90% confidence intervals) of the test to reference drug for Cmax and AUClast were 1.03 (0.99-1.08) and 1.03 (1.00-1.06), respectively. For metformin, the corresponding values for Cmax and AUClast were 0.99 (0.92-1.06) and 1.00 (0.94-1.06), respectively. In conclusion, a fixed-dose combination of empagliflozin L-proline and metformin showed similar PK characteristics to the reference drug, and both drugs were safe in healthy subjects.
Collapse
Affiliation(s)
- HyunJoon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yong Chung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Shin-Jung Park
- Department of Pharmaceutical Research Laboratory, Chong Kun Dang Research Institute, Chong Kun Dan Pharmaceutical Corporation, Seoul, South Korea
| | - Soyoung Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
20
|
Weber BL, Beaver JN, Gilman TL. Summarizing studies using constitutive genetic deficiency to investigate behavioural influences of uptake 2 monoamine transporters. Basic Clin Pharmacol Toxicol 2023; 133:439-458. [PMID: 36316031 PMCID: PMC10657738 DOI: 10.1111/bcpt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Burgeoning literature demonstrates that monoamine transporters with high transport capacity but lower substrate affinity (i.e., uptake 2) contribute meaningfully to regulation of monoamine neurotransmitter signalling. However, studying behavioural influences of uptake 2 is hindered by an absence of selective inhibitors largely free of off-target, confounding effects. This contrasts with study of monoamine transporters with low transport capacity but high substrate affinity (i.e., uptake 1), for which there are many reasonably selective inhibitors. To circumvent this dearth of pharmacological tools for studying uptake 2, researchers have instead employed mice with constitutive genetic deficiency in three separate transporters. By studying baseline behavioural shifts, plus behavioural responses to environmental and pharmacological manipulations-the latter primarily targeting uptake 1-investigators have been creatively characterizing the behavioural, and often sex-specific, influences of uptake 2. This non-systematic mini review summarizes current uptake 2 behaviour literature, highlighting emphases on stress responsivity in organic cation transporter 2 (OCT2) work, psychostimulant responsivity in OCT3 and plasma membrane monoamine transporter (PMAT) investigations, and antidepressant responsivity in all three. Collectively, this small but growing body of work reiterates the necessity for development of selective uptake 2-inhibiting drugs, with reviewed studies suggesting that these might advance personalized treatment approaches.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
21
|
Oyanna VO, Garcia-Torres KY, Bechtold BJ, Lynch KD, Call MR, Horváth M, Manwill PK, Graf TN, Cech NB, Oberlies NH, Paine MF, Clarke JD. Goldenseal-Mediated Inhibition of Intestinal Uptake Transporters Decreases Metformin Systemic Exposure in Mice. Drug Metab Dispos 2023; 51:1483-1489. [PMID: 37562957 PMCID: PMC10586506 DOI: 10.1124/dmd.123.001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Goldenseal is a perennial plant native to eastern North America. A recent clinical study reported goldenseal decreased metformin Cmax and area under the blood concentration versus time curve (AUC) by 27% and 23%, respectively, but half-life and renal clearance were unchanged. These observations suggested goldenseal altered processes involved in metformin absorption. The underlying mechanism(s) remain(s) unknown. One mechanism for the decreased metformin systemic exposure is inhibition by goldenseal of intestinal uptake transporters involved in metformin absorption. Goldenseal extract and three goldenseal alkaloids (berberine, (-)-β-hydrastine, hydrastinine) were tested as inhibitors of organic cation transporter (OCT) 3, plasma membrane monoamine transporter (PMAT), and thiamine transporter (THTR) 2 using human embryonic kidney 293 cells overexpressing each transporter. The goldenseal extract, normalized to berberine content, was the strongest inhibitor of each transporter (IC50: 4.9, 13.1, and 5.8 μM for OCT3, PMAT, and THTR2, respectively). A pharmacokinetic study in mice compared the effects of berberine, (-)-β-hydrastine, goldenseal extract, and imatinib (OCT inhibitor) on orally administered metformin. Goldenseal extract and imatinib significantly decreased metformin Cmax by 31% and 25%, respectively, and had no effect on half-life. Berberine and (-)-β-hydrastine had no effect on metformin pharmacokinetics, indicating neither alkaloid alone precipitated the interaction in vivo. A follow-up murine study involving intravenous metformin and oral inhibitors examined the contributions of basolateral enteric/hepatic uptake transporters to the goldenseal-metformin interaction. Goldenseal extract and imatinib had no effect on metformin AUC and half-life, suggesting lack of inhibition of basolateral enteric/hepatic uptake transporters. Results may have implications for patients taking goldenseal with drugs that are substrates for OCT3 and THTR2. SIGNIFICANCE STATEMENT: Goldenseal is used to self-treat respiratory infections and digestive disorders. We investigated potential mechanisms for the clinical pharmacokinetic interaction observed between goldenseal and metformin, specifically inhibition by goldenseal of intestinal uptake transporters (OCT3, PMAT, THTR2) involved in metformin absorption. Goldenseal extract inhibited all three transporters in vitro and decreased metformin systemic exposure in mice. These data may have broader implications for patients co-consuming goldenseal with other drugs that are substrates for these transporters.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Kenisha Y Garcia-Torres
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Baron J Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - M Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Miklós Horváth
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Preston K Manwill
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Tyler N Graf
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| |
Collapse
|
22
|
Regu VPR, Behera D, Sunkara SP, Gohel V, Tripathy S, Swain RP, Subudhi BB. Ocular Delivery of Metformin for Sustained Release and in Vivo Efficacy. J Pharm Sci 2023; 112:2494-2505. [PMID: 37031863 DOI: 10.1016/j.xphs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Metformin is known to lower inflammation, independent of its anti-diabetic action. Thus, topical metformin can be a therapeutic strategy for managing ocular inflammation associated with diabetes. To achieve this and address the issues of ocular retention and controlled release an in situ gel of metformin was developed. The formulations were prepared using sodium hyaluronate, hypromellose, and gellan gum. The composition was optimized by monitoring gelling time/capacity, viscosity, and mucoadhesion. MF5 was selected as the optimized formulation. It showed both chemical and physiological compatibility. It was found to be sterile and stable. MF5 exhibited sustained release of metformin for 8h that fitted best with zero-order kinetics. Further, the release mode was found to be close to the Korsmeyer-Peppas model. Supported by an ex vivo permeation study, it showed potential for prolonged action. It showed a significant reduction in ocular inflammation that was comparable to that of the standard drug. MF5 shows translational potential as a safe alternative to steroids for managing ocular inflammation.
Collapse
Affiliation(s)
- Vara Prasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Dhananjay Behera
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Sai Prathyusha Sunkara
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India; ProCyto Labs Pvt Ltd., KIIT-TBI, Bhubaneswar, Odisha 751024, India
| | - Shyamalendu Tripathy
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India.
| |
Collapse
|
23
|
Lofthouse EM, Cleal J, Lewis RM, Sengers BG. Computational Modelling of Paracellular Diffusion and OCT3 Mediated Transport of Metformin in the Perfused Human Placenta. J Pharm Sci 2023; 112:2570-2580. [PMID: 37211316 DOI: 10.1016/j.xphs.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Metformin is an antidiabetic drug, increasingly prescribed in pregnancy and has been shown to cross the human placenta. The mechanisms underlying placental metformin transfer remain unclear. This study investigated the roles of drug transporters and paracellular diffusion in the bidirectional transfer of metformin across the human placental syncytiotrophoblast using placental perfusion experiments and computational modelling. 14C-metformin transfer was observed in the maternal to fetal and fetal to maternal directions and was not competitively inhibited by 5 mM unlabelled metformin. Computational modelling of the data was consistent with overall placental transfer via paracellular diffusion. Interestingly, the model also predicted a transient peak in fetal 14C-metformin release due to trans-stimulation of OCT3 by unlabelled metformin at the basal membrane. To test this hypothesis a second experiment was designed. OCT3 substrates (5 mM metformin, 5 mM verapamil and 10 mM decynium-22) added to the fetal artery trans-stimulated release of 14C-metformin from the placenta into the fetal circulation, while 5 mM corticosterone did not. This study demonstrated activity of OCT3 transporters on the basal membrane of the human syncytiotrophoblast. However, we did not detect a contribution of either OCT3 or apical membrane transporters to overall materno-fetal transfer, which could be represented adequately by paracellular diffusion in our system.
Collapse
Affiliation(s)
- Emma M Lofthouse
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Jane Cleal
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Bram G Sengers
- Faculty of Engineering and Physical Sciences, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|
24
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
25
|
Wit N, Gogola E, West JA, Vornbäumen T, Seear RV, Bailey PS, Burgos-Barragan G, Wang M, Krawczyk P, Huberts DH, Gergely F, Matheson NJ, Kaser A, Nathan JA, Patel KJ. A histone deacetylase 3 and mitochondrial complex I axis regulates toxic formaldehyde production. SCIENCE ADVANCES 2023; 9:eadg2235. [PMID: 37196082 PMCID: PMC10191432 DOI: 10.1126/sciadv.adg2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Cells produce considerable genotoxic formaldehyde from an unknown source. We carry out a genome-wide CRISPR-Cas9 genetic screen in metabolically engineered HAP1 cells that are auxotrophic for formaldehyde to find this cellular source. We identify histone deacetylase 3 (HDAC3) as a regulator of cellular formaldehyde production. HDAC3 regulation requires deacetylase activity, and a secondary genetic screen identifies several components of mitochondrial complex I as mediators of this regulation. Metabolic profiling indicates that this unexpected mitochondrial requirement for formaldehyde detoxification is separate from energy generation. HDAC3 and complex I therefore control the abundance of a ubiquitous genotoxic metabolite.
Collapse
Affiliation(s)
- Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ewa Gogola
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - James A. West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tristan Vornbäumen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rachel V. Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Peter S. J. Bailey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Guillermo Burgos-Barragan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Patrycja Krawczyk
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daphne H. E. W. Huberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ketan J. Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
26
|
Zhang SY, Bruce K, Danaei Z, Li RJW, Barros DR, Kuah R, Lim YM, Mariani LH, Cherney DZ, Chiu JFM, Reich HN, Lam TKT. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab 2023; 35:875-886.e5. [PMID: 37060902 DOI: 10.1016/j.cmet.2023.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
Metformin, the most widely prescribed medication for obesity-associated type 2 diabetes (T2D), lowers plasma glucose levels, food intake, and body weight in rodents and humans, but the mechanistic site(s) of action remain elusive. Metformin increases plasma growth/differentiation factor 15 (GDF15) levels to regulate energy balance, while GDF15 administration activates GDNF family receptor α-like (GFRAL) that is highly expressed in the area postrema (AP) and the nucleus of the solitary tract (NTS) of the hindbrain to lower food intake and body weight. However, the tissue-specific contribution of plasma GDF15 levels after metformin treatment is still under debate. Here, we found that metformin increased plasma GDF15 levels in high-fat (HF) fed male rats through the upregulation of GDF15 synthesis in the kidney. Importantly, the kidney-specific knockdown of GDF15 expression as well as the AP-specific knockdown of GFRAL expression negated the ability of metformin to lower food intake and body weight gain. Taken together, we unveil the kidney as a target of metformin to regulate energy homeostasis through a kidney GDF15-dependent AP axis.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada
| | - Kyla Bruce
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Zahra Danaei
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rosa J W Li
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Daniel R Barros
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rachel Kuah
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Z Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Jennifer F M Chiu
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Heather N Reich
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G2C4, Canada.
| |
Collapse
|
27
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
28
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
29
|
Nasykhova YA, Barbitoff YA, Tonyan ZN, Danilova MM, Nevzorov IA, Komandresova TM, Mikhailova AA, Vasilieva TV, Glavnova OB, Yarmolinskaya MI, Sluchanko EI, Glotov AS. Genetic and Phenotypic Factors Affecting Glycemic Response to Metformin Therapy in Patients with Type 2 Diabetes Mellitus. Genes (Basel) 2022; 13:genes13081310. [PMID: 35893047 PMCID: PMC9330240 DOI: 10.3390/genes13081310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metformin is an oral hypoglycemic agent widely used in clinical practice for treatment of patients with type 2 diabetes mellitus (T2DM). The wide interindividual variability of response to metformin therapy was shown, and recently the impact of several genetic variants was reported. To assess the independent and combined effect of the genetic polymorphism on glycemic response to metformin, we performed an association analysis of the variants in ATM, SLC22A1, SLC47A1, and SLC2A2 genes with metformin response in 299 patients with T2DM. Likewise, the distribution of allele and genotype frequencies of the studied gene variants was analyzed in an extended group of patients with T2DM (n = 464) and a population group (n = 129). According to our results, one variant, rs12208357 in the SLC22A1 gene, had a significant impact on response to metformin in T2DM patients. Carriers of TT genotype and T allele had a lower response to metformin compared to carriers of CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively). To identify the parameters that had the greatest importance for the prediction of the therapy response to metformin, we next built a set of machine learning models, based on the various combinations of genetic and phenotypic characteristics. The model based on a set of four parameters, including gender, rs12208357 genotype, familial T2DM background, and waist–hip ratio (WHR) showed the highest prediction accuracy for the response to metformin therapy in patients with T2DM (AUC = 0.62 in cross-validation). Further pharmacogenetic studies may aid in the discovery of the fundamental mechanisms of type 2 diabetes, the identification of new drug targets, and finally, it could advance the development of personalized treatment.
Collapse
Affiliation(s)
- Yulia A. Nasykhova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Yury A. Barbitoff
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
- St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Ziravard N. Tonyan
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Maria M. Danilova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Ivan A. Nevzorov
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Anastasiia A. Mikhailova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Olga B. Glavnova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Maria I. Yarmolinskaya
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Andrey S. Glotov
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
- Correspondence: ; Tel.: +7-9117832003
| |
Collapse
|
30
|
Li C, Horton JK, Sale M, Curd L, Goti V, Tao W, Beelen A. Pharmacokinetic Drug-Drug Interaction Studies Between Trilaciclib and Midazolam, Metformin, Rifampin, Itraconazole, and Topotecan in Healthy Volunteers and Patients with Extensive-Stage Small-Cell Lung Cancer. Clin Drug Investig 2022; 42:679-692. [PMID: 35842567 PMCID: PMC9338108 DOI: 10.1007/s40261-022-01179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
Background and Objective Trilaciclib is a cyclin-dependent kinase 4/6 inhibitor indicated to decrease the incidence of chemotherapy-induced myelosuppression in patients with extensive-stage small-cell lung cancer. Trilaciclib is a substrate and time-dependent inhibitor of cytochrome P450 3A4 and an inhibitor of multidrug and toxin extrusion 1, multidrug and toxin extrusion 2-K, organic cation transporter 1, and organic cation transporter 2. Here, we investigate the pharmacokinetic drug–drug interaction potential of trilaciclib. Methods Two phase I studies were conducted as prospective, open-label, fixed-sequence drug–drug interaction studies in healthy subjects (n = 57, n = 20) to investigate potential interactions between intravenously administered trilaciclib (200 or 240 mg/m2) and orally administered midazolam (5 mg), metformin (1000 mg), itraconazole (200 mg), and rifampin (600 mg). A population pharmacokinetic model was fit to phase Ib/IIa data in patients with extensive-stage small-cell lung cancer (n = 114) to assess the impact of trilaciclib dose and exposure (area under the plasma concentration–time curve) on topotecan clearance. Results Coadministration with trilaciclib had minimal effects on the exposure (area under the plasma concentration–time curve from time 0 to infinity) of midazolam (geometric least-square mean ratio [GMR] vs midazolam alone 1.065; 90% confidence interval [CI] 0.984–1.154) but statistically significantly increased plasma exposure (GMR 1.654; 90% CI 1.472–1.858) and decreased renal clearance (GMR 0.633; 90% CI 0.572–0.701) of metformin. Coadministration of trilaciclib with rifampin or itraconazole decreased trilaciclib area under the plasma concentration–time curve from time 0 to infinity by 17.3% (GMR 0.827; 90% CI 0.785–0.871) and 14.0% (GMR 0.860; 0.820–0.902), respectively, vs trilaciclib alone. Population pharmacokinetic modeling showed no significant effect of trilaciclib on topotecan clearance. Conclusions Overall, the drug–drug interaction and safety profiles of trilaciclib in these studies support its continued use in patients with extensive-stage small-cell lung cancer. Clinical Trial Registration Study 106: EudraCT number: 2019-002303-18; Study 114: not applicable; Study 03: Clinicaltrials.org: NCT02514447; August 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s40261-022-01179-x.
Collapse
Affiliation(s)
- Chao Li
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
- Fosun Pharma USA, Inc., Lexington, MA, USA
| | - Janet K Horton
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
| | | | | | - Vineet Goti
- Nuventra, LLC., Durham, NC, USA
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Wenli Tao
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
- , Cary, NC, USA
| | - Andrew Beelen
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
31
|
Tarry-Adkins JL, Robinson IG, Reynolds RM, Aye ILMH, Charnock-Jones DS, Jenkins B, Koulmann A, Ozanne SE, Aiken CE. Impact of Metformin Treatment on Human Placental Energy Production and Oxidative Stress. Front Cell Dev Biol 2022; 10:935403. [PMID: 35784487 PMCID: PMC9247405 DOI: 10.3389/fcell.2022.935403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 02/02/2023] Open
Abstract
Metformin is increasingly prescribed in pregnancy, with beneficial maternal effects. However, it is not known how metformin-treatment impacts metabolism and energy production in the developing feto-placental unit. We assessed the human placental response to metformin using both in vivo and in vitro treated samples. trophoblasts were derived from placentas collected from non-laboured Caesarean deliveries at term, then treated in vitro with metformin (0.01 mM, 0.1 mM or vehicle). Metformin-concentrations were measured using liquid-chromatography mass-spectrometry. Oxygen consumption in cultured-trophoblasts was measured using a Seahorse-XF Mito Stress Test. Markers of oxidative-stress were assayed using qRT-PCR. Metformin-transporter mRNA and protein-levels were determined by quantitative RT-PCR and Western-blotting respectively. Metformin concentrations were also measured in sample trios (maternal plasma/fetal plasma/placental tissue) from pregnancies exposed to metformin on clinical-grounds. Maternal and fetal metformin concentrations in vivo were highly correlated over a range of concentrations (R2 = 0.76, p < 0.001; average fetal:maternal ratio 1.5; range 0.8-2.1). Basal respiration in trophoblasts was reduced by metformin treatment (0.01 mM metformin; p < 0.05, 0.1 mM metformin; p < 0.001). Mitochondrial-dependent ATP production and proton leak were reduced after treatment with metformin (p < 0.001). Oxidative stress markers were significantly reduced in primary-trophoblast-cultures following treatment with metformin. There is a close linear relationship between placental, fetal, and maternal metformin concentrations. Primary-trophoblast cultures exposed to clinically-relevant metformin concentrations have reduced mitochondrial-respiration, mitochondrial-dependent ATP-production, and reduced markers of oxidative-stress. Given the crucial role of placental energy-production in supporting fetal growth and well-being during pregnancy, the implications of these findings are concerning for intrauterine fetal growth and longer-term metabolic programming in metformin-exposed pregnancies.
Collapse
Affiliation(s)
- Jane L. Tarry-Adkins
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - India G. Robinson
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca M. Reynolds
- Queen’s Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Irving L. M. H. Aye
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Albert Koulmann
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Catherine E. Aiken
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom,Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Catherine E. Aiken,
| |
Collapse
|
32
|
Krishnan S, Ramsden D, Ferguson D, Stahl SH, Wang J, McGinnity DF, Hariparsad N. Challenges and Opportunities for Improved Drug-Drug Interaction Predictions for Renal OCT2 and MATE1/2-K Transporters. Clin Pharmacol Ther 2022; 112:562-572. [PMID: 35598119 DOI: 10.1002/cpt.2666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
Transporters contribute to renal elimination of drugs; therefore drug disposition can be impacted if transporters are inhibited by comedicant drugs. Regulatory agencies have provided guidelines to assess potential drug-drug interaction (DDI) risk for renal organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 and 2-K (MATE1/2-K) transporters. Despite this, there are challenges with translating in vitro data using currently available tools to obtain a quantitative assessment of DDI risk in the clinic. Given the high number of drugs and new molecular entities showing in vitro inhibition toward OCT2 and/or MATE1/2-K and the lack of translation to clinically significant effects, it is reasonable to question whether the current in vitro assay design and modeling practice has led to unnecessary clinical evaluation. The aim of this review is to assess and discuss available in vitro and clinical data along with prediction models intended to provide clinical context of risk, including static models proposed by regulatory agencies and physiologically-based pharmacokinetic models, in order to identify best practices and areas of future opportunity. This analysis highlights that different in vitro assay designs, including substrate and cell systems used, strongly influence the derived concentration of drug producing 50% inhibition values and contribute to high variability observed across laboratories. Furthermore, the lack of sensitive index substrates coupled with specific inhibitors for individual transporters necessitates the use of complex models to evaluate clinical DDI risk.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Simone H Stahl
- Cardiovascular, Renal, and Metabolism Safety, Clinical Pharmacology and Safety Sciences, Research & Development, AstraZeneca, Cambridge, UK
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Dermot F McGinnity
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Cambridge, UK
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Taheri R, Kazerouni F, Mirfakhraei R, Kalbasi S, Shahrokhi SZ, Rahimipour A. The influence of SLC22A3 rs543159 and rs1317652 genetic variants on metformin therapeutic efficacy in newly diagnosed patients with type 2 diabetes mellitus: 25 weeks follow-up study. Gene 2022; 823:146382. [PMID: 35240257 DOI: 10.1016/j.gene.2022.146382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Among anti-diabetic medications, metformin has been proven to be the preferred initial pharmacologic agent for type 2 diabetes mellitus (T2DM) treatment. Despite its safety and efficacy, the response to metformin varies between individuals. Genetic variations, especially within genes involved in pharmacokinetics and pharmacodynamics of metformin (e.g SLC22A3), have been suggested to be responsible for the observed inter-individual differences. By considering the undeniable role of organic cation transporter 3 in hepatic uptake of metformin, this study was aimed to investigate the association of rs543159 and rs1317652 variants in SLC22A3 gene with response to metformin monotherapy in newly diagnosed patients with T2DM. METHODS The study included 200 T2DM patients who received metformin monotherapy for 25 weeks. The patients were classified into 2 groups according to their HbA1c values: the responders (reduction in HbA1c levels by at least 1% after 25 weeks treatment with metformin) and non-responders (less than 1% reduction in HbA1c levels after 25 weeks treatment with metformin). We used tetra ARMS-PCR method to determine genotypes of the target variants. RESULTS For the rs543159, CA and AA genotypes were more frequent in responders as compared to non-responders (OR = 2.48; 95% CI = 1.28-4.78, P-value = 0.0057) under the dominant model. In case of rs1317652 CC and CT genotypes were more frequent in metformin responders as compared to non-responder group (OR = 2.49; 95% CI = 1.32-4.70, P-value = 0.0043) under the dominant model. Parameters such as fasting blood sugar (FBS), HbA1c, and total cholesterol (TC) levels were significantly lower in the responder group after 25 weeks of metformin monotherapy. Moreover, according to the result of multiple linear regression rs543159 and base line HbA1c values are significantly associated with response to metformin monotherapy. CONCLUSION Our results suggested that rs543159 and rs1317652 in SLC22A3 gene might be associated with variability in response to metformin therapy in T2DM patients.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Lab Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraei
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kalbasi
- Department of Clinical Endocrinology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Rahimipour
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Avsar O. Analysis of missense SNPs in the SLC47A1 and SLC47A2 genes affecting the pharmacokinetics of metformin: Computational approach. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Metformin as an anti-hyperglycaemic drug is commonly used for the treatment of type 2 diabetes mellitus (T2DM). The metformin response is variable due to the interindividual variation of pharmacokinetics which is based on strong genetic background. MATE1 and MATE2 proteins are significantly implicated in the pharmacokinetics of metformin. Missense SNPs with high risk of pathogenicity are expected to affect response to metformin via pharmacokinetics. Therefore, the aim of the current study is to determine the effects of missense SNPs in the SLC47A1 and SLC47A2 genes. The structural and functional consequences of all known SLC47A1 and SLC47A2 missense SNPs of the human MATE1 and MATE2 proteins were identified by various bioinformatics methods (SIFT, PhD-SNP, PolyPhen-2, PROVEAN, PMut, MUpro, I-Mutant 3.0, COACH, RaptorX Binding, ConSurf, STRING).
Results
The SLC47A1 variants P186T, L116P and the SLC47A2 variants I158N, L112P, V118G exhibited ΔΔG values less than − 1 kcal/mol, and these variants are considered to disrupt the structure and function of MATE1 and MATE2 proteins. SLC47A1 R118Q and SLC47A2 Y273C, V118G may significantly disturb protein function and transporting activities according to the analysis of ligand-binding regions.
Conclusion
It is suggested that high-risk deleterious missense SNPs may mediate the pharmacokinetics of metformin and may be associated with altered tissue distribution, renal clearance and metformin toxicity. We suppose that our results might serve as potential targets for the studies composed of the development of potential diagnostic and therapeutic strategies based on the relationship between mutations and metformin response.
Collapse
|
35
|
Saad AAA, Zhang F, Mohammed EAH, Wu X. Clinical Aspects of Drug–Drug Interaction and Drug Nephrotoxicity at Renal Organic Cation Transporters 2 (OCT2) and Multidrug and Toxin Exclusion 1, and 2-K (MATE1/MATE2-K). Biol Pharm Bull 2022; 45:382-393. [DOI: 10.1248/bpb.b21-00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Fan Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University
| | | | - Xin’an Wu
- Department of Pharmacy, the First Hospital of Lanzhou University
| |
Collapse
|
36
|
Saad AAA, Zhang F, Refat M, Mohammed EAH, Zhang M, Chen Y, Al Hamyari B, Alafifi J, Wu X. Tamsulosin alters the pharmacokinetics of metformin via inhibition of renal multidrug and toxin extrusion protein 1 and organic cation transporter 2 in rats. J Pharm Biomed Anal 2022; 212:114666. [DOI: 10.1016/j.jpba.2022.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
37
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
38
|
Clinical Study on the Relationship between the SNP rs8192675 (C/C) Site of SLC2A2 Gene and the Hypoglycemic Effect of Metformin in Type 2 Diabetes. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3645336. [PMID: 35140900 PMCID: PMC8820847 DOI: 10.1155/2022/3645336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
This study investigates the correlation between the gene polymorphism of rs8192675 (C/C) locus of SLC2A2 in patients with type 2 diabetes (T2DM) and the efficacy of metformin. For this purpose, we have selected 110 T2DM patients (T2DM group) and 110 healthy people (control group) who were treated in our hospital from January 2019 to January 2020 as the research subjects. PCR-restriction fragment length polymorphism (PCR-RFLP) method detects the distribution frequency of gene polymorphism. The patients in the T2DM group were treated with metformin and followed up for 90 days to analyze the relationship between the efficacy of metformin and the SLC2A2 gene polymorphism. The genotypes of SLC2A2 rs8192675 in the control group and in the T2DM group conformed to the Hardy–Weinberg equilibrium law. Compared with the control group, the CT type and the CC type at rs8192675 in the T2DM group were significantly higher (P < 0.05). For rs8192675, there was no significant difference in TT, CT, CC FPG, 2hPBG, and HbA1c levels before treatment (P > 0.05); after metformin treatment, the reduction in FPG, 2hPBG, and HbA1c in CC patients was lower than that of TT and CT patients (P < 0.05). SLC2A2 gene polymorphism site rs8192675 CC type T2DM patients are sensitive to metformin and have a better hypoglycemic effect.
Collapse
|
39
|
Saeedi M, Mehranfar F, Ghorbani F, Eskandari M, Ghorbani M, Babaeizad A. Review of pharmaceutical and therapeutic approaches for type 2 diabetes and related disorders. Recent Pat Biotechnol 2022; 16:188-213. [PMID: 35088682 DOI: 10.2174/1872208316666220128102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
One of the essential diseases that are increasing in the world is type 2 diabetes (T2D), which many people around the world live with this disease. Various studies have revealed that insulin resistance, lessened insulin production has been associated with T2D, and they also show that this disease can have a genetic origin and is associated with different genes such as KCNQ1, PPAR-γ, calpain-10, ADIPOR2, TCF7L2 that can be utilized as a therapeutic target. Different therapeutic approaches and strategies such as exercise and diet, pharmacological approaches, and utilization of nanoparticles in drug delivery and gene therapy can be effective in the treatment and control of T2D. Glucagon-like peptide 1 (GLP-1) and sodium glucose cotransporter-2 (SGLT2) have both been considered as drug classes in the treatment of T2D and T2D-related diseases such as cardiovascular disease and renal disease, and have considerable influences such as diminished cardiovascular mortality in individuals with T2D, ameliorate postprandial glycaemia, ameliorate fasting glycaemia, and diminish body weight on disease treatment and improvement process. In the present review article, we have made an attempt to explore the risk factors, Genes, and diseases associated with T2D, therapeutic approaches in T2D, the influences of drugs such as Dapagliflozin, Metformin, Acarbose, Januvia (Sitagliptin), and Ertugliflozin on T2D in clinical trials and animal model studies. Research in clinical trials has promising results that support the role of these drug approaches in T2D prophylaxis and ameliorate safety even though additional clinical research is still obligatory.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Hematology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fateme Ghorbani
- Department of immunology, Semnan university of Medical sciences, Semnan, Iran
| | - Mohammadali Eskandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ghorbani
- Department of Hematology, Mashhad University of Medical sciences, Mashhad, Iran
| | - Ali Babaeizad
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
40
|
Shirasaka Y, Seki M, Hatakeyama M, Kurokawa Y, Uchiyama H, Takemura M, Yasugi Y, Kishimoto H, Tamai I, Wang J, Inoue K. Multiple Transport Mechanisms Involved in the Intestinal Absorption of Metformin: Impact on the Nonlinear Absorption Kinetics. J Pharm Sci 2022; 111:1531-1541. [DOI: 10.1016/j.xphs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/11/2023]
|
41
|
Braga A, Izolan JS, Costa TCD, Araújo BVD. Free interstitial levels of metformin in the liver of healthy and diabetic Wistar rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Agostini F, Masato A, Bubacco L, Bisaglia M. Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. Int J Mol Sci 2021; 23:ijms23010398. [PMID: 35008822 PMCID: PMC8745385 DOI: 10.3390/ijms23010398] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson disease (PD) is a severe neurodegenerative disorder that affects around 2% of the population over 65 years old. It is characterized by the progressive loss of nigrostriatal dopaminergic neurons, resulting in motor disabilities of the patients. At present, only symptomatic cures are available, without suppressing disease progression. In this frame, the anti-diabetic drug metformin has been investigated as a potential disease modifier for PD, being a low-cost and generally well-tolerated medication, which has been successfully used for decades in the treatment of type 2 diabetes mellitus. Despite the precise mechanisms of action of metformin being not fully elucidated, the drug has been known to influence many cellular pathways that are associated with PD pathology. In this review, we present the evidence in the literature supporting the neuroprotective role of metformin, i.e., autophagy upregulation, degradation of pathological α-synuclein species, and regulation of mitochondrial functions. The epidemiological studies conducted in diabetic patients under metformin therapy aimed at evaluating the correlation between long-term metformin consumption and the risk of developing PD are also discussed. Finally, we provide an interpretation for the controversial results obtained both in experimental models and in clinical studies, thus providing a possible rationale for future investigations for the repositioning of metformin for PD therapy.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, 35121 Padova, Italy; (F.A.); (A.M.)
| | - Anna Masato
- Department of Biology, University of Padova, 35121 Padova, Italy; (F.A.); (A.M.)
| | - Luigi Bubacco
- Department of Biology, University of Padova, 35121 Padova, Italy; (F.A.); (A.M.)
- Center Study for Neurodegeneration (CESNE), University of Padova, 35121 Padova, Italy
- Correspondence: (L.B.); (M.B.)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35121 Padova, Italy; (F.A.); (A.M.)
- Center Study for Neurodegeneration (CESNE), University of Padova, 35121 Padova, Italy
- Correspondence: (L.B.); (M.B.)
| |
Collapse
|
43
|
Szabó E, Kulin A, Mózner O, Korányi L, Literáti-Nagy B, Vitai M, Cserepes J, Sarkadi B, Várady G. Potential role of the ABCG2-Q141K polymorphism in type 2 diabetes. PLoS One 2021; 16:e0260957. [PMID: 34855903 PMCID: PMC8638943 DOI: 10.1371/journal.pone.0260957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/21/2021] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease and variations in multispecific membrane transporter functions may affect T2DM development, complications or treatment. In this work we have analyzed the potential effects of a major polymorphism, the Q141K variant of the ABCG2 transporter in T2DM. The ABCG2 protein is a multispecific xeno- and endobiotic transporter, affecting drug metabolism and playing a key role in uric acid extrusion. The ABCG2-Q141K variant, with reduced expression level and function, is present in 15-35% of individuals, depending on the genetic background of the population, and has been shown to significantly affect gout development. Several other diseases, including hypertension, chronic renal failure, and T2DM have also been reported to be associated with high serum uric acid levels, suggesting that ABCG2 may also play a role in these conditions. In this work we have compared relatively small cohorts (n = 203) of T2DM patients (n = 99) and healthy (n = 104) individuals regarding the major laboratory indicators of T2DM and determined the presence of the SNP rs2231142 (C421A), resulting the ABCG2-Q141K protein variant. We found significantly higher blood glucose and HbA1c levels in the T2DM patients carrying the ABCG2-Q141K variant. These findings may emphasize the potential metabolic role of ABCG2 in T2DM and indicate that further research should explore how prevention and treatment of this disease may be affected by the frequent polymorphism of ABCG2.
Collapse
Affiliation(s)
- Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Center of Excellence by Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (GV); (ES)
| | - Anna Kulin
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Center of Excellence by Hungarian Academy of Sciences, Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Center of Excellence by Hungarian Academy of Sciences, Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | | | | | - Márta Vitai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | | | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Center of Excellence by Hungarian Academy of Sciences, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Center of Excellence by Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (GV); (ES)
| |
Collapse
|
44
|
Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J 2021; 288:7123-7142. [PMID: 33590946 PMCID: PMC8364928 DOI: 10.1111/febs.15770] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
45
|
Optimized In Silico Modeling of Drug Absorption after Gastric Bypass: The Case of Metformin. Pharmaceutics 2021; 13:pharmaceutics13111873. [PMID: 34834288 PMCID: PMC8624529 DOI: 10.3390/pharmaceutics13111873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgery is an effective treatment for severe obesity and related comorbidities, such as type II diabetes. Gastric bypass surgery shortens the length of the intestine, possibly leading to altered drug absorption. Metformin, a first-line treatment for type II diabetes, has permeability-dependent drug absorption, which may be sensitive to intestinal anatomic changes during bypass surgery, including Roux-en-Y gastric bypass (RYGB). Previous computer simulation data indicate increased metformin absorption after RYGB. In this study, we experimentally determined the region-dependent permeability of metformin, using the rat single-pass intestinal perfusion method (SPIP), which we then implemented into GastroPlusTM to assess the contribution of our SPIP data to post-RYGB metformin absorption modeling. Previous simulations allowed a good fit with in vivo literature data on healthy and obese control subjects. However, it was revealed that for post-RYGB drug absorption predictions, simply excluding the duodenum/jejunum is insufficient, as the software underestimates the observed plasma concentrations post-RYGB. By implementing experimentally determined segmental-dependent permeabilities for metformin in the remaining segments post-surgery, GastroPlusTM proved to fit the observed plasma concentration profile, making it a useful tool for predicting drug absorption after gastric bypass. Reliable evaluation of the parameters dictating drug absorption is required for the accurate prediction of overall absorption after bariatric surgery.
Collapse
|
46
|
Hanke N, Türk D, Selzer D, Ishiguro N, Ebner T, Wiebe S, Müller F, Stopfer P, Nock V, Lehr T. A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Drug-Drug-Gene Interaction Model of Metformin and Cimetidine in Healthy Adults and Renally Impaired Individuals. Clin Pharmacokinet 2021; 59:1419-1431. [PMID: 32449077 PMCID: PMC7658088 DOI: 10.1007/s40262-020-00896-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Metformin is a widely prescribed antidiabetic BCS Class III drug (low permeability) that depends on active transport for its absorption and disposition. It is recommended by the US Food and Drug Administration as a clinical substrate of organic cation transporter 2/multidrug and toxin extrusion protein for drug–drug interaction studies. Cimetidine is a potent organic cation transporter 2/multidrug and toxin extrusion protein inhibitor. Objective The objective of this study was to provide mechanistic whole-body physiologically based pharmacokinetic models of metformin and cimetidine, built and evaluated to describe the metformin-SLC22A2 808G>T drug–gene interaction, the cimetidine-metformin drug–drug interaction, and the impact of renal impairment on metformin exposure. Methods Physiologically based pharmacokinetic models were developed in PK-Sim® (version 8.0). Thirty-nine clinical studies (dosing range 0.001–2550 mg), providing metformin plasma and urine data, positron emission tomography measurements of tissue concentrations, studies in organic cation transporter 2 polymorphic volunteers, drug–drug interaction studies with cimetidine, and data from patients in different stages of chronic kidney disease, were used to develop the metformin model. Twenty-seven clinical studies (dosing range 100–800 mg), reporting cimetidine plasma and urine concentrations, were used for the cimetidine model development. Results The established physiologically based pharmacokinetic models adequately describe the available clinical data, including the investigated drug–gene interaction, drug–drug interaction, and drug–drug–gene interaction studies, as well as the metformin exposure during renal impairment. All modeled drug–drug interaction area under the curve and maximum concentration ratios are within 1.5-fold of the observed ratios. The clinical data of renally impaired patients shows the expected increase in metformin exposure with declining kidney function, but also indicates counter-regulatory mechanisms in severe renal disease; these mechanisms were implemented into the model based on findings in preclinical species. Conclusions Whole-body physiologically based pharmacokinetic models of metformin and cimetidine were built and qualified for the prediction of metformin pharmacokinetics during drug–gene interaction, drug–drug interaction, and different stages of renal disease. The model files will be freely available in the Open Systems Pharmacology model repository. Current guidelines for metformin treatment of renally impaired patients should be reviewed to avoid overdosing in CKD3 and to allow metformin therapy of CKD4 patients. Electronic supplementary material The online version of this article (10.1007/s40262-020-00896-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Hanke
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Denise Türk
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Thomas Ebner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sabrina Wiebe
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Valerie Nock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
47
|
Ambrus C, Bakos É, Sarkadi B, Özvegy-Laczka C, Telbisz Á. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. Sci Rep 2021; 11:17810. [PMID: 34497279 PMCID: PMC8426393 DOI: 10.1038/s41598-021-97160-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.
Collapse
Affiliation(s)
- Csilla Ambrus
- SOLVO Biotechnology, Irinyi József street 4-20, 1117, Budapest, Hungary.,Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
48
|
Kurlovics J, Zake DM, Zaharenko L, Berzins K, Klovins J, Stalidzans E. Metformin Transport Rates Between Plasma and Red Blood Cells in Humans. Clin Pharmacokinet 2021; 61:133-142. [PMID: 34309806 PMCID: PMC8761711 DOI: 10.1007/s40262-021-01058-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Background Metformin has been used for the treatment of type 2 diabetes for over 60 years; however, its mechanism of pharmacological action is not fully clear. Different hypotheses exist regarding metformin distribution and redistribution mechanisms between plasma and erythrocytes/red blood cells (RBCs). Objective We aimed to test the hypothesis that the metformin distribution between plasma and RBC occurs via concentration difference-driven passive transport and estimated transport rate coefficient values based on metformin concentration time series in plasma and RBCs from in vivo studies. Methods An ordinary differential equation (ODE) system with two compartments was used to describe diffusion-based passive transport between plasma and RBCs. Metformin concentration time series in plasma and RBCs of 35 individuals were used for metformin transport parametrization. Plasma concentration has been approximated by biexponential decline. Results A single passive transport coefficient, k = 0.044 ± 0.014 (h–1), can be applied, describing the uptake and release transport rate versus the linear equation v = k × (Mpl − MRBC), where Mpl is the metformin concentration in plasma and MRBC is the metformin concentration in RBCs. Conclusions Our research suggests that passive transport can explain metformin distribution dynamics between plasma and RBCs because transport speed is proportional to the metformin concentration difference and independent of the transport direction. Concentration difference-driven passive transport can explain the mechanism of faster metformin distribution to RBCs the first few hours after administration, and faster release and domination of the redistribution transport rate after metformin concentration in plasma becomes smaller than in RBCs. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01058-2.
Collapse
Affiliation(s)
- Janis Kurlovics
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia. .,Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland.
| | - Darta Maija Zake
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia.,Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Kristaps Berzins
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia.,Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
49
|
Kuhlmann I, Nøddebo Nyrup A, Bjerregaard Stage T, Hougaard Christensen MM, Korshøj Bergmann T, Damkier P, Nielsen F, Højlund K, Brøsen K. Oral and intravenous pharmacokinetics of metformin with and without oral codeine intake in healthy subjects: A cross-over study. Clin Transl Sci 2021; 14:2408-2419. [PMID: 34268884 PMCID: PMC8604249 DOI: 10.1111/cts.13107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the study was to investigate if there is a clinically relevant drug interaction between metformin and codeine. Volunteers were randomized to receive on four separate occasions: (A) orally administered metformin (1 g), (B) intravenously administered metformin (0.5 g), (C) five doses of tablet codeine 25 mg; the last dose was administered together with oral metformin (1 g), and (D) five doses of tablet codeine 25 mg; the last dose was administered together with metformin (0.5 g) intravenously. Blood samples were drawn for 24 h after administration of metformin, and for 6 h after administration of codeine and analyzed using liquid chromatography and tandem mass spectrometry. Healthy volunteers genotyped as CYP2D6 normal metabolizers (*1/*1) without known reduced function variants in the OCT1 gene (rs12208357, rs34130495, rs34059508, and rs72552763) were invited. The median absorption fraction of metformin was 0.31 and was not influenced by codeine intake. The median time to maximum concentration (Tmax) after oral intake of metformin was 2 h without, and 3 h with codeine (p = 0.06). The geometric mean ratios of the areas under the plasma concentration time‐curve (AUCs) for morphine and its metabolites M3G and M6G for oral intake of metformin‐to‐no metformin were 1.21, 1.31, and 1.27, respectively, and for i.v. metformin‐to‐no metformin 1.28, 1.34, and 1.30, respectively. Concomitant oral and i.v. metformin increased the plasma levels of morphine, M3G and M6G. These small pharmacokinetic changes may well contribute to an increased risk of early discontinuation of metformin. Hence, a clinically relevant drug‐drug interaction between metformin and codeine seems plausible.
Collapse
Affiliation(s)
- Ida Kuhlmann
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Amanda Nøddebo Nyrup
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Tore Bjerregaard Stage
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Marie Hougaard Christensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels Korshøj Bergmann
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Kim Brøsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
50
|
Schilf P, Schmitz M, Derenda-Hell A, Thieme M, Bremer T, Vaeth M, Zillikens D, Sadik CD. Inhibition of Glucose Metabolism Abrogates the Effector Phase of Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 141:1646-1655.e3. [DOI: 10.1016/j.jid.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
|