1
|
Pierson SR, Fiock KL, Wang R, Balasubramanian N, Reinhardt J, Khan KM, James TD, Hunter ML, Cooper BJ, Williamsen HR, Betters R, Deniz K, Lee G, Aldridge G, Hefti MM, Marcinkiewcz CA. Tau pathology in the dorsal raphe may be a prodromal indicator of Alzheimer's disease. Mol Psychiatry 2024:10.1038/s41380-024-02664-9. [PMID: 39143322 DOI: 10.1038/s41380-024-02664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, β-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kimberly L Fiock
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kanza M Khan
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikayla L Hunter
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin J Cooper
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Ryan Betters
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaancan Deniz
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Georgina Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
3
|
Araki R, Kita A, Ago Y, Yabe T. Chronic social defeat stress induces anxiety-like behaviors via downregulation of serotonin transporter in the prefrontal serotonergic system in mice. Neurochem Int 2024; 174:105682. [PMID: 38301899 DOI: 10.1016/j.neuint.2024.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
The serotonergic (5-HTergic) system is closely involved in the pathophysiology of mood and anxiety disorders and the responsibility of this system may differ for each symptom. In this study, we examined the relationship between the dysfunction of the 5-HTergic system and abnormal behaviors in the social defeat stress model, an animal model of mood and anxiety disorders and in mice with knockdown of Slc6a4, the gene encoding SERT. Monoamine content, serotonin (5-HT) release, 5-HT uptake, 5-HT transporter (SERT) protein levels, and behaviors were investigated in mice subjected to chronic social defeat stress and in mice with knockdown of Slc6a4, in 5-HTergic neurons projecting to the prefrontal cortex (PFC). Furthermore, DNA methylation of Slc6a4 was examined in mice subjected to chronic social defeat stress. Increased turnover, increased extracellular basal levels, decreased release and decreased uptake of 5-HT, and decreased SERT protein levels were observed in the PFC of the stressed mice. The decreased 5-HT uptake correlated with anxiety-like behavior characterized by decreased time spent in the open arms of the elevated plus maze. DNA methylation was increased in the CpG island of Slc6a4 in 5-HTergic neurons projecting to the PFC of the stressed mice. Similar to the stressed mice, mice with Slc6a4 knockdown in 5-HTergic neurons projecting to the PFC also showed decreased release and uptake of 5-HT in the PFC and increased anxiety-like behavior. Chronic stress may induce anxiety due to dysfunction in the prefrontal 5-HTergic system via decreased SERT expression in the PFC.
Collapse
Affiliation(s)
- Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| | - Ayami Kita
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| |
Collapse
|
4
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
5
|
Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp Brain Res 2021; 240:9-25. [PMID: 34694467 PMCID: PMC8543422 DOI: 10.1007/s00221-021-06244-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023]
Abstract
The devastating COVID-19 pandemic is caused by the SARS-CoV-2 virus. It primarily affects the lung and induces acute respiratory distress leading to a decrease in oxygen supply to the cells. This lung insufficiency caused by SARS-CoV-2 virus contributes to hypoxia which can affect the brain and other organ systems. The heightened cytokine storm in COVID-19 patients leads to an immune reaction in the vascular endothelial cells that compromise the host defenses against the SARS-CoV-2 virus in various organs. The vascular endothelial cell membrane breach allows access for SARS-CoV-2 to infect multiple tissues and organs. The neurotropism of spike protein in SARS-CoV-2 rendered by furin site insertion may increase neuronal infections. These could result in encephalitis and encephalopathy. The COVID-19 patients suffered severe lung deficiency often showed effects in the brain and neural system. The early symptoms include headache, loss of smell, mental confusion, psychiatric disorders and strokes, and rarely encephalitis, which indicated the vulnerability of the nervous system to SARS-CoV-2. Infection of the brain and peripheral nervous system can lead to the dysfunction of other organs and result in multi-organ failure. This review focuses on discussing the vulnerability of the nervous system based on the pattern of expression of the receptors for the SARS-CoV-2 and the mechanisms of its cell invasion. The SARS-CoV-2 elicited immune response and host immune response evasion are further discussed. Then the effects on the nervous system and its consequences on neuro-sensory functions are discussed. Finally, the emerging information on the overall genetic susceptibility seen in COVID-19 patients and its implications for therapy outlook is discussed.
Collapse
|
6
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Nuclear organization of serotonergic neurons in the brainstems of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1500-1515. [PMID: 34605203 DOI: 10.1002/ar.24795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/07/2022]
Abstract
In the current study, we detail, through the analysis of immunohistochemically stained sections, the morphology and nuclear parcellation of the serotonergic neurons present in the brainstem of a lar gibbon and a chimpanzee. In general, the neuronal morphology and nuclear organization of the serotonergic system in the brains of these two species of apes follow that observed in a range of Eutherian mammals and are specifically very similar to that observed in other species of primates. In both of the apes studied, the serotonergic nuclei could be readily divided into two distinct groups, a rostral and a caudal cluster, which are found from the level of the decussation of the superior cerebellar peduncle to the spinomedullary junction. The rostral cluster is comprised of the caudal linear, supralemniscal, and median raphe nuclei, as well as the six divisions of the dorsal raphe nuclear complex. The caudal cluster contains several distinct nuclei and nuclear subdivisions, including the raphe magnus nucleus and associated rostral and caudal ventrolateral (CVL) serotonergic groups, the raphe pallidus, and raphe obscurus nuclei. The one deviation in organization observed in comparison to other primate species is an expansion of both the number and distribution of neurons belonging to the lateral division of the dorsal raphe nucleus in the chimpanzee. It is unclear whether this expansion occurs in humans, thus at present, this expansion sets the chimpanzee apart from other primates studied to date.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
7
|
Hernández VS, Zetter MA, Guerra EC, Hernández-Araiza I, Karuzin N, Hernández-Pérez OR, Eiden LE, Zhang L. ACE2 expression in rat brain: Implications for COVID-19 associated neurological manifestations. Exp Neurol 2021; 345:113837. [PMID: 34400158 PMCID: PMC8361001 DOI: 10.1016/j.expneurol.2021.113837] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
We examined cell type-specific expression and distribution of rat brain angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, in the rodent brain. ACE2 is ubiquitously present in brain vasculature, with the highest density of ACE2 expressing capillaries found in the olfactory bulb, the hypothalamic paraventricular, supraoptic, and mammillary nuclei, the midbrain substantia nigra and ventral tegmental area, and the hindbrain pontine nucleus, the pre-Bötzinger complex, and nucleus of tractus solitarius. ACE2 was expressed in astrocytes and astrocytic foot processes, pericytes and endothelial cells, key components of the blood-brain barrier. We found discrete neuronal groups immunopositive for ACE2 in brainstem respiratory rhythm generating centers, including the pontine nucleus, the parafascicular/retrotrapezoid nucleus, the parabrachial nucleus, the Bötzinger, and pre-Bötzinger complexes and the nucleus of tractus solitarius; in the arousal-related pontine reticular nucleus and gigantocellular reticular nuclei; in brainstem aminergic nuclei, including substantia nigra, ventral tegmental area, dorsal raphe, and locus coeruleus; in the epithalamic habenula, hypothalamic paraventricular and supramammillary nuclei; and in the hippocampus. Identification of ACE2-expressing neurons in rat brain within well-established functional circuits facilitates prediction of possible neurological manifestations of brain ACE2 dysregulation during and after COVID-19 infection.
Collapse
Affiliation(s)
- Vito S Hernández
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Mario A Zetter
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Enrique C Guerra
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Ileana Hernández-Araiza
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico); School of Medicine University of Maryland, Baltimore, MD, USA
| | - Nikita Karuzin
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico); School of Medicine, Pan-American University, Mexico City, Mexico
| | - Oscar R Hernández-Pérez
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, NIH, Bethesda, MD, USA
| | - Limei Zhang
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico).
| |
Collapse
|
8
|
Izuhara M, Miura S, Otsuki K, Nagahama M, Hayashida M, Hashioka S, Asou H, Kitagaki H, Inagaki M. Magnetic Resonance Spectroscopy in the Ventral Tegmental Area Distinguishes Responders to Suvorexant Prior to Treatment: A 4-Week Prospective Cohort Study. Front Psychiatry 2021; 12:714376. [PMID: 34497544 PMCID: PMC8419448 DOI: 10.3389/fpsyt.2021.714376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The ventral tegmental area (VTA; a dopaminergic nucleus) plays an important role in the sleep-wake regulation system including orexin system. In addition to neuronal activity, there is increasing evidence for an important role of glial cells (i.e., astrocytes and microglia) in these systems. The present study examined the utility of magnetic resonance spectroscopy (MRS) for detecting neural and/or glial changes in the VTA to distinguish responders from non-responders before treatment with the orexin receptor antagonist suvorexant. Methods: A total of 50 patients were screened and 9 patients were excluded. The remaining 41 patients with insomnia who have or not a psychiatric disease who were expected to receive suvorexant treatment were included in this study. We compared MRS signals in the VTA between responders to suvorexant and non-responders before suvorexant use. Based on previous reports, suvorexant responders were defined as patients who improved ≥3 points on the Pittsburgh Sleep Quality Index after 4 weeks of suvorexant use. MRS data included choline (reflects non-specific cell membrane breakdown, including of glial cells) and N-acetylaspartate (a decrease reflects neuronal degeneration). Results: Among 41 examined patients, 20 patients responded to suvorexant and 21 patients did not. By MRS, the choline/creatine and phosphorylcreatine ratio in the VTA was significantly high in non-responders compared with responders (p = 0.039) before suvorexant treatment. There was no difference in the N-acetylaspartate/creatine and phosphorylcreatine ratio (p = 0.297) between the two groups. Conclusions: Changes in glial viability in the VTA might be used to distinguish responders to suvorexant from non-responders before starting treatment. These findings may help with more appropriate selection of patients for suvorexant treatment in clinical practice. Further, we provide novel possible evidence for a relationship between glial changes in the VTA and the orexin system, which may aid in the development of new hypnotics focusing on the VTA and/or glial cells.
Collapse
Affiliation(s)
- Muneto Izuhara
- Department of Clinical Laboratory, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Koji Otsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroya Asou
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hajime Kitagaki
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
9
|
García-Ávila M, Torres X, Cercós MG, Trueta C. Specific Localization of an Auto-inhibition Mechanism at Presynaptic Terminals of Identified Serotonergic Neurons. Neuroscience 2020; 458:120-132. [PMID: 33359652 DOI: 10.1016/j.neuroscience.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Auto-regulation mechanisms in serotonergic neurons regulate their electrical activity and secretion. Since these neurons release serotonin from different structural compartments - including presynaptic terminals, soma, axons and dendrites - through different mechanisms, autoregulation mechanisms are also likely to be different at each compartment. Here we show that a chloride-mediated auto-inhibitory mechanism is exclusively localized at presynaptic terminals, but not at extrasynaptic release sites, in serotonergic Retzius neurons of the leech. An auto-inhibition response was observed immediately after intracellular stimulation with an electrode placed in the soma, in neurons that were isolated and cultured retaining an axonal stump, where presynaptic terminals are formed near the soma, but not in somata isolated without axon, where no synaptic terminals are formed, nor in neurons in the nerve ganglion, where terminals are electrotonically distant from the soma. Furthermore, no auto-inhibition response was detected in either condition during the longer time course of somatic secretion. This shows that the auto-inhibition effects are unique to nerve terminals. We further determined that serotonin released from peri-synaptic dense-core vesicles contributes to auto-inhibition in the terminals, since blockade of L-type calcium channels, which are required to stimulate extrasynaptic but not synaptic release, decreased the amplitude of the auto-inhibition response. Our results show that the auto-regulation mechanism at presynaptic terminals is unique and different from that described in the soma of these neurons, further highlighting the differences in the mechanisms regulating serotonin release from different neuronal compartments, which expand the possibilities of a single neuron to perform multiple functions in the nervous system.
Collapse
Affiliation(s)
- Miriam García-Ávila
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Ciudad de México, Mexico.
| | - Ximena Torres
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Ciudad de México, Mexico.
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Ciudad de México, Mexico.
| | - Citlali Trueta
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Ciudad de México, Mexico.
| |
Collapse
|
10
|
The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav Brain Res 2020; 392:112693. [PMID: 32422236 DOI: 10.1016/j.bbr.2020.112693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mood disorders affect nearly 300 million humans worldwide, and it is a leading cause of death from suicide. In the last decade, the habenula has gained increased attention due to its major role to modulate emotional behavior and related psychopathologies, including depression and bipolar disorder, through the modulation of monoamines' neurotransmission. However, it is still unclear which genetic factors may directly affect the function of the habenula and hence, could contribute to the psychopathological mechanisms of mood disorders. Disrupted-In-Schizophrenia-1 (DISC1) gene is among robust gene-candidates predisposing to major depression, bipolar disorder and schizophrenia in humans. DISC1-Q31L, a well-established genetic mouse model of depression, offers a unique opportunity for translational studies. The current study aimed to probe morphological features of the habenula in the DISC1-Q31L mouse line and detect novel behavioral endophenotypes, including the increased emotionality in mutant females, high aggression in mutant males and deficient extinction of fear memory in DISC1 mutant mice of both sexes. The histological analysis found the increased neural density in the lateral and medial habenula in DISC1-Q31L mice regardless of sex, hence, excluding direct association between the habenular neurons and emotionality in mutant females. Altogether, our findings demonstrated, for the first time, the direct impact of the DISC1 gene on the habenular neurons and affective behavior in the DISC1-Q31L genetic mouse line. These new findings suggest that the combination of the DISC1 genetic analysis together with habenular neuroimaging may improve diagnostics of mood disorder in clinical studies.
Collapse
|
11
|
Orsolini L, Latini R, Pompili M, Serafini G, Volpe U, Vellante F, Fornaro M, Valchera A, Tomasetti C, Fraticelli S, Alessandrini M, La Rovere R, Trotta S, Martinotti G, Di Giannantonio M, De Berardis D. Understanding the Complex of Suicide in Depression: from Research to Clinics. Psychiatry Investig 2020; 17:207-221. [PMID: 32209966 PMCID: PMC7113180 DOI: 10.30773/pi.2019.0171] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Amongst psychiatric disorders, major depressive disorder (MDD) is the most prevalent, by affecting approximately 15-17% of the population and showing a high suicide risk rate equivalent to around 15%. The present comprehensive overview aims at evaluating main research studies in the field of MDD at suicide risk, by proposing as well as a schematic suicide risk stratification and useful flow-chart for planning suicide preventive and therapeutic interventions for clinicians. METHODS A broad and comprehensive overview has been here conducted by using PubMed/Medline, combining the search strategy of free text terms and exploded MESH headings for the topics of 'Major Depressive Disorder' and 'Suicide' as following: ((suicide [Title/Abstract]) AND (major depressive disorder [Title/Abstract])). All articles published in English through May 31, 2019 were summarized in a comprehensive way. RESULTS Despite possible pathophysiological factors which may explain the complexity of suicide in MDD, scientific evidence supposed the synergic role of genetics, exogenous and endogenous stressors (i.e., interpersonal, professional, financial, as well as psychiatric disorders), epigenetic, the hypothalamic-pituitary-adrenal stress-response system, the involvement of the monoaminergic neurotransmitter systems, particularly the serotonergic ones, the lipid profile, neuro-immunological biomarkers, the Brain-derived neurotrophic factor and other neuromodulators. CONCLUSION The present overview reported that suicide is a highly complex and multifaceted phenomenon in which a large plethora of mechanisms could be variable implicated, particularly amongst MDD subjects. Beyond these consideration, modern psychiatry needs a better interpretation of suicide risk with a more careful assessment of suicide risk stratification and planning of clinical and treatment interventions.
Collapse
Affiliation(s)
- Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.,Neomesia Mental Health, Villa Jolanda Hospital, Jesi, Italy.,Polyedra, Teramo, Italy
| | - Roberto Latini
- Neomesia Mental Health, Villa Jolanda Hospital, Jesi, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Umberto Volpe
- Department of Clinical Neurosciences/DIMSC, School of Medicine, Section of Psychiatry, Polytechnic University of Marche, Ancona, Italy
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy
| | - Michele Fornaro
- Polyedra, Teramo, Italy.,Department of Psychiatry, Federico II University, Naples, Italy
| | - Alessandro Valchera
- Polyedra, Teramo, Italy.,Villa S. Giuseppe Hospital, Hermanas Hospitalarias, Ascoli Piceno, Italy
| | - Carmine Tomasetti
- Department of Mental Health, National Health Service, Psychiatric Service of Diagnosis and Treatment, Hospital "SS. Annunziata" ASL 4, Giulianova, Italy
| | - Silvia Fraticelli
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy
| | - Marco Alessandrini
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy
| | - Raffaella La Rovere
- Department of Mental Health, National Health Service, Azienda Sanitaria Locale, Pescara, Italy
| | - Sabatino Trotta
- Department of Mental Health, National Health Service, Azienda Sanitaria Locale, Pescara, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy
| | - Domenico De Berardis
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University of "G. D'Annunzio", Chieti, Italy.,Department of Mental Health, National Health Service, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, Teramo, Italy
| |
Collapse
|
12
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
13
|
Neonatal treatment with clomipramine modifies the expression of estrogen receptors in brain areas of male adult rats. Brain Res 2019; 1724:146443. [DOI: 10.1016/j.brainres.2019.146443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
|
14
|
Messaoud A, Mensi R, Douki W, Neffati F, Najjar MF, Gobbi G, Valtorta F, Gaha L, Comai S. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J Biol Psychiatry 2019; 20:703-711. [PMID: 29683396 DOI: 10.1080/15622975.2018.1468031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: Patients affected by major depression (MDD) are at high risk of suicide. The metabolism of tryptophan (Trp) along the serotonin (5-HT) and kynurenine (Kyn) pathways was found dysfunctional in MDD and in suicide. However, a clear biological framework linking dysfunctions in Trp metabolism via 5-HT and Kyn, cortisol, and the activities of tryptophan and indoleamino 2,3-dioxygenase (TDO, IDO) enzymes has not been yet clarified in MDD with or without suicidal behaviours.Methods: We analysed peripheral markers of Trp via 5-HT and Kyn pathways, Kyn/Trp ratio as a measure of TDO/IDO activities, cortisol, and psychopathology in 73 non-suicidal and 56 suicidal MDD patients, and in 40 healthy controls.Results: Plasma Trp levels were lower and the ratio Kyn/Trp higher in suicidal MDD than in non-suicidal MDD patients and controls. Trp levels and the ratio Kyn/Trp correlated with suicidal ideation, and cortisol with the Kyn/Trp ratio. Finally, Trp levels discriminated controls from non-suicidal and suicidal MDD patients, and also non-suicidal from suicidal MDD patients.Conclusions: Reduced availability of Trp for 5-HT synthesis and increased activation of the Kyn pathway and cortisol correlate with depression and suicide. Low plasma Trp levels may be a biomarker of MDD and suicide in MDD.
Collapse
Affiliation(s)
- Amel Messaoud
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy.,Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Rym Mensi
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Wahiba Douki
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Fadoua Neffati
- Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | | | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Flavia Valtorta
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Lotfi Gaha
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Stefano Comai
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy.,Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
16
|
Abstract
Suicide is a world health priority. Studies over the last few decades have revealed the complexity underlying the neurobiological mechanisms of suicide. Researchers have found dysregulations in the serotonergic system, the stress system, neural plasticity, lipid metabolism, and cell signaling pathways in relation to suicidal behaviors. These findings have provided more insight into the final path leading to suicide, at which medical intervention should be applied to prevent the action. However, because these molecular mechanisms have been implicated in both depression and suicide, the specificity of the mechanisms has been obscured. In this review, we summarize the main findings of studies on molecular mechanisms of suicidal behavior from the last 2 decades, with particular emphasis on the potential, independent role of each mechanism that is not contingent upon an underlying psychopathology, such as depression. The act of suicide is multifactorial; no single molecular mechanism is sufficient to fully account for the act. Knowledge of the reciprocal interactions among these molecular mechanisms and studying them in the context of brain circuitry by using neuroimaging techniques will provide a better understanding of the neurobiology of suicide.
Collapse
Affiliation(s)
- Sangha Kim
- Department of Psychiatry, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung-Uk Lee
- Department of Psychiatry, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
17
|
Ikuta T, Matsuo K, Harada K, Nakashima M, Hobara T, Higuchi N, Higuchi F, Otsuki K, Shibata T, Watanuki T, Matsubara T, Yamagata H, Watanabe Y. Disconnectivity between Dorsal Raphe Nucleus and Posterior Cingulate Cortex in Later Life Depression. Front Aging Neurosci 2017; 9:236. [PMID: 28824410 PMCID: PMC5539218 DOI: 10.3389/fnagi.2017.00236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/06/2017] [Indexed: 01/15/2023] Open
Abstract
The dorsal raphe nucleus (DRN) has been repeatedly implicated as having a significant relationship with depression, along with its serotoninergic innervation. However, functional connectivity of the DRN in depression is not well understood. The current study aimed to isolate functional connectivity of the DRN distinct in later life depression (LLD) compared to a healthy age-matched population. Resting state functional magnetic resonance imaging (rsfMRI) data from 95 participants (33 LLD and 62 healthy) were collected to examine functional connectivity from the DRN to the whole brain in voxel-wise fashion. The posterior cingulate cortex (PCC) bilaterally showed significantly smaller connectivity in the LLD group than the control group. The DRN to PCC connectivity did not show any association with the depressive status. The findings implicate that the LLD involves disruption of serotoninergic input to the PCC, which has been suggested to be a part of the reduced default mode network in depression.
Collapse
Affiliation(s)
- Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of MississippiUniversity, MS, United States
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan.,Nagato-Ichinomiya HospitalShimonoseki, Japan
| | - Teruyuki Hobara
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan.,Department of Psychiatry, Yamaguchi Grand Medical CenterHofu, Japan
| | - Naoko Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Tomohiko Shibata
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan.,Shinwaen HospitalOnoda, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan.,Health Administration Center, Yamaguchi University Organization for University EducationYamaguchi City, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Graduate School of Medicine, Yamaguchi UniversityUbe, Japan
| |
Collapse
|
18
|
Rajkowska G, Mahajan G, Legutko B, Challagundla L, Griswold M, Albert PR, Daigle M, Miguel-Hidalgo JJ, Austin MC, Blakely RD, Steffens DC, Stockmeier CA. Length of axons expressing the serotonin transporter in orbitofrontal cortex is lower with age in depression. Neuroscience 2017; 359:30-39. [PMID: 28711621 DOI: 10.1016/j.neuroscience.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/27/2022]
Abstract
Studies of major depressive disorder (MDD) in postmortem brain tissue report enhanced binding to inhibitory serotonin-1A autoreceptors in midbrain dorsal raphe and reductions in length of axons expressing the serotonin transporter (SERT) in dorsolateral prefrontal cortex. The length density of axons expressing SERT in the orbitofrontal cortex (OFC) was determined in 18 subjects with MDD and 17 age-matched control subjects. A monoclonal antibody was used to immunohistochemically label the SERT in fixed sections of OFC. The 3-dimensional length density of SERT-immunoreactive (ir) axons in layer VI of OFC was estimated. The age of subjects with MDD was negatively correlated with SERT axon length (r=-0.77, p<0.0005). The significant effect of age persisted when removing four depressed subjects with an antidepressant medication present at the time of death, or when removing nine depressed subjects that had a recent prescription for an antidepressant medication. Neither gender, tissue pH, postmortem interval, 5-HTTLPR genotype, time in fixative, nor death by suicide had a significant effect on axon length. The age-related decrease in SERT-ir axon length in MDD may reflect pathology of ascending axons passing through deep white matter hyperintensities. Greater length of axons expressing SERT in younger subjects with MDD may result in a significant deficit in serotonin availability in OFC.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Gouri Mahajan
- Department of Psychiatry and Human Behavior, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Beata Legutko
- Department of Psychiatry and Human Behavior, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Lavanya Challagundla
- Department of Data Science, JD Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Michael Griswold
- Department of Data Science, JD Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada.
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada.
| | - Jose J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Mark C Austin
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 2017; 168:412-426. [PMID: 28232189 DOI: 10.1016/j.neuroimage.2017.02.052] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/30/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022] Open
Abstract
The human brainstem plays a central role in connecting the cerebrum, the cerebellum and the spinal cord to one another, hosting relay nuclei for afferent and efferent signaling, and providing source nuclei for several neuromodulatory systems that impact central nervous system function. While the investigation of the brainstem with functional or structural magnetic resonance imaging has been hampered for years due to this brain structure's physiological and anatomical characteristics, the field has seen significant advances in recent years thanks to the broader adoption of ultrahigh-field (UHF) MRI scanning. In the present review, we focus on the advantages offered by UHF in the context of brainstem imaging, as well as the challenges posed by the investigation of this complex brain structure in terms of data acquisition and analysis. We also illustrate how UHF MRI can shed new light on the neuroanatomy and neurophysiology underlying different brainstem-based circuitries, such as the central autonomic network and neurotransmitter/neuromodulator systems, discuss existing and foreseeable clinical applications to better understand diseases such as chronic pain and Parkinson's disease, and explore promising future directions for further improvements in brainstem imaging using UHF MRI techniques.
Collapse
Affiliation(s)
- Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Department of Radiology, Logan University, Chesterfield, MO, USA.
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Marta Bianciardi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Department of Radiology, Logan University, Chesterfield, MO, USA
| |
Collapse
|
20
|
Karanović J, Ivković M, Jovanović VM, Šviković S, Pantović-Stefanović M, Brkušanin M, Damjanović A, Brajušković G, Savić-Pavićević D. Effect of childhood general traumas on suicide attempt depends on TPH2 and ADARB1 variants in psychiatric patients. J Neural Transm (Vienna) 2017; 124:621-629. [PMID: 28084537 DOI: 10.1007/s00702-017-1677-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
Suicidal behavior has been associated with a deficient serotonin neurotransmission which is likely a consequence of individual genetic architecture, exposure to environmental factors and interactions of those factors. We examined whether the interaction of child abuse, TPH2 (tryptophan hydroxylase 2) variant rs4290270, affecting alternative splicing and editing of TPH2 pre-mRNAs, and ADARB1 (adenosine deaminase acting on RNA B1) variants rs4819035 and rs9983925 may influence the risk for suicide attempt in psychiatric patients. TPH2 rs4290270 was genotyped in 165 suicide attempters and 188 suicide non-attempters diagnosed with major depressive disorder, bipolar disorder and schizophrenia. Genotyping data for ADARB1 variants were taken over from our previous study. Child abuse before the age of 18 years was assessed using the Early Trauma Inventory-Self Report. Generalized linear models and backward selection were applied to identify the main and interacting effects of environmental and genetic factors, including psychiatric diagnoses, patients' gender and age as covariates. Childhood general traumas were independently associated with suicide attempt. Two-way interaction between TPH2 rs4290270 and general traumas revealed that TT homozygotes with a history of general traumas had an increased risk for suicide attempt. Three-way interaction of general traumas, TPH2 rs4290270 and ADARB1 rs4819035 indicated that the highest predisposition to suicide attempt was observed in individuals who experienced general traumas and were TT homozygote for rs4290270 and TT homozygote for rs4819035. Our findings suggest that the risk for suicide attempt in psychiatric patients exposed to an adverse childhood environment may depend on TPH2 and ADARB1 variants.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Saša Šviković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | | | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Aleksandar Damjanović
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
| |
Collapse
|
21
|
Brisch R, Steiner J, Mawrin C, Krzyżanowska M, Jankowski Z, Gos T. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci 2017; 267:403-415. [PMID: 28229240 PMCID: PMC5509773 DOI: 10.1007/s00406-017-0774-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
An involvement of the central serotonergic system has constantly been reported in the pathogenesis of suicide. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour, in which an abnormal microglia reaction seems to play a role. In our present study, the density of microglia immunostained for the HLA-DR antigen was evaluated in the DRN. These analyses were carried out on paraffin-embedded brains from 24 suicidal and 21 non-suicidal patients; among them, 27 depressed (15 major depressive disorder and 12 bipolar disorder) and 18 schizophrenia (9 residual and 9 paranoid) patients and 22 matched controls without mental disorders. Only the non-suicidal depressed subgroup revealed significantly lower microglial reaction, i.e., a decreased density of HLA-DR positive microglia versus both depressed suicide victims and controls. The effect was not related to antidepressant or antipsychotic medication, as the former correlated positively with microglial density in non-suicidal depressed patients, and the latter had no effect. Moreover, the comparison of these results with previously published data from our workgroup in the same cohort (Krzyżanowska et al. in Psychiatry Res 241:43-46, 4) suggested a positive impact of microglia on ribosomal DNA transcription in DRN neurons in the non-suicidal depressed subgroup, but not in depressed suicidal cases. Therefore, the interaction between microglia and neurons in the DRN may be potentially involved in opposite ways regarding suicide facilitation and prevention in the tested subgroups of depressed patients.
Collapse
Affiliation(s)
- Ralf Brisch
- 0000 0001 0531 3426grid.11451.30Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- 0000 0001 1018 4307grid.5807.aDepartment of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Mawrin
- 0000 0001 1018 4307grid.5807.aInstitute of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marta Krzyżanowska
- 0000 0001 0531 3426grid.11451.30Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Zbigniew Jankowski
- 0000 0001 0531 3426grid.11451.30Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany. .,Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
22
|
Thompson JR, Valleau JC, Barling AN, Franco JG, DeCapo M, Bagley JL, Sullivan EL. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates. Front Endocrinol (Lausanne) 2017; 8:164. [PMID: 28785241 PMCID: PMC5519527 DOI: 10.3389/fendo.2017.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeanette C. Valleau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Ashley N. Barling
- Department of Biology, University of Portland, Portland, OR, United States
| | - Juliana G. Franco
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Biology, University of Portland, Portland, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
23
|
Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc Natl Acad Sci U S A 2016; 113:E8472-E8481. [PMID: 27940914 DOI: 10.1073/pnas.1617824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1-3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
Collapse
|
24
|
Roh JH, Ko IG, Kim SE, Lee JM, Ji ES, Kim JH, Chang HK, Lee SK, Kim KH. Treadmill exercise ameliorates intracerebral hemorrhage-induced depression in rats. J Exerc Rehabil 2016; 12:299-307. [PMID: 27656626 PMCID: PMC5031381 DOI: 10.12965/jer.1632692.346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/23/2016] [Indexed: 11/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe type of stroke causing neurological dysfunction with high mortality rate. Depression is one of the most common complications of ICH. In the present study, the effects of treadmill exercise on ICH-induced depressive symptoms in relation with apoptosis were investigated using rats. ICH rat model was induced by injection of collagenase into the hippocampus using stereotaxic instrument. Open field test for activity and forced swimming test for depressive symptoms were conducted. Apoptosis in the hippocampus was detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3, and western blot for Bcl-2 and Bax. Western blot analysis for 5-hydroxy-tryptamine (5-HT, serotonin) and tryptophan hydroxylase (TPH) in the dorsal raphe was also conducted for biomarkers of depression. In the present results, immobility time was increased and climbing time was decreased by induction of ICH and treadmill exercise inhibited immobility time and increased climbing time in ICH rats. DNA fragmentation and caspase-3 expression in the hippocampal dentate gyrus were enhanced by induction of ICH and treadmill exercise suppressed ICH-induced DNA fragmentation and caspase-3 expression. Bax expression in the hippocampus was increased by induction of ICH and treadmill exercise inhibited Bax expression in the ICH rats. Expressions of 5-HT and TPH in the dorsal raphe were decreased by induction of ICH and treadmill exercise increased expressions of 5-HT and TPH in the ICH rats. In the present study, treadmill exercise ameliorated depressive symptoms through inhibiting apoptosis.
Collapse
Affiliation(s)
- Joo Hwan Roh
- Department of Urology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Ju Ho Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| | - Hyun-Kyung Chang
- Department of Urology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| | - Seung Kyu Lee
- Department of Urology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| |
Collapse
|
25
|
Bach H, Arango V, Kassir SA, Dwork AJ, Mann JJ, Underwood MD. Cigarette Smoking and Tryptophan Hydroxylase 2 mRNA in the Dorsal Raphe Nucleus in Suicides. Arch Suicide Res 2016; 20:451-62. [PMID: 26954509 PMCID: PMC4920715 DOI: 10.1080/13811118.2015.1048398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cigarette smoking is associated with suicide and mood disorders and stimulates serotonin release. Tryptophan hydroxylase (TPH2) synthesizes serotonin and is over-expressed in suicides. We determined whether smoking is associated with TPH2 mRNA in suicides and controls. TPH2 mRNA was measured postmortem in the dorsal raphe nucleus (DRN) of controls (N = 26, 17 nonsmokers and nine smokers) and suicides (N = 23, 5 nonsmokers and 18 smokers). Psychiatric history was obtained by psychological autopsy. TPH2 mRNA was greater in suicide nonsmokers than suicide smokers, control smokers and control nonsmokers (p = 0.006). There was more TPH2 mRNA throughout the DRN. Smoking interferes with the TPH2 mRNA increase observed in suicide nonsmokers. The absence of altered TPH2 expression in non-suicide smokers suggests no pharmacological effect of smoking.
Collapse
|
26
|
Urban DJ, Zhu H, Marcinkiewcz CA, Michaelides M, Oshibuchi H, Rhea D, Aryal DK, Farrell MS, Lowery-Gionta E, Olsen RHJ, Wetsel WC, Kash TL, Hurd YL, Tecott LH, Roth BL. Elucidation of The Behavioral Program and Neuronal Network Encoded by Dorsal Raphe Serotonergic Neurons. Neuropsychopharmacology 2016; 41:1404-15. [PMID: 26383016 PMCID: PMC4793125 DOI: 10.1038/npp.2015.293] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 01/15/2023]
Abstract
Elucidating how the brain's serotonergic network mediates diverse behavioral actions over both relatively short (minutes-hours) and long period of time (days-weeks) remains a major challenge for neuroscience. Our relative ignorance is largely due to the lack of technologies with robustness, reversibility, and spatio-temporal control. Recently, we have demonstrated that our chemogenetic approach (eg, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) provides a reliable and robust tool for controlling genetically defined neural populations. Here we show how short- and long-term activation of dorsal raphe nucleus (DRN) serotonergic neurons induces robust behavioral responses. We found that both short- and long-term activation of DRN serotonergic neurons induce antidepressant-like behavioral responses. However, only short-term activation induces anxiogenic-like behaviors. In parallel, these behavioral phenotypes were associated with a metabolic map of whole brain network activity via a recently developed non-invasive imaging technology DREAMM (DREADD Associated Metabolic Mapping). Our findings reveal a previously unappreciated brain network elicited by selective activation of DRN serotonin neurons and illuminate potential therapeutic and adverse effects of drugs targeting DRN neurons.
Collapse
Affiliation(s)
- Daniel J Urban
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC, USA
| | - Hu Zhu
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC, USA
| | - Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Michaelides
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hidehiro Oshibuchi
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Darren Rhea
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Dipendra K Aryal
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Martilias S Farrell
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC, USA
| | - Emily Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yasmin L Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurence H Tecott
- Department of Psychiatry, University of California, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, CA 94143, USA, Tel: 415 576 7858, Fax: 415 476 7838, E-mail:
| | - Bryan L Roth
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC, USA,Department of Pharmacology, UNC Chapel Hill Medical School, NIMH Psychoactive Drug Screening Program, Chapel Hill, NC 27599, USA, Tel: +1 919 966 7535, Fax: +1 919 843 5788, E-mail:
| |
Collapse
|
27
|
Altered taste preference and loss of limbic-projecting serotonergic neurons in the dorsal raphe nucleus of chronically epileptic rats. Behav Brain Res 2016; 297:28-36. [DOI: 10.1016/j.bbr.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
|
28
|
Krzyżanowska M, Steiner J, Karnecki K, Kaliszan M, Brisch R, Wiergowski M, Braun K, Jankowski Z, Gos T. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons differentiates between suicidal and non-suicidal death. Eur Arch Psychiatry Clin Neurosci 2016; 266:217-24. [PMID: 26590846 PMCID: PMC4819736 DOI: 10.1007/s00406-015-0655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
An involvement of the central serotonergic system has been implicated in the pathogenesis of suicide. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour. The study was carried out on paraffin-embedded brainstem blocks containing the DRN obtained from 27 suicide completers (predominantly violent) with unknown psychiatric diagnosis and 30 non-suicidal controls. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons as a surrogate marker of protein biosynthesis was evaluated by the AgNOR silver staining method. Significant decreases in AgNOR parameters suggestive of attenuated rDNA activity were found in the cumulative analysis of all DRN subnuclei in suicide victims versus controls (U test P values < 0.00001). Our findings suggest that the decreased activity of rDNA transcription in DRN neurons plays an important role in suicide pathogenesis. The method accuracy represented by the area under receiver operating characteristic curve (>80 %) suggests a diagnostic value of the observed effect. However, the possible application of the method in forensic differentiation diagnostics between suicidal and non-suicidal death needs further research.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- />Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karol Karnecki
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Michał Kaliszan
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Marek Wiergowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- />Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany. .,Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
29
|
Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015; 9:475. [PMID: 26733789 PMCID: PMC4681773 DOI: 10.3389/fnins.2015.00475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 12/05/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Jessika Urbanavicius
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Luciana Benedetto
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Claudia Pascovich
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Ximena López-Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and University of California, Los Angeles School of Medicine Los Angeles, CA, USA
| | - Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Hospital de Clínicas, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
30
|
Krzyżanowska M, Steiner J, Brisch R, Mawrin C, Busse S, Braun K, Jankowski Z, Bernstein HG, Bogerts B, Gos T. Ribosomal DNA transcription in dorsal raphe nucleus neurons is increased in residual schizophrenia compared to depressed patients with affective disorders. Psychiatry Res 2015; 230:233-41. [PMID: 26350704 DOI: 10.1016/j.psychres.2015.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
The central serotonergic system is implicated differentially in the pathogenesis of depression and schizophrenia. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in both disorders. The study was carried out on paraffin-embedded brains from 27 depressed (15 major depressive disorder, MDD and 12 bipolar disorder, BD) and 17 schizophrenia (9 residual and 8 paranoid) patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver staining method. A significant effect of diagnosis on rDNA activity was found in the cumulative analysis of all DRN subnuclei. Further analysis revealed an increase in this activity in residual (but not paranoid) schizophrenia compared to depressed (both MDD and BD) patients. The effect was most probably neither confounded by suicide nor related to antidepressant and antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in residual schizophrenia, related presumably to differentially disturbed inputs to the DRN and/or their local transformation compared with depressive episodes in patients with affective disorders.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | | | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland; Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
31
|
Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 2015; 99:527-37. [DOI: 10.1016/j.neuropharm.2015.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/26/2023]
|
32
|
Kambeitz JP, Howes OD. The serotonin transporter in depression: Meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord 2015; 186:358-66. [PMID: 26281039 DOI: 10.1016/j.jad.2015.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered serotonin transporter levels have been reported in blood and brain of patients with major depressive disorders. However, the strength and consistency of the evidence for altered serotonin transporter availability in major depressive disorder is not clear. METHODS To address this, a comprehensive meta-analysis was conducted of all available in vivo neuroimaging and post mortem studies reporting serotonin transporter availability in patients with depression compared with healthy controls. RESULTS The final sample consisted of fifty (n=27 in vivo and n=25 post mortem) studies including 877 patients with depression (mean age: 42.9 years) and 968 healthy controls (mean age: 42.7 years). In vivo neuroimaging studies indicated reduced serotonin transporter binding in the striatum (g=-0.39, p=0.01), the amygdala (g=-0.37, p=0.01) and the brainstem (g=-0.31, p=0.01), including the midbrain (g=-0.27, p=0.02), but no significant alteration in the thalamus or the hippocampus. The post mortem findings indicated no significant change in serotonin transporter binding in depression in the brainstem (p=0.64), the frontal cortex (p=0.75) and the hippocampus (p=0.32, corrected for publication bias). Although there were too few studies for a meta-analysis, the post mortem studies in the amygdala and striatum showed reduced SERT binding in MDD in absolute terms, consistent with the imaging findings. LIMITATIONS A number of potential factors might have biased the results of the present meta-analysis such as the imaging modality (post mortem or in vivo neuroimaging), partial volume effects, susceptibility of some radiotracers to synaptic serotonin levels or binding to other monoamine transporters. CONCLUSIONS The results indicate that serotonin transporter availability in depressed patients is reduced in key regions of the limbic system. This provides direct support for the serotonin hypothesis of depression, and underlines the importance of the serotonin transporter as a target of pharmacological treatments.
Collapse
Affiliation(s)
- Joseph P Kambeitz
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, England, United Kingdom; Department of Psychiatry, Ludwig-Maximilians-University Munich, Germany
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, England, United Kingdom; Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, United Kingdom.
| |
Collapse
|
33
|
Sullivan GM, Oquendo MA, Milak M, Miller JM, Burke A, Ogden RT, Parsey RV, Mann JJ. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder. JAMA Psychiatry 2015; 72:169-78. [PMID: 25549105 PMCID: PMC4329977 DOI: 10.1001/jamapsychiatry.2014.2406] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with MDD was positively correlated with serotonin(1A) BPF in the PFC regions (F1,88 = 5.19; P = .03) and in the raphe nuclei (F1,87 = 7.38; P = .008; R2 = 0.12). CONCLUSIONS AND RELEVANCE Higher brainstem raphe serotonin(1A)BPF observed in higher-lethality suicide attempters with MDD is in agreement with findings in suicide studies and also with the finding of low cerebrospinal fluid levels of 5-hydroxyindoleacetic acid in higher-lethality suicide attempters. Higher brainstem raphe serotonin(1A) BPF would be consistent with lower levels of serotonin neuron firing and release and supports a model of impaired serotonin signaling in suicide and higher-lethality suicidal behavior. Severity of suicidal ideation in MDD is related to brainstem and prefrontal serotonin(1A) BPF, suggesting a role for both regions in suicidal ideation. Lower levels of serotonin release at key brain projection sites, such as the prefrontal regions, may favor more severe suicidal ideation and higher-lethality suicide attempts.
Collapse
Affiliation(s)
- Gregory M. Sullivan
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York3currently with Tonix Pharmaceuticals, LLC, New York, New York
| | - Maria A. Oquendo
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York
| | - Matthew Milak
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York
| | - Jeffrey M. Miller
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York
| | - Ainsley Burke
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York
| | - R. Todd Ogden
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York4Department of Biostatistics, Mailman School of Public Health, Columbia University, New York
| | - Ramin V. Parsey
- currently with Department of Psychiatry and Behavioral Science, Stony Brook University School of Medicine, Stony Brook, New York
| | - J. John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York2Department of Psychiatry, Columbia University, New York, New York6Department of Radiology, Columbia University, New York, New York
| |
Collapse
|
34
|
Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P. Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Res 2015; 1598:114-28. [DOI: 10.1016/j.brainres.2014.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/27/2022]
|
35
|
Ribosomal DNA transcription in the dorsal raphe nucleus is increased in residual but not in paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2015; 265:117-26. [PMID: 25091423 PMCID: PMC4339493 DOI: 10.1007/s00406-014-0518-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 01/28/2023]
Abstract
The central serotonergic system is implicated in the pathogenesis of schizophrenia, where the imbalance between dopamine, serotonin and glutamate plays a key pathophysiological role. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in schizophrenia patients. The study was carried out on paraffin-embedded brains from 17 (8 paranoid and 9 residual) schizophrenia patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver-staining method. An increased rDNA transcriptional activity was found in schizophrenia patients in the cumulative analysis of all DRN subnuclei (t test, P = 0.02). Further subgroup analysis revealed that it was an effect specific for residual schizophrenia versus paranoid schizophrenia or control groups (ANOVA, P = 0.002). This effect was confounded neither by suicide nor by antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in schizophrenia, particularly in residual patients. An activation of the rDNA transcription in DRN neurons may represent a compensatory mechanism to overcome the previously described prefrontal serotonergic hypofunction in this diagnostic subgroup.
Collapse
|
36
|
Kulikov AV, Popova NK. Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives? Rev Neurosci 2015; 26:679-90. [DOI: 10.1515/revneuro-2015-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/26/2015] [Indexed: 01/14/2023]
Abstract
AbstractSeasonal affective disorder (SAD) is characterized by recurrent depression occurring generally in fall/winter. Numerous pieces of evidence indicate the association of SAD with decreased brain neurotransmitter serotonin (5-HT) system functioning. Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme in 5-HT synthesis in the brain. This paper concentrates on the relationship between TPH2 activity and mood disturbances, the association between human
Collapse
|
37
|
Rubinow MJ, Mahajan G, May W, Overholser JC, Jurjus GJ, Dieter L, Herbst N, Steffens DC, Miguel-Hidalgo JJ, Rajkowska G, Stockmeier CA. Basolateral amygdala volume and cell numbers in major depressive disorder: a postmortem stereological study. Brain Struct Funct 2014; 221:171-84. [PMID: 25287512 DOI: 10.1007/s00429-014-0900-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/23/2014] [Indexed: 01/27/2023]
Abstract
Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.
Collapse
Affiliation(s)
- Marisa J Rubinow
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Gouri Mahajan
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Warren May
- Department of Medicine, Center of Biostatistics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - James C Overholser
- Department of Psychology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - George J Jurjus
- Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA. .,Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Nicole Herbst
- Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Jose J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA. .,Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
38
|
Abstract
The basal forebrain cholinergic system modulates neuronal excitability and vascular tone throughout the cerebral cortex and hippocampus. This system is severely affected in Alzheimer's disease (AD), and drug treatment to enhance cholinergic signaling is widely used as symptomatic therapy in AD. Defining the full morphologies of individual basal forebrain cholinergic neurons has, until now, been technically beyond reach due to their large axon arbor sizes. Using genetically-directed sparse labeling, we have characterized the complete morphologies of basal forebrain cholinergic neurons in the mouse. Individual arbors were observed to span multiple cortical columns, and to have >1000 branch points and total axon lengths up to 50 cm. In an AD model, cholinergic axons were slowly lost and there was an accumulation of axon-derived material in discrete puncta. Calculations based on published morphometric data indicate that basal forebrain cholinergic neurons in humans have a mean axon length of ∼100 meters. DOI:http://dx.doi.org/10.7554/eLife.02444.001 The human brain is made up of roughly 80 to 100 billion neurons, organized into extensive networks. Each neuron consists of a number of components: a cell body, which contains the nucleus; numerous short protrusions from the cell body called dendrites; and a long thin structure called an axon that carries the electrical signals generated in the cell body and the dendrites to the next neuron in the network. One of the most studied networks in the human brain is the basal forebrain network, which is made up of large neurons that communicate with one another using a chemical transmitter called acetylcholine. This network has a key role in cognition, and its neurons are among the first to degenerate in Alzheimer's disease. However, relatively little is known about the structure of these ‘cholinergic’ neurons because their large size makes them difficult to study using standard techniques. Now, Wu et al. have visualized, for the first time, the complete 3D structure of cholinergic neurons in the mouse forebrain. The mice in question had been genetically modified so that only ten or so of their many thousands of cholinergic neurons expressed a distinctive ‘marker’ protein. This made it possible to distinguish these neurons from surrounding brain tissue in order to visualize their structures. The resulting pictures clearly illustrate the neurons' complexity, with individual axons in adult mice displaying up to 1000 branches. Measurements showed that each cholinergic axon in the mouse brain is roughly 30 centimeters long, even though the brain itself is less than 2 centimeters from front to back. Based on measurements by other researchers, Wu et al. calculated that the axons of single cholinergic neurons in the human brain are about 100 meters long on average. The extreme length and complex branching structure of cholinergic forebrain neurons helps to explain why each neuron is able to modulate the activity of many others in the network. It could also explain their vulnerability to degeneration, as the need to transport materials over such long distances may limit the ability of these neurons to respond to damage. DOI:http://dx.doi.org/10.7554/eLife.02444.002
Collapse
Affiliation(s)
- Hao Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States Department of Opthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
39
|
Vasudeva RK, Waterhouse BD. Cellular profile of the dorsal raphe lateral wing sub-region: relationship to the lateral dorsal tegmental nucleus. J Chem Neuroanat 2014; 57-58:15-23. [PMID: 24704911 DOI: 10.1016/j.jchemneu.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 01/09/2023]
Abstract
As one of the main serotonergic (5HT) projections to the forebrain, the dorsal raphe nucleus (DRN) has been implicated in disorders of anxiety and depression. Although the nucleus contains the densest population of 5HT neurons in the brain, at least 50% of cells within this structure are non-serotonergic, including a large population of nitric oxide synthase (NOS) containing neurons. The DRN has a unique topographical efferent organization and can also be divided into sub-regions based on rostro-caudal and medio-lateral dimensions. NOS is co-localized with 5HT in the midline DRN but NOS-positive cells in the lateral wing (LW) of the nucleus do not express 5HT. Interestingly, the NOS LW neuronal population is immediately rostral to and in line with the cholinergic lateral dorsal tegmental nucleus (LDT). We used immunohistochemical methods to investigate the potential serotonergic regulation of NOS LW neurons and also the association of this cell grouping to the LDT. Our results indicate that >75% of NOS LW neurons express the inhibitory 5HT1A receptor and are cholinergic (>90%). The findings suggest this assembly of cells is a rostral extension of the LDT, one that it is subject to regulation by 5HT release. As such the present study suggests a link between 5HT signaling, activation of cholinergic/NOS neurons, and the stress response including the pathophysiology underlying anxiety and depression.
Collapse
Affiliation(s)
- Rani K Vasudeva
- Temple University School of Medicine, Center for Substance Abuse Research, MERB 8th Floor, Philadelphia, PA 19140, United States; Drexel University College of Medicine, Department of Neurobiology & Anatomy, Queen Lane Campus, Philadelphia, PA 19129, United States.
| | - Barry D Waterhouse
- Drexel University College of Medicine, Department of Neurobiology & Anatomy, Queen Lane Campus, Philadelphia, PA 19129, United States.
| |
Collapse
|
40
|
Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, Shah RC, Schneider JA, Arnold SE, Bennett DA. Brainstem aminergic nuclei and late-life depressive symptoms. JAMA Psychiatry 2013; 70:1320-8. [PMID: 24132763 PMCID: PMC3856195 DOI: 10.1001/jamapsychiatry.2013.2224] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE The neurobiologic basis of late-life depressive symptoms is not well understood. OBJECTIVE To test the hypothesis that neurodegeneration and neuronal density in brainstem aminergic nuclei are related to late-life depressive symptoms. DESIGN, SETTING, PARTICIPANTS, AND EXPOSURE: Longitudinal clinicopathological cohort study at residences of participants in the Chicago, Illinois, metropolitan area. Participants included 124 older persons without dementia in the Rush Memory and Aging Project who had annual evaluations for a mean (SD) of 5.7 (2.8) years, died, and underwent a postmortem neuropathological examination that provided estimates of the densities of Lewy bodies, neurofibrillary tangles, and aminergic neurons in the locus ceruleus, dorsal raphe nucleus, substantia nigra, and ventral tegmental area. MAIN OUTCOMES AND MEASURES The number of depressive symptoms (mean [SD], 1.61 [1.48]; range, 0-6; skewness, 0.94) on the Center for Epidemiological Studies Depression Scale averaged across annual evaluations. RESULTS Brainstem Lewy bodies were associated with depressive symptoms, and the association was attenuated in those taking antidepressant medication. Brainstem tangles were associated with more depressive symptoms in those without cognitive impairment but with fewer symptoms in those with mild cognitive impairment. Lower density of tyrosine hydroxylase-immunoreactive neurons in the ventral tegmental area was robustly associated with a higher level of depressive symptoms (mean [SE] estimate, -0.014 [0.003]; P < .001; 16.3% increase in adjusted R2). The association was not modified by medication use or cognitive impairment. Neither tyrosine hydroxlyase-immunoreactive neurons in the locus ceruleus nor tryptophan hydroxlyase-immunoreactive neurons in the dorsal raphe nucleus were related to depressive symptoms. CONCLUSIONS AND RELEVANCE The results suggest that the mesolimbic dopamine system, especially the ventral tegmental area, has an important role in late-life depressive symptoms.
Collapse
Affiliation(s)
- Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois2Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois3Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In this brief reflection I outline how Fred Graeff and I came to integrate our ideas and findings concerning the behavioural functions of serotonin (5-HT) over 20 years ago in '5-HT and mechanisms of defence', reproduced in this volume (pp. 000-000). The principal insight was that different 5-HT pathways mediate distinct adaptive responses to aversive events of different types. It emerged from a number of strands in neuropsychopharmacology: the functional implications of the still-fresh images of monoamine neuroanatomy of the 1970s; the ethological differentiation of behavioural responses to proximal and distal threats; and the seemingly contradictory effects of 5-HT drugs in unconditioned, Pavlovian and instrumental paradigms of reward and aversion. The article has been cited over 600 times and continues to be cited. The evidence was mainly from the animal literature but included some experimental psychopharmacological tests in humans. Some more recent and notable human corroborations are highlighted in this perspective.
Collapse
Affiliation(s)
- Jfw Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Paul ED, Lowry CA. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol 2013; 27:1090-106. [PMID: 23704363 DOI: 10.1177/0269881113490328] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.
Collapse
Affiliation(s)
- Evan D Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, USA
| | | |
Collapse
|
43
|
Nye JA, Purselle D, Plisson C, Voll RJ, Stehouwer JS, Votaw JR, Kilts CD, Goodman MM, Nemeroff CB. Decreased brainstem and putamen SERT binding potential in depressed suicide attempters using [11C]-zient PET imaging. Depress Anxiety 2013; 30:902-7. [PMID: 23526784 DOI: 10.1002/da.22049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Deficits in serotonergic neurotransmission have been implicated in the pathogenesis of depression and suicidality. The present study utilized a novel positron-emission tomography (PET) ligand to quantitate and compare brain regional serotonin transporter (SERT) binding potential in depressed patients with a past history of suicide attempts to that of healthy comparison subjects. METHOD We used [(11) C]-ZIENT PET to label SERT in the serotonergic cell body rich brainstem, and forebrain projection fields. Quantitative PET emission data from 21 adults (10 healthy controls and 11 drug-free patients with major depression) was used for group comparison. SERT binding potential (BPND ) in eight MRI-based brain regions of interest (ROI) were compared in high-resolution PET images. RESULTS SERT binding potential was significantly decreased in the midbrain/pons (P = .029) and putamen (P = .04) of depressed patients with a past suicide attempt relative to comparison subjects. Forebrain SERT binding was also reduced in the patient sample, though these region effects did not survive a multiple comparison correction. CONCLUSION These results suggest that decreased availability of the brainstem and basal ganglia SERT represents a biomarker of depression and thus confirm and extend the role of dysregulation of brain serotonergic neurotransmission in the pathophysiology of depression and suicide.
Collapse
Affiliation(s)
- Jonathon A Nye
- Departments of Radiology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bach H, Huang YY, Underwood MD, Dwork AJ, Mann JJ, Arango V. Elevated serotonin and 5-HIAA in the brainstem and lower serotonin turnover in the prefrontal cortex of suicides. Synapse 2013; 68:127-30. [PMID: 23813499 DOI: 10.1002/syn.21695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 11/11/2022]
Abstract
Using high pressure liquid chromatography, we find more brainstem 5-HT and 5-HIAA in suicides compared with nonpsychiatric, sudden death controls throughout the rostrocaudal extent of the brainstem DRN and MRN. This suggests that 5-HT synthesis in suicides is greater within all DRN subnuclei and the MRN compared with controls.
Collapse
Affiliation(s)
- Helene Bach
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| | | | | | | | | | | |
Collapse
|
45
|
Furczyk K, Schutová B, Michel TM, Thome J, Büttner A. The neurobiology of suicide - A Review of post-mortem studies. J Mol Psychiatry 2013; 1:2. [PMID: 25408895 PMCID: PMC4223890 DOI: 10.1186/2049-9256-1-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
The neurobiology of suicidal behaviour, which constitutes one of the most serious problems both in psychiatry and general medical practice, still remains to a large degree unclear. As a result, scientists constantly look for new opportunities of explaining the causes underlying suicidality. In order to elucidate the biological changes occurring in the brains of the suicide victims, studies based on post-mortem brain tissue samples are increasingly being used. These studies employ different research methods to provide an insight into abnormalities in brain functioning on various levels, including gene and protein expression, neuroplasticity and neurotransmission, as well as many other areas. The aim of this paper to summarize the available data on the post-mortem studies, to provide an overview of main research directions and the most up-to-date findings, and to indicate the possibilities of further research in this field.
Collapse
Affiliation(s)
- Karolina Furczyk
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Barbora Schutová
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Tanja M Michel
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 PP UK
| | - Andreas Büttner
- Institute of Forensic Medicine, University of Rostock, St.-Georg-Strasse 108, 18055 Rostock, Germany
| |
Collapse
|
46
|
Donner NC, Lowry CA. Sex differences in anxiety and emotional behavior. Pflugers Arch 2013; 465:601-26. [PMID: 23588380 DOI: 10.1007/s00424-013-1271-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
Research has elucidated causal links between stress exposure and the development of anxiety disorders, but due to the limited use of female or sex-comparative animal models, little is known about the mechanisms underlying sex differences in those disorders. This is despite an overwhelming wealth of evidence from the clinical literature that the prevalence of anxiety disorders is about twice as high in women compared to men, in addition to gender differences in severity and treatment efficacy. We here review human gender differences in generalized anxiety disorder, panic disorder, posttraumatic stress disorder and anxiety-relevant biological functions, discuss the limitations of classic conflict anxiety tests to measure naturally occurring sex differences in anxiety-like behaviors, describe sex-dependent manifestation of anxiety states after gestational, neonatal, or adolescent stressors, and present animal models of chronic anxiety states induced by acute or chronic stressors during adulthood. Potential mechanisms underlying sex differences in stress-related anxiety states include emerging evidence supporting the existence of two anatomically and functionally distinct serotonergic circuits that are related to the modulation of conflict anxiety and panic-like anxiety, respectively. We discuss how these serotonergic circuits may be controlled by reproductive steroid hormone-dependent modulation of crfr1 and crfr2 expression in the midbrain dorsal raphe nucleus and by estrous stage-dependent alterations of γ-aminobutyric acid (GABAergic) neurotransmission in the periaqueductal gray, ultimately leading to sex differences in emotional behavior.
Collapse
Affiliation(s)
- Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, 114 Clare Small, Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
47
|
Mann JJ. The serotonergic system in mood disorders and suicidal behaviour. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120537. [PMID: 23440471 DOI: 10.1098/rstb.2012.0537] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A stress-diathesis explanatory model of suicidal behaviour has proved to be of heuristic value, and both clinical and neurobiological components can be integrated into such a model. A trait deficiency in serotonin input to the anterior cingulate and ventromedial prefrontal cortex is found in association with suicide, and more recently non-fatal suicidal behaviour, and is linked to decision-making and suicide intent by imaging and related studies in vivo. The same neural circuitry and serotonin deficiency may contribute to impulsive aggressive traits that are part of the diathesis for suicidal behaviour and are associated with early onset mood disorders and greater risk for suicidal behaviour. Other brain areas manifest deficient serotonin input, that is, a trait related to recurrent major depressive disorder and bipolar disorder. Thus the serotonin system is involved in both the diathesis for suicidal behaviour in terms of decision-making, and to a major stressor, namely episodes of major depression.
Collapse
Affiliation(s)
- J John Mann
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY 10471, USA.
| |
Collapse
|
48
|
Lukkes JL, Kopelman JM, Donner NC, Hale MW, Lowry CA. Development × environment interactions control tph2 mRNA expression. Neuroscience 2013; 237:139-50. [PMID: 23403177 DOI: 10.1016/j.neuroscience.2013.01.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/29/2023]
Abstract
Adverse early life experience is thought to increase an individual's susceptibility to mental health disorders, including anxiety and affective disorders, later in life. Our previous studies have shown that post-weaning social isolation of female rats during a critical period of development sensitizes an anxiety-related serotonergic dorsal raphe nucleus (DR) system in adulthood. Therefore, we investigated how post-weaning social isolation, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor), affects home cage behavior and serotonergic gene expression in the DR of female rats using in situ hybridization histochemistry. Juvenile female rats were reared in isolation or groups of three for a 3-week period from weaning (postnatal day (PD) 21 to mid-adolescence (PD42)), after which all rats were group-reared for an additional 16 days until adulthood. Among vehicle-treated rats, isolation-reared rats had decreased rodent tryptophan hydroxylase 2 (tph2) mRNA expression in ventral and ventrolateral subdivisions of the DR, a pattern observed previously in a rat model of panic disorder. Isolation-reared rats, but not group-reared rats, responded to FG-7142 with increased duration of vigilance and arousal behaviors. In addition, FG-7142 decreased tph2 expression, measured 4h following treatment, in multiple subregions of the DR of group-reared rats but had no effect in isolation-reared rats. No treatment effects were observed on 5-HT1A receptor or serotonin transporter gene expression. These data suggest that adolescent social isolation alters tph2 expression in specific subregions of the DR and alters the effects of stress-related stimuli on behavior and serotonergic systems.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
49
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
50
|
Abstract
Suicide and bipolar disorder (BD) are challenging, complex, and intertwined areas of study in contemporary psychiatry. Indeed, BD is associated with the highest lifetime risk for suicide attempt and completion of all the psychiatric conditions. Given that several clinical risk factors for both suicide and BD have been well noted in the literature, exploring the neurobiological aspects of suicide in BD may provide insights into both preventive measures and future novel treatments. This review synthesizes findings regarding the neurobiological aspects of suicide and, when applicable, their link to BD. Neurochemical findings, genes/epigenetics, and potential molecular targets for current or future treatments are discussed. The role of endophenotypes and related proximal and distal risk factors underlying suicidal behavior are also explored. Lastly, we discuss the manner in which preclinical work on aggression and impulsivity may provide additional insights for the future development of novel treatments.
Collapse
|