1
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
2
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Yoon SH, Song WS, Chung G, Kim SJ, Kim MH. Activity in the dorsal hippocampus-mPFC circuit modulates stress-coping strategies during inescapable stress. Exp Mol Med 2024; 56:1921-1935. [PMID: 39218973 PMCID: PMC11447212 DOI: 10.1038/s12276-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Anatomical connectivity and lesion-deficit studies have shown that the dorsal and ventral hippocampi contribute to cognitive and emotional processes, respectively. However, the role of the dorsal hippocampus (dHP) in emotional or stress-related behaviors remains unclear. Here, we showed that neuronal activity in the dHP affects stress-coping behaviors in mice via excitatory projections to the medial prefrontal cortex (mPFC). The antidepressant ketamine rapidly induced c-Fos expression in both the dorsal and ventral hippocampi. The suppression of GABAergic transmission in the dHP-induced molecular changes similar to those induced by ketamine administration, including eukaryotic elongation factor 2 (eEF2) dephosphorylation, brain-derived neurotrophic factor (BDNF) elevation, and extracellular signal-regulated kinase (ERK) phosphorylation. These synaptic and molecular changes in the dHP induced a reduction in the immobility time of the mice in the tail-suspension and forced swim tests without affecting anxiety-related behavior. Conversely, pharmacological and chemogenetic potentiation of inhibitory neurotransmission in the dHP CA1 region induced passive coping behaviors during the tests. Transneuronal tracing and electrophysiology revealed monosynaptic excitatory connections between dHP CA1 neurons and mPFC neurons. Optogenetic stimulation of dHP CA1 neurons in freely behaving mice produced c-Fos induction and spike firing in the mPFC neurons. Chemogenetic activation of the dHP-recipient mPFC neurons reversed the passive coping behaviors induced by suppression of dHP CA1 neuronal activity. Collectively, these results indicate that neuronal activity in the dHP modulates stress-coping strategies to inescapable stress and contributes to the antidepressant effects of ketamine via the dHP-mPFC circuit.
Collapse
Affiliation(s)
- Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Geehoon Chung
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sang Jeong Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea.
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi, 13620, Korea.
| |
Collapse
|
4
|
Ross RE, Saladin ME, George MS, Gregory CM. Acute effects of aerobic exercise on corticomotor plasticity in individuals with and without depression. J Psychiatr Res 2024; 176:108-118. [PMID: 38852541 PMCID: PMC11283944 DOI: 10.1016/j.jpsychires.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although complex in nature, the pathophysiology of depression involves reduced or impaired neuroplastic capabilities. Restoring or enhancing neuroplasticity may serve as a treatment target for developing therapies for depression. Aerobic exercise (AEx) has antidepressant benefits and may enhance neuroplasticity in depression although the latter has yet to be substantiated. Therefore, we sought to examine the acute effect of AEx on neuroplasticity in depression. METHODS Sixteen individuals with (DEP; 13 female; age = 28.5 ± 7.3; Montgomery-Äsberg Depression Rating Scale [MADRS] = 21.3 ± 5.2) and without depression (HC; 13 female; age 27.2 ± 7.5; MADRS = 0.8 ± 1.2) completed three experimental visits consisting of 15 min of low intensity AEx (LO) at 35% heart rate reserve (HRR), high intensity AEx (HI) at 70% HRR, or sitting (CON). Following AEx, excitatory paired associative stimulation (PAS25ms) was employed to probe neuroplasticity. Motor evoked potentials (MEP) were assessed via transcranial magnetic stimulation before and after PAS25ms to indicate acute changes in neuroplasticity. RESULTS PAS25ms primed with HI AEx led to significant increases in MEP amplitude compared to LO and CON. HI AEx elicited enhanced PAS25ms-induced neuroplasticity for up to 1-h post-PAS. There were no significant between-group differences. CONCLUSION HI AEx enhances PAS measured neuroplasticity in individuals with and without depression. HI AEx may have a potent influence on the brain and serve as an effective primer, or adjunct, to therapies that seek to harness neuroplasticity.
Collapse
Affiliation(s)
- Ryan E Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael E Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chris M Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Rasheed M, Tahir A, Maazouzi M, Wang H, Li Y, Chen Z, Deng Y. Interplay of miRNAs and molecular pathways in spaceflight-induced depression: Insights from a rat model using simulated complex space environment. FASEB J 2024; 38:e23831. [PMID: 39037540 DOI: 10.1096/fj.202400420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Adnan Tahir
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Han Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yumeng Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Saccaro LF, Tassone M, Tozzi F, Rutigliano G. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2024; 355:265-282. [PMID: 38554884 DOI: 10.1016/j.jad.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Matteo Tassone
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy; Institute of Clinical Sciences, Imperial College London, MRI Steiner Unit, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
7
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
8
|
Chen H, Wang J, Chen S, Chen X, Liu J, Tang H, Zhou J, Tian Y, Wang X, Cao X, Zhou J. Abnormal energy metabolism, oxidative stress, and polyunsaturated fatty acid metabolism in depressed adolescents associated with childhood maltreatment: A targeted metabolite analysis. Psychiatry Res 2024; 335:115795. [PMID: 38460351 DOI: 10.1016/j.psychres.2024.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/11/2024]
Abstract
The purpose of this study was to explore the metabolomic differences between Major depressive disorder (MDD) and healthy individuals among adolescents and the association between childhood maltreatment (CM) and differentially abundant metabolites. The exploratory study included 40 first-episode drug-naïve adolescents with MDD and 20 healthy volunteers. We used the Beck Depression Inventory (BDI-13) to assess the severity of depression and the Childhood Trauma Questionnaire (CTQ) to assess the presence of childhood maltreatment. The plasma samples from all participants were collected for targeted metabolomics analysis using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC‒MS/MS) methods. Spearman correlation was applied to analyse the correlations between clinical variables and metabolites. We found 11 increased metabolites and 37 decreased metabolites that differed between adolescents with MDD and healthy individuals. Pathway enrichment analysis of differentially abundant metabolites showed abnormalities in energy metabolism and oxidative stress in MDD. Importantly, we found that creatine, valine, isoleucine, glutamic acid and pyroglutamic acid were negatively correlated with the BDI-13, while isocitric acid, fatty acid and acylcarnitine were negatively associated with CTQ, and 4-hydroxyproline was positively related to CTQ in adolescents with MDD. These studies provide new ideas for the pathogenesis and potential treatment of adolescents with MDD.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shurui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xia Cao
- Health Management Center, Health Management Research Center of Central South University, The Third Xiangya Hospital, Central South University, Hunan Province, 410013, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Baek JH, Park H, Kang H, Kim R, Kang JS, Kim HJ. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int J Mol Sci 2024; 25:1302. [PMID: 38279303 PMCID: PMC10816396 DOI: 10.3390/ijms25021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, 15 Jinju-daero 816 Beongil, Jinju 52727, Gyeongnam, Republic of Korea; (J.H.B.); (H.P.); (H.K.); (R.K.); (J.S.K.)
| |
Collapse
|
10
|
Gonsalves MA, White TL, Barredo J, DeMayo MM, DeLuca E, Harris AD, Carpenter LL. Cortical glutamate, Glx, and total N-acetylaspartate: potential biomarkers of repetitive transcranial magnetic stimulation treatment response and outcomes in major depression. Transl Psychiatry 2024; 14:5. [PMID: 38184652 PMCID: PMC10771455 DOI: 10.1038/s41398-023-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for individuals with major depressive disorder (MDD) who have not improved with standard therapies. However, only 30-45% of patients respond to rTMS. Predicting response to rTMS will benefit both patients and providers in terms of prescribing and targeting treatment for maximum efficacy and directing resources, as individuals with lower likelihood of response could be redirected to more suitable treatment alternatives. In this exploratory study, our goal was to use proton magnetic resonance spectroscopy to examine how glutamate (Glu), Glx, and total N-acetylaspartate (tNAA) predict post-rTMS changes in overall MDD severity and symptoms, and treatment response. Metabolites were measured in a right dorsal anterior cingulate cortex voxel prior to a standard course of 10 Hz rTMS to the left DLPFC in 25 individuals with MDD. MDD severity and symptoms were evaluated via the Inventory of Depression Symptomatology Self-Report (IDS-SR). rTMS response was defined as ≥50% change in full-scale IDS-SR scores post treatment. Percent change in IDS-SR symptom domains were evaluated using principal component analysis and established subscales. Generalized linear and logistic regression models were used to evaluate the relationship between baseline Glu, Glx, and tNAA and outcomes while controlling for age and sex. Participants with baseline Glu and Glx levels in the lower range had greater percent change in full scale IDS-SR scores post-treatment (p < 0.001), as did tNAA (p = 0.007). Low glutamatergic metabolite levels also predicted greater percent change in mood/cognition symptoms (p ≤ 0.001). Low-range Glu, Glx, and tNAA were associated with greater improvement on the immuno-metabolic subscale (p ≤ 0.003). Baseline Glu predicted rTMS responder status (p = 0.025) and had an area under the receiving operating characteristic curve of 0.81 (p = 0.009), demonstrating excellent discriminative ability. Baseline Glu, Glx, and tNAA significantly predicted MDD improvement after rTMS; preliminary evidence also demonstrates metabolite association with symptom subdomain improvement post-rTMS. This work provides feasibility for a personalized medicine approach to rTMS treatment selection, with individuals with Glu levels in the lower range potentially being the best candidates.
Collapse
Affiliation(s)
- Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, RI, USA.
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA.
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA.
| | - Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Providence VA Medical Center, Providence, RI, USA
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Emily DeLuca
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Linda L Carpenter
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
12
|
Ni M, Zheng M, Chen B, Lu X, Zhao H, Zhu T, Cheng L, Han H, Ye T, Liu H, Ye Y, Huang C, Yuan X. Microglial stimulation triggered by intranasal lipopolysaccharide administration produces antidepressant-like effect through ERK1/2-mediated BDNF synthesis in the hippocampus. Neuropharmacology 2023; 240:109693. [PMID: 37678448 DOI: 10.1016/j.neuropharm.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
We recently reported that reversing the chronic stress-induced decline of microglia in the dentate gyrus (DG) of the hippocampus by intraperitoneal injection of a low dose of lipopolysaccharide (LPS) ameliorated depression-like behavior in chronically stressed mice. In this study, we found that a single intranasal administration of LPS dose-dependently improved depression-like behavior in mice treated with chronic unpredictable stress (CUS), as evidenced by the reduction of immobility time in the tail suspension test (TST) and forced swimming test (FST) and by the increase of sucrose uptake in the sucrose preference test (SPT). The antidepressant effects of intranasal administration of LPS could be abolished by inhibition of brain-derived neurotrophic factor (BDNF) signaling by infusion of an anti-BDNF antibody, by knock-in of the mutant BDNF Val68Met allele, or by the BDNF receptor antagonist K252a. In addition, intranasal administration of LPS was found to exert antidepressant effects in a BDNF-dependent manner via promotion of BDNF synthesis mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling in DG. Inhibition of microglia by minocycline or depletion of microglia by PLX3397 was able to abolish the reversal effect of intranasal LPS administration on CUS-induced depression-like behaviors as well as the CUS-induced decrease in phospho-ERK1/2 and BDNF protein levels in DG. These results demonstrate that stimulation of hippocampal microglia by intranasal LPS administration can induce antidepressant effects via ERK1/2-dependent synthesis of BDNF protein, providing hope for the development of new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Mingxie Ni
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Meng Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui Zhao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Han Han
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, The Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng, 224006, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 Xi'er Duan, 1ST Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
13
|
Fonseca C, Ettcheto M, Bicker J, Fernandes MJ, Falcão A, Camins A, Fortuna A. Under the umbrella of depression and Alzheimer's disease physiopathology: Can cannabinoids be a dual-pleiotropic therapy? Ageing Res Rev 2023; 90:101998. [PMID: 37414155 DOI: 10.1016/j.arr.2023.101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
Collapse
Affiliation(s)
- Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Maria José Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
White SW, Squires GD, Smith SJ, Wright GM, Sufka KJ, Rimoldi JM, Gadepalli RS. Anxiolytic-like effects of an mGluR 5 antagonist and a mGluR 2/3 agonist, and antidepressant-like effects of an mGluR 7 agonist in the chick social separation stress test, a dual-drug screening model of treatment-resistant depression. Pharmacol Biochem Behav 2023:173588. [PMID: 37348610 DOI: 10.1016/j.pbb.2023.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Modulation of glutamate receptors has demonstrated anxiolytic and/or antidepressant effects in rodent stress models. The chick social-separation stress paradigm exposes socially raised aves to an isolation stressor which elicits distress vocalizations (DVocs) in an attempt to re-establish contact. The model presents a state of panic during the first 5 min followed by a state of behavioral despair during the last 60 to 90 min. Making it useful as a dual anxiolytic/antidepressant screening assay. Further research has identified the Black Australorp strain as a stress-vulnerable, treatment-resistant, and ketamine-sensitive genetic line. Utilizing this genetic line, we sought to evaluate modulation of glutamatergic receptors for potential anxiolytic and/or antidepressant effects. Separate dose-response studies were conducted for the following drugs: the AMPA PAM LY392098, the mGluR 5 antagonist MPEP, the mGluR 2/3 agonist LY404039, the mGluR 2/3 antagonist LY341495, and the mGluR 7 agonist AMN082. The norepinephrine α2 agonist clonidine and the NMDA antagonist ketamine were included as comparison for anxiolytic (anti-panic) and antidepressant effects, respectively. As in previous studies, clonidine reduced DVoc rates during the first 5 min (attenuation of panic) and ketamine elevated DVoc rates (attenuation of behavioral despair) during the last 60 min of isolation. The mGluR 2/3 agonist LY404039 and the mGluR 5 antagonist MPEP decreased DVoc rates during the first 5 min of isolation indicative of anxiolytic effects like that of clonidine while the mGluR 7 agonist AMN082 elevated DVoc rates in the later hour of isolation, representative of antidepressant effects like that of ketamine. Collectively, these findings suggest that certain glutamate targets may be clinically useful in treating panic disorder and/or treatment-resistant depression.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, United States of America.
| | - Gwendolyn D Squires
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Sequioa J Smith
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Gwendolyn M Wright
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - John M Rimoldi
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| |
Collapse
|
15
|
Li X, Guo J, Chen X, Yu R, Chen W, Zheng A, Yu Y, Zhou D, Dai L, Kuang L. Predicting Responses to Electroconvulsive Therapy in Adolescents with Treatment-Refractory Depression Based on Resting-State fMRI. J Clin Med 2023; 12:jcm12103556. [PMID: 37240663 DOI: 10.3390/jcm12103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTS The efficacy of electroconvulsive therapy (ECT) in the treatment of adolescents with treatment-refractory depression is still unsatisfactory, and the individual differences are large. It is not clear which factors are related to the treatment effect. Resting-state fMRI may be a good tool to predict the clinical efficacy of this treatment, and it is helpful to identify the most suitable population for this treatment. METHODS Forty treatment-refractory depression adolescents were treated by ECT and evaluated using HAMD and BSSI scores before and after treatment, and were then divided into a treatment response group and a non-treatment group according to the reduction rate of the HAMD scale. We extracted the ALFF, fALFF, ReHo, and functional connectivity of patients as predicted features after a two-sample t-test and LASSO to establish and evaluate a prediction model of ECT in adolescents with treatment-refractory depression. RESULTS Twenty-seven patients achieved a clinical response; symptoms of depression and suicidal ideation were significantly improved after treatment with ECT, which was reflected in a significant decrease in the scores of HAMD and BSSI (p < 0.001). The efficacy was predicted by ALFF, fALFF, ReHo, and whole-brain-based functional connectivity. We found that models built on a subset of features of ALFF in the left insula, fALFF in the left superior parietal gyrus, right superior parietal gyrus, and right angular, and functional connectivity between the left superior frontal gyrus, dorsolateral-right paracentral lobule, right middle frontal gyrus, orbital part-left cuneus, right olfactory cortex-left hippocampus, left insula-left thalamus, and left anterior cingulate gyrus-right hippocampus to have the best predictive performance (AUC > 0.8). CONCLUSIONS The local brain function in the insula, superior parietal gyrus, and angular gyrus as well as characteristic changes in the functional connectivity of cortical-limbic circuits may serve as potential markers for efficacy judgment of ECT and help to provide optimized individual treatment strategies for adolescents with depression and suicidal ideation in the early stages of treatment.
Collapse
Affiliation(s)
- Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wanjun Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanjie Yu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
GRIN2B gene expression is increased in the anterior cingulate cortex in major depression. J Psychiatr Res 2023; 160:204-209. [PMID: 36848775 DOI: 10.1016/j.jpsychires.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The glutamatergic system may be central to the neurobiology and treatment of major depressive disorder (MDD) and psychosis. Despite the success of N-methyl-D-aspartate receptor (NMDAR) antagonists for the treatment of MDD, little is known regarding the expression of these glutamate receptors in MDD. In this study we measured gene expression, via qRT-PCR, of the major NMDAR subunits, in the anterior cingulate cortex (ACC) in MDD subjects with and without psychosis, and non-psychiatric controls. Overall, GRIN2B mRNA was increased in both MDD with (+32%) and without psychosis (+40%) compared to controls along with a trend increase in GRIN1 mRNA in MDD overall (+24%). Furthermore, in MDD with psychosis there was a significant decrease in the GRIN2A:GRIN2B mRNA ratio (-19%). Collectively these results suggest dysfunction of the glutamatergic system at the gene expression level in the ACC in MDD. Increased GRIN2B mRNA in MDD, along with an altered GRIN2A:GRIN2B ratio in psychotic depression, suggests a disruption to NMDAR composition could be present in the ACC in MDD; this could lead to enhanced signalling via GluN2B-containing NMDARs and greater potential for glutamate excitotoxicity in the ACC in MDD. These results support future research into GluN2B antagonist-based treatments for MDD.
Collapse
|
17
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
18
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
19
|
Relationship between Urinary Metabolomic Profiles and Depressive Episode in Antarctica. Int J Mol Sci 2023; 24:ijms24020943. [PMID: 36674456 PMCID: PMC9861393 DOI: 10.3390/ijms24020943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Antarctic expeditions have a high risk of participant depression owing to long stays and isolated environments. By quantifying the stress state and changes in biomolecules over time before the onset of depressive symptoms, predictive markers of depression can be explored. Here, we evaluated the psychological changes in 30 participants in the Japanese Antarctic Research Expedition using the Patient Health Questionnaire-9 (PHQ-9). Urinary samples were collected every three months for a year, and comprehensive urinary metabolomic profiles were quantified using liquid chromatography time-of-flight mass spectrometry. Five participants showed major depressive episodes (PHQ-9 ≥ 10) at 12 months. The urinary metabolites between these participants and the 25 unaffected participants were compared at individual metabolite and pathway levels. The individual comparisons showed the most significant differences at 12 months in 14 metabolites, including ornithine and beta-alanine. Data from shorter stays showed less significant differences. In contrast, pathway and enrichment analyses showed the most significant difference at three months and a less significant difference at longer stays. These time transitions of urinary metabolites could help in the development of urinary biomarkers to detect subjects with depressive episodes at an early stage.
Collapse
|
20
|
Bonnekoh LM, Seidenbecher S, Knigge K, Hünecke AK, Metzger CD, Tempelmann C, Kanowski M, Kaufmann J, Meyer-Lotz G, Schlaaff K, Dobrowolny H, Tozzi L, Gescher DM, Steiner J, Kirschbaum C, Frodl T. Long-term cortisol stress response in depression and comorbid anxiety is linked with reduced N-acetylaspartate in the anterior cingulate cortex. World J Biol Psychiatry 2023; 24:34-45. [PMID: 35332851 DOI: 10.1080/15622975.2022.2058084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Major Depression (MDD) and anxiety disorders are stress-related disorders that share pathophysiological mechanisms. There is evidence for alterations of glutamate-glutamine, N-acetylaspartate (NAA) and GABA in the anterior cingulate cortex (ACC), a stress-sensitive region affected by hypothalamic-pituitary-adrenal axis (HPA). The aim was to investigate metabolic alterations in the ACC and whether hair cortisol, current stress or early life adversity predict them. METHODS We investigated 22 patients with MDD and comorbid anxiety disorder and 23 healthy controls. Proton magnetic resonance spectroscopy was performed with voxels placed in pregenual (pg) and dorsal (d) ACC in 3 T. Analysis of hair cortisol was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The N-acetylaspartate/Creatin ratio (NAA/Cr) was reduced in patients in both pgACC (p = .040) and dACC (p = .016). A significant interactive effect of diagnosis and cortisol on both pg-NAA/Cr (F = 5.00, p = .033) and d-NAA/Cr (F = 7.86, p = .009) was detected, whereby in controls cortisol was positively correlated with d-NAA/Cr (r = 0.61, p = .004). CONCLUSIONS Our results suggest a relationship between NAA metabolism in ACC and HPA axis activity as represented by long-term cortisol output.
Collapse
Affiliation(s)
- Linda M Bonnekoh
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Katrin Knigge
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Anne-Kathrin Hünecke
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Dorothee M Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Dresden University of Technology, Dresden, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| |
Collapse
|
21
|
Halaris A, Cook J. The Glutamatergic System in Treatment-Resistant Depression and Comparative Effectiveness of Ketamine and Esketamine: Role of Inflammation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:487-512. [PMID: 36949323 DOI: 10.1007/978-981-19-7376-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The glutamatergic system is the primary excitatory pathway within the CNS and is responsible for cognition, memory, learning, emotion, and mood. Because of its significant importance in widespread nervous system function, it is tightly regulated through multiple mechanisms, such as glutamate recycling, microglial interactions, and inflammatory pathways. Imbalance within the glutamatergic system has been implicated in a wide range of pathological conditions including neurodegenerative conditions, neuromuscular conditions, and mood disorders including depression. Major depressive disorder (MDD) is the most common mood disorder worldwide, has a high prevalence rate, and afflicts approximately 280 million people. While there are numerous treatments for the disease, 30-40% of patients are unresponsive to treatment and deemed treatment resistant; approximately another third experience only partial improvement (World Health Organization, Depression fact sheet [Internet], 2020). Esketamine, the S-enantiomer of ketamine, was approved by the Food and Drug Administration for treatment-resistant depression (TRD) in 2019 and has offered new hope to patients. It is the first treatment targeting the glutamatergic system through a complex mechanism. Numerous studies have implicated imbalance in the glutamatergic system in depression and treatment resistance. Esketamine and ketamine principally work through inhibition of the NMDA receptor, though more recent studies have implicated numerous other mechanisms mediating the antidepressant efficacy of these agents. These mechanisms include increase in brain-derived neurotrophic factor (BDNF), activation of mammalian target of the rapamycin complex (mTORC), and reduction in inflammation. Esketamine and ketamine have been shown to decrease inflammation in numerous ways principally through reducing pro-inflammatory cytokines (e.g., TNF-α, IL-6) (Loix et al., Acta Anaesthesiol Belg 62(1):47-58, 2011; Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021). This anti-inflammatory effect has also been shown to be involved in the antidepressive properties of both ketamine and esketamine (Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021).
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - John Cook
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
22
|
He J, Wang D, Ban M, Kong L, Xiao Q, Yuan F, Zhu X. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study. J Affect Disord 2022; 318:263-271. [PMID: 36087788 DOI: 10.1016/j.jad.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies have shown major depressive disorder (MDD) is associated with altered neuro-metabolites in the anterior cingulate cortex (ACC). However, the regional metabolic heterogeneity in the ACC in individuals with MDD remains unclear. METHODS We recruited 59 first-episode, treatment-naive young adults with MDD and 50 healthy controls who underwent multi-voxel 1H-MRS scanning at 3 T (Tesla) with voxels placed in the ACC, which was divided into two subregions, pregenual ACC (pACC) and anterior midcingulate cortex (aMCC). Between and within-subjects metabolite concentration variations were analyzed with SPSS. RESULTS Compared with control subjects, patients with MDD exhibited higher glutamate (Glu) and glutamine (Gln) levels in the pACC and higher myo-inositol (MI) level in the aMCC. We observed higher Glu and Gln levels and lower N-acetyl-aspartate (NAA) level in the pACC than those in the aMCC in both MDD and healthy control (HC) groups. More importantly, the metabolite concentration gradients of Glu, Gln and NAA were more pronounced in MDD patients relative to HCs. In the MDD group, the MI level in the aMCC positively correlated with the age of onset. LIMITATIONS The use of the relative concentration of metabolites constitutes a key study limitation. CONCLUSIONS We observed inconsistent alterations and distribution of neuro-metabolites concentration in the pACC and aMCC, revealing regional metabolic heterogeneity of ACC in first-episode, treatment-naive young individuals with MDD. These results provided new evidence for abnormal neuro-metabolites of ACC in the pathophysiology of MDD and suggested that pACC and aMCC might play different roles in MDD.
Collapse
Affiliation(s)
- Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xiao
- Mental Health Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Seginer A, Keith GA, Porter DA, Schmidt R. Artifact suppression in readout-segmented consistent K-t space EPSI (RS-COKE) for fast 1 H spectroscopic imaging at 7 T. Magn Reson Med 2022; 88:2339-2357. [PMID: 35975965 PMCID: PMC9804880 DOI: 10.1002/mrm.29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE Fast proton (1 H) MRSI is an important diagnostic tool for clinical investigations, providing metabolic and spatial information. MRSI at 7 T benefits from increased SNR and improved separation of peaks but requires larger spectral widths. RS-COKE (Readout-Segmented Consistent K-t space Epsi) is an echo planar spectroscopic imaging (Epsi) variant capable to support the spectral width required for human brain metabolites spectra at 7 T. However, mismatches between readout segments lead to artifacts, particularly when subcutaneous lipid signals are not suppressed. In this study, these mismatches and their effects are analyzed and reduced. METHODS The following corrections to the data were performed: i) frequency-dependent phase corrections; ii) k-space trajectory corrections, derived from short reference scans; and iii) smoothing of data at segment transitions to mitigate the effect of residual mismatches. The improvement was evaluated by performing single-slice RS-COKE on a head-shaped phantom with a "lipid" layer and healthy subjects, using varying resolutions and durations ranging from 4.1 × 4.7 × 15 mm3 in 5:46 min to 3.1 × 3.3 × 15 mm3 in 13:07 min. RESULTS Artifacts arising from the readout-segmented acquisition were substantially reduced, thus providing high-quality spectroscopic imaging in phantom and human scans. LCModel fitting of the human data resulted in a relative Cramer-Rao lower bounds within 6% for NAA, Cr, and Cho images in the majority of the voxels. CONCLUSION Using the new reference scans and reconstruction steps, RS-COKE was able to deliver fast 1 H MRSI at 7 T, overcoming the spectral width limitation of standard EPSI at this field strength.
Collapse
Affiliation(s)
| | - Graeme A. Keith
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUnited Kingdom
| | - David A. Porter
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUnited Kingdom
| | - Rita Schmidt
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael,The Azrieli National Institute for Human Brain Imaging and ResearchWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
24
|
Lu X, Liu H, Cai Z, Hu Z, Ye M, Gu Y, Wang Y, Wang D, Lu Q, Shen Z, Shen X, Huang C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun 2022; 106:147-160. [PMID: 35995236 DOI: 10.1016/j.bbi.2022.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 10/31/2022] Open
Abstract
Depressed mice have lower numbers of microglia in the dentate gyrus (DG). Reversal of this decline by a single low dose of lipopolysaccharide (LPS) may have antidepressant effects, but there is little information on the molecular mechanisms underlying this effect. It is known that impairment of brain-derived neurotrophic factor (BDNF) signaling is involved in the development of depression. Here, we used a combination of neutralizing antibodies, mutant mice, and pharmacological approaches to test the role of BDNF-tyrosine kinase receptor B (TrkB) signaling in the DG in the effect of microglial stimulation. Our results suggest that inhibition of BDNF signaling by infusion of an anti-BDNF antibody, the BDNF receptor antagonist K252a, or knock-in of the mutant BDNF Val68Met allele abolished the antidepressant effect of LPS in chronically stressed mice. Increased BDNF synthesis in DG, mediated by extracellular signal-regulated kinase1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling, was essential for the antidepressant effect of microglial stimulation. These results suggest that increased BDNF synthesis through activation of ERK1/2 caused by a single LPS injection and subsequent TrkB signaling are required for the antidepressant effect of hippocampal microglial stimulation.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
25
|
Repetitive Transcranial Magnetic Stimulation-Associated Changes in Neocortical Metabolites in Major Depression: A Systematic Review. Neuroimage Clin 2022; 35:103049. [PMID: 35738081 PMCID: PMC9233277 DOI: 10.1016/j.nicl.2022.103049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
We reviewed 12 studies that measured metabolites pre and post rTMS in MDD. Frontal lobe Glu, Gln, NAA, and GABA increased after rTMS. Increases in metabolites were often associated with MDD symptom improvement. We propose novel intracellular mechanisms by which metabolites are altered by rTMS.
Introduction Repetitive Transcranial magnetic stimulation (rTMS) is an FDA approved treatment for major depressive disorder (MDD). However, neural mechanisms contributing to rTMS effects on depressive symptoms, cognition, and behavior are unclear. Proton magnetic resonance spectroscopy (MRS), a noninvasive neuroimaging technique measuring concentrations of biochemical compounds within the brain in vivo, may provide mechanistic insights. Methods This systematic review summarized published MRS findings from rTMS treatment trials to address potential neurometabolic mechanisms of its antidepressant action. Using PubMed, Google Scholar, Web of Science, and JSTOR, we identified twelve empirical studies that evaluated changes in MRS metabolites in a within-subjects, pre- vs. post-rTMS treatment design in patients with MDD. Results rTMS protocols ranged from four days to eight weeks duration, were applied at high frequency to the left dorsolateral prefrontal cortex (DLPFC) in most studies, and were conducted in patients aged 13-to-70. Most studies utilized MRS point resolved spectroscopy acquisitions at 3 Tesla in the bilateral anterior cingulate cortex and DLPFC. Symptom improvements were correlated with rTMS-related increases in the concentration of glutamatergic compounds (glutamate, Glu, and glutamine, Gln), GABA, and N-acetylated compounds (NAA), with some results trend-level. Conclusions This is the first in-depth systematic review of metabolic effects of rTMS in individuals with MDD. The extant literature suggests rTMS stimulation does not produce changes in neurometabolites independent of clinical response; increases in frontal lobe glutamatergic compounds, N-acetylated compounds and GABA following high frequency left DLPFC rTMS therapy were generally associated with clinical improvement. Glu, Gln, GABA, and NAA may mediate rTMS treatment effects on MDD symptomatology through intracellular mechanisms.
Collapse
|
26
|
Brown SJ, Brown AM, Purves-Tyson TD, Huang XF, Shannon Weickert C, Newell KA. Alterations in the kynurenine pathway and excitatory amino acid transporter-2 in depression with and without psychosis: Evidence of a potential astrocyte pathology. J Psychiatr Res 2022; 147:203-211. [PMID: 35063739 DOI: 10.1016/j.jpsychires.2021.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
Evidence, largely obtained from peripheral studies, suggests that alterations in the kynurenine pathway contribute to the aetiology of depression and disorders involving psychosis. Stimulation of the kynurenine pathway leads to the formation of neuroactive metabolites, including kynurenic acid (predominantly in astrocytes) and quinolinic acid (predominantly in microglia), which are antagonists and agonists of the glutamate NMDA receptor, respectively. In this study, we measured gene expression via qRT-PCR of the main kynurenine pathway enzymes in the anterior cingulate cortex (ACC) in people with major depressive disorder and matched controls. In parallel, we tested for diagnostic differences in gene expression of relevant glial markers. We used total RNA isolated from the ACC from depression subjects with psychosis (n = 12) and without psychosis (n = 12), and non-psychiatric controls (n = 12) provided by the Stanley Medical Research Institute. In the ACC, KYAT1 (KAT I), AADAT (KAT II), and the astrocytic SLC1A2 (EAAT2) mRNAs, were significantly increased in depression, when combining those with and without psychosis. The increased KYAT1 and AADAT mRNA indicates that depression is associated with increased activation of the kynurenic acid arm of the kynurenine pathway in the ACC, suggesting an astrocyte response in depression. Considering EAAT2 and KATs increase astrocytic glutamate uptake and production of the NMDA receptor antagonist kynurenic acid, the observed increases of these markers may relate to changes in glutamatergic signalling in depression. These results suggest dysfunction of the kynurenine pathway in the brain in depression and point to the kynurenine pathway as a possible driver of glutamate dysfunction in depression.
Collapse
Affiliation(s)
- Samara J Brown
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Amelia M Brown
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Randwick, New South Wales, 2031, Australia
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Randwick, New South Wales, 2031, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
27
|
Tomiyasu M, Harada M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future Prospects. Magn Reson Med Sci 2022; 21:235-252. [PMID: 35173095 PMCID: PMC9199975 DOI: 10.2463/mrms.rev.2021-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MR spectroscopy (MRS) is a unique and useful method for noninvasively evaluating biochemical metabolism in human organs and tissues, but its clinical dissemination has been slow and often limited to specialized institutions or hospitals with experts in MRS technology. The number of 3-T clinical MR scanners is now increasing, representing a major opportunity to promote the use of clinical MRS. In this review, we summarize the theoretical background and basic knowledge required to understand the results obtained with MRS and introduce the general consensus on the clinical utility of proton MRS in routine clinical practice. In addition, we present updates to the consensus guidelines on proton MRS published by the members of a working committee of the Japan Society of Magnetic Resonance in Medicine in 2013. Recent research into multinuclear MRS equipped in clinical MR scanners is explained with an eye toward future development. This article seeks to provide an overview of the current status of clinical MRS and to promote the understanding of when it can be useful. In the coming years, MRS-mediated biochemical evaluation is expected to become available for even routine clinical practice.
Collapse
Affiliation(s)
- Moyoko Tomiyasu
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology.,Department of Radiology, Kanagawa Children's Medical Center
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
28
|
Davey CG, Harrison BJ. The self on its axis: a framework for understanding depression. Transl Psychiatry 2022; 12:23. [PMID: 35042843 PMCID: PMC8766552 DOI: 10.1038/s41398-022-01790-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The self is experienced differently in depression. It is infused with pervasive low mood, and structured by negative self-related thoughts. The concept of the self has been difficult to define-one of the reasons it is now infrequently an object of enquiry for psychiatry-but findings from functional brain imaging and other neuroscience studies have provided new insights. They have elucidated how the self is supported by complex, hierarchical brain processes. Bodily sensations rise through the spinal cord, brainstem, and subcortical regions through to cortical networks, with the default mode network sitting at the apex, integrating interoceptive signals with information about the extended social environment. We discuss how this forms a "self axis", and demonstrate how this axis is set awry by depression. Our self-axis model of depression establishes a new perspective on the disorder. It emphasises the multi-level nature of depression, and how impacts made at different explanatory levels influence others along the axis. It suggests that diverse treatments might be effective for depression, from lifestyle interventions to psychotherapies to medications: they target different aspects of the self, but changes at one level of the self axis can affect others along it. Our framework for depression establishes a central role for the self, which might again become a useful focus of investigation.
Collapse
Affiliation(s)
- Christopher G. Davey
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
| | - Ben J. Harrison
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
29
|
Chen H, He T, Li M, Wang C, Guo C, Wang W, Yu B, Huang J, Cui L, Guo P, Yuan Y, Tan T. Cell-type-specific synaptic modulation of mAChR on SST and PV interneurons. Front Psychiatry 2022; 13:1070478. [PMID: 36713928 PMCID: PMC9877455 DOI: 10.3389/fpsyt.2022.1070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
The muscarinic acetylcholine receptor (mAChR) antagonist, scopolamine, has been shown to have a rapid antidepressant effect. And it is believed that GABAergic interneurons play a crucial role in this action. Therefore, characterizing the modulation effects of mAChR on GABAergic interneurons is crucial for understanding the mechanisms underlying scopolamine's antidepressant effects. In this study, we examined the effect of mAChR activation on the excitatory synaptic transmissions in two major subtypes of GABAergic interneurons, somatostatin (SST)- and parvalbumin (PV)-expressing interneurons, in the anterior cingulate cortex (ACC). We found that muscarine, a mAChR agonist, non-specifically facilitated the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both SST and PV interneurons. Scopolamine completely blocked the effects of muscarine, as demonstrated by recovery of sESPCs and mEPSCs in these two types of interneurons. Additionally, individual application of scopolamine did not affect the EPSCs of these interneurons. In inhibitory transmission, we further observed that muscarine suppressed the frequency of both spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in SST interneurons, but not PV interneurons. Interestingly, scopolamine directly enhanced the frequency of both sIPSCs and mIPSCs mainly in SST interneurons, but not PV interneurons. Overall, our results indicate that mAChR modulates excitatory and inhibitory synaptic transmission to SST and PV interneurons within the ACC in a cell-type-specific manner, which may contribute to its role in the antidepressant effects of scopolamine.
Collapse
Affiliation(s)
- Huanxin Chen
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.,Key Laboratory of Cognition and Personality of the Ministry of Education, School of Psychology, Southwest University, Chongqing, China
| | - Ting He
- Key Laboratory of Cognition and Personality of the Ministry of Education, School of Psychology, Southwest University, Chongqing, China
| | - Meiyi Li
- Key Laboratory of Cognition and Personality of the Ministry of Education, School of Psychology, Southwest University, Chongqing, China
| | - Chunlian Wang
- Key Laboratory of Cognition and Personality of the Ministry of Education, School of Psychology, Southwest University, Chongqing, China
| | - Chen Guo
- Key Laboratory of Cognition and Personality of the Ministry of Education, School of Psychology, Southwest University, Chongqing, China
| | - Wei Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Baocong Yu
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan, China
| | - Jintao Huang
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Lijun Cui
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Ping Guo
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yonggui Yuan
- Department of Psychosomatic Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
30
|
Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, DeVries WH, Austelle CW, McTeague LM, George MS. Neurophysiologic Effects of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) via Electrical Stimulation of the Tragus: A Concurrent taVNS/fMRI Study and Review. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:80-89. [PMID: 35746927 PMCID: PMC9063605 DOI: 10.1176/appi.focus.20110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/11/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Brain Stimulation 2018; 11:492-500) Reprinted with permission from Elsevier.
Collapse
|
31
|
Faulkner P, Paioni SL, Kozhuharova P, Orlov N, Lythgoe DJ, Daniju Y, Morgenroth E, Barker H, Allen P. Relationship between depression, prefrontal creatine and grey matter volume. J Psychopharmacol 2021; 35:1464-1472. [PMID: 34697970 PMCID: PMC8652356 DOI: 10.1177/02698811211050550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Depression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal grey matter volume. Because subclinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a subclinical level, may aid public health. METHODS Eighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural magnetic resonance imaging (MRI) to determine whole-brain grey matter volume. RESULTS/OUTCOMES DASS depression scores were negatively associated (a) with concentrations of creatine (but not other metabolites) in the prefrontal cortex and (b) with grey matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal grey matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain grey matter volume. CONCLUSIONS/INTERPRETATIONS This study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels that prefrontal creatine and grey matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings, which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and well-being.
Collapse
Affiliation(s)
- Paul Faulkner
- Department of Psychology, Whitelands College, University of Roehampton, London, UK
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | | | | | - Natasza Orlov
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Yusuf Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - Elenor Morgenroth
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Holly Barker
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
32
|
Ermis C, Aydin B, Kucukguclu S, Yurt A, Renshaw PF, Yildiz A. Association Between Anterior Cingulate Cortex Neurochemical Profile and Clinical Remission After Electroconvulsive Treatment in Major Depressive Disorder: A Longitudinal 1H Magnetic Resonance Spectroscopy Study. J ECT 2021; 37:263-269. [PMID: 33840802 DOI: 10.1097/yct.0000000000000766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of the study was to assess anterior cingulate cortex (ACC) neurochemical profile of patients with unipolar major depressive disorder (MDD) before and after electroconvulsive therapy (ECT) by using 1H magnetic resonance spectroscopy (1H-MRS). METHOD Using 1H-MRS, the metabolite levels of choline, glutamate + glutamine (Glx), myo-inositol, N-acetylaspartate, and total creatine were measured in ACC before and after 4-week ECT. The Montgomery-Åsberg Depression Rating Scale (MADRS) was implemented by blind raters to evaluate the efficacy of the treatment. Electroconvulsive therapy-remitter (ER) and nonremitter groups were compared using the 1-way repeated measures analysis of variance. RESULTS Thirty patients with unipolar MDD (aged 41.3 ± 10.0 years, 66.7% female) were included in the study. The ER group (n = 16, 53.3%) and NR group did not differ regarding baseline Global Assessment of Functioning and MADRS scores. At the end of 4-week ECT treatment, results did not suggest any significant difference for metabolite levels in ACC. When compared with the NR group, the ER group had higher baseline levels of Glx (8.8 ± 1.8 vs 6.3 ± 2.0, P = 0.005) and total creatine (5.3 ± 0.6 vs 4.7 ± 0.5, P = 0.010). In addition, elevated baseline Glx (r = -0.68, P = 0.002) was associated with lower MADRS scores at the end treatment. Finally, the change in Glx levels was correlated with change in MADRS scores after ECT (r = 0.47, P = 0.049). LIMITATIONS Modest sample size and 1H-MRS at 1.5 Tesla are limitations of the study. CONCLUSIONS Results suggested that Glx levels could be a predictor of remission. Studies with larger samples should explore neurochemical correlates of ECT in unipolar MDD.
Collapse
Affiliation(s)
- Cagatay Ermis
- From the Department of Child and Adolescent Psychiatry, Dokuz Eylul University, School of Medicine, Izmir
| | - Burc Aydin
- Mehmet Akif Inan Training and Research Hospital, Sanliurfa
| | - Semih Kucukguclu
- Department of Anesthesiology and Reanimation, Dokuz Eylul University, School of Medicine
| | - Aysegul Yurt
- Department of Medical Physics, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | | | - Aysegul Yildiz
- Department of Psychiatry, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| |
Collapse
|
33
|
Persson J, Wall A, Weis J, Gingnell M, Antoni G, Lubberink M, Bodén R. Inhibitory and excitatory neurotransmitter systems in depressed and healthy: A positron emission tomography and magnetic resonance spectroscopy study. Psychiatry Res Neuroimaging 2021; 315:111327. [PMID: 34246046 DOI: 10.1016/j.pscychresns.2021.111327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
The Gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems are implicated in depression. While previous studies found reduced GABA levels, and a tendency towards reduced Glu, using proton (1H) magnetic resonance spectroscopy (1H-MRS), little is known about GABAA receptor availability in depression. Here, the aim was to characterize GABA and Glu-levels in dorsal anterior cingulate cortex (dACC), whole-brain GABAA availability, and their relationship in patients with depression compared to healthy controls. Forty-two patients and 45 controls underwent 1H-MRS using a MEGA-PRESS sequence to quantify dACC GABA+ and Glu (contrasted against creatine [Cr]). Immediately preceding the 1H-MRS, a subsample of 28 patients and 15 controls underwent positron emission tomography (PET) with [11C]Flumazenil to assess whole-brain GABAA receptor availability. There were no differences in dACC GABA+/Cr or Glu/Cr ratios between patients and controls. The same was true for whole-brain GABAA receptor availability. However, there was a significant negative relationship between GABA+/Cr ratio and receptor availability in ACC, in a whole-brain voxel-wise analysis across patients and controls, controlling for group or depressive symptoms. This relatively large study did not support the GABA-deficit hypothesis in depression, but shed light on GABA-system functioning, suggesting a balance between neurotransmitter concentration and receptor availability in dACC.
Collapse
Affiliation(s)
- Jonas Persson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Anders Wall
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden
| | - Jan Weis
- Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Robert Bodén
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Ionov ID, Pushinskaya II, Gorev NP, Shpilevaya LA, Frenkel DD, Severtsev NN. Histamine H 1 receptors regulate anhedonic-like behavior in rats: Involvement of the anterior cingulate and lateral entorhinal cortices. Behav Brain Res 2021; 412:113445. [PMID: 34224764 DOI: 10.1016/j.bbr.2021.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
A decreased H1 receptor activity is observed in the anterior cingulate cortex (aCgCx) of depressed patients. The role of this abnormality in the development of depression-related processes is unstudied. We examined the influence of a decreased brain H1 receptor activity on rat behavior in the sucrose preference test. The H1 receptor deficit was simulated by injection of an H1 antagonist into the aCgCx; also, two aCgCx projection areas, lateral and medial entorhinal cortices were examined. A blockade of H1-receptors in the aCgCx and lateral entorhinal cortex (LEntCx) significantly reduced sucrose preference. These findings suggest the existence of H1 receptor-mediated aCgCx-LEntCx circuitry mechanism regulating anhedonic-like behavior in rats. The presented data suggest that H1 receptor-mediated processes might be a therapeutic target in depressive disorders.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
35
|
Kvarta MD, Chiappelli J, West J, Goldwaser EL, Bruce HA, Ma Y, Kochunov P, Hatch K, Gao S, Jones A, O'Neill H, Du X, Hong LE. Aberrant anterior cingulate processing of anticipated threat as a mechanism for psychosis. Psychiatry Res Neuroimaging 2021; 313:111300. [PMID: 34010783 PMCID: PMC8206034 DOI: 10.1016/j.pscychresns.2021.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Stress and abnormal stress response are associated with schizophrenia spectrum disorder (SSD), but the brain mechanisms linking stress to symptomatology remain unclear. In this study, we used a stress-based functional neuroimaging task, reverse-translated from preclinical studies, to test the hypothesis that abnormal corticolimbic processing of stressful threat anticipation is associated with psychosis and affective symptoms in SSD. Participants underwent an MRI-compatible ankle-shock task (AST) in which the threat of mild electrical shock was anticipated. We compared functional brain activations during anticipatory threat periods from N = 18 participants with SSD (10 M/8F) to those from N = 12 community controls (9 M/3F). After family-wise error correction, only one region, the ventral anterior cingulate cortex (vACC), showed significantly reduced activation compared with controls. vACC activation significantly correlated with clinical symptoms measured by the Brief Psychiatric Rating Scale total score (r = 0.54) and the psychosis subscale (r = 0.71), and inversely correlated with trait depression measured by the Maryland Trait and State Depression scale (r=-0.48). Deficient activation in vACC under stress of anticipated threat may lead to aberrant interpretation of such threat, contributing to psychosis and mood symptoms in SSD. This experimental paradigm has translational potential and may identify circuitry-level mechanisms of stress-related mental illness, leading to more targeted treatment.
Collapse
Affiliation(s)
- Mark D Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States.
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Heather A Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Kathryn Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Aaron Jones
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Hugh O'Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228 , United States
| |
Collapse
|
36
|
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11:297-315. [PMID: 34327123 PMCID: PMC8311508 DOI: 10.5498/wjp.v11.i7.297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
The versatility of glutamate as the brain’s foremost excitatory neurotransmitter and modulator of neurotransmission and function is considered common knowledge. Years of research have continued to uncover glutamate’s effects and roles in several neurological and neuropsychiatric disorders, including depression. It had been considered that a deeper understanding of the roles of glutamate in depression might open a new door to understanding the pathological basis of the disorder, improve the approach to patient management, and lead to the development of newer drugs that may benefit more patients. This review examines our current understanding of the roles of endogenous and exogenous sources of glutamate and the glutamatergic system in the aetiology, progression and management of depression. It also examines the relationships that link the gut-brain axis, glutamate and depression; as it emphasizes how the gut-brain axis could impact depression pathogenesis and management via changes in glutamate homeostasis. Finally, we consider what the likely future of glutamate-based therapies and glutamate-based therapeutic manipulations in depression are, and if with them, we are now on the final chapter of understanding the neurochemical milieu of depressive disorders.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| | - Olakunle James Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| |
Collapse
|
37
|
Abstract
The efficacy of standard antidepressants is limited for many patients with mood disorders such as major depressive disorder (MDD) and bipolar depression, underscoring the urgent need to develop novel therapeutics. Both clinical and preclinical studies have implicated glutamatergic system dysfunction in the pathophysiology of mood disorders. In particular, rapid reductions in depressive symptoms have been observed in response to subanesthetic doses of the glutamatergic modulator racemic (R,S)-ketamine in individuals with mood disorders. These results have prompted investigation into other glutamatergic modulators for depression, both as monotherapy and adjunctively. Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders. This manuscript gives a brief overview of the glutamate system and its relevance to rapid antidepressant response and discusses the existing clinical evidence for glutamate receptor-modulating agents, including (1) broad glutamatergic modulators ((R,S)-ketamine, esketamine, (R)-ketamine, (2R,6R)-hydroxynorketamine [HNK], dextromethorphan, Nuedexta [a combination of dextromethorphan and quinidine], deudextromethorphan [AVP-786], axsome [AXS-05], dextromethadone [REL-1017], nitrous oxide, AZD6765, CLE100, AGN-241751); (2) glycine site modulators (D-cycloserine [DCS], NRX-101, rapastinel [GLYX-13], apimostinel [NRX-1074], sarcosine, 4-chlorokynurenine [4-Cl-KYN/AV-101]); (3) subunit (NR2B)-specific N-methyl-D-aspartate (NMDA) receptor antagonists (eliprodil [EVT-101], traxoprodil [CP-101,606], rislenemdaz [MK-0657/CERC-301]); (4) metabotropic glutamate receptor (mGluR) modulators (basimglurant, AZD2066, RG1578, TS-161); and (5) mammalian target of rapamycin complex 1 (mTORC1) activators (NV-5138). Many of these agents are still in the preliminary stages of development. Furthermore, to date, most have demonstrated relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics. Of these novel agents, the most promising, and the ones for which the most evidence exists, appear to be those targeting ionotropic glutamate receptors.
Collapse
|
38
|
Kukuia KKE, Mensah JA, Amoateng P, Osei-Safo D, Koomson AE, Torbi J, Adongo DW, Ameyaw EO, Ben IO, Amponsah SK, Bugyei KA, Asiedu-Gyekye IJ. Glycine/NMDA Receptor Pathway Mediates the Rapid-onset Antidepressant Effect of Alkaloids From Trichilia Monadelpha. Basic Clin Neurosci 2021; 12:395-408. [PMID: 34917298 PMCID: PMC8666917 DOI: 10.32598/bcn.12.3.2838.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Major depressive disorder is often associated with suicidal tendencies, and this condition accentuates the need for rapid-acting antidepressants. We previously reported that Alkaloids (ALK) from Trichilia monadelpha possess antidepressant action in acute animal models of depression and that this effect is mediated through the monoamine and L-arginine-NO-cGMP pathways. This study investigated the possible rapid-onset antidepressant effect of ALK from T. monadelpha and its connection with the glycine/NMDA receptor pathway. METHODS The onset of ALK action from T. monadelpha was evaluated using the Open Space Swim Test (OSST), a chronic model of depression. The modified forced swimming and tail suspension tests were used to assess the effect of the ALK on the glycine/NMDA receptor pathway. The Instutute of Cancer Research (ICR) mice were treated with either ALK (30-300 mg/kg, orally [PO]), imipramine (3-30 mg/kg, PO), fluoxetine (3-30 mg/kg, PO), or saline. To identify the role of glycine/NMDA receptor pathway in the effect of ALK, we pretreated mice with a partial agonist of the glycine/NMDA receptor, D-cycloserine (2.5 mg/kg, intraperitoneally [IP]), and an agonist of glycine/NMDA receptor, D-serine (600 mg/kg, IP), before ALK administration. RESULTS ALK reversed immobility in mice after the second day of drug treatment in the OSST. In contrast, there was a delay in the effects induced by fluoxetine and imipramine. ALK also increased mean swimming and climbing scores in mice. ALK was more efficacious than imipramine and fluoxetine in reducing immobility and increasing distance traveled. It is noteworthy that ALK was less potent than fluoxetine and imipramine. D-cycloserine potentiated mobility observed in the ALK- and fluoxetine-treated mice. In contrast, D-serine decreased mobility in the ALK-treated mice. CONCLUSION The study results suggest that ALK from T. monadelpha exhibits rapid antidepressant action in mice, and the glycine/NMDA receptor pathway possibly mediates the observed effect.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
- Corresponding Author:Kennedy Kwami Edem Kukuia, PhD., Address: Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana., Tel: +233 (20) 4608498, E-mail:;
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, U.S. A
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Awo Efua Koomson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Joseph Torbi
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Inemesit Okon Ben
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
39
|
Wang D, Wang W, Jiang S, Ma H, Lian H, Meng F, Liu J, Cui M, You J, Liu C, Zhao D, Hu F, Liu D, Li C. Regulation of depression-related behaviors by GABAergic neurons in the lateral septum through periaqueductal gray neuronal projections. J Psychiatr Res 2021; 137:202-214. [PMID: 33691232 DOI: 10.1016/j.jpsychires.2021.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) is a serious and widespread mental illness worldwide. The abnormality of neuronal networks may contribute to the etiology of MDD. However, the neural connections underlying the main symptoms of MDD need further elucidation. Here, we found that GABAergic neurons in the lateral septum (LS) were activated by chronic unpredictable stress (CUS), with increased numbers of ΔFosB-labeled neurons. LS neuronal activity was modulated using a chemogenetic approach. Activation of LS neurons caused a depressive phenotype, as shown by increased immobility in the forced swim test, and induced increased susceptibility to subthreshold chronic stress, as indicated by decreased female urine sniffing time and preference for sucrose in depression-related behavior detection, whereas suppression of LS neuronal activity induced an antidepressant effect under basal and stressed conditions. Moreover, we found that the LS showed strong neuronal projections to the dorsal periaqueductal gray (dPAG); activation of dPAG-projecting GABAergic neurons in the LS produced the same depressive behaviors and stress susceptibility as induced by the activation of the majority of LS GABAergic neurons. Finally, we found that activation of neuronal fibers in the dPAG derived from the LS showed depression-related behaviors, as suggested by the decreased female urine sniffing time and sucrose preference in female urine sniffing and sucrose preference tests respectively. Our findings indicate that LS is a key depression-controlling nucleus, and that the LS-PAG projection is an essential effector circuit for morbidity and treatment in depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
40
|
Carboni E, Carta AR, Carboni E, Novelli A. Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success? Front Neurosci 2021; 15:657714. [PMID: 33994933 PMCID: PMC8120160 DOI: 10.3389/fnins.2021.657714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine's use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Antonello Novelli
- Department of Psychology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
- Sanitary Institute of the Princedom of Asturias, Oviedo, Spain
| |
Collapse
|
41
|
Sen ZD, Danyeli LV, Woelfer M, Lamers F, Wagner G, Sobanski T, Walter M. Linking atypical depression and insulin resistance-related disorders via low-grade chronic inflammation: Integrating the phenotypic, molecular and neuroanatomical dimensions. Brain Behav Immun 2021; 93:335-352. [PMID: 33359233 DOI: 10.1016/j.bbi.2020.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and related disorders, such as T2DM, increase the risk of major depressive disorder (MDD) and vice versa. Current evidence indicates that psychological stress and overeating can induce chronic low-grade inflammation that can interfere with glutamate metabolism in MDD as well as insulin signaling, particularly in the atypical subtype. Here we first review the interactive role of inflammatory processes in the development of MDD, IR and related metabolic disorders. Next, we describe the role of the anterior cingulate cortex in the pathophysiology of MDD and IR-related disorders. Furthermore, we outline how specific clinical features of atypical depression, such as hyperphagia, are more associated with inflammation and IR-related disorders. Finally, we examine the regional specificity of the effects of inflammation on the brain that show an overlap with the functional and morphometric brain patterns activated in MDD and IR-related disorders.
Collapse
Affiliation(s)
- Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Thueringen-Kliniken "Georgius Agricola" GmbH, Rainweg 68, 07318 Saalfeld, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| |
Collapse
|
42
|
Effects of SSRI treatment on GABA and glutamate levels in an associative relearning paradigm. Neuroimage 2021; 232:117913. [PMID: 33657450 PMCID: PMC7610796 DOI: 10.1016/j.neuroimage.2021.117913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Impaired cognitive flexibility represents a widespread symptom in psychiatric disorders, including major depressive disorder (MDD), a disease, characterized by an imbalance of neuro-transmitter concentrations. While memory formation is mostly associated with glutamate, also gamma-Aminobutyric acid (GABA) and serotonin show attributions in a complex interplay between neurotransmitter systems. Treatment with selective serotonin reuptake inhibitors (SSRIs) does not solely affect the serotonergic system but shows downstream effects on GABA- and glutamatergic neurotransmission, potentially helping to restore cognitive function via neuroplastic effects. Hence, this study aims to elaborate the effects of associative relearning and SSRI treatment on GABAergic and glutamatergic function within and between five brain regions using magnetic resonance spectroscopy imaging (MRSI). In this study, healthy subjects were randomized into four groups which underwent three weeks of an associative relearning paradigm, with or without emotional connotation, under SSRI (10mg escitalopram) or placebo administration. MRSI measurements, using a spiral-encoded, 3D-GABA-edited MEGA-LASER sequence at 3T, were performed on the first and last day of relearning. Mean GABA+/tCr (GABA+ = GABA + macromolecules; tCr = total creatine) and Glx/tCr (Glx = glutamate + glutamine) ratios were quantified in a ROI-based approach for the hippocampus, insula, putamen, pallidum and thalamus, using LCModel. A total of 66 subjects ((37 female, mean age ± SD = 25.4±4.7) for Glx/tCr and 58 subjects (32 female, mean age ± SD = 25.1±4.7) for GABA+/tCr were included in the final analysis. A significant measurement by region and treatment (SSRI vs placebo) interaction on Glx/tCr ratios was found (pcor=0.017), with post hoc tests confirming differential effects on hippocampus and thalamus (pcor=0.046). Moreover, treatment by time comparison, for each ROI independently, showed a reduction of hippocampal Glx/tCr ratios after SSRI treatment (puncor=0.033). No significant treatment effects on GABA+/tCr ratios or effects of relearning condition on any neurotransmitter ratio could be found. Here, we showed a significant SSRI- and relearning-driven interaction effect of hippocampal and thalamic Glx/tCr levels, suggesting differential behavior based on different serotonin transporter and receptor densities. Moreover, an indication for Glx/tCr adaptions in the hippocampus after three weeks of SSRI treatment could be revealed. Our findings are in line with animal studies reporting glutamate adaptions in the hippocampus following chronic SSRI intake. Due to the complex interplay of serotonin and hippocampal function, involving multiple serotonin receptor subtypes on glutamatergic cells and GABAergic interneurons, the interpretation of underlying neurobiological actions remains challenging.
Collapse
|
43
|
Min R, Chen Z, Wang Y, Deng Z, Zhang Y, Deng Y. Quantitative proteomic analysis of cortex in the depressive-like behavior of rats induced by the simulated complex space environment. J Proteomics 2021; 237:104144. [PMID: 33581354 DOI: 10.1016/j.jprot.2021.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022]
Abstract
Long-term spaceflight has always been challenging for astronauts due to the extremely complicated space environmental conditions, including microgravity, noise, confinement, and circadian rhythms disorders, which may cause adverse effects on astronauts' mental health, such as anxiety and depression. Unfortunately, so far, the underlying mechanism is not fully understood. Hence, a novel type of box and rat cage was designed and built in order to simulate complex space environment on the ground. After earth-based simulation for 21 days, the rats exhibited the depressive-like behavior according to the sucrose preference and forced swimming test. We applied label-free quantitative proteomics to explore the molecular mechanisms of depressive-like behavior through global changes in cortical protein abundance, given that the cortex is the hub of emotional management. The results revealed up-regulated spliceosome proteins in contrast to down-regulated oxidative phosphorylation (OXPHOS), glutamatergic, and GABAergic synapse related proteins in the simulated complex space environment (SCSE) group. Furthermore, PSD-95 protein was found down-regulated in mass spectrometry, reflecting its role in the psychopathology of depression, which was further validated by Western blotting. These findings provide valuable information to better understand the mechanisms of depressive-like behavior. SIGNIFICANCE: Quantitative proteomic analysis can quantify differentially abundant proteins related to a variety of potential signaling pathways in the rat cortex in the simulated complex space environment. These findings not only provide valuable information to better understand the mechanisms of depressive-like behavior, but also might offer the potential targets and develop countermeasures for the mental disorders to maintain the health of astronauts during the long-term spaceflight.
Collapse
Affiliation(s)
- Rui Min
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yun Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Zixuan Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
44
|
Murck H, Luerweg B, Hahn J, Braunisch M, Jezova D, Zavorotnyy M, Konrad C, Jansen A, Kircher T. Ventricular volume, white matter alterations and outcome of major depression and their relationship to endocrine parameters - A pilot study. World J Biol Psychiatry 2021; 22:104-118. [PMID: 32306867 DOI: 10.1080/15622975.2020.1757754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Brain morphology and its relation to endocrine parameters were examined, in order to determine the link of these parameters to treatment outcome to psychopharmacological treatment in depressed patients. METHODS We examined the potentially predictive value of Magnetic Resonance Imaging (MRI) parameters related to mineralocorticoid receptor (MR) function on the treatment outcome of depression. 16 inpatients with a major depressive episode (MDE) were studied at baseline and 14 of them approximately six weeks later. Physiological biomarkers and 3-T-structural MRI based volume measures, using FreeSurfer 6.0 software, were determined. RESULTS Non-responders (<50% reduction of HAMD-21; n = 6) had a significantly smaller volume of the right anterior cingulate cortex, a significantly larger ventricle to brain ratio (VBR) and third ventricle volume, and smaller volumes of the central and central-anterior corpus callosum (CC) in comparison to responders (n = 7; all p ≤ 0.05). Correlational analysis (Spearman) demonstrated that larger ventricle volume was correlated to a worse treatment outcome, higher body mass index (BMI) and smaller CC segment volume, whereas the total CC volume was negatively correlated to the saliva aldosterone/cortisol concentration ratio (AC-ratio). CONCLUSION Large ventricular volume may be a predictive marker for worse treatment response to standard antidepressant treatment, potentially via compression of white matter structures. A mediating role of the previously identified markers BMI and the AC-ratio, is suggested.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Murck-Neuroscience, Westfield, NJ, USA
| | - Benjamin Luerweg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Johannes Hahn
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Matthias Braunisch
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Maxim Zavorotnyy
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Carsten Konrad
- Agaplesion Diakonieklinikum Rotenburg, Rotenburg (Wuemme), Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
45
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
46
|
Fujisawa C, Umegaki H, Sugimoto T, Samizo S, Huang CH, Fujisawa H, Sugimura Y, Kuzuya M, Toba K, Sakurai T. Mild hyponatremia is associated with low skeletal muscle mass, physical function impairment, and depressive mood in the elderly. BMC Geriatr 2021; 21:15. [PMID: 33407209 PMCID: PMC7788730 DOI: 10.1186/s12877-020-01955-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Background Mild hyponatremia (serum sodium 130–135 mEq/L) is a common electrolyte disorder in the elderly. However, its association with both sarcopenia and cognitive function remains to be clarified. Therefore, here we investigated the association of mild hyponatremia with skeletal muscle mass, physical function, and cognitive function in the elderly. Methods We enrolled 75 participants with mild hyponatremia and 2907 with normonatremia (serum sodium, 136–145 mEq/L) aged ≥70 years who visited the Memory Disorder Outpatient Center of Japan’s National Center for Geriatrics and Gerontology. Skeletal muscle mass index (SMI), grip strength (GS), walking speed (WS), one-leg standing (OLS) test times, and neuropsychological test scores were determined. Results One-way analysis of covariance showed that elderly participants with mild hyponatremia had lower SMI (7.1 ± 0.2, 7.2 ± 0.2 kg/m2, p = 0.04), weaker GS (19.1 ± 1.9 vs 21.4 ± 1.8 kg, p = 0.01), slower WS (0.9 ± 0.1 vs 1.1 ± 0.1 m/s, p = 0.001), and higher GDS- 15 score (6.4 ± 0.9 vs 5.2 ± 0.9, p = 0.002) than those with normonatremia. Multiple logistic regression analysis indicated that mild hyponatremia was independently associated with sarcopenia (odds ratio [OR]: 2.2, p = 0.02), slower WS (OR: 5.3, p = 0.04) and shorter OLS time (OR: 2.5, p = 0.02) as well as with severe depressive mood (OR: 2.6 p = 0.006) but not with SMI (OR: 1.6, p = 0.2) or GS (OR: 1.9, p = 0.09). Conclusions Our results suggest that elderly people with even mild hyponatremia had physical function impairment and depressive mood.
Collapse
Affiliation(s)
- Chisato Fujisawa
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan. .,Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan. .,Department of Palliative Medicine, Seirei Hospital, Nagoya, Japan.
| | - Hiroyuki Umegaki
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan
| | - Taiki Sugimoto
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Satoshi Samizo
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan
| | - Chi Hsien Huang
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan
| | - Haruki Fujisawa
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Japan
| | - Masafumi Kuzuya
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kenji Toba
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- Departments of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, 466-8550, Japan.,Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
47
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
48
|
Sarawagi A, Soni ND, Patel AB. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Front Psychiatry 2021; 12:637863. [PMID: 33986699 PMCID: PMC8110820 DOI: 10.3389/fpsyt.2021.637863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of distress, disability, and suicides. As per the latest WHO report, MDD affects more than 260 million people worldwide. Despite decades of research, the underlying etiology of depression is not fully understood. Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the matured central nervous system. Imbalance in the levels of these neurotransmitters has been implicated in different neurological and psychiatric disorders including MDD. 1H nuclear magnetic resonance (NMR) spectroscopy is a powerful non-invasive method to study neurometabolites homeostasis in vivo. Additionally, 13C-NMR spectroscopy together with an intravenous administration of non-radioactive 13C-labeled glucose or acetate provides a measure of neural functions. In this review, we provide an overview of NMR-based measurements of glutamate and GABA homeostasis, neurometabolic activity, and neurotransmitter cycling in MDD. Finally, we highlight the impact of recent advancements in treatment strategies against a depressive disorder that target glutamate and GABA pathways in the brain.
Collapse
Affiliation(s)
- Ajay Sarawagi
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Narayan Datt Soni
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
49
|
Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry 2021; 26:6747-6755. [PMID: 33863994 PMCID: PMC8760062 DOI: 10.1038/s41380-021-01090-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD. Psychophysically, we observe a highly specific deficit in visual surround motion suppression in a large sample of acute MDD subjects which, importantly, correlates with symptom severity. Both visual deficit and its relation to symptom severity are replicated in the smaller MDD sample that received MRS. Using high-field 7T proton Magnetic resonance spectroscopy (1H-MRS), acute MDD subjects exhibit decreased GABA concentration in visual MT+ which, unlike in healthy subjects, no longer correlates with their visual motion performance, i.e., impaired SI. In sum, our combined psychophysical-biochemical study demonstrates an important role of reduced occipital GABA for altered visual perception and psychopathological symptoms in acute MDD. Bridging the gap from the biochemical level of occipital GABA over visual-perceptual changes to psychopathological symptoms, our findings point to the importance of the occipital cortex in acute depressed MDD including its role as candidate biomarker.
Collapse
|
50
|
Bhattacharyya P, Anand A, Lin J, Altinay M. Left Dorsolateral Prefrontal Cortex Glx/tCr Predicts Efficacy of High Frequency 4- to 6-Week rTMS Treatment and Is Associated With Symptom Improvement in Adults With Major Depressive Disorder: Findings From a Pilot Study. Front Psychiatry 2021; 12:665347. [PMID: 34925079 PMCID: PMC8677827 DOI: 10.3389/fpsyt.2021.665347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
About 20-40% of estimated 121 million patients with major depressive disorder (MDD) are not adequately responsive to medication treatment. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive, non-convulsive neuromodulation/neurostimulation method, has gained popularity in treatment of MDD. Because of the high cost involved in rTMS therapy, ability to predict the therapy effectiveness is both clinically and cost wise significant. This study seeks an imaging biomarker to predict efficacy of rTMS treatment using a standard high frequency 10-Hz 4- to 6-week protocol in adult population. Given the significance of excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma aminobutyric acid (GABA) in the pathophysiology of MDD, and the involvement of the site of rTMS application, left dorsolateral prefrontal cortex (lDLPFC), in MDD, we explored lDLPFC Glx (Glu + glutamine) and GABA levels, measured by single voxel magnetic resonance spectroscopy (MRS) with total creatine (tCr; sum of creatine and phosphocreatine) as reference, as possible biomarkers of rTMS response prediction. Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data from 7 patients (40-74 y) were used in the study; 6 of these patients were scanned before and after 6 weeks of rTMS therapy. Findings from this study show inverse correlation between pretreatment lDLPFC Glx/tCr and (i) posttreatment depression score and (ii) change in depression score, suggesting higher Glx/tCr as a predictor of treatment efficacy. In addition association was observed between changes in depression scores and changes in Glx/tCr ratio. The preliminary findings did not show any such association between GABA/tCr and depression score.
Collapse
Affiliation(s)
- Pallab Bhattacharyya
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States.,Department of Radiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Amit Anand
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Jian Lin
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | - Murat Altinay
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| |
Collapse
|