1
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Background Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. Methodology A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. Results and Discussion Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. Conclusion Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ahmad N, Moton S, Kuttikrishnan S, Prabhu KS, Masoodi T, Ahmad S, Uddin S. Fatty acid synthase: A key driver of ovarian cancer metastasis and a promising therapeutic target. Pathol Res Pract 2024; 260:155465. [PMID: 39018927 DOI: 10.1016/j.prp.2024.155465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA; Florida State University, College of Medicine, Orlando, FL 32801, USA; University of Central Florida, College of Medicine, Orlando, FL 32827, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India.
| |
Collapse
|
3
|
Transcriptome Profiling of the Liver in Nellore Cattle Phenotypically Divergent for RFI in Two Genetic Groups. Animals (Basel) 2023; 13:ani13030359. [PMID: 36766249 PMCID: PMC9913155 DOI: 10.3390/ani13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The identification and selection of genetically superior animals for residual feed intake (RFI) could enhance productivity and minimize environmental impacts. The aim of this study was to use RNA-seq data to identify the differentially expressed genes (DEGs), known non-coding RNAs (ncRNAs), specific biomarkers and enriched biological processes associated with RFI of the liver in Nellore cattle in two genetic groups. In genetic group 1 (G1), 24 extreme RFI animals (12 low RFI (LRFI) versus 12 high RFI (HRFI)) were selected from a population of 60 Nellore bulls. The RNA-seq of the samples from their liver tissues was performed using an Illumina HiSeq 2000. In genetic group 2 (G2), 20 samples of liver tissue of Nellore bulls divergent for RFI (LRFI, n = 10 versus HRFI, n = 10) were selected from 83 animals. The raw data of the G2 were chosen from the ENA repository. A total of 1811 DEGs were found for the G1 and 2054 for the G2 (p-value ≤ 0.05). We detected 88 common genes in both genetic groups, of which 33 were involved in the immune response and in blocking oxidative stress. In addition, seven (B2M, ADSS, SNX2, TUBA4A, ARHGAP18, MECR, and ABCF3) possible gene biomarkers were identified through a receiver operating characteristic analysis (ROC) considering an AUC > 0.70. The B2M gene was overexpressed in the LRFI group. This gene regulates the lipid metabolism protein turnover and inhibits cell death. We also found non-coding RNAs in both groups. MIR25 was up-regulated and SNORD16 was down-regulated in the LRFI for G1. For G2, up-regulated RNase_MRP and SCARNA10 were found. We highlight MIR25 as being able to act by blocking cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage. The biological pathways associated with RFI of the liver in Nellore cattle in the two genetic groups were for energy metabolism, protein turnover, redox homeostasis and the immune response. The common transcripts, biomarkers and metabolic pathways found in the two genetic groups make this unprecedented work even more relevant, since the results are valid for different herds raised in different ways. The results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the liver tissue transcriptome of Nellore cattle.
Collapse
|
4
|
Wessendarp M, Watanabe-Chailland M, Liu S, Stankiewicz T, Ma Y, Kasam RK, Shima K, Chalk C, Carey B, Rosendale LR, Dominique Filippi M, Arumugam P. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 2021; 62:85-101. [PMID: 34740864 DOI: 10.1016/j.mito.2021.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts pleiotropic effects on macrophages and is required for self-renewal but the mechanisms responsible are unknown. Using mouse models with disrupted GM-CSF signaling, we show GM-CSF is critical for mitochondrial turnover, functions, and integrity. GM-CSF signaling is essential for fatty acid β-oxidation and markedly increased tricarboxylic acid cycle activity, oxidative phosphorylation, and ATP production. GM-CSF also regulated cytosolic pathways including glycolysis, pentose phosphate pathway, and amino acid synthesis. We conclude that GM-CSF regulates macrophages in part through a critical role in maintaining mitochondria, which are necessary for cellular metabolism as well as proliferation and self-renewal.
Collapse
Affiliation(s)
- Matthew Wessendarp
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Serena Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Yan Ma
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Kenjiro Shima
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Brenna Carey
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | | | - Paritha Arumugam
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA.
| |
Collapse
|
5
|
Zhao H, Wang J, Fang D, Lee O, Chatterton RT, Stearns V, Khan SA, Bulun SE. Adiposity Results in Metabolic and Inflammation Differences in Premenopausal and Postmenopausal Women Consistent with the Difference in Breast Cancer Risk. HORMONES & CANCER 2018; 9:229-239. [PMID: 29546532 PMCID: PMC10355891 DOI: 10.1007/s12672-018-0329-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/05/2018] [Indexed: 11/28/2022]
Abstract
Obesity is associated with increased risk of breast cancer in postmenopausal but not in premenopausal women. Many factors may be responsible for this difference. The aim of this study was to determine the mechanisms by which the genes related to the AMPK pathway, inflammation, and estrogen actions are affected by adiposity in breast tissue with the objective of identifying differences that may explain the different breast cancer risk in premenopausal and postmenopausal women. Random fine needle aspirates (rFNAs) of breast tissue were collected from 57 premenopausal and 55 postmenopausal women and were classified as normal weight, overweight, or obese. Expression levels of 21 target genes were determined using a TaqMan Low Density Array procedure. Breast tissue estradiol levels were measured by a liquid chromatography-tandem mass spectrometry procedure, and serum estradiol and follicle-stimulating hormone (FSH) were measured by a radioimmunoassay and an enzyme-linked immunosorbent assay, respectively. We found that in postmenopausal women, serum and tissue estradiol levels were increased in those who were overweight, and serum FSH levels were decreased in obese status. Interestingly, RPS6KB1, an AMPK downstream-responsive gene for protein synthesis and cell growth, and estrogen receptor α (encoded by the ESR1 gene) and its target gene GATA3 were significantly decreased in rFNA of premenopausal, obese women. In postmenopausal women, RPS6KB1, ESR1, and GATA3 expression remained unchanged in relation to adiposity. However, prostaglandin-endoperoxide synthase 2 (PTGS2), cyclin D1 (CCND1), and another ESR1 target gene, TFF1, were elevated in rFNA of obese postmenopausal women. Thus, as bodyweight increases, gene expression is indicative of increased proliferation in postmenopausal women but decreased proliferation in premenopausal women. Overall, our data reveal a novel process by which obesity promotes the risk of breast cancer in postmenopausal but not premenopausal women.
Collapse
Affiliation(s)
- H Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Street, Suite 4-121, Chicago, IL, 60611, USA.
| | - J Wang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D Fang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - O Lee
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R T Chatterton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - V Stearns
- Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S A Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - S E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Muimo R, Alothaid HM, Mehta A. NM23 proteins: innocent bystanders or local energy boosters for CFTR? J Transl Med 2018; 98:272-282. [PMID: 29251738 DOI: 10.1038/labinvest.2017.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.
Collapse
Affiliation(s)
- Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Hani Mm Alothaid
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Anil Mehta
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
7
|
Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821761. [PMID: 26380295 PMCID: PMC4561296 DOI: 10.1155/2015/821761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.
Collapse
|
8
|
den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, Havinga R, Groen AK, Reijngoud DJ, Bakker BM. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1. PLoS One 2015; 10:e0136364. [PMID: 26292284 PMCID: PMC4546369 DOI: 10.1371/journal.pone.0136364] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.
Collapse
Affiliation(s)
- Gijs den Besten
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Albert Gerding
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolita Ciapaite
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aycha Bleeker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Karen van Eunen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Rick Havinga
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K. Groen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Barbara M. Bakker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics & Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Bang CY, Choung SY. Enzogenol improves diabetes-related metabolic change in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. J Pharm Pharmacol 2014; 66:875-85. [DOI: 10.1111/jphp.12211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/07/2013] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
Dietary use of pine bark extract has been associated with reduced risk of inflammation and diabetes. In this study, we investigated the antidiabetic effects of enzogenol, proanthocyanidins-rich bioflavonoid extract derived from the pine bark of New Zealand Pinus radiata trees, using C57BL/KsJ-db/db mice.
Methods
After 1-week acclimation period, the db/db mice were divided into vehicle-treated, Enzogenol-treated (12.5, 25 and 50 mg/kg; EZ) and positive control (tea polyphenol 50 mg/kg; TPP) groups.
Key findings
The administration of EZ improved the glucose tolerance and lowered the glycosylated haemoglobin (HbA1C), insulin and glucagon levels in blood. Interestingly, EZ and TPP treatments resulted in reduced hepatic free fatty acid, cholesterol and triglyceride levels in db/db mice. EZ and TPP treatments significantly elevated hepatic AMPK activity, and the expression of proteins related to glucose homeostasis and lipid metabolism, such as glucokinase, peroxisome proliferator-activated receptor (PPAR)α and long-chain acyl-CoA dehydrogenase protein level with a simultaneous reduction of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase protein expression. In addition, the EZ administration groups had an increased hepatic glycogen synthase expression in db/db mice.
Conclusions
These results suggest that EZ may be beneficial in improving insulin resistance and hyperglycaemia in type 2 diabetic mice by enhancing the glucose and lipids metabolism.
Collapse
Affiliation(s)
- Chae-Young Bang
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Lettieri Barbato D, Vegliante R, Desideri E, Ciriolo MR. Managing lipid metabolism in proliferating cells: new perspective for metformin usage in cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1845:317-24. [PMID: 24569230 DOI: 10.1016/j.bbcan.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Cancer cells metabolically adapt to undergo cellular proliferation. Lipids, besides their well-known role as energy storage, represent the major building blocks for the synthesis of neo-generated membranes. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. The changes of expression and activity of lipid metabolising enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumour cells on the deregulated lipid metabolism suggests that proteins involved in this process could be excellent chemotherapeutic targets for cancer treatment. Due to its rare side effects in non-cancerous cells, metformin has been recently revaluated as a potential anti-tumourigenic drug, which negatively affects lipid biosynthetic pathways. In this review we summarised the emerging molecular events linking the anti-proliferative effect of metformin with lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rolando Vegliante
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Enrico Desideri
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Rosa Ciriolo
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; IRCCS San Raffaele, Biochemistry of Ageing, Via di Val Cannuta, 00166 Rome, Italy.
| |
Collapse
|
11
|
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-908. [PMID: 21937710 DOI: 10.1101/gad.17420111] [Citation(s) in RCA: 1248] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. It arose very early during eukaryotic evolution, and its ancestral role may have been in the response to starvation. Recent work shows that the kinase is activated by increases not only in AMP, but also in ADP. Although best known for its effects on metabolism, AMPK has many other functions, including regulation of mitochondrial biogenesis and disposal, autophagy, cell polarity, and cell growth and proliferation. Both tumor cells and viruses establish mechanisms to down-regulate AMPK, allowing them to escape its restraining influences on growth.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Science, University of Dundee, Scotland, United Kingdom.
| |
Collapse
|
12
|
Abstract
The scientific study of obesity has been dominated throughout the twentieth century by the concept of energy balance. This conceptual approach, based on fundamental thermodynamic principles, states that energy cannot be destroyed, and can only be gained, lost or stored by an organism. Its application in obesity research has emphasised excessive appetite (gluttony), or insufficient physical activity (sloth), as the primary determinants of excess weight gain, reflected in current guidelines for obesity prevention and treatment. This model cannot explain why weight accumulates persistently rather than reaching a plateau, and underplays the effect of variability in dietary constituents on energy and intermediary metabolism. An alternative model emphasises the capacity of fructose and fructose-derived sweeteners (sucrose, high-fructose corn syrup) to perturb cellular metabolism via modification of the adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio, activation of AMP kinase and compensatory mechanisms, which favour adipose tissue accretion and increased appetite while depressing physical activity. This conceptual model implicates chronic hyperinsulinaemia in the presence of a paradoxical state of 'cellular starvation' as a key driver of the metabolic modifications inducing chronic weight gain. We combine evidence from in vitro and in vivo experiments to formulate a perspective on obesity aetiology that emphasises metabolic flexibility and dietary composition rather than energy balance. Using this model, we question the direction of causation of reported associations between obesity and sleep duration or childhood growth. Our perspective generates new hypotheses, which can be tested to improve our understanding of the current obesity epidemic, and to identify novel strategies for prevention or treatment.
Collapse
Affiliation(s)
- J C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK.
| | | |
Collapse
|
13
|
Targeted therapies of the LKB1/AMPK pathway for the treatment of insulin resistance. Future Med Chem 2011; 2:1785-96. [PMID: 21428801 DOI: 10.4155/fmc.10.264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type II diabetes is characterized by elevated serum glucose levels and altered lipid metabolism due to peripheral insulin resistance and defects of insulin secretion in the pancreatic β-cells. While some cases of obesity and Type II diabetes result from genetic dysfunction, the increased worldwide incidence of these two disorders strongly suggest that the contribution of environmental factors such as sedentary lifestyles and high-calorie intake may disrupt energy balance. AMP-activated protein kinase and its upstream kinase liver kinase B1 are conserved serine/threonine kinases regulating anabolic and catabolic metabolic processes, therefore representing attractive therapeutic targets for the treatment of obesity and Type II diabetes. In this review, we will discuss the advantages of targeting the liver kinase B1/AMP-activated protein kinase pathway for the treatment of metabolic diseases.
Collapse
|
14
|
Bennett KA, Forsyth L, Burchell A. Functional analysis of the 5' flanking region of the human G6PC3 gene: regulation of promoter activity by glucose, pyruvate, AMP kinase and the pentose phosphate pathway. Mol Genet Metab 2011; 103:254-61. [PMID: 21474354 DOI: 10.1016/j.ymgme.2011.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
G6PC3 is a widely expressed isoform of glucose-6-phosphatase, found in many foetal and adult tissues. Mutations in this gene cause developmental abnormalities and severe neutropenia due to abolition of glucose recycling between the cytoplasm and endoplasmic reticulum. Low G6PC3 expression as a result of promoter polymorphisms or dysregulation could produce similar outcomes. Here we investigated the regulation of human G6PC3 promoter activity. HeLa and H4IIE cells were transiently transfected with G6PC3 promoter coupled to the firefly luciferase gene, and promoter activity was measured by dual luciferase assay. Activity was highest in a 453 bp segment of the G6PC3 promoter, from -455 to -3 relative to the transcriptional start site. This promoter was unresponsive to glucostatic hormones. Its activity increased significantly between 1 and 5.5 mM glucose, and was not elevated further by glucose concentrations up to 25 mM. Pyruvate increased its activity, but β-hydroxybutyrate and sodium acetate did not. Promoter activity was reduced by inhibitors of hexokinase, glyceraldehyde phosphate dehydrogenase and the oxidative branch of the pentose phosphate pathway, but not by a transketolase inhibitor. Deletion of two adjacent Enhancer-boxes (-274 to -279 and -299 to -304) reduced promoter activity and abolished the glucose effect, suggesting they could function as a glucose response element. Deletion of an additional downstream 140 bp (-140 to -306) restored activity, but not the glucose response, suggesting the presence of repressor elements in this region. 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) reduced promoter activity, showing dependence on AMP-kinase. Regulation of the G6PC3 promoter is thus radically different to that of the hepatic isoform, G6PC. It is sensitive to carbohydrate, but not to fatty acid metabolites, and at much lower physiological concentrations. Based on these findings, we speculate that reduced G6PC3 expression could occur during hypoglycemic episodes in vivo, which are common in utero and in the postnatal period. If such episodes lower G6PC3 expression they could place the foetus or infant at risk of impaired immune function and development, and this possibility requires further examination both in vitro and in vivo.
Collapse
Affiliation(s)
- Kimberley Ann Bennett
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| | | | | |
Collapse
|
15
|
Abstract
AMP-activated protein kinase AMP-activated protein kinase (AMPK AMPK ), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile, and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction calorie restriction by acting on multiple cellular targets. In addition, it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs drugs including the biguanides (metformin metformin ) and thiazolidinedione thiazolidinedione s, as well as of insulin-sensitizing adipokines (e.g., adiponectin adiponectin ). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes.
Collapse
|
16
|
Zhang N, Li Q, Gao X, Yan H. Potential role of adenosine monophosphate-activated protein kinase in regulation of energy metabolism in dairy goat mammary epithelial cells. J Dairy Sci 2011; 94:218-22. [DOI: 10.3168/jds.2010-3386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/10/2010] [Indexed: 11/19/2022]
|
17
|
Riboulet-Chavey A, Diraison F, Siew LK, Wong FS, Rutter GA. AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells. Diabetologia 2011; 54:125-34. [PMID: 20938634 PMCID: PMC6101198 DOI: 10.1007/s00125-010-1929-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
AIM/HYPOTHESIS AMP-activated protein kinase (AMPK), encoded by Prkaa genes, is emerging as a key regulator of overall energy homeostasis and the control of insulin secretion and action. We sought here to investigate the role of AMPK in controlling glucagon secretion from pancreatic islet alpha cells. METHODS AMPK activity was modulated in vitro in clonal alphaTC1-9 cells and isolated mouse pancreatic islets using pharmacological agents and adenoviruses encoding constitutively active or dominant negative forms of AMPK. Glucagon secretion was measured during static incubation by radioimmunoassay. AMPK activity was assessed by both direct phosphotransfer assay and by western (immuno-)blotting of the phosphorylated AMPK α subunits and the downstream target acetyl-CoA carboxylase 1. Intracellular free [Ca²(+)] was measured using Fura-Red. RESULTS Increasing glucose concentrations strongly inhibited AMPK activity in clonal pancreatic alpha cells. Forced increases in AMPK activity in alphaTC1-9 cells, achieved through the use of pharmacological agents including metformin, phenformin and A-769662, or via adenoviral transduction, resulted in stimulation of glucagon secretion at both low and high glucose concentrations, whereas AMPK inactivation inhibited both [Ca²(+)](i) increases and glucagon secretion at low glucose. Transduction of isolated mouse islets with an adenovirus encoding AMPK-CA under the control of the preproglucagon promoter increased glucagon secretion selectively at elevated glucose concentrations. CONCLUSIONS/INTERPRETATION AMPK is strongly regulated by glucose in pancreatic alpha cells, and increases in AMPK activity are sufficient and necessary for the stimulation of glucagon release in vitro. Modulation of AMPK activity in alpha cells may therefore provide a novel approach to controlling blood glucose concentrations.
Collapse
Affiliation(s)
- Audrey Riboulet-Chavey
- Department of Cell Biology, Division of Medicine, Sir Alexander Fleming Building, Imperial College, London, Exhibition Road, London SW7 2AZ, UK
| | - Frédérique Diraison
- Department of Cell Biology, Division of Medicine, Sir Alexander Fleming Building, Imperial College, London, Exhibition Road, London SW7 2AZ, UK
| | - L. Khai Siew
- Dept. of Cellular & Molecular Medicine, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, UK
| | - F. Susan Wong
- Dept. of Cellular & Molecular Medicine, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, UK
| | - Guy A. Rutter
- Department of Cell Biology, Division of Medicine, Sir Alexander Fleming Building, Imperial College, London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
18
|
Choi JW, Kim JH, Cho SC, Ha MK, Song KY, Youn HD, Park SC. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription. Biochem Biophys Res Commun 2010; 404:400-6. [PMID: 21130747 DOI: 10.1016/j.bbrc.2010.11.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Crawford SA, Costford SR, Aguer C, Thomas SC, deKemp RA, DaSilva JN, Lafontaine D, Kendall M, Dent R, Beanlands RSB, McPherson R, Harper ME. Naturally occurring R225W mutation of the gene encoding AMP-activated protein kinase (AMPK)gamma(3) results in increased oxidative capacity and glucose uptake in human primary myotubes. Diabetologia 2010; 53:1986-97. [PMID: 20473479 DOI: 10.1007/s00125-010-1788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 04/12/2010] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS AMP-activated protein kinase (AMPK) has a broad role in the regulation of glucose and lipid metabolism making it a promising target in the treatment of type 2 diabetes mellitus. We therefore sought to characterise for the first time the effects of chronic AMPK activation on skeletal muscle carbohydrate metabolism in carriers of the rare gain-of-function mutation of the gene encoding AMPKgamma(3) subunit, PRKAG3 R225W. METHODS Aspects of fuel metabolism were studied in vitro in myocytes isolated from vastus lateralis of PRKAG3 R225W carriers and matched control participants. In vivo, muscular strength and fatigue were evaluated by isokinetic dynamometer and surface electromyography, respectively. Glucose uptake in exercising quadriceps was determined using [(18)F]fluorodeoxyglucose and positron emission tomography. RESULTS Myotubes from PRKAG3 R225W carriers had threefold higher mitochondrial content (p < 0.01) and oxidative capacity, higher leak-dependent respiration (1.6-fold, p < 0.05), higher basal glucose uptake (twofold, p < 0.01) and higher glycogen synthesis rates (twofold, p < 0.05) than control myotubes. They also had higher levels of intracellular glycogen (p < 0.01) and a trend for lower intramuscular triacylglycerol stores. R225W carriers showed remarkable resistance to muscular fatigue and a trend for increased glucose uptake in exercising muscle in vivo. CONCLUSIONS/INTERPRETATION Through the enhancement of skeletal muscle glucose uptake and increased mitochondrial content, the R225W mutation may significantly enhance exercise performance. These findings are also consistent with the hypothesis that the gamma(3) subunit of AMPK is a promising tissue-specific target for the treatment of type 2 diabetes mellitus, a condition in which glucose uptake and mitochondrial function are impaired.
Collapse
Affiliation(s)
- S A Crawford
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The function and survival of all organisms is dependent on the dynamic control of energy metabolism, when energy demand is matched to energy supply. The AMP-activated protein kinase (AMPK) alphabetagamma heterotrimer has emerged as an important integrator of signals that control energy balance through the regulation of multiple biochemical pathways in all eukaryotes. In this review, we begin with the discovery of the AMPK family and discuss the recent structural studies that have revealed the molecular basis for AMP binding to the enzyme's gamma subunit. AMPK's regulation involves autoinhibitory features and phosphorylation of both the catalytic alpha subunit and the beta-targeting subunit. We review the role of AMPK at the cellular level through examination of its many substrates and discuss how it controls cellular energy balance. We look at how AMPK integrates stress responses such as exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, and substrate utilization at the whole body level. Lastly, we review the possible role of AMPK in multiple common diseases and the role of the new age of drugs targeting AMPK signaling.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia.
| | | |
Collapse
|
21
|
Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol (Oxf) 2009; 196:129-45. [PMID: 19245658 DOI: 10.1111/j.1748-1716.2009.01968.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and related disorders of the metabolic syndrome (MS) has reached epidemic proportions. Insulin resistance (IR) is a major perturbation that characterizes these disorders. Extra-adipose accumulation of lipid, particularly within the liver and skeletal muscle, is closely linked with the development of IR. The AMP-activated protein kinase (AMPK) pathway plays an important role in the regulation of both lipid and glucose metabolism. Through its effects to increase fatty acid oxidation and inhibit lipogenesis, AMPK activity in the liver and skeletal muscle could be expected to ameliorate lipid accumulation and associated IR in these tissues. In addition, AMPK promotes glucose uptake into skeletal muscle and suppresses glucose output from the liver via insulin-independent mechanisms. These characteristics make AMPK a highly attractive target for the development of strategies to curb the prevalence and costs of T2D. Recent insights into the regulation of AMPK and mechanisms by which it modulates fuel metabolism in liver and skeletal muscle are discussed here. In addition, we consider the arguments for and against the hypothesis that dysfunctional AMPK contributes to IR. Finally we review studies which assess AMPK as an appropriate target for the prevention and treatment of T2D and MS.
Collapse
Affiliation(s)
- B D Hegarty
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | | | | | |
Collapse
|
22
|
Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, Andreelli F, Foretz M. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 2009; 196:81-98. [PMID: 19245656 DOI: 10.1111/j.1748-1716.2009.01970.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As the liver is central in the maintenance of glucose homeostasis and energy storage, knowledge of the physiology as well as physiopathology of hepatic energy metabolism is a prerequisite to our understanding of whole-body metabolism. Hepatic fuel metabolism changes considerably depending on physiological circumstances (fed vs. fasted state). In consequence, hepatic carbohydrate, lipid and protein synthesis/utilization are tightly regulated according to needs. Fatty liver and hepatic insulin resistance (both frequently associated with the metabolic syndrome) or increased hepatic glucose production (as observed in type 2 diabetes) resulted from alterations in substrates oxidation/storage balance in the liver. Because AMP-activated protein kinase (AMPK) is considered as a cellular energy sensor, it is important to gain understanding of the mechanism by which hepatic AMPK coordinates hepatic energy metabolism. AMPK has been implicated as a key regulator of physiological energy dynamics by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). Activation of hepatic AMPK leads to increased fatty acid oxidation and simultaneously inhibition of hepatic lipogenesis, cholesterol synthesis and glucose production. In addition to a short-term effect on specific enzymes, AMPK also modulates the transcription of genes involved in lipogenesis and mitochondrial biogenesis. The identification of AMPK targets in hepatic metabolism should be useful in developing treatments to reverse metabolic abnormalities of type 2 diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- B Viollet
- Department of Endocrinology, Metabolism and Cancer, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 24 rue du Faubourg Saint-Jacques, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 2009; 419:247-59. [PMID: 19309312 DOI: 10.1042/bj20082408] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phosphorylation and dephosphorylation of proteins, catalysed by protein kinases and phosphatases, is the major mechanism for the transduction of intracellular signals in eukaryotic organisms. Signalling pathways often comprise multiple phosphorylation/dephosphorylation steps and a long-standing hypothesis to explain this phenomenon is that of the protein kinase cascade, in which a signal is amplified as it is passed from one step in a pathway to the next. This review represents a re-evaluation of this hypothesis, using the signalling network in which the SnRKs [Snf1 (sucrose non-fermenting-1)-related protein kinases] function as an example, but drawing also on the related signalling systems involving Snf1 itself in fungi and AMPK (AMP-activated protein kinase) in animals. In plants, the SnRK family comprises not only SnRK1, but also two other subfamilies, SnRK2 and SnRK3, with a total of 38 members in the model plant Arabidopsis. This may have occurred to enable linking of metabolic and stress signalling. It is concluded that signalling pathways comprise multiple levels not to allow for signal amplification, but to enable linking between pathways to form networks in which key protein kinases, phosphatases and target transcription factors represent hubs on/from which multiple pathways converge and emerge.
Collapse
|
24
|
Dietary lipoic acid-dependent changes in the activity and mRNA levels of hepatic lipogenic enzymes in rats. Br J Nutr 2008; 100:79-87. [DOI: 10.1017/s0007114507876227] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effects of dietary α-lipoic acid on hepatic and serum lipid concentrations and the activity and mRNA levels of lipogenic enzymes were examined in rats. Rats were fed experimental diets containing varying amounts of lipoic acid (0, 1, 2·5, 5 g/kg) for 21 d. Lipoic acid profoundly decreased serum and liver concentrations of TAG, and also lowered serum concentrations of phospholipid and NEFA, and the concentration of cholesterol in the liver. A hypoglycaemic effect of this compound was also observed. Lipoic acid dose-dependently decreased the activity and mRNA levels of fatty acid synthase, ATP-citrate lyase, glucose 6-phosphate dehydrogenase, malic enzyme and pyruvate kinase in the liver despite that reductions were considerably attenuated in the NADPH-producing enzymes. This compound also dose-dependently lowered the mRNA levels of spot 14, adiponutrin, stearoyl-CoA desaturase 1, and Δ5- and Δ6-desaturases. In addition, lipoic acid dose-dependently lowered serum concentrations of insulin and leptin, but increased those of adiponectin. Lipoic acid appeared to reduce hepatic lipogenesis and hence decreases serum and liver lipid levels. Alterations in serum concentrations of insulin and (or) adiponectin may trigger this consequence.
Collapse
|
25
|
Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 2008; 113:101-11. [PMID: 18256928 DOI: 10.1007/s10549-008-9916-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/22/2008] [Indexed: 12/26/2022]
Abstract
Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers. Metformin is known to work in part through the activation of AMP-dependent kinase (AMPK). AMPK is a key regulator of cellular energy homeostasis, especially under stress conditions where biosynthetic pathways are blocked by the phosphorylation of downstream AMPK substrates. Stimulation of AMPK by metformin resulted in a significant repression of cell proliferation and active MAPK1/2 in both estrogen receptor alpha (ERalpha) negative (MDA-MB-231, MDA-MB-435) and positive (MCF-7, T47D) human breast cancer cell lines. However, when ERalpha negative MDA-MB-435 cells were treated with metformin, they demonstrated increased expression of vascular endothelial growth factor (VEGF) in an AMPK dependent manner; while the ERalpha positive MCF-7 cells did not. Systemic therapy with metformin was tested for efficacy in an orthotopic model of ERalpha negative breast cancer performed in athymic nude mice. Surprisingly, metformin therapy significantly improved tumorigenic progression as compared to untreated controls. The metformin-treated group showed increased VEGF expression, intratumoral microvascular density and reduced necrosis. Metformin treatment was sufficient, however, to reduce systemic IGF-1 and the proliferation rate of tumor cells in vascularized regions. The data presented here suggests that, although metformin significantly represses breast cancer cell growth in vitro, the efficacy with respect to its therapeutic application for ERalpha negative breast cancer lesions in vivo may result in promotion of the angiogenic phenotype and increased tumorigenic progression.
Collapse
Affiliation(s)
- Kathryn N Phoenix
- Center for Vascular Biology, EM028, Department of Cell Biology-MC3501, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | |
Collapse
|
26
|
Wang HM, Mehta S, Bansode R, Huang W, Mehta KD. AICAR positively regulate glycogen synthase activity and LDL receptor expression through Raf-1/MEK/p42/44MAPK/p90RSK/GSK-3 signaling cascade. Biochem Pharmacol 2007; 75:457-67. [PMID: 17945190 DOI: 10.1016/j.bcp.2007.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 10/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is a commonly used pharmacological agent to study physiological effects which are similar to those of exercise. However, signal transduction pathways by which AICAR elicits downstream effects in liver are poorly understood. We report here that AICAR not only activated AMPK but also phosphorylated/deactivated glycogen synthase kinase-3 alpha/beta (GSK-3alpha/beta) and dephophorylated/activated glycogen synthase (GS) in a time-dependent manner in human hepatoma HepG2 cells. The signal connection between AICAR and GSK-3 is indirect and involves activation of Raf-1/MEK/p42/44(MAPK)/p90(RSK) signaling cascade as pharmacologic inhibition of MEK significantly reduced phosphorylation/deactivation of GSK-3 and consequent dephosphorylation/activation of GS. Moreover, silencing the expression of p90(RSK), a substrate of p42/44(MAPK), attenuated AICAR-dependent GSK-3 phosphorylation, implicating this kinase as a key mediator of AICAR signaling to GSK-3. Furthermore, consistent with the involvement of Raf-1 kinase cascade, AICAR-induced low-density lipoprotein (LDL) receptor expression in a p42/44(MAPK)-dependent manner. Finally, AICAR requires AMPK-alpha2-dependent and -independent pathways to activate Raf-1 kinase cascade as suppression of AMPKalpha2 activity, and not of AMPKalpha1, partially blocked AICAR-dependent p42/44(MAPK) activation and GSK-3 phosphorylation/deactivation. Collectively, these results highlight Raf-1 signaling cascade as the critical mediator of AICAR action on glucose and lipid metabolism in HepG2 cells.
Collapse
Affiliation(s)
- Hsiang-Ming Wang
- Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 464 Hamilton Hall, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|
27
|
Shen QW, Zhu MJ, Tong J, Ren J, Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol 2007; 293:C1395-403. [PMID: 17687000 DOI: 10.1152/ajpcell.00115.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.
Collapse
Affiliation(s)
- Qingwu W Shen
- Department of Animal Science, Interdepartmental Molecular and Cellular Life Science Program, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
28
|
Kim EK, Kleman AM, Ronnett GV. Fatty acid synthase gene regulation in primary hypothalamic neurons. Neurosci Lett 2007; 423:200-4. [PMID: 17709201 PMCID: PMC4286184 DOI: 10.1016/j.neulet.2007.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/08/2007] [Accepted: 06/28/2007] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms that regulate feeding is critical to the development of therapeutic interventions for obesity. Many studies indicate that enzymes within fatty acid metabolic pathways may serve as targets for pharmacological tools to treat this epidemic. We, and others have previously demonstrated that C75, a fatty acid synthase (FAS) inhibitor, induced significant anorexia and weight loss by both central and peripheral mechanisms. Because the hypothalamus is important in the regulation of homeostatic processes for feeding control, we have identified pathways that alter the gene expression of FAS in primary hypothalamic neuronal cultures. Insulin, glucose and AICAR (an activator of AMP-activated protein kinase) affected changes in hypothalamic FAS mRNA, which may be regulated via the SREBP1c dependent or independent pathway.
Collapse
Affiliation(s)
- Eun-Kyoung Kim
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
29
|
Baumann P, Mandl-Weber S, Emmerich B, Straka C, Schmidmaier R. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res 2007; 313:3592-603. [PMID: 17669398 DOI: 10.1016/j.yexcr.2007.06.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
The role of adenosine monophosphate activated protein kinase (AMPK) in regulating multiple myeloma (MM) cell growth is not yet clear. In this study, we show that the AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAr) and D942 inhibit cell growth in MM cell lines. AICAr also induced an S-phase cell cycle arrest in all four tested cell lines and led to phosphorylation and thus activation of AMPK. Furthermore, the inhibition of a nucleoside transporter by nitrobenzyl-thio-9-beta-d-ribofuranosylpurine (NBTI), inhibition of the adenosine kinase by iodotubericidine and inhibition of AMPK by AMPKI Compound C reversed AICAr effects, indicating that the cellular effects of AICAr were mediated by AMPK. Activation of AMPK inhibited basal extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) as well as AKT phosphorylation, and blocked IL-6, IGF-1, and HS-5 stromal cell conditioned medium-induced increase of cell growth. Troglitazone, which has previously been shown to activate AMPK, similarly inhibited MM cell growth, activated AMPK, and decreased ERK and P70S6K phosphorylation. Our results suggest that activation of AMPK inhibits MM cell growth despite stimulation with IL-6, IGF-1, or HS-5 stromal cell conditioned medium and represents a potential new target in the therapy of MM.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Hematology and Oncology, Medizinische Klinik Innenstadt, Klinikum der Universität München, Germany.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The AMP-activated protein kinase (AMPK) system is a regulator of energy balance at both the cellular and whole-body levels that, once activated by low energy status, effects a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. It now appears to be the major target for two existing classes of drug used to treat type 2 diabetes, i.e., the biguanides and thiazolidinediones. However, in both cases these activate AMPK indirectly, and an interesting question concerns whether a drug that directly activated AMPK would retain the therapeutic benefits of the existing drugs while eliminating unwanted side effects. AMPK activators also now have potential as anticancer drugs.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Molecular Physiology, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
31
|
Abstract
The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca(2+)-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKKbeta. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the alpha subunit being catalytic, the beta subunit containing a glycogen-sensing domain, and the gamma subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- Mhairi C Towler
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
32
|
Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? TRENDS IN PLANT SCIENCE 2007; 12:20-8. [PMID: 17166759 DOI: 10.1016/j.tplants.2006.11.005] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/18/2006] [Accepted: 11/28/2006] [Indexed: 05/13/2023]
Abstract
The SNF1-related kinases are considered to be crucial elements of transcriptional, metabolic and developmental regulation in response to stress. In yeast, SNF1 is one of the main regulators in the shift from fermentation to aerobic metabolism; AMPK, its mammalian counterpart, is a master metabolic regulator involved in a variety of metabolic disorders such as diabetes and obesity. The aim of this review is to examine the literature concerning SnRK1 proteins, the SNF1 homologues in plants. The remarkable structural similarities between the plant complexes and those of yeast and mammalian suggest the existence of a common ancestral function in the regulation of energy and carbon metabolism. We will also highlight some distinctive features acquired by the plant proteins during evolution.
Collapse
Affiliation(s)
- Cécile Polge
- Laboratoire Physiologie Cellulaire Végétale, UMR5168, CEA/ Université Joseph Fourier, F-38054 Grenoble, France
| | | |
Collapse
|
33
|
Adamson A, Suchankova G, Rufo C, Nakamura M, Teran-Garcia M, Clarke S, Gettys T. Hepatocyte nuclear factor-4alpha contributes to carbohydrate-induced transcriptional activation of hepatic fatty acid synthase. Biochem J 2006; 399:285-95. [PMID: 16800817 PMCID: PMC1609920 DOI: 10.1042/bj20060659] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Refeeding a carbohydrate-rich meal after a fast produces a co-ordinated induction of key glycolytic and lipogenic genes in the liver. The transcriptional response is mediated by insulin and increased glucose oxidation, and both signals are necessary for optimal induction of FAS (fatty acid synthase). The glucose-regulated component of FAS promoter activation is mediated in part by ChREBP [ChoRE (carbohydrate response element)-binding protein], which binds to a ChoRE between -7300 and -7000 base-pairs in a carbohydrate-dependent manner. Using in vivo footprinting with nuclei from fasted and refed rats, we identify an imperfect DR-1 (direct repeat-1) element between -7110 and -7090 bp that is protected upon carbohydrate refeeding. Electrophoretic mobility-shift assays establish that this DR-1 element binds HNF-4alpha (hepatocyte nuclear factor 4alpha), and chromatin immunoprecipitation establishes that HNF-4alpha binding to this site is increased approx. 3-fold by glucose refeeding. HNF-4alpha transactivates reporter constructs containing the distal FAS promoter in a DR-1-dependent manner, and this DR-1 is required for full glucose induction of the FAS promoter in primary hepatocytes. In addition, a 3-fold knockdown of hepatocyte HNF-4alpha by small interfering RNA produces a corresponding decrease in FAS gene induction by glucose. Co-immunoprecipitation experiments demonstrate a physical interaction between HNF-4alpha and ChREBP in primary hepatocytes, further supporting an important complementary role for HNF-4alpha in glucose-induced activation of FAS transcription. Taken together, these observations establish for the first time that HNF-4alpha functions in vivo through a DR-1 element in the distal FAS promoter to enhance gene transcription following refeeding of glucose to fasted rats. The findings support the broader view that HNF-4alpha is an integral component of the hepatic nutrient sensing system that co-ordinates transcriptional responses to transitions between nutritional states.
Collapse
Affiliation(s)
- Aaron W. Adamson
- *Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, U.S.A
| | | | - Caterina Rufo
- ‡Catedra de Inmunologia, Facultad de Quimica, Universidad de la Republica, Instituto de Higiene, Montevideo, Uruguay
| | - Manabu T. Nakamura
- §Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | | | | | - Thomas W. Gettys
- *Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Viana AYI, Sakoda H, Anai M, Fujishiro M, Ono H, Kushiyama A, Fukushima Y, Sato Y, Oshida Y, Uchijima Y, Kurihara H, Asano T. Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression. Diabetes Res Clin Pract 2006; 73:135-42. [PMID: 16503364 DOI: 10.1016/j.diabres.2005.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/30/2005] [Accepted: 12/21/2005] [Indexed: 12/25/2022]
Abstract
To elucidate the role of AMPK in hepatic glucose metabolism, dominant negative (DN), constitutively active (CA) forms of the AMPKalpha1 subunit and control vector LacZ were overexpressed by means of adenovirus-mediated gene transfer. Five days after virus injection, hepatic AMPK activity was five-fold higher in CA mice than in DN mice. DN mice were apparently glucose intolerant with a higher fasting plasma glucose level (DN 82.3+/-0.7mg/dl, CA 42.5+/-4.8mg/dl and LacZ 54.3+/-2.4mg/dl). PEPCK, a gluconeogenic key enzyme, mRNA was increased 131.54% and 48.92% in DN mice compared to that of CA and LacZ, respectively. Thus, hepatic AMPK activation plays a role in the suppression of gluconeogenesis and this might be the cause of decreased fasting plasma glucose level in CA mice. We also investigated the effects of dexamethasone on hepatic AMPK expression and activity in rat liver, mice liver, as well as primary cultured hepatocytes. Subcutaneously injecting mice with dexamethasone (1mg/day) for 5 days significantly upregulated hepatic AMPKalpha1 and alpha2 expressions. Similarly, the treatment of primary cultured rat hepatocytes with dexamethasone (1microM) increased expression of the AMPKalpha1 subunit, AICAR-induced AMPK phosphorylation and kinase activity. Although increased AMPK expression cannot be attributed to dexamethasone-induced glucose intolerance, taken together our results raise the possibility that AMPK control liver glucose output and its expression in liver might be modulated by various hormones and growth factors.
Collapse
Affiliation(s)
- Amelia Y I Viana
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun 2006; 344:597-604. [PMID: 16630552 DOI: 10.1016/j.bbrc.2006.03.176] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/22/2006] [Indexed: 11/21/2022]
Abstract
Acetic acid (AcOH), which is a short-chain fatty acid, is reported to have some beneficial effects on metabolism. To test the hypothesis that feeding of AcOH exerts beneficial effects on glucose homeostasis in type 2 diabetes, we fed either a standard diet or one containing 0.3% AcOH to KK-A(y) mice for 8 weeks. Fasting plasma glucose and HbA1c levels were lower in mice fed AcOH for 8 weeks than in control mice. AcOH also reduced the expression of genes involved in gluconeogenesis and lipogenesis, which is in part regulated by 5'-AMP-activated protein kinase (AMPK) in the liver. Finally, sodium acetate, in the form of neutralized AcOH, directly activated AMPK and lowered the expression of genes such as for glucose-6-phosphatase and sterol regulatory element binding protein-1 in rat hepatocytes. These results indicate that the hypoglycemic effect of AcOH might be due to activation of AMPK in the liver.
Collapse
Affiliation(s)
- Shoji Sakakibara
- Central Research Institute, Mizkan Group Co., Ltd., Aichi 475-8585, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes.
Collapse
|
37
|
Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 2006; 574:63-71. [PMID: 16613876 PMCID: PMC1817805 DOI: 10.1113/jphysiol.2006.108324] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMPK is a serine/threonine protein kinase, which serves as an energy sensor in all eukaryotic cell types. Published studies indicate that AMPK activation strongly suppresses cell proliferation in non-malignant cells as well as in tumour cells. These actions of AMPK appear to be mediated through multiple mechanisms including regulation of the cell cycle and inhibition of protein synthesis, de novo fatty acid synthesis, specifically the generation of mevalonate as well as other products downstream of mevalonate in the cholesterol synthesis pathway. Cell cycle regulation by AMPK is mediated by up-regulation of the p53-p21 axis as well as regulation of TSC2-mTOR (mammalian target of rapamycin) pathway. The AMPK signalling network contains a number of tumour suppressor genes including LKB1, p53, TSC1 and TSC2, and overcomes growth factor signalling from a variety of stimuli (via growth factors and by abnormal regulation of cellular proto-oncogenes including PI3K, Akt and ERK). These observations suggest that AMPK activation is a logical therapeutic target for diseases rooted in cellular proliferation, including atherosclerosis and cancer. In this review, we discuss about exciting recent advances indicating that AMPK functions as a suppressor of cell proliferation by controlling a variety of cellular events in normal cells as well as in tumour cells.
Collapse
Affiliation(s)
- Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8554, Japan.
| | | | | | | |
Collapse
|
38
|
Carrasco-Chaumel E, Roselló-Catafau J, Bartrons R, Franco-Gou R, Xaus C, Casillas A, Gelpí E, Rodés J, Peralta C. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. J Hepatol 2005; 43:997-1006. [PMID: 16085333 DOI: 10.1016/j.jhep.2005.05.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/12/2005] [Accepted: 05/11/2005] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Hepatic steatosis is a risk factor for transplantation. We examined the role of AMP-activated protein kinase (AMPK) and nitric oxide (NO) in the benefits of preconditioning in steatotic liver transplantation. METHODS Steatotic liver transplantation with or without preconditioning was induced in Zucker rats. The activities of AMPK and NO synthase (NOS) were measured and altered pharmacologically. RESULTS Preconditioning or AMPK activation with aminoimidazole-4-carboxamide ribonucleoside (AICAR) increased AMPK and constitutive NOS activities and protected against lipid peroxidation, nitrotyrosine formation and hepatic injury in both grafts. Inhibition of AMPK activity removed the benefits of preconditioning. NO synthesis inhibition abolished the benefits of preconditioning or AICAR. Therefore, preconditioning or AICAR, through AMPK activation, may induce NO synthesis, thus protecting against hepatic injury in both steatotic and non-steatotic liver transplantation. In non-steatotic grafts, NO donors simulated the benefits of preconditioning. However, in steatotic grafts, NO supplementation was ineffective. CONCLUSIONS These results indicate (a) a potential relationship between AMPK and NO in the benefits of preconditioning in steatotic liver transplantation, (b) AICAR as a new phamacological strategy in steatotic liver transplantation and (c) a differential effect of NO supplementation in both grafts.
Collapse
Affiliation(s)
- Esther Carrasco-Chaumel
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, C/Rosellón 161, 7(a) planta, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dentin R, Benhamed F, Pégorier JP, Foufelle F, Viollet B, Vaulont S, Girard J, Postic C. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 2005; 115:2843-54. [PMID: 16184193 PMCID: PMC1224299 DOI: 10.1172/jci25256] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/19/2005] [Indexed: 12/19/2022] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) are potent inhibitors of hepatic glycolysis and lipogenesis. Recently, carbohydrate-responsive element-binding protein (ChREBP) was implicated in the regulation by glucose of glycolytic and lipogenic genes, including those encoding L-pyruvate kinase (L-PK) and fatty acid synthase (FAS). The aim of our study was to assess the role of ChREBP in the control of L-PK and FAS gene expression by PUFAs. We demonstrated in mice, both in vivo and in vitro, that PUFAs [linoleate (C18:2), eicosapentanoic acid (C20:5), and docosahexaenoic acid (C22:6)] suppressed ChREBP activity by increasing ChREBP mRNA decay and by altering ChREBP translocation from the cytosol to the nucleus, independently of an activation of the AMP-activated protein kinase, previously shown to regulate ChREBP activity. In contrast, saturated [stearate (C18)] and monounsaturated fatty acids [oleate (C18:1)] had no effect. Since glucose metabolism via the pentose phosphate pathway is determinant for ChREBP nuclear translocation, the decrease in xylulose 5-phosphate concentrations caused by a PUFA diet favors a PUFA-mediated inhibition of ChREBP translocation. In addition, overexpression of a constitutive nuclear ChREBP isoform in cultured hepatocytes significantly reduced the PUFA inhibition of both L-PK and FAS gene expression. Our results demonstrate that the suppressive effect of PUFAs on these genes is primarily caused by an alteration of ChREBP nuclear translocation. In conclusion, we describe a novel mechanism to explain the inhibitory effect of PUFAs on the genes encoding L-PK and FAS and demonstrate that ChREBP is a pivotal transcription factor responsible for coordinating the PUFA suppression of glycolytic and lipogenic genes.
Collapse
Affiliation(s)
- Renaud Dentin
- Département d'Endocrinologie, Institut Cochin, INSERM U567 CNRS UMR8104, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The liver is an important site of postprandial glucose disposal, accounting for the removal of up to 30% of an oral glucose load. The liver is also centrally involved in dietary lipid and amino acid uptake, and the presence of either or both of these nutrients can influence hepatic glucose uptake. The composition of ingested carbohydrate also influences hepatic glucose metabolism. For example, fructose can increase hepatic glucose uptake. In addition, fructose extraction by the liver is exceedingly high, approaching 50% to 70% of fructose delivery. The selective hepatic metabolism of fructose, and the ability of fructose to increase hepatic glucose uptake can, under appropriate conditions (eg, diets enriched in sucrose or fructose, high fructose concentrations), provoke major adaptations in hepatic metabolism. Potential adaptations that can arise in response to these conditions and putative mechanisms driving these adaptations are the subject of this review.
Collapse
Affiliation(s)
- Michael E Bizeau
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
41
|
Bronner M, Hertz R, Bar-Tana J. Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase. Biochem J 2005; 384:295-305. [PMID: 15312046 PMCID: PMC1134113 DOI: 10.1042/bj20040955] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AMPK (AMP-activated protein kinase) responds to intracellular ATP depletion, while PPARalpha (peroxisome proliferator-activated receptor alpha) induces the expression of genes coding for enzymes and proteins involved in increasing cellular ATP yields. PPARalpha-mediated transcription is shown here to be co-activated by the alpha subunit of AMPK, as well as by kinase-deficient (Thr172Ala) and kinase-less (Asp157Ala, Asp139Ala) mutants of AMPKalpha. The Ser452Ala mutant of mPPARalpha mutated in its putative consensus AMPKalpha phosphorylation site is similarly co-activated by AMPKalpha. AMPKalpha or its kinase-less mutants bind to PPARalpha; binding is increased by MgATP, to a lesser extent by MgADP, but not at all by AMP or ZMP [AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) monophosphate]. ATP-activated binding of AMPKalpha to PPARalpha is mediated primarily by the C-terminal regulatory domain of AMPKalpha. PPARalpha co-activation by AMPKalpha may, however, require its secondary interaction with the N-terminal catalytic domain of AMPKalpha, independently of its kinase activity. While AMPK catalytic activity is activated by AICAR, PPARalpha co-activation and PPARalpha-controlled transcription are robustly inhibited by AICAR, with concomitant translocation of nuclear AMPKalpha or its kinase-less mutants to the cytosol. In conclusion, AMPKalpha, independently of its kinase activity, co-activates PPARalpha both in primary rat hepatocytes and in PPARalpha-transfected cells. The kinase and transcriptional co-activation modes of AMPKalpha are both regulated by the cellular ATP/AMP ratio. Co-activation of PPARalpha by AMPKalpha may transcriptionally complement AMPK in maintaining cellular ATP status.
Collapse
Affiliation(s)
- Myriam Bronner
- Department of Human Nutrition and Metabolism, Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Rachel Hertz
- Department of Human Nutrition and Metabolism, Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Jacob Bar-Tana
- Department of Human Nutrition and Metabolism, Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54:1331-9. [PMID: 15855317 DOI: 10.2337/diabetes.54.5.1331] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Collapse
Affiliation(s)
- Marc Foretz
- Institut Cochin, Département de Génétique, Développement et Pathologie Moléculaire, Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Medicale U567, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Croutch CR, Lebofsky M, Schramm KW, Terranova PF, Rozman KK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) alter body weight by decreasing insulin-like growth factor I (IGF-I) signaling. Toxicol Sci 2005; 85:560-71. [PMID: 15703265 DOI: 10.1093/toxsci/kfi106] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) affects glycemia due to reduced gluconeogenesis; when combined with a reduction in feed intake, this culminates in decreased body weight. We investigated the effects of steady-state levels of TCDD (loading dose rates of 0.0125, 0.05, 0.2, 0.8, and 3.2 microg/kg) or approximately isoeffective dose rates of 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) (loading dose rates of 0.3125, 1.25, 5, 20, and 80 microg/kg) on body weight, phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and activity, and circulating concentrations of insulin, glucose, and insulin-like growth factor-I (IGF-I), and expression of hepatic phosphorylated AMP kinase-alpha (p-AMPK) protein in female Sprague-Dawley rats (approximately 250 gm) at 2, 4, 8, 16, 32, 64, and 128 days after commencement of treatment. At the 0.05 and 1.25 microg/kg loading dose rates of TCDD and HxCDD, respectively, there was a slight increase in body weight as compared to controls, whereas at the 3.2 and 80 microg/kg loading dose rates of TCDD and HxCDD, respectively, body weight of the rats was significantly decreased. TCDD and HxCDD also inhibited PEPCK activity in a dose-dependent fashion, as demonstrated by reductions in PEPCK mRNA and protein. Serum IGF-I levels of rats treated initially with 3.2 microg/kg TCDD or 80 microg/kg HxCDD started to decline at day 4 and decreased to about 40% of levels seen in controls after day 16, remaining low for the duration of the study. Eight days after initial dosing, hepatic p-AMPK protein was increased in a dose-dependent manner with higher doses of TCDD and HxCDD. There was no effect with any dose of TCDD or HxCDD on circulating insulin or glucose levels. In conclusion, doses of TCDD or HxCDD that began to inhibit body weight in female rats also started to inhibit PEPCK, inhibited IGF-I, while at the same time inducing p-AMPK.
Collapse
Affiliation(s)
- Claire R Croutch
- Department of Pharmacology, Toxicology and Experimental Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
44
|
Diraison F, Motakis E, Parton LE, Nason GP, Leclerc I, Rutter GA. Impact of adenoviral transduction with SREBP1c or AMPK on pancreatic islet gene expression profile: analysis with oligonucleotide microarrays. Diabetes 2004; 53 Suppl 3:S84-91. [PMID: 15561928 DOI: 10.2337/diabetes.53.suppl_3.s84] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accumulation of triglyceride in islets may contribute to the loss of glucose-stimulated insulin secretion (GSIS) in some forms of type 2 diabetes (Diraison et al., Biochem J 373:769-778, 2004). Here, we use adenoviral vectors and oligonucleotide microarrays to determine the effects of the forced expression of SREBP1c on the gene expression profile of rat islets. Sterol regulatory element binding protein-1c (SREBP1c) overexpression led to highly significant (P <0.1 with respect to null adenovirus) changes in the expression of 1,238 genes or expressed sequence tags, of which 1,180 (95.3%) were upregulated. By contrast, overexpression of constitutively active AMP-activated protein kinase (AMPK), expected to promote lipolysis, altered the expression of 752 genes, of which 702 (93%) were upregulated. To identify specific targets for SREBP1c or AMPK, we eliminated messages that were 1) affected in the same direction by the expression of either protein, 2) changed by less than twofold, or 3) failed a positive false discovery test; 206 SREBP1c-regulated genes (195; 95% upregulated) and 48 AMPK-regulated genes (33; 69% upregulated) remained. As expected, SREBP1c-induced genes included those involved in cholesterol (6), fatty acid (3), and eicosanoid synthesis. Interestingly, somatostatin receptor (sstr1) expression was increased by SREBP1c, whereas AMPK induced the expression of peptide YY, the early endocrine pancreas marker.
Collapse
Affiliation(s)
- Frederique Diraison
- Henry Wellcome Signalling Laboratories and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 ITD, UK
| | | | | | | | | | | |
Collapse
|
45
|
Lindsley JE, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:543-59. [PMID: 15581787 DOI: 10.1016/j.cbpc.2004.06.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/18/2004] [Accepted: 06/19/2004] [Indexed: 12/20/2022]
Abstract
Cells have several sensory systems that detect energy and metabolic status and adjust flux through metabolic pathways accordingly. Many of these sensors and signaling pathways are conserved from yeast to mammals. In this review, we bring together information about five different nutrient-sensing pathways (AMP kinase, mTOR, PAS kinase, hexosamine biosynthesis and Sir2), highlighting their similarities, differences and roles in disease.
Collapse
Affiliation(s)
- Janet E Lindsley
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-3201, USA.
| | | |
Collapse
|
46
|
Leclerc I, Rutter GA. AMP-activated protein kinase: a new beta-cell glucose sensor?: Regulation by amino acids and calcium ions. Diabetes 2004; 53 Suppl 3:S67-74. [PMID: 15561925 DOI: 10.2337/diabetes.53.suppl_3.s67] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of AMP-activated protein kinase (AMPK) in skeletal muscle and liver is seen as an exciting prospect for the treatment of type 2 diabetes. However, we have recently demonstrated that changes in AMPK activity accompany the exposure of pancreatic islet beta-cells to elevated glucose concentrations and may be involved in the activation of insulin secretion. Here, we discuss this hypothesis and explore the potential role of changes in AMPK activity in the actions of other secretagogues. Amino acids decreased AMPK activity in MIN6 beta-cells with an order of potency for inhibition: arg=leu < gln= leu + glu < glucose, which was closely correlated with the stimulation of insulin release (r2=0.76). By contrast, increases in intracellular Ca2+ concentration provoked by cell depolarization with KCl activated AMPK in the face of increased free intracellular ATP concentrations. Elevation of intracellular cAMP levels with isobutylmethylxanthine or forskolin had no effect on AMPK activity. We conclude that metabolizable amino acids regulate AMPK in the beta-cell via increases in the cytosolic ATP/AMP ratio and via phosphorylation by the upstream kinase LKB1. Intracellular Ca2+ ions may activate AMPK by calmodulin kinase 1 kinase-mediated phosphorylation. The latter may act as a novel feedback mechanism to inhibit excessive insulin secretion under some circumstances.
Collapse
Affiliation(s)
- Isabelle Leclerc
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | | |
Collapse
|
47
|
Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun 2004; 321:161-7. [PMID: 15358229 DOI: 10.1016/j.bbrc.2004.06.133] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 10/26/2022]
Abstract
Prostate cancer cells require high rates of de novo fatty acid synthesis and protein synthesis for their rapid growth. We report here that the growth of these cells is markedly diminished by incubation with activators of AMP-activated protein kinase (AMPK), a fuel-sensing enzyme that has been shown to diminish both of these processes in intact tissues. Inhibition of cell growth was observed when AMPK was activated by either 5-aminoimidazole-4-carboxamide riboside (AICAR) or the thiazolidinedione rosiglitazone. Thus, a 90% inhibition of the growth of androgen-independent (DU145, PC3) and androgen-sensitive (LNCaP) cells was achieved after 4 days of exposure to one or both of these agents. Where studied, this was associated with a decrease in the concentration of malonyl CoA, an intermediate of de novo fatty acid synthesis, and an increase in expression of the cell cycle inhibitor p21. In addition, AICAR inhibited two key enzymes involved in protein synthesis, mTOR and p70S6K, and blocked the ability of the androgen R1881 to increase cell growth and the expression of two enzymes for de novo fatty acid synthesis, acetyl CoA carboxylase and fatty acid synthase, in the LNCaP cells. The results suggest that AMPK is a potential target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xiaoqin Xiang
- Diabetes Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
48
|
Gissot L, Polge C, Bouly JP, Lemaitre T, Kreis M, Thomas M. AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. PLANT MOLECULAR BIOLOGY 2004; 56:747-59. [PMID: 15803412 DOI: 10.1007/s11103-004-5111-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 10/18/2004] [Indexed: 05/23/2023]
Abstract
The SNF1/AMPK/SnRK1 heterotrimeric kinase complex is involved in the adaptation of cellular metabolism in response to diverse stresses in yeast, mammals and plants. Following a model proposed in yeast, the kinase targets are likely to bind the complex via the non-catalytic beta-subunits. These proteins currently identified in yeast, mammals and plants present a common structure with two conserved interacting domains named Kinase Interacting Sequence (KIS) and Association with SNF1 Complex (ASC), and a highly variable N-terminal domain. In this paper we describe the characterisation of AKINbeta3, a novel protein related to AKINbeta subunits of Arabidopsis thaliana, containing a truncated KIS domain and no N-terminal extension. Interestingly the missing region of the KIS domain corresponds to the glycogen-binding domain (beta-GBD) identified in the mammalian AMPKbeta1. In spite of its unusual features, AKINbeta3 complements the yeast sip1Deltasip2Deltagal83Delta mutant. Moreover, interactions between AKINbeta3 and other AKIN complex subunits from A. thaliana were detected by two-hybrid experiments and in vitro binding assays. Taken together these data demonstrate that AKINbeta3 is a beta-type subunit. A search for beta-type subunits revealed the existence of beta3-type proteins in other plant species. Furthermore, we suggest that the AKINbeta3-type subunits could be plant specific since no related sequences have been found in any of the other completely sequenced genomes. These data suggest the existence of novel SnRK1 complexes including AKINbeta3-type subunits, involved in several functions among which some could be plant specific.
Collapse
Affiliation(s)
- Lionel Gissot
- Laboratoire de Biologie du Développement des Plantes, Institut de Biotechnologie des Plantes (IBP), UMR CNRS 8618, Bâtiment 630, Université Paris-Sud, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Ferrer-Martínez A, Riera A, Jiménez-Chillarón JC, Herrero P, Moreno F, Gómez-Foix AM. A glucose response element from the S. cerevisiae hexose transporter HXT1 gene is sensitive to glucose in human fibroblasts. J Mol Biol 2004; 338:657-67. [PMID: 15099735 DOI: 10.1016/j.jmb.2004.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/05/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Glucose is an essential nutrient, and a regulator of gene expression in eukaryotic cells. Here, a comparative, function-based genomic approach has been used to identify glucose regulatory elements and transduction pathways common to both yeast and mammalian cells. We have isolated a region in the promoter of the Saccharomyces cerevisiae hexose transporter gene HXT1 that conferred glucose sensitivity in yeast, when located upstream of the minimal CYC1 promoter. This element contained binding motifs for Rgt1, a transcriptional modulator involved in the yeast glucose-induction pathway, that were sufficient to elicit glucose responsiveness. The HXT1 regulatory element was then fused to the minimal cytomegalovirus promoter (HXT1-MIN) and inserted into an adenovirus for delivery to human fibroblasts, where it exhibited glucose-dependent transcriptional activation. Glucose action was mimicked by fructose and unrelated to glucose 6-P content, whilst non-metabolizable glucose analogues showed no effect. Activation of AMP kinase by 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranosanide blocked glucose induction, revealing parallels with the yeast glucose-repressing pathway. In contrast, delivery of Rgt1 to fibroblasts did not modify HXT1-MIN responsiveness. Thus, elements of the S.cerevisiae HXT1 gene conserve glucose regulation in human fibroblasts equivalent to the metabolism-dependent, glucose-repressing pathway in yeast. These data suggest that the instructions carried within gene regulatory elements controlling nutrient regulation of gene expression have been conserved throughout evolution.
Collapse
Affiliation(s)
- Andreu Ferrer-Martínez
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Martí i Franquès, 1. E-08028-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA. 5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 2003; 278:52042-51. [PMID: 14532293 DOI: 10.1074/jbc.m307800200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|