1
|
Wang K, Gu KF, Cao J, Yang YS, Zhu HL, Shang JH, Zhou JL. Activatable Photoacoustic/Near-Infrared Probes for the Detection of Copper Ions of Cardiovascular Disease In Vivo and in Urine. ACS Sens 2024; 9:4898-4905. [PMID: 39236153 DOI: 10.1021/acssensors.4c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Copper ions, implicated in processes such as oxidative stress and inflammation, are believed to play a crucial role in cardiovascular disease, a prevalent and deadly disease. Despite this, current diagnostic methods fail to detect early stage cardiovascular disease or track copper ion accumulation, limiting our understanding of the disease's progression. Therefore, the development of noninvasive techniques to image copper ions in cardiovascular disease is urgently needed to enhance diagnostic precision and therapeutic strategies. In this study, we report the successful synthesis and application of a copper ion-activated photoacoustic probe, CS-Cu, which exhibits high sensitivity and selectivity toward copper ions both in vitro and in vivo. CS-Cu was able to noninvasively monitor the changes in copper ion levels and differentiate between different mice based on copper ions in urine. Furthermore, the probe demonstrated good photoacoustic stability and exhibited no significant toxicity in the mice. These findings suggest that CS-Cu could be a promising tool for early detection and monitoring of Cu2+ levels in vivo and urine, providing a new perspective on the role of copper ions in cardiovascular disease.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke-Feng Gu
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Jie Cao
- The Fifth Dental Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin-Hui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie-Li Zhou
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Alyahyawi AR, Khan MY, Alouffi S, Maarfi F, Akasha R, Khan S, Rafi Z, Alharazi T, Shahab U, Ahmad S. Identification of Glycoxidative Lesion in Isolated Low-Density Lipoproteins from Diabetes Mellitus Subjects. Life (Basel) 2023; 13:1986. [PMID: 37895368 PMCID: PMC10608319 DOI: 10.3390/life13101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Methylglyoxal (MG) is a precursor for advanced glycation end-products (AGEs), which have a significant role in diabetes. The present study is designed to probe the immunological response of native and glycated low-density lipoprotein (LDL) in experimental animals. The second part of this study is to probe glycoxidative lesion detection in low-density lipoproteins (LDL) in diabetes subjects with varying disease duration. The neo-epitopes attributed to glycation-induced glycoxidative lesion of LDL in DM patients' plasma were, analyzed by binding of native and MG-modified LDL immunized animal sera antibodies using an immunochemical assay. The plasma purified human LDL glycation with MG, which instigated modification in LDL. Further, the NewZealand-White rabbits were infused with unmodified natural LDL (N-LDL) and MG-glycatedLDL to probe its immunogenicity. The glycoxidative lesion detection in LDL of DM with disease duration (D.D.) of 5-15 years and D.D. > 15 years was found to be significantly higher as compared to normal healthy subjects (NHS) LDL. The findings support the notion that prolonged duration of diabetes can cause structural alteration in LDL protein molecules, rendering them highly immunogenic in nature. The presence of LDL lesions specific to MG-associated glycoxidation would further help in assessing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Amjad R. Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha’il 2440, Saudi Arabia;
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Mohd Yasir Khan
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun 248011, India;
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Farah Maarfi
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun 248011, India;
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Ha’il 2440, Saudi Arabia;
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow 226026, India;
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow 226026, India;
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| |
Collapse
|
4
|
Cui Y, Chen Y, Gan N, Li M, Liao W, Zhou Y, Xiang Q, Gong X, Guo Q, Hu P, Zheng XL, Shang D, Peng J, Tang Z. A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis. MOLECULAR BIOMEDICINE 2023; 4:21. [PMID: 37442861 DOI: 10.1186/s43556-023-00131-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor. Copper homeostasis is closely related to the occurrence and development of AS. Recently, a new cell death pathway called cuproptosis has been discovered, which is driven by intracellular copper excess. However, no previous studies have reported a relationship between cuproptosis and AS. In this study, we integrated bulk and single-cell sequencing data to screen and identify key cuproptosis-related genes in AS. We used correlation analysis, enrichment analysis, random forest, and other bioinformatics methods to reveal their relationships. Our findings report, for the first time, the involvement of cuproptosis-related genes FDX1, SLC31A1, and GLS in atherogenesis. FDX1 and SLC31A1 were upregulated, while GLS was downregulated in atherosclerotic plaque. Receiver operating characteristic curves demonstrate their potential diagnostic value for AS. Additionally, we confirm that GLS is mainly expressed in vascular smooth muscle cells, and SLC31A1 is mainly localized in macrophages of atherosclerotic lesions in experiments. These findings shed light on the cuproptosis landscape and potential diagnostic biomarkers for AS, providing further evidence about the vital role of cuproptosis in atherosclerosis progression.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanyu Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Man Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yating Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xi Gong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qianqian Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Desi Shang
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 2022; 194:2831-2855. [PMID: 35257316 DOI: 10.1007/s12010-022-03860-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.
Collapse
|
6
|
Gülcan HO, Orhan IE. General Perspectives for the Treatment of Atherosclerosis. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201016154400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Atherosclerosis, a cardiovascular disease, is at the top of the list among the diseases leading
to death. Although the biochemical and pathophysiological cascades involved within the development
of atherosclerosis have been identified clearly, its nature is quite complex to be treated with
a single agent targeting a pathway. Therefore, many natural and synthetic compounds have been
suggested for the treatment of the disease. The majority of the drugs employed target one of the
single components of the pathological outcomes, resulting in many times less effective and longterm
treatments. In most cases, treatment options prevent further worsening of the symptoms rather
than a radical treatment. Consequently, the current review has been prepared to focus on the validated
and non-validated targets of atherosclerosis as well as the alternative treatment options such
as hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, acyl-CoA cholesterol
acyl transferase (ACAT) inhibitors, lipoprotein lipase stimulants, bile acid sequestrants, and some
antioxidants. Related to the topic, both synthetic compounds designed employing medicinal chemistry
skills and natural molecules becoming more popular in drug development are scrutinized in this
mini review.
Collapse
Affiliation(s)
- Hayrettin Ozan Gülcan
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, via Mersin 10,Turkey
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara- 06300,Turkey
| |
Collapse
|
7
|
Itabe H, Kato R, Sawada N, Obama T, Yamamoto M. The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions. Curr Med Chem 2019. [PMID: 29521196 DOI: 10.2174/0929867325666180307114855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
8
|
Wendel U, Persson N, Risinger C, Bengtsson E, Nodin B, Danielsson L, Welinder C, Nordin Fredrikson G, Jansson B, Blixt O. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer. PLoS One 2018; 13:e0191872. [PMID: 29420566 PMCID: PMC5805250 DOI: 10.1371/journal.pone.0191872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.
Collapse
Affiliation(s)
- Ulrika Wendel
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Persson
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Risinger
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Scania University Hospital, Malmö Lund University, Malmö, Sweden
| | - Björn Nodin
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lena Danielsson
- Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
| | - Gunilla Nordin Fredrikson
- Department of Clinical Sciences Malmö, Scania University Hospital, Malmö Lund University, Malmö, Sweden
| | - Bo Jansson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ola Blixt
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
9
|
Eto A, Sakata N, Nagai R, Shirakawa JI, Inoue R, Kiyomi F, Nii K, Aikawa H, Iko M, Tsutsumi M, Sakamoto K, Hiraoka F, Mitsutake T, Hanada H, Kazekawa K. N ε-(carboxymethyl)lysine Concentration in Debris from Carotid Artery Stenting Correlates Independently with Signal Intensity on T1-Weighted Black-Blood Magnetic Resonance Images. J Stroke Cerebrovasc Dis 2017; 26:1341-1348. [PMID: 28314627 DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Because magnetic resonance imaging (MRI) focuses on the morphological characteristics of carotid artery plaques, its diagnostic value with respect to plaque vulnerability is limited. We examined the correlation between Nε-(carboxymethyl)lysine (CML), a main chemical structure of advanced glycation end-products, and the vulnerability of plaques visualized on MRI scans. MATERIALS AND METHODS We enrolled 43 patients who had undergone carotid artery stenting (CAS) for carotid artery stenosis; all underwent MRI studies, including black-blood MRI and diffusion-weighted imaging (DWI). The signal intensity ratio (SIR) of plaques to adjacent sternocleidomastoid muscle (P/M) on T1- and T2-weighted images (T1WI, T2WI) was calculated. Protein samples were extracted from debris trapped by a filter device. The concentrations of CML and myeloperoxidase (MPO) were measured by solid-phase enzyme-linked immunosorbent assay. RESULTS The patients were classified into 2 groups based on their SIR-P/M on T1WI and T2WI scans. We observed a higher incidence of post-CAS DWI lesions in patients with a higher than a lower SIR-P/M on T1WI; the CML and MPO concentrations in their CAS debris were also higher. No such differences were seen in patients with a higher or lower SIR-P/M on T2WI scans. The concentration of CML in CAS debris correlated independently with the SIR-P/M on T1WI of the carotid plaques, and was related to the concentration of MPO in CAS debris. CONCLUSIONS Our findings suggest CML as a candidate molecular imaging probe for the identification of vulnerable plaques.
Collapse
Affiliation(s)
- Ayumu Eto
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Noriyuki Sakata
- General Medical Research Center, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Jun-Ichi Shirakawa
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ritsurou Inoue
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Fumiaki Kiyomi
- Academia, Industry and Government Collaborative Research Institute of Translational Medicine for Life Innovation, Fukuoka University, Fukuoka, Japan
| | - Kouhei Nii
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan.
| | - Hiroshi Aikawa
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Minoru Iko
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Masanori Tsutsumi
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kimiya Sakamoto
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Fumihiro Hiraoka
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Takahumi Mitsutake
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Hayatsura Hanada
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kiyoshi Kazekawa
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Nε-(carboxymethyl)lysine in debris from carotid artery stenting: multiple versus nonmultiple postoperative lesions. J Stroke Cerebrovasc Dis 2014; 23:2827-2833. [PMID: 25307432 DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND No predictor of postoperative ischemic events has been identified in patients undergoing carotid artery stenting (CAS). We aimed to determine whether N(ε)-(carboxymethyl)lysine (CML) in debris trapped by an embolic protection filter device is a predictor of postoperative ischemic events. METHODS We enrolled 27 patients (73.4 ± 7.2 years; 22 male, 5 female) who underwent CAS for carotid artery stenosis. Diffusion-weighted magnetic resonance imaging was performed before and after the procedure. Protein samples were extracted from the debris. CML and myeloperoxidase were examined by solid phase enzyme-linked immunosorbent assay and Western blot analysis. RESULTS Seventeen patients had 0 or 1 new lesion (nonmultiple lesions) postoperatively, whereas 10 patients had 2 or more new lesions postoperatively (multiple lesions). The CML concentration of the protein sample was significantly higher in patients with multiple lesions than in those with nonmultiple lesions (6.26 ± 2.77 ng/mg protein and 3.36 ± 1.57 ng/mg protein, respectively; P = .010). Statin therapy for dyslipidemia was associated with a lower incidence of multiple lesions and a lower concentration of CML in the protein sample (P = .004 and P = .02, respectively). Receiver operating characteristic analysis showed that the area under the curve for CML was significantly greater than .5 (.877; 95% confidence interval, .742-1.00). CONCLUSIONS CML derived from debris may distinguish between patients with postoperative multiple ischemic lesions and those with postoperative nonmultiple lesions who undergo CAS.
Collapse
|
11
|
Ahmad S, Khan MS, Akhter F, Khan MS, Khan A, Ashraf JM, Pandey RP, Shahab U. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology 2014; 24:979-90. [DOI: 10.1093/glycob/cwu057] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Cao S, Zhou XB, Zhang H, Li S, Zhong W. Novel cross-link breaker based on zwitterion structure: synthesis, structure and druggability studies. Eur J Med Chem 2013; 68:89-95. [PMID: 23973820 DOI: 10.1016/j.ejmech.2013.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 11/27/2022]
Abstract
It has been universally acknowledged that the increase in cardiac and vascular stiffness is due to the formation of advanced glycosylation end-products (AGEs). Research on the stable form of 3-(carboxymethyl)-4-methylthiazol bromide sodium salt (C6H7BrNNaO2S) showed that it had a notable effect on breaking the AGEs. Two compounds with novel structures, zwitterionic 3-(carboxymethyl)-4-methylthiazol (C6H7O2NS) and a dipolymer (C12H15O4N2S2Br) complex, were obtained. When compared with the forms of sodium salt and dipolymer, zwitterion had an obvious advantage in stability, solubility, synthesis and pH, which made the zwitterion a promising drug. The structure of sodium salt, dipolymer and zwitterion was comparatively analyzed by such methods as single crystal X-ray diffraction, ESI-MS, 1H NMR, FT-IR and in situ IR.
Collapse
Affiliation(s)
- Shuang Cao
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Rd., Beijing 100850, China
| | | | | | | | | |
Collapse
|
13
|
Kotani K, Caccavello R, Taniguchi N, Gugliucci A. Circulating soluble receptor for advanced glycation end products is inversely correlated to oxidized low-density lipoproteins in asymptomatic subjects. J Int Med Res 2013. [PMID: 23206470 DOI: 10.1177/030006051204000527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE There is growing evidence that circulating soluble receptor for advanced glycation end products (sRAGE) exerts antiatherogenic effects as a decoy receptor that abolishes RAGE signalling. A previous study reported that oxidized low-density lipoprotein (oxLDL) can be one of the RAGE ligands. The present cross-sectional study investigated the clinical association between sRAGE and oxLDL in humans. METHODS Serum levels of the conventional atherosclerotic risk factors, sRAGE and malondialdehyde-modified low-density lipoprotein (MDA-LDL) were analysed in asymptomatic subjects; MDA-LDL was measured as a biomarker of oxLDL. RESULTS Mean serum levels of sRAGE and MDA-LDL were 1101 ng/l and 57.6 IU/l, respectively, in 33 subjects of mean age 65 years. Simple linear regression analysis showed a significant inverse correlation between sRAGE and MDA-LDL. Stepwise multiple linear regression analysis confirmed MDA-LDL to be independently, significantly and inversely correlated with sRAGE. CONCLUSIONS An independent, significant and inverse correlation was shown to exist between circulating levels of sRAGE and oxLDL (MDA-LDL), which suggests that part of the antiatherosclerotic effects of sRAGE may be related to oxLDL quenching.
Collapse
Affiliation(s)
- K Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | | | |
Collapse
|
14
|
Brown BE, Nobecourt E, Zeng J, Jenkins AJ, Rye KA, Davies MJ. Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS One 2013; 8:e65430. [PMID: 23741493 PMCID: PMC3669297 DOI: 10.1371/journal.pone.0065430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Increased protein glycation in people with diabetes may promote atherosclerosis. This study examined the effects of non-enzymatic glycation on the association of lipid-free apolipoproteinA-I (apoA-I) with phospholipid, and cholesterol efflux from lipid-loaded macrophages to lipid-free and lipid-associated apoA-I. Glycation of lipid-free apoA-I by methylglyoxal and glycolaldehyde resulted in Arg, Lys and Trp loss, advanced glycation end-product formation and protein cross-linking. The association of apoA-I glycated by glucose, methylglyoxal or glycolaldehyde with phospholipid multilamellar vesicles was impaired in a glycating agent dose-dependent manner, with exposure of apoA-I to both 30 mM glucose (42% decrease in kslow) and 3 mM glycolaldehyde (50% decrease in kfast, 60% decrease in kslow) resulting is significantly reduced affinity. Cholesterol efflux to control or glycated lipid-free apoA-I, or discoidal reconstituted HDL containing glycated apoA-I (drHDL), was examined using cholesterol-loaded murine (J774A.1) macrophages treated to increase expression of ATP binding cassette transporters A1 (ABCA1) or G1 (ABCG1). Cholesterol efflux from J774A.1 macrophages to glycated lipid-free apoA-I via ABCA1 or glycated drHDL via an ABCG1-dependent mechanism was unaltered, as was efflux to minimally modified apoA-I from people with Type 1 diabetes, or controls. Changes to protein structure and function were prevented by the reactive carbonyl scavenger aminoguanidine. Overall these studies demonstrate that glycation of lipid-free apoA-I, particularly late glycation, modifies its structure, its capacity to bind phospholipids and but not ABCA1- or ABCG1-dependent cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Bronwyn E. Brown
- The Heart Research Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | - Jingmin Zeng
- The Heart Research Institute, Sydney, New South Wales, Australia
| | - Alicia J. Jenkins
- Department of Medicine (St Vincent's), The University of Melbourne, Melbourne, Victoria, Australia
| | - Kerry-Anne Rye
- The Heart Research Institute, Sydney, New South Wales, Australia
- Department of Medicine (St Vincent's), The University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Michael J. Davies
- The Heart Research Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
15
|
Shiu SWM, Wong Y, Tan KCB. Effect of advanced glycation end products on lectin-like oxidized low density lipoprotein receptor-1 expression in endothelial cells. J Atheroscler Thromb 2013; 19:1083-92. [PMID: 22863784 DOI: 10.5551/jat.11742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Lectin-like oxidized LDL receptor-1 (LOX-1) is a class E oxidized LDL specific scavenger receptor that recognizes multiple ligands. Advanced glycation end products (AGEs) have been recently identified as other ligands to LOX-1 and shown to increase LOX-1 expressions in diabetes; therefore, we investigated the underlying mechanism involved. METHODS Confluent human aortic endothelial cells were treated with a fixed concentration of AGE-BSA or BSA as a control in the presence or absence of either antibody of the receptor for advanced glycation end products, mammalian target of rapamycin (mTOR) inhibitor rapamycin, NF-kB inhibitor, phosphoinositide 3-kinases (PI3K) inhibitor or anti-diabetic drug metformin. After stimulation, cells were lysed and Western blot protein expression on LOX-1, rapamycin-insensitive companion of mTOR (RICTOR), the phosphorylation status of p-mTOR, p-P70S6 kinase and p-Akt were determined. RESULTS AGEs induced LOX-1 expression in endothelial cells. Pretreatment either with anti-RAGE antibody or LY294002 prior to AGE-BSA decreases LOX-1 and p-mTOR expressions. Incubating endothelial cells with AGE-BSA in the presence of rapamycin down-regulated the protein expression-level of p-mTOR by 41% (p<0.05) and LOX-1 expression by 61.5% (p<0.01). Knockdown of RICTOR by RNA silencing showed a 41.5% (p<0.01) and 71.2% (p<0.01) reduction in LOX-1 and p-Akt expressions, respectively. Preincubation of endothelial cells with AGE-BSA and metformin, an anti-diabetic drug known to have an mTOR inhibition effect, significantly reduced AGE-stimulated LOX-1 expression. CONCLUSION Our results indicated that LOX-1 up-regulation induced by AGE-BSA was a receptor mediated through RAGE and is via the PI3K/PDK1/mTORC2 pathway. Metformincan reduce AGE-stimulated LOX-1 expression in endothelial cells in vitro.
Collapse
Affiliation(s)
- Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
16
|
Piarulli F, Sartore G, Lapolla A. Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol 2013; 50:101-10. [PMID: 22763581 PMCID: PMC3634985 DOI: 10.1007/s00592-012-0412-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Diabetes is associated with a greatly increased risk of cardiovascular disease (CVD), which cannot be explained only by known risk factors, such as smoking, hypertension, and atherogenic dyslipidemia, so other factors, such as advanced glycation end-products (AGEs) and oxidative stress, may be involved. In this frame, hyperglycemia and an increased oxidative stress (AGE formation, increased polyol and hexosamine pathway flux, and protein kinase C activation) lead to tissue damage, thus contributing to the onset of cardiovascular complications. Several studies have identified in various cell systems, such as monocytes/macrophages and endothelial cells, specific cellular receptors (RAGE) that bind AGE proteins. The binding of AGEs on RAGE induces the production of cytokines and intracellular oxidative stress, thus leading to vascular damage. Soluble RAGE levels have been identified as hypothetical markers of CVD, but, in this regard, there are sparse and conflicting data in the literature. The purpose of this review was to examine all the available information on this issue with a view to clarifying or at least highlighting the points that are still weak, especially from the point of clinical view.
Collapse
Affiliation(s)
- Francesco Piarulli
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| | - Giovanni Sartore
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| |
Collapse
|
17
|
Younis NN, Soran H, Charlton-Menys V, Sharma R, Hama S, Pemberton P, Elseweidy MM, Durrington PN. High-density lipoprotein impedes glycation of low-density lipoprotein. Diab Vasc Dis Res 2013; 10:152-60. [PMID: 22890407 DOI: 10.1177/1479164112454309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycation of low-density lipoprotein (LDL) increases its atherogenicity, but whether high-density lipoprotein (HDL) can protect LDL against glycation is not known. LDL and HDL were isolated from 32 volunteers with serum HDL cholesterol concentrations ranging from 0.76 to 2.01 (mean = 1.36) mmol/L. Glycation of LDL was induced by incubation with 0-80 mmol/L glucose for 7 days at 37°C under nitrogen in the presence of and absence of human HDL. Glycation of LDL apolipoprotein B (apoB) doubled at glucose 50 and 80 mmol/L (both p < 0.001), and this increase was ameliorated by HDL. In the absence of glucose, 0.11 (0.01) [mean (standard error, SE)] mg apoB/mg LDL protein was glycated increasing to 0.22 (0.02) mg/mg at glucose 80 mmol/L in the absence of HDL, but remaining at 0.13 (0.01) mg/mg when autologous HDL was present. Heterologous HDL from a further study of 12 healthy participants was similarly effective in impeding LDL apoB glycation. HDL impeded not only glycation but also the lipid peroxidation, free amino group consumption and increased electrophoretic mobility of LDL which accompanied glycation. HDL from participants with higher serum paraoxonase1 (PON1) was more effective in impeding glycation and the related processes. In conclusion, HDL can impede the glucose-induced glycoxidation of LDL. PON1 may be important for this function of HDL.
Collapse
Affiliation(s)
- Nahla N Younis
- Cardiovascular Research Group, School of Biomedicine, University of Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Andrades MÉ, Lorenzi R, Nagai R, Moreira JCF, Ritter C, Dal-Pizzol F. Plasma glycation levels are associated with severity in sepsis. Eur J Clin Invest 2012; 42:1055-60. [PMID: 22625221 DOI: 10.1111/j.1365-2362.2012.02694.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Advanced glycation end-products (AGE) have been involved in inflammatory diseases and may have an important role in the progression of symptoms. However, few studies have analysed the levels of glycated proteins in sepsis. In this study, we evaluated the levels of the well-known AGE (N(ε) -(carboxymethyl)lysine (CML) and N(ε) -(carboxyethyl)lysine (CEL)) in the plasma of septic patients. MATERIAL AND METHODS Plasma from 36 patients admitted to an adult intensive care unit and 6 healthy controls had the levels of CML/CEL measured by ELISA. RESULTS The level of AGE in plasma decreased with the increase of severity (1·40±0·46 nmol/mg of protein in sepsis, 0·58±0·23 nmol/mg of protein in severe sepsis and 0·31±0·12 nmol/mg of protein in septic shock). Control plasma presented low AGE concentration (0·06±0·01 nmol/mg protein). Also, we found a decrease in plasma AGE in those patients that died at the end of 28 days follow-up (0·80±0·50 nmol/mg of protein in survivors vs. 0·31±0·10 nmol/mg of protein in nonsurvivors), being associated with the renal component of sequential organ failure assessment (SOFA) score. In the same line, there was a decrease in plasma AGE with the increase in SOFA. CONCLUSIONS Our data demonstrate that plasma AGE levels are inversely associated with the severity of sepsis and may be associated with kidney dysfunction.
Collapse
Affiliation(s)
- Michael Éverton Andrades
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW HDL cholesterol concentration is inversely correlated with cardiovascular disease and has a wide range of functions involved in many systems. The purpose of this review is to summarize HDL functionality, its relevance to atherosclerosis and factors affecting HDL functions. RECENT FINDINGS The contribution of HDL to reverse cholesterol transport may not be as great as first envisaged. However, it still plays an important role in cholesterol efflux from peripheral tissues. The capacity of HDL to promote cellular cholesterol efflux in an ex-vivo model has been reported to correlate more closely with carotid intima-media thickness than HDL cholesterol concentration. Recently, a variety of other functions of HDL have been described including antimicrobial, antioxidant, antiglycation, anti-inflammatory, nitric oxide--inducing, antithrombotic and antiatherogenic activity and immune modulation as well as a potential role in glucose homeostasis, diabetes pathophysiology and complications. SUMMARY HDL has a wide range of functions some of which are independent of its cholesterol content. Its cargo of apolipoproteins, various proteins and phospholipids contributes most to its various functions. These functions are affected by a number of genetic, physiological and pathological factors.
Collapse
Affiliation(s)
- Handrean Soran
- University Department of Medicine, Central Manchester and Manchester Children University Hospital NHS Foundation Trust, School of Biomedicine, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To highlight the potential importance of glycation as an atherogenic modification of LDL, factors determining glycated apolipoprotein B in vivo and susceptibility of LDL to glycation in vitro. We also discuss the distribution of glycated apolipoprotein B across different LDL subfractions in healthy controls, patients with type 2 diabetes and metabolic syndrome. RECENT FINDINGS Small, dense LDL, which is known to be most closely associated with atherogenesis, is more preferentially glycated in vivo and more susceptible to glycation in vitro than more buoyant LDL. Glycation and oxidation of LDL appear to be intimately linked. In patients with type 2 diabetes, plasma glycated apolipoprotein B correlated with small, dense LDL apolipoprotein B, but not with HbA1c. Glycated apolipoprotein B is significantly lower in statin-treated type 2 diabetes compared with those not on statins. SUMMARY Glycation of LDL occurs chiefly because of the nonenzymatic reaction of glucose and its metabolites with the free amino groups of lysine of which apolipoprotein B is rich. Higher concentrations of glycated LDL are present in diabetes than in nondiabetic individuals and metabolic syndrome. Even in nondiabetic individuals, however, there is generally more circulating glycated LDL than oxidatively modified LDL. Probably, oxidation and glycation of LDL are partially interdependent and indisputably coexist, and both prevent LDL receptor-mediated uptake and promote macrophage scavenger receptor-mediated LDL uptake. The recognition that LDL glycation is at least as important as oxidation in atherogenesis may lead to improvements in our understanding of its mechanism and how to prevent it.
Collapse
Affiliation(s)
- Handrean Soran
- Cardiovascular Research Group, School of Biomedicine, Core Technology Facility, University of Manchester, Manchester, UK
| | | |
Collapse
|
21
|
Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JCF. Oxidative damage in the liver of rats treated with glycolaldehyde. Int J Toxicol 2011; 30:253-8. [PMID: 21378371 DOI: 10.1177/1091581810395630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver diseases are often associated with hyperglycemia, inflammation, and oxidative stress. These conditions, commonly associated with diabetes mellitus and obesity, facilitate the formation of advanced glycation end products (AGEs). These products are known to impair protein function and promote inflammation. Accumulation of AGEs such as N(ε)-(carboxymethyl)lysine (CML) is related to chronic liver diseases and their severity. Although several reports suggest a crucial role of AGEs in liver failure, there is little investigation on the direct effects of reducing sugars, precursors of AGEs, and on the onset and progression of liver failure. In this work, we investigate the effects of intravenously administrated glycolaldehyde (GA), a short-chain aldehyde, on oxidative parameters in the liver of Wistar rats. Animals received a single injection of GA (10, 50, or 100 mg/kg) and were sacrificed after 6, 12, or 24 hours. Levels of protein carbonyl, lipid peroxidation, and reduced thiol were quantified. The activities of catalase, superoxide dismutase, and glyoxalase I were also assessed. The amount of CML was quantified with specific antibody. There was an increase in oxidative stress markers in the liver of GA-treated rats. Glycolaldehyde induced a decrease in the activities of all enzymes assayed. Also, all tested doses led to an increase in CML content. Our data suggest that GA might play an important role in liver diseases through the impairment of antioxidant defenses and generation of AGEs.
Collapse
Affiliation(s)
- Rodrigo Lorenzi
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JCF. Glycolaldehyde induces oxidative stress in the heart: a clue to diabetic cardiomyopathy? Cardiovasc Toxicol 2011; 10:244-9. [PMID: 20632216 DOI: 10.1007/s12012-010-9083-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cardiovascular complications account for 80% of the mortality related to diabetes mellitus. Hyperglycemia is believed to be the major culprit of angiopathy and cardiomyopathy. High glucose levels and oxidative stress cause elevation of Advanced Glycation End-products that are known to contribute to diabetic complications and correlate with many diseases. However, there are few reports describing the effects of glycating agents other than glucose. Here, we aimed to evaluate the effects of glycolaldehyde (GA) on oxidative stress parameters in the heart of Wistar rats. Male Wistar rats received a single injection of GA (10, 50 or 100 mg/Kg) and were sacrificed 6, 12 or 24 h after injection. As indexes of oxidative stress, we quantified protein carbonylation, lipid peroxidation and total reduced thiols. The activities of superoxide dismutase, catalase and glyoxalase I were assayed. Also, the content of N (ɛ)-(carboxymethyl)lysine (CML) was quantified. Glycolaldehyde induced an imbalance in the redox status, with increased protein carbonylation and lipoperoxidation. Catalase and glyoxalase I had a decrease in their activities. Despite the oxidative stress, we observed no increase in CML content. These results suggest that short-chain aldehydes such as GA might have a significant role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rodrigo Lorenzi
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Gaens KH, Stehouwer CDA, Schalkwijk CG. The N ε-(carboxymethyl)lysine-RAGE axis: putative implications for the pathogenesis of obesity-related complications. Expert Rev Endocrinol Metab 2010; 5:839-854. [PMID: 30780826 DOI: 10.1586/eem.10.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is an important contributor to the burden of insulin resistance, Type 2 diabetes and cardiovascular disease. An important mechanism by which excess adiposity causes obesity-associated complications is the dysregulated production and secretion of biologically active molecules derived from adipocytes. These adipokines affect the vascular wall and contribute to the development of insulin resistance and Type 2 diabetes. However, factors that cause an increased production of pro-inflammatory adipokines, while decreasing anti-inflammatory adipokines, have not been fully clarified. Owing to local conditions in adipose tissue, that is, increased fatty acids, hypoxia and oxidative stress, we speculate that an increased formation of the major advanced lipoxidation end product, Nε-(carboxymethyl)lysine (CML), may play a role. CML-adducts in proteins are major ligands for the receptor for advanced glycation end products (RAGE). The consequence of RAGE activation by CML is the activation of important signaling inflammatory pathways. The putative role of CML-modified proteins in obesity is addressed in this article. The identification of this pathway may provide an important strategy for novel therapeutic approaches against obesity-associated complications.
Collapse
Affiliation(s)
- Katrien Hj Gaens
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen DA Stehouwer
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- c
| |
Collapse
|
24
|
Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin Chim Acta 2010; 411:1875-82. [PMID: 20816951 DOI: 10.1016/j.cca.2010.08.038] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUNDS Many lines of evidence suggest that oxidized low-density lipoprotein (LDL) is implicated in the pathogenesis of atherosclerotic vascular diseases. This review summarizes a diversity of mechanisms proposed for LDL oxidation serving for the so-called "LDL oxidation hypothesis of atherogenesis". METHODS AND RESULTS We investigated the literature and our research results related to mechanisms of LDL oxidation and its atherogenesis. LDL oxidation is catalyzed by transition metal ions and several free radicals, and LDL is also oxidized by some oxidizing enzymes. In this way, LDL can be converted to a form that is recognized specifically by and with high affinity to macrophage scavenger receptors, leading to foam cell formation, the defining characteristic of fatty streak lesions. CONCLUSIONS Several pathways are involved in the promotion of LDL oxidation in vitro and in vivo, but it would appear that the physiologically relevant mechanisms of LDL oxidation are still imperfectly understood. The underlying mechanisms of LDL oxidation must be further explored to reveal appropriate ways for the diagnosis and treatment of atherosclerosis and its relevant diseases.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Laboratory Medicine, Jikei University Kashiwa Hospital, Chiba, Japan.
| | | |
Collapse
|
25
|
Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JCF. Circulating glycolaldehyde induces oxidative damage in the kidney of rats. Diabetes Res Clin Pract 2010; 89:262-7. [PMID: 20605248 DOI: 10.1016/j.diabres.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/26/2010] [Accepted: 05/06/2010] [Indexed: 11/28/2022]
Abstract
Renal failure is a key pathological issue in diabetic patients. Increased levels of advanced glycation end-products (AGEs) have been associated to diabetic complications, including diabetic nephropathy. Models of AGE-treated animals have been applied to evaluate the effect of such molecules on oxidative parameters involved in the pathogenesis and evolution of diabetes disease. However, little is known about the effect of glycating agents other than glucose. Here we investigate the effect of intravenously administrated glycolaldehyde (GA) on oxidative stress parameters of the kidney. Male Wistar rats received a single injection of GA in different doses (10, 50 or 100mg/kg) and were sacrificed after 6, 12 or 24h. Activities of antioxidant enzymes catalase, superoxide dismutase and glyoxalase I were assayed. Damage to proteins and lipids were also assayed. The content of N(epsilon)-(carboxymethyl)lysine (CML) was quantified. Glycolaldehyde induced a decrease in the activity of all enzymes studied. Lipoperoxidation and protein carbonylation raised, accompanied by a decrease in sulfhydryl groups. Despite the oxidative stress generated by GA, no change was found in the content of CML, suggesting that accumulation of AGEs in the kidney might occur at later steps in the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Rodrigo Lorenzi
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, Wu M, Choi HC, Lyons TJ, Zou MH. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 2010; 59:1386-96. [PMID: 20299472 PMCID: PMC2874699 DOI: 10.2337/db09-1637] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/24/2010] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo. RESEARCH DESIGN AND METHODS ER stress markers, sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity and oxidation, and AMPK activity were monitored in cultured bovine aortic endothelial cells (BAECs) exposed to HOG-LDL or in isolated aortae from mice fed an atherogenic diet. RESULTS Exposure of BAECs to clinically relevant concentrations of HOG-LDL induced prolonged ER stress and reduced SERCA activity but increased SERCA oxidation. Chronic administration of Tempol (a potent antioxidant) attenuated both SERCA oxidation and aberrant ER stress in mice fed a high-fat diet in vivo. Likewise, AMPK activation by pharmacological (5'-aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside, metformin, and statin) or genetic means (adenoviral overexpression of constitutively active AMPK mutants) significantly mitigated ER stress and SERCA oxidation and improved the endothelium-dependent relaxation in isolated mouse aortae. Finally, Tempol administration markedly attenuated impaired endothelium-dependent vasorelaxation, SERCA oxidation, ER stress, and atherosclerosis in ApoE(-/-) and ApoE(-/-)/AMPKalpha2(-/-) fed a high-fat diet. CONCLUSION We conclude that HOG-LDL, via enhanced SERCA oxidation, causes aberrant ER stress, endothelial dysfunction, and atherosclerosis in vivo, all of which are inhibited by AMPK activation.
Collapse
Affiliation(s)
- Yunzhou Dong
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Miao Zhang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Shuangxi Wang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Bin Liang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Zhengxing Zhao
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Chao Liu
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Mingyuan Wu
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Timothy J. Lyons
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Ming-Hui Zou
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
27
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
28
|
Farmer DG, Kennedy S. RAGE, vascular tone and vascular disease. Pharmacol Ther 2009; 124:185-94. [DOI: 10.1016/j.pharmthera.2009.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 12/13/2022]
|
29
|
Shiu SW, Tan KC, Wong Y, Leng L, Bucala R. Glycoxidized LDL increases lectin-like oxidized low density lipoprotein receptor-1 in diabetes mellitus. Atherosclerosis 2009; 203:522-7. [DOI: 10.1016/j.atherosclerosis.2008.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 11/16/2022]
|
30
|
Ahmed KA, Muniandy S, Ismail IS. N(epsilon)-(Carboxymethyl)lysine and Coronary Atherosclerosis-Associated Low Density Lipoprotein Abnormalities in Type 2 Diabetes: Current Status. J Clin Biochem Nutr 2009; 44:14-27. [PMID: 19177184 PMCID: PMC2613495 DOI: 10.3164/jcbn.08-190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022] Open
Abstract
In comparison to the general population, individuals with diabetes suffer a 3- to 4-fold increased risk for developing complications of atherosclerosis and vascular insufficiency. This fact should be taken into account to develop a suitable determinant for the early detection of these complications and subsequently reduce the adverse effect of type 2 diabetes. In vitro experiments have shown that the products of glucose auto-oxidation and Amadori adducts are both potential sources of N(epsilon)-(carboxymethyl)lysine (CML). Excessive formation of CML on low density lipoprotein (LDL) has been proposed to be an important mechanism for the dyslipidemia and accelerated atherogenesis observed in patients with type 2 diabetes. It has been postulated that the uptake of CML-LDL by LDL receptors is impaired, thereby decreasing its clearance from the blood circulation. Alternatively, the uptake of these modified LDL particles by scavenger receptors on macrophages and vascular smooth muscle cells (SMCs) and by AGE receptors on endothelial cells, SMCs, and monocytes is highly enhanced and this, in turn, is centrally positioned to contribute to the pathogenesis of diabetic vascular complications especially coronary artery disease. The present review summarizes the up-to-date information on effects and mechanism of type 2 diabetes-associated coronary atherosclerosis induced by CML-LDL modification.
Collapse
Affiliation(s)
- Khaled A. Ahmed
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ikram S. Ismail
- Department of Medicine, University of Malaya Medical Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Glycation of LDL in non-diabetic people: Small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 2009; 202:162-8. [DOI: 10.1016/j.atherosclerosis.2008.04.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/19/2008] [Accepted: 04/19/2008] [Indexed: 11/22/2022]
|
32
|
Oxidative Modification of LDL: Its Pathological Role in Atherosclerosis. Clin Rev Allergy Immunol 2008; 37:4-11. [DOI: 10.1007/s12016-008-8095-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Szuchman A, Aviram M, Musa R, Khatib S, Vaya J. Characterization of oxidative stress in blood from diabetic vs. hypercholesterolaemic patients, using a novel synthesized marker. Biomarkers 2008; 13:119-31. [PMID: 17852078 DOI: 10.1080/13547500701614556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, we extend our novel concept of designing and using exogenous markers for the characterization of oxidative stress (OS) and OS-associated diseases. The aim was to use such a synthetic compound as a tool for studying OS in blood from diabetic and hypercholesterolaemic (Hc) patients. The marker used N-linoleoyl tyrosine (LT) was constructed from tyrosine and linoleic acid (LA); both components are known to be easily oxidized upon exposure to different types of reactive oxygen/nitrogen species (ROS/RNS), and to generate specific oxidized products, depending on the type of oxidants present in vivo. Using the LT probe, we showed that the ratios of oxidized LT to total LT (Ox-LT/LT) is significantly higher in blood samples obtained from diabetic patients, than in Hc patients or healthy control subjects. LC/MS analysis revealed that blood from diabetic patients oxidizes the marker with predominant formation of Ox-LT hydroperoxide (LT-OOH) and epoxide (epoxy-LT), where the LA moiety is oxidized to hydroperoxide and to epoxide, respectively. Analysis of oxysterol levels in these samples (GC/MS) revealed that the blood of both diabetic and Hc patients contained significantly more oxysterols than blood of control subjects. Consumption of pomegranate juice by diabetic patients for 3 months suppressed their blood capacity to oxidize the LT and similarly also reduced their blood oxysterol/total cholesterol ratio by 93%. The use of an exogenous marker to characterize OS in blood samples yields important information on the extent of OS, and can provide a fingerprint for the early identification of different pathological conditions associated with OS.
Collapse
Affiliation(s)
- Andrea Szuchman
- The Laboratory of Natural Medicinal Compounds, Migal-Galilee Technology Center, Kiryat Shmona 11016, Israel
| | | | | | | | | |
Collapse
|
34
|
Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington PN. Glycation as an atherogenic modification of LDL. Curr Opin Lipidol 2008; 19:378-84. [PMID: 18607185 DOI: 10.1097/mol.0b013e328306a057] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW To highlight the potential importance of glycation as an atherogenic modification of LDL in both diabetic and nondiabetic people. RECENT FINDINGS Small dense LDL which is known to be most closely associated with atherogenesis is more susceptible to glycation than more buoyant LDL. Glycation and oxidation of LDL appear to be intimately associated. SUMMARY Glycation of LDL occurs chiefly due to the nonenzymatic reaction of glucose and its metabolites with the free amino groups of lysine in which LDL is rich. Higher concentrations of glycated LDL are present in diabetic than in nondiabetic individuals, but even in the latter, there is generally more circulating glycated LDL than oxidatively modified LDL. Probably, oxidation and glycation of LDL are at least partially interdependent, but both prevent LDL receptor-mediated uptake and promote macrophage scavenger receptor uptake. The recognition that LDL glycation is at least as important as oxidation in atherogenesis may lead to improvements in our understanding of its mechanism and how to prevent it.
Collapse
Affiliation(s)
- Nahla Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | | | | | | |
Collapse
|
35
|
Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest 2008; 118:183-94. [PMID: 18079965 DOI: 10.1172/jci32703] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 10/24/2007] [Indexed: 11/17/2022] Open
Abstract
Endothelial dysfunction is a key triggering event in atherosclerosis. Following the entry of lipoproteins into the vessel wall, their rapid modification results in the generation of advanced glycation endproduct epitopes and subsequent infiltration of inflammatory cells. These inflammatory cells release receptor for advanced glycation endproduct (RAGE) ligands, specifically S100/calgranulins and high-mobility group box 1, which sustain vascular injury. Here, we demonstrate critical roles for RAGE and its ligands in vascular inflammation, endothelial dysfunction, and atherosclerotic plaque development in a mouse model of atherosclerosis, apoE-/- mice. Experiments in primary aortic endothelial cells isolated from mice and in cultured human aortic endothelial cells revealed the central role of JNK signaling in transducing the impact of RAGE ligands on inflammation. These data highlight unifying mechanisms whereby endothelial RAGE and its ligands mediate vascular and inflammatory stresses that culminate in atherosclerosis in the vulnerable vessel wall.
Collapse
Affiliation(s)
- Evis Harja
- Division of Surgical Science, Department of Surgery, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A. Ahmed K, Muniandy S, S. Ismail I. Role of N-(carboxymethyl)lysine in the development of ischemic heart disease in type 2 diabetes mellitus. J Clin Biochem Nutr 2007; 41:97-105. [PMID: 18193103 PMCID: PMC2170948 DOI: 10.3164/jcbn.2007014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/19/2007] [Indexed: 01/30/2023] Open
Abstract
This study aims to determine the levels of N(epsilon)-(carboxymethyl)lysine (CML) in patients with Type 2 diabetic patients with and without ischemic heart disease (IHD) and to find for a possible association between circulating CML and a number of clinical parameters including lipids, hemoglobin A1c (HbA1c) and malondialdehyde (MDA) in Type 2 diabetic IHD patients. Serum CML levels were measured by enzyme-linked immunosorbent assay using polyclonal anti-CML antibodies. Serum levels of CML and MDA were assessed in 60 IHD patients with Type 2 diabetes, 43 IHD patients without Type 2 diabetes, 64 Type 2 diabetics without IHD, and 80 sex- and age-matched healthy subjects. Correlations studies between CML levels and lipids, HbA1c, and lipid peroxidation were performed in Type 2 diabetes patients with and without IHD. A statistical significance was observed in the levels of serum glucose, lipids (triglyceride, total cholesterol, HDL-cholesterol), MDA, HbA1c, CML and LDL-cholesterol (p<0.05) between the groups of the study. CML levels were significantly increased in diabetic IHD patients compared with Type 2 diabetes patients but without IHD (537.1 +/- 86.1 vs 449.7 +/- 54.9, p<0.001). A positive correlation was observed between serum levels of CML and MDA, r = 0.338 (p = 0.008) in Type 2 diabetes patients with IHD. However, age, HbA1c and lipids had no significant influence on CML levels among diabetics (p>0.05). In conclusion, this study demonstrates the effect of both diabetes and oxidative stress on the higher levels of circulating CML. These results showed that increased serum levels of CML are associated with the development of IHD in Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Khaled A. Ahmed
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ikram S. Ismail
- Department of Medicine, University of Malaya Medical Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Vasdev S, Gill V, Singal P. Role of Advanced Glycation End Products in Hypertension and Atherosclerosis: Therapeutic Implications. Cell Biochem Biophys 2007; 49:48-63. [PMID: 17873339 DOI: 10.1007/s12013-007-0039-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/11/2023]
Abstract
The vascular diseases, hypertension and atherosclerosis, affect millions of individuals worldwide, and account for a large number of deaths globally. A better understanding of the mechanism of these conditions will lead to more specific and effective therapies. Hypertension and atherosclerosis are both characterized by insulin resistance, and we suggest that this plays a major role in their etiology. The cause of insulin resistance is not known, but may be a result of a combination of genetic and lifestyle factors. In insulin resistance, alterations in glucose and lipid metabolism lead to the production of excess aldehydes including glyoxal and methylglyoxal. These aldehydes react non-enzymatically with free amino and sulfhydryl groups of amino acids of proteins to form stable conjugates called advanced glycation end products (AGEs). AGEs act directly, as well as via receptors to alter the function of many intra- and extracellular proteins including antioxidant and metabolic enzymes, calcium channels, lipoproteins, and transcriptional and structural proteins. This results in endothelial dysfunction, inflammation and oxidative stress. All these changes are characteristic of hypertension and atherosclerosis. Human and animal studies have demonstrated that increased AGEs are also associated with these conditions. A pathological role for AGEs is substantiated by studies showing that therapies that attenuate insulin resistance and/or lower AGEs, are effective in decreasing oxidative stress, lowering blood pressure, and attenuating atherosclerotic vascular changes. These interventions include lipoic acid and other antioxidants, AGE breakers or soluble receptors of AGEs, and aldehyde-binding agents like cysteine. Such therapies may offer alternative specific means to treat hypertension and atherosclerosis. An adjunct therapy may be to implement lifestyle changes such as weight reduction, regular exercise, smoking cessation, and increasing dietary intake of fruits and vegetables that also decrease insulin resistance as well as oxidative stress.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Room H-4310, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NF, A1B 3V6, Canada.
| | | | | |
Collapse
|
38
|
Yasukawa T, Wiedemann P, Hoffmann S, Kacza J, Eichler W, Wang YS, Nishiwaki A, Seeger J, Ogura Y. Glycoxidized particles mimic lipofuscin accumulation in aging eyes: a new age-related macular degeneration model in rabbits. Graefes Arch Clin Exp Ophthalmol 2007; 245:1475-85. [PMID: 17406884 DOI: 10.1007/s00417-007-0571-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/16/2007] [Accepted: 03/14/2007] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The biogenesis of drusen, a hallmark of age-related macular degeneration (AMD), is still unclear. Lipofuscin, which extensively accumulates with age in RPE cells, is hardly soluble, derived in part from oxidation byproducts of the photoreceptor outer segments. The purpose of the current study is to develop a new AMD model in rabbits using glycoxidized particles as imitation lipofuscin, and determine whether accumulation of lipofuscin as insoluble material may play a role in drusen biogenesis and other pathogenesis of AMD. METHODS To mimic the accumulation of insoluble lipofuscin, glycoxidized microspheres (glycox-MS) were made through a glycoxidation process with albumin and glycolaldehyde, alpha-hydroxy aldehyde. As a control, microspheres made with glutaraldehyde (cMS) and soluble glycoxidized (glycox-) albumin were prepared. Each material was implanted into the subretinal space in rabbits. The implanted area was assessed by funduscopy, fluorescein angiography, histology, and transmission electron microscopy (TEM). RESULTS Compared with control microspheres, glycox-MS stagnated for a prolonged period in the cytoplasm of RPE cells. Eyes implanted with glycox-MS produced drusen-like deposits at a significantly higher frequency, when compared with the controls. Glycox-MS were observed at the margin of or beneath the drusen-like deposits in all cases. In some eyes with glycox-MS, late-onset sub-RPE choroidal neovascularization was observed, while control groups did not have these findings. CONCLUSIONS These results suggest that the accumulation of indigestible granules such as lipofuscin in RPE or subsequent depositions toward Bruch's membrane may play a role in drusen biogenesis as a trigger of inflammation or via other mechanisms. This model of AMD may be useful to elucidate drusen biogenesis and pathogenesis of AMD.
Collapse
Affiliation(s)
- Tsutomu Yasukawa
- Department of Ophthalmology and Eye Clinic, University of Leipzig Medical Faculty, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114:597-605. [PMID: 16894049 DOI: 10.1161/circulationaha.106.621854] [Citation(s) in RCA: 1537] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs) are proteins or lipids that become glycated after exposure to sugars. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes upregulation of the transcription factor nuclear factor-kappaB and its target genes. Soluble AGEs activate monocytes, and AGEs in the basement membrane inhibit monocyte migration. AGE-bound RAGE increases endothelial permeability to macromolecules. AGEs block nitric oxide activity in the endothelium and cause the production of reactive oxygen species. Because of the emerging evidence about the adverse effects of AGEs on the vasculature of patients with diabetes, a number of different therapies to inhibit AGEs are under investigation.
Collapse
Affiliation(s)
- Alison Goldin
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Cohen MP, Ziyadeh FN, Chen S. Amadori-modified glycated serum proteins and accelerated atherosclerosis in diabetes: pathogenic and therapeutic implications. ACTA ACUST UNITED AC 2006; 147:211-9. [PMID: 16697768 PMCID: PMC1800931 DOI: 10.1016/j.lab.2005.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Affiliation(s)
- Margo P Cohen
- University City Science Center, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
41
|
de Nigris F, Tajana G, Condorelli M, D'Armiento FP, Sica G, Lerman LO, Napoli C. Glycoxidation of Low-Density Lipoprotein Increases TUNEL Positivity and CPP32 Activation in Human Coronary Cells. Ann N Y Acad Sci 2006; 1010:710-5. [PMID: 15033815 DOI: 10.1196/annals.1299.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Apoptosis of arterial cells induced by oxidized low-density lipoprotein (oxLDL) is thought to contribute to the progression of vascular dysfunction and atherogenesis. It is well established that diabetes mellitus is accompanied by both glycosylation and oxidation of LDL (glc-oxLDL), but the biological effects of these modified lipoproteins are poorly understood. We demonstrate here for the first time that glc-oxLDL increases TUNEL positivity and caspase-3 activation (by Western blot and immunocytochemistry) of human coronary smooth muscle cells. Overall, these effects induced by glc-oxLDL were greater than those achieved with oxLDL. Thus, glc-oxLDL activated downstream apoptotic signaling. This may influence the evolution of atherogenesis and vascular complications in diabetes.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Pharmacological Sciences, Chair of Anatomy, Faculty of Pharmacy, University of Salerno, Fisciano-Salerno, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Akira K, Amano M, Okajima F, Okajima F, Hashimoto T, Oikawa S. Inhibitory Effects of Amlodipine and Fluvastatin on the Deposition of Advanced Glycation End Products in Aortic Wall of Cholesterol and Fructose-Fed Rabbits. Biol Pharm Bull 2006; 29:75-81. [PMID: 16394514 DOI: 10.1248/bpb.29.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that advanced glycation end products (AGEs) can promote the development of atherosclerotic lesions in a similar manner to oxidatively modified low density lipoproteins. As oxidative stress accelerates the formation of AGEs, antioxidant drugs may exert atheroprotective effects via suppression of AGE formation. Although amlodipine, a calcium channel blocker, and fluvastatin, a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor, show antioxidant and atheroprotective effects, the relation of AGEs to their effects is unknown. We immunohistochemically investigated the inhibitory effects of chronic treatment with amlodipine (5 mg/kg per day) or fluvastatin at a dose insufficient to reduce plasma cholesterol levels (2 mg/kg per day) on the accumulation of AGEs in atherosclerotic aortas of rabbits fed 1% cholesterol diet and 10% fructose containing water. After eight weeks of treatment, AGEs, namely argpyrimidine, carboxymethyllysine and pyrraline, markedly accumulated with intimal thickening in cholesterol and fructose-fed control rabbits, while the drugs inhibited those changes other than the pyrraline deposition without plasma lipid-lowering effects. Enhanced lipid peroxidation was observed in plasma from cholesterol and fructose-fed rabbits only, and lipid peroxidation was not suppressed by the drugs. These results suggest that the atheroprotective effects of the drugs are at least partly due to the suppression of AGE accumulation although the exact mechanism of AGE suppression is ambiguous.
Collapse
Affiliation(s)
- Kazuki Akira
- School of Pharmacy, Tokyo University of Pharmacy and Life Science,Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
de Nigris F, Gallo L, Sica V, Napoli C. Glycoxidation of low-density lipoprotein promotes multiple apoptotic pathways and NFkappaB activation in human coronary cells. Basic Res Cardiol 2005; 101:101-8. [PMID: 16265596 DOI: 10.1007/s00395-005-0560-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/30/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
Apoptosis of arterial cells induced by oxidized low-density lipoprotein (oxLDL) is thought to contribute to the progression of vascular dysfunction and atherogenesis. It is well established that diabetes mellitus is accompanied by both glycosylation and oxidation LDL, but the biological effects of these modified lipoproteins are poorly understood. We demonstrate here that glycosylated oxLDL (glc-oxLDL) promotes apoptotic signaling in human coronary smooth muscle cells. This was associated by a decrease of the antiapoptotic protein Bcl-2, an increase of the pro-apoptotic protein Bax, and activation of caspase 3. Glc-oxLDL also activated NFK: B and decreased IK: B, these effects were more pronounced than those achieved with oxLDL. Our study shows that glc-oxLDL influences a broad cascade of signaling transduction pathways, which may not only result in apoptosis, but also could affect NFkappaB in human coronary cells. This cascade of events may influence the evolution of atherogenesis and vascular complications in diabetic patients.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology and Excellence Research Center on Cardiovascular Diseases, II University of Naples, Via Luigi de Crecchio 7, Naples 80138, Italy
| | | | | | | |
Collapse
|
44
|
Song W, Barth JL, Lu K, Yu Y, Huang Y, Gittinger CK, Argraves WS, Lyons TJ. Effects of modified low-density lipoproteins on human retinal pericyte survival. Ann N Y Acad Sci 2005; 1043:390-5. [PMID: 16037260 DOI: 10.1196/annals.1333.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
According to a current paradigm cardiovascular diseases can be initiated by exposure of vascular cells to qualitatively modified low-density lipoproteins (LDL). Capillary leakage, an early feature of diabetic retinopathy, results in the exposure of retinal pericytes to modified LDL, including glycated (G-LDL) and heavily oxidized glycated LDL (HOG-LDL). We demonstrate here that modified LDL inhibits the proliferation and survival of cultured human retinal pericytes. Modified LDL also induced DNA fragmentation in bovine retinal pericytes. Overall, HOG-LDL produced a significantly higher extent of cytotoxicity and apoptosis in retinal pericytes. These results indicate that exposure of pericytes to HOG-LDL could be implicated in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Weiwei Song
- Medicine Endocrinology, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Piarulli F, Lapolla A, Sartore G, Rossetti C, Bax G, Noale M, Minicuci N, Fiore C, Marchioro L, Manzato E, Fedele D. Autoantibodies against oxidized LDLs and atherosclerosis in type 2 diabetes. Diabetes Care 2005; 28:653-7. [PMID: 15735203 DOI: 10.2337/diacare.28.3.653] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of our study was to examine, in type 2 diabetic patients, the relationship between autoantibodies against oxidatively modified LDL (oxLDL Ab) and two indexes of atherosclerosis, intimal-medial thickness of the common carotid artery (CCA-IMT), which reflects early atherosclerosis, and the ankle-brachial index (ABI), which reflects advanced atherosclerosis. RESEARCH DESIGN AND METHODS Thirty newly diagnosed type 2 diabetic patients, 30 type 2 diabetic patients with long duration of disease, and 56 control subjects were studied. To detect oxLDL Ab, the ImmunoLisa Anti-oxLDL Antibody ELISA was used. ABI was estimated at rest by strain-gauge plethysmography. Carotid B-mode imaging was performed on a high-resolution imaging system (ATL HDI 5000). RESULTS In patients with long duration of disease, IgG oxLDL Ab were significantly higher and ABI significantly lower compared with the other two groups. We found a correlation between IgG oxLDL Ab and CCA-IMT in all diabetic patients. A significant inverse correlation between IgG oxLDL Ab and ABI only in patients with long duration of disease was seen, demonstrating a close relationship between these autoantibodies and advanced atherosclerosis. CONCLUSIONS IgG OxLDL Ab may be markers of the advanced phase of the atherosclerotic process and the response of the immunological system to the oxLDL, which are present within atherosclerotic lesions.
Collapse
Affiliation(s)
- Francesco Piarulli
- Department of Medical and Surgical Sciences, University of Padova, Ospedale dei Colli, Via dei Colli 4, 35100 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jenkins AJ, Thorpe SR, Alderson NL, Hermayer KL, Lyons TJ, King LP, Chassereau CN, Klein RL. In vivo glycated low-density lipoprotein is not more susceptible to oxidation than nonglycated low-density lipoprotein in type 1 diabetes. Metabolism 2004; 53:969-76. [PMID: 15281003 DOI: 10.1016/j.metabol.2004.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P < .0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P < .01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.
Collapse
Affiliation(s)
- Alicia J Jenkins
- Division of Endocrinology-Diabetes-Medical Genetics, Medical University of South Carolina, Charleston 29403, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Holvoet P, Kritchevsky SB, Tracy RP, Mertens A, Rubin SM, Butler J, Goodpaster B, Harris TB. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 2004; 53:1068-73. [PMID: 15047623 DOI: 10.2337/diabetes.53.4.1068] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The object of this study was to establish the association between the metabolic syndrome and oxidized LDL (oxLDL) and to determine the risk for coronary heart disease (CHD) in relation to the metabolic syndrome and levels of oxLDL. OxLDL was measured in plasma from 3,033 elderly participants in the Health, Aging, and Body Composition study. The metabolic syndrome was defined according to criteria established in the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. We observed that the metabolic syndrome was associated with higher levels of oxLDL due to a higher fraction of oxLDL, not to higher levels of LDL cholesterol. Individuals with the metabolic syndrome had twice the odds of having high oxLDL (>1.90 mg/dl) compared with those not having the metabolic syndrome, after adjusting for age, sex, ethnicity, smoking status, and LDL cholesterol. Among those participants who had the metabolic syndrome at study entry, incidence rates of future CHD events were 1.6-fold higher, after adjusting for age, sex, ethnicity, and smoking status. OxLDL was not an independent predictor of total CHD risk. However, those with high oxLDL showed a greater disposition to myocardial infarction (relative risk 2.25, 95% confidence interval 1.22-4.15). We concluded that the metabolic syndrome, a risk factor for CHD, is associated with higher levels of circulating oxLDL that are associated with a greater disposition to atherothrombotic coronary disease.
Collapse
Affiliation(s)
- Paul Holvoet
- Center for Experimental Surgery and Anesthesiology, Catholic University, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Voziyan PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, Serianni AS, Hudson BG. Modification of proteins in vitro by physiological levels of glucose: pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions. J Biol Chem 2003; 278:46616-24. [PMID: 12975371 DOI: 10.1074/jbc.m307155200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hyperglycemic conditions of diabetes accelerate protein modifications by glucose leading to the accumulation of advanced glycation end-products (AGEs). We have investigated the conversion of protein-Amadori intermediate to protein-AGE and the mechanism of its inhibition by pyridoxamine (PM), a potent AGE inhibitor that has been shown to prevent diabetic complications in animal models. During incubation of proteins with physiological diabetic concentrations of glucose, PM prevented the degradation of the protein glycation intermediate identified as fructosyllysine (Amadori) by 13C NMR using [2-13C]-enriched glucose. Subsequent removal of glucose and PM led to conversion of protein-Amadori to AGE Nepsilon-carboxymethyllysine (CML). We utilized this inhibition of post-Amadori reactions by PM to isolate protein-Amadori intermediate and to study the inhibitory effect of PM on its degradation to protein-CML. We first tested the hypothesis that PM blocks Amadori-to-CML conversion by interfering with the catalytic role of redox metal ions that are required for this glycoxidative reaction. Support for this hypothesis was obtained by examining structural analogs of PM in which its known bidentate metal ion binding sites were modified and by determining the effect of endogenous metal ions on PM inhibition. We also tested the alternative hypothesis that the inhibitory mechanism involves formation of covalent adducts between PM and protein-Amadori. However, our 13C NMR studies demonstrated that PM does not react with the Amadori. Because the mechanism of interference with redox metal catalysis is operative under the conditions closely mimicking the diabetic state, it may contribute significantly to PM efficacy in preventing diabetic complications in vivo. Inhibition of protein-Amadori degradation by PM also provides a simple procedure for the isolation of protein-Amadori intermediate, prepared at physiological levels of glucose for relevancy, to study both the biological effects and the chemistry of post-Amadori pathways of AGE formation.
Collapse
Affiliation(s)
- Paul A Voziyan
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sonoki K, Iwase M, Iino K, Ichikawa K, Yoshinari M, Ohdo S, Higuchi S, Iida M. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells. Eur J Pharmacol 2003; 475:139-47. [PMID: 12954370 DOI: 10.1016/s0014-2999(03)02109-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that glycoxidized low-density lipoprotein (glycoxidized LDL) enhanced monocyte chemoattractant protein-1 (MCP-1) mRNA expression through activation of nuclear factor-kappaB (NF-kappaB). Here we investigated the effects of dilazep, an anti-platelet agent, and fenofibric acid, an active metabolite of fenofibrate, on glycoxidized low-density lipoprotein-(LDL)-enhanced MCP-1 mRNA expression. Both 10 microg/ml dilazep and 100 microM fenofibric acid abrogated MCP-1 mRNA expression. ZM241385, an A2a adenosine receptor antagonist, partially inhibited the suppressive effect of dilazep. NF-kappaB activity was also suppressed by 1 microg/ml dilazep and 10 microM fenofibric acid. The antioxidative activity of these drugs on glycation to native LDL or oxidation to glycated LDL was measured using lipid peroxidation and lyso-phosphatidylcholine contents in LDL. Dilazep but not fenofibric acid exhibited antioxidative activity. Although the mechanisms of anti-atherogenic effects of the two drugs on glycoxidized LDL are different, both dilazep and fenofibric acid could potentially prevent atherosclerosis in diabetes mellitus.
Collapse
Affiliation(s)
- Kazuo Sonoki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Napoli C, Lerman LO, de Nigris F, Loscalzo J, Ignarro LJ. Glycoxidized low-density lipoprotein downregulates endothelial nitricoxide synthase in human coronary cells. J Am Coll Cardiol 2002; 40:1515-22. [PMID: 12392844 DOI: 10.1016/s0735-1097(02)02306-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We examined the hypothesis that low-density lipoprotein (LDL) that is both oxidized and glycosylated potently downregulates the expression of endothelial nitric oxide synthase III (NOSIII) in human coronary endothelial cells. BACKGROUND Diabetes mellitus is accompanied by both oxidation and glycosylation of LDL, but the potential interaction of these processes or the pathophysiologic effects of these modified lipoproteins on arteries are poorly understood. METHODS Low-density lipoprotein was glycoxidized in vitro, and Western and Northern blot analyses were used to investigate NOSIII expression in human coronary endothelial cells. Nitric oxide (NO) bioactivity was represented by both basal and bradykinin-stimulated cellular cyclic guanosine monophosphate accumulation and L-citrulline conversion from L-arginine. Nuclear run-on experiments were performed to study the transcription rate of nascent NOSIII messenger ribonucleic acid (mRNA). RESULTS Data showed a significant decrease in NOSIII expression after 24-h treatment with glycosylated low-density lipoprotein (glycLDL) and oxidized low-density lipoprotein (oxLDL). Accordingly, we observed a significant dose-dependent reduction in NO bioactivity (p < 0.05 to p < 0.001 vs. untreated cells, native low density lipoprotein [nLDL], glycLDL, and oxLDL). Glyc-oxLDL did not reduce the half-life of NOSIII mRNA or significantly enhance L-citrulline conversion. Nuclear run-on experiments showed that high doses of glyc-oxLDL can reduce the transcription rate of nascent NOSIII mRNA (densitometric analysis revealed a reduction of 25% [p < 0.05 vs. untreated cells, nLDL, and glycLDL] after treatment of cells with 300 microg/ml glyc-oxLDL). The effects of glyc-oxLDL are not related to the higher levels of oxidative compounds in comparison to those of oxLDL. CONCLUSIONS These results indicate that glyc-oxLDL, per se, may influence signal transduction pathways involving NO-mediated regulatory signals and NOSIII activity in human endothelial cells. This phenomenon can adversely influence the evolution of clinical vascular complications, coronary heart disease, and atherogenesis in diabetic patients.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine-0682, University of California, San Diego, California 92093, USA.
| | | | | | | | | |
Collapse
|