1
|
Gutierrez-Monreal MA, Wolff CA, Rijos EE, Viggars MR, Douglas CM, Pagala V, Peng J, Hunt LC, Ding H, Huo Z, Demontis F, Esser KA. Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model. JCI Insight 2024; 9:e174007. [PMID: 39352748 PMCID: PMC11601919 DOI: 10.1172/jci.insight.174007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Disruption of the circadian clock in skeletal muscle worsens local and systemic health, leading to decreased muscle strength, metabolic dysfunction, and aging-like phenotypes. Whole-body knockout mice that lack Bmal1, a key component of the molecular clock, display premature aging. Here, by using adeno-associated viruses, we rescued Bmal1 expression specifically in the skeletal muscle fibers of Bmal1-KO mice and found that this engaged the circadian clock and clock output gene expression, contributing to extended lifespan. Time course phenotypic analyses found that muscle strength, mobility, and glucose tolerance were improved with no effects on muscle mass or fiber size or type. A multiomics approach at 2 ages further determined that restored muscle Bmal1 improved glucose handling pathways while concomitantly reducing lipid and protein metabolic pathways. The improved glucose tolerance and metabolic flexibility resulted in the systemic reduction of inflammatory signatures across peripheral tissues, including liver, lung, and white adipose fat. Together, these findings highlight the critical role of muscle Bmal1 and downstream target genes for skeletal muscle homeostasis with considerable implications for systemic health.
Collapse
Affiliation(s)
| | | | - Eduardo E. Rijos
- Department of Physiology and Aging
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | | | | | - Vishwajeeth Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, and
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, and
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | - Haocheng Ding
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Karyn A. Esser
- Department of Physiology and Aging
- Myology Institute, and
| |
Collapse
|
2
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Boëx M, Cottin S, Halliez M, Bauché S, Buon C, Sans N, Montcouquiol M, Molgó J, Amar M, Ferry A, Lemaitre M, Rouche A, Langui D, Baskaran A, Fontaine B, Messéant J, Strochlic L. The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Sci Signal 2022; 15:eabg4982. [PMID: 35580169 DOI: 10.1126/scisignal.abg4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Collapse
Affiliation(s)
- Myriam Boëx
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Steve Cottin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Marius Halliez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Stéphanie Bauché
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Céline Buon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Nathalie Sans
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Mireille Montcouquiol
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Jordi Molgó
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Muriel Amar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Arnaud Ferry
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Mégane Lemaitre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du Petit Animal, Paris 75013, France
| | - Andrée Rouche
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Dominique Langui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Asha Baskaran
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Bertrand Fontaine
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Service de Neuro-Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris 75013, France
| | - Julien Messéant
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Laure Strochlic
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| |
Collapse
|
4
|
Correia JC, Kelahmetoglu Y, Jannig PR, Schweingruber C, Shvaikovskaya D, Zhengye L, Cervenka I, Khan N, Stec M, Oliveira M, Nijssen J, Martínez-Redondo V, Ducommun S, Azzolini M, Lanner JT, Kleiner S, Hedlund E, Ruas JL. Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metab 2021; 33:2215-2230.e8. [PMID: 34592133 DOI: 10.1016/j.cmet.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023]
Abstract
Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA sequencing of MN somas, we observed that retrograde NRTN signaling promotes a shift toward a slow MN identity. In muscle, NRTN increased capillary density and oxidative capacity and induced a transcriptional reprograming favoring fatty acid metabolism over glycolysis. This combination of effects on muscle and MNs makes HSA-NRTN mice lean with remarkable exercise performance and motor coordination. Interestingly, HSA-NRTN mice largely recapitulate the phenotype of mice with muscle-specific expression of its upstream regulator PGC-1ɑ1. This work identifies NRTN as a myokine that couples muscle oxidative capacity to slow MN identity.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christoph Schweingruber
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Dasha Shvaikovskaya
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Liu Zhengye
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Naveen Khan
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Mariana Oliveira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Eva Hedlund
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
5
|
Pseudo-Starvation Driven Energy Expenditure Negatively Affects Ovarian Follicle Development. Int J Mol Sci 2021; 22:ijms22073557. [PMID: 33808081 PMCID: PMC8036485 DOI: 10.3390/ijms22073557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 11/30/2022] Open
Abstract
In the present investigation, we examined whether a change in whole body energy fluxes could affect ovarian follicular development, employing mice ectopically expressing uncoupling protein 1 in skeletal muscle (UCP1-TG). Female UCP1-TG and wild-type (WT) mice were dissected at the age of 12 weeks. Energy intake and expenditure, activity, body weight and length, and body composition were measured. Plasma insulin, glucose, leptin, plasma fibroblast growth factor 21 (FGF21) and plasma insulin-like growth factor 1 (IGF1) levels were analyzed and ovarian follicle and corpus luteum numbers were counted. IGF1 signaling was analyzed by immunohistochemical staining for the activation of insulin receptor substrate 1/2 (IRS1/2) and AKT. UCP1-TG female mice had increased energy expenditure, reduced body size, maintained adiposity, and decreased IGF1 concentrations compared to their WT littermates, while preantral and antral follicle numbers were reduced by 40% and 60%, respectively. Corpora lutea were absent in 40% of the ovaries of UCP1-TG mice. Phospho-IRS1, phospho-AKT -Ser473 and -Thr308 immunostaining was present in the granulosa cells of antral follicles in WT ovaries, but faint to absent in the antral follicles of UCP1-TG mice. In conclusion, the reduction in circulating IGF1 levels due to the ectopic expression of UCP1 is associated with reduced immunostaining of the IRS1-PI3/AKT pathway, which may negatively affect ovarian follicle development and ovulation.
Collapse
|
6
|
Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020; 183:1913-1929.e26. [PMID: 33333020 DOI: 10.1016/j.cell.2020.11.017] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/27/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mandeep Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Hannes Vogel
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - H Christina Fan
- BD Biosciences, 4040 Campbell Ave Suite 110, Menlo Park, CA 94025, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Fu XQ, Peng J, Wang AH, Luo ZG. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov 2020; 6:9. [PMID: 32140252 PMCID: PMC7051980 DOI: 10.1038/s41421-020-0143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
During the development of mammalian neuromuscular junction (NMJ), the original supernumerary axon inputs are gradually eliminated, finally leaving each muscle fiber innervated by a single axon terminal. However, the molecular cues that mediate the elimination of redundant axon inputs remain unclear. Here we show that tumor necrosis factor-α (TNFα) expressed in postsynaptic muscle cells plays an important role in presynaptic axonal elimination at the NMJ. We found that intramuscular injection of TNFα into the levator auris longus (LAL) muscles caused disassociation of presynaptic nerve terminals from the postsynaptic acetylcholine receptor (AChR) clusters. By contrast, genetic ablation of TNFα globally or specifically in skeletal muscle cells, but not in motoneurons or Schwann cells, delayed the synaptic elimination. Moreover, ablation of TNFα in muscle cells attenuated the tendency of activity-dependent competition in a motoneuron-muscle coculture system. These results suggest a role of postsynaptic TNFα in the elimination of redundant synaptic inputs.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Jian Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ai-Hua Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
8
|
Boyer JG, Prasad V, Song T, Lee D, Fu X, Grimes KM, Sargent MA, Sadayappan S, Molkentin JD. ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight 2019; 5:127356. [PMID: 30964448 PMCID: PMC6542606 DOI: 10.1172/jci.insight.127356] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling consists of an array of successively acting kinases. The extracellular signal-regulated kinases 1/2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specific expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fiber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fiber type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. Moreover, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofibers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease.
Collapse
Affiliation(s)
- Justin G Boyer
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vikram Prasad
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Taejeong Song
- Heart Lung Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Donghoon Lee
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xing Fu
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kelly M Grimes
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michelle A Sargent
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Heart Lung Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffery D Molkentin
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Kwong JQ, Huo J, Bround MJ, Boyer JG, Schwanekamp JA, Ghazal N, Maxwell JT, Jang YC, Khuchua Z, Shi K, Bers DM, Davis J, Molkentin JD. The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight 2018; 3:121689. [PMID: 30429366 DOI: 10.1172/jci.insight.121689] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle. Loss of Mcu did not affect muscle growth and maturation or otherwise cause pathology. Skeletal muscle-specific deletion of Mcu in mice also did not affect myofiber intracellular Ca2+ handling, but it did inhibit acute mitochondrial Ca2+ influx and mitochondrial respiration stimulated by Ca2+, resulting in reduced acute exercise performance in mice. However, loss of Mcu also resulted in enhanced muscle performance under conditions of fatigue, with a preferential shift toward fatty acid metabolism, resulting in reduced body fat with aging. Together, these results demonstrate that MCU-mediated mitochondrial Ca2+ regulation underlies skeletal muscle fuel selection at baseline and under enhanced physiological demands, which affects total homeostatic metabolism.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer A Schwanekamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nasab Ghazal
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zaza Khuchua
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Sechenov University, Moscow, Russia
| | - Kevin Shi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, California, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Holt LJ, Brandon AE, Small L, Suryana E, Preston E, Wilks D, Mokbel N, Coles CA, White JD, Turner N, Daly RJ, Cooney GJ. Ablation of Grb10 Specifically in Muscle Impacts Muscle Size and Glucose Metabolism in Mice. Endocrinology 2018; 159:1339-1351. [PMID: 29370381 DOI: 10.1210/en.2017-00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Grb10 is an adaptor-type signaling protein most highly expressed in tissues involved in insulin action and glucose metabolism, such as muscle, pancreas, and adipose. Germline deletion of Grb10 in mice creates a phenotype with larger muscles and improved glucose homeostasis. However, it has not been determined whether Grb10 ablation specifically in muscle is sufficient to induce hypermuscularity or affect whole body glucose metabolism. In this study we generated muscle-specific Grb10-deficient mice (Grb10-mKO) by crossing Grb10flox/flox mice with mice expressing Cre recombinase under control of the human α-skeletal actin promoter. One-year-old Grb10-mKO mice had enlarged muscles, with greater cross-sectional area of fibers compared with wild-type (WT) mice. This degree of hypermuscularity did not affect whole body glucose homeostasis under basal conditions. However, hyperinsulinemic/euglycemic clamp studies revealed that Grb10-mKO mice had greater glucose uptake into muscles compared with WT mice. Insulin signaling was increased at the level of phospho-Akt in muscle of Grb10-mKO mice compared with WT mice, consistent with a role of Grb10 as a modulator of proximal insulin receptor signaling. We conclude that ablation of Grb10 in muscle is sufficient to affect muscle size and metabolism, supporting an important role for this protein in growth and metabolic pathways.
Collapse
Affiliation(s)
- Lowenna J Holt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lewin Small
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Elaine Preston
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Donna Wilks
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Nancy Mokbel
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Chantal A Coles
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
| | - Nigel Turner
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Pharmacology, University of New South Wales, Sydney, New South Wales, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Changes in Skeletal Muscle and Body Weight on Sleeping Beauty Transposon-Mediated Transgenic Mice Overexpressing Pig mIGF-1. Biochem Genet 2018; 56:341-355. [PMID: 29470680 PMCID: PMC6028850 DOI: 10.1007/s10528-018-9848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/10/2018] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor (IGF-I) is an important growth factor in mammals, but the functions of the local muscle-specific isoform of insulin-like growth factor 1 (mIGF-1) to skeletal muscle development have rarely been reported. To determine the effect of pig mIGF-1 on body development and muscle deposition in vivo and to investigate the molecular mechanisms, the transgenic mouse model was generated which can also provide experimental data for making transgenic pigs with pig endogenous IGF1 gene. We constructed a skeletal muscle-specific expression vector using 5′- and 3′-regulatory regions of porcine skeletal α-actin gene. The expression cassette was flanked with Sleeping Beauty transposon (SB)-inverted terminal repeats. The recombinant vector could strongly drive enhanced green fluorescence protein (EGFP) reporter gene expression specifically in mouse myoblast cells and porcine fetal fibroblast cells, but not in porcine kidney cells. The EGFP level driven by α-actin regulators was significantly stronger than that driven by cytomegalovirus promoters. These results indicated that the cloned α-actin regulators could effectively drive specific expression of foreign genes in myoblasts, and the skeletal muscle-specific expression vector mediated with SB transposon was successfully constructed. To validate the effect of pig mIGF-1 on skeletal muscle growth, transgenic mice were generated by pronuclear microinjection of SB-mediated mIGF-1 skeletal expression vector and SB transposase-expressing plasmid. The transgene-positive rates of founder mice and the next-generation F1 mice were 30% (54/180) and 90.1% (64/71), respectively. The mIGF-1 gene could be expressed in skeletal muscle specifically. The levels of mRNA and protein in transgenic mice were 15 and 3.5 times higher, respectively, than in wild-type mice. The body weights of F1 transgenic mice were significantly heavier than wild-type mice from the age of 8 weeks onwards. The paraffin-embedded sections of gastrocnemius from 16-week-old transgenic male mice showed that the numbers of myofibers per unit were increased in comparison with those in the wild-type mice. mIGF-1 overexpression in mice skeletal muscle may promote myofibers hypertrophy and muscle production, and increased the average body weight of adult mice. Transgenic mice models can be generated by the mediation of SB transposon with high transgene efficiency.
Collapse
|
12
|
Hatazawa Y, Ono Y, Hirose Y, Kanai S, Fujii NL, Machida S, Nishino I, Shimizu T, Okano M, Kamei Y, Ogawa Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB J 2018; 32:1452-1467. [DOI: 10.1096/fj.201700573r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yukino Hatazawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
- Division of Regenerative Medicine Research Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| | - Yuma Hirose
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Sayaka Kanai
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Nobuharu L. Fujii
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan University Hachioji Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University Chiba Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine Chiba University Graduate School of Medicine Chiba Japan
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University Kumamoto Japan
| | - Yasutomi Kamei
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Yoshihiro Ogawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu University Fukuoka Japan
- Japan Agency for Medical Research and Development (AMED) Core Research for Evolutional Science and Technology (CREST) Tokyo Japan
| |
Collapse
|
13
|
Ehlen JC, Brager AJ, Baggs J, Pinckney L, Gray CL, DeBruyne JP, Esser KA, Takahashi JS, Paul KN. Bmal1 function in skeletal muscle regulates sleep. eLife 2017; 6:e26557. [PMID: 28726633 PMCID: PMC5574702 DOI: 10.7554/elife.26557] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Sleep loss can severely impair the ability to perform, yet the ability to recover from sleep loss is not well understood. Sleep regulatory processes are assumed to lie exclusively within the brain mainly due to the strong behavioral manifestations of sleep. Whole-body knockout of the circadian clock gene Bmal1 in mice affects several aspects of sleep, however, the cells/tissues responsible are unknown. We found that restoring Bmal1 expression in the brains of Bmal1-knockout mice did not rescue Bmal1-dependent sleep phenotypes. Surprisingly, most sleep-amount, but not sleep-timing, phenotypes could be reproduced or rescued by knocking out or restoring BMAL1 exclusively in skeletal muscle, respectively. We also found that overexpression of skeletal-muscle Bmal1 reduced the recovery response to sleep loss. Together, these findings demonstrate that Bmal1 expression in skeletal muscle is both necessary and sufficient to regulate total sleep amount and reveal that critical components of normal sleep regulation occur in muscle.
Collapse
Affiliation(s)
- J Christopher Ehlen
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Allison J Brager
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, United States
| | - Julie Baggs
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Lennisha Pinckney
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Cloe L Gray
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Jason P DeBruyne
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Karyn A Esser
- Myology Institute, College of Medicine, University of Florida, Gainesville, United States
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ketema N Paul
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| |
Collapse
|
14
|
Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans. Mol Cell Biol 2017; 37:MCB.00426-16. [PMID: 28265002 DOI: 10.1128/mcb.00426-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation.
Collapse
|
15
|
Li L, Cao Y, Wu H, Ye X, Zhu Z, Xing G, Shen C, Barik A, Zhang B, Xie X, Zhi W, Gan L, Su H, Xiong WC, Mei L. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron 2016; 92:1007-1019. [PMID: 27839998 DOI: 10.1016/j.neuron.2016.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Neurotransmission is ensured by a high concentration of neurotransmitter receptors at the postsynaptic membrane. This is mediated by scaffold proteins that bridge the receptors with cytoskeleton. One such protein is rapsyn (receptor-associated protein at synapse), which is essential for acetylcholine receptor (AChR) clustering and NMJ (neuromuscular junction) formation. We show that the RING domain of rapsyn contains E3 ligase activity. Mutation of the RING domain that abolishes the enzyme activity inhibits rapsyn- as well as agrin-induced AChR clustering in heterologous and muscle cells. Further biological and genetic studies support a working model where rapsyn, a classic scaffold protein, serves as an E3 ligase to induce AChR clustering and NMJ formation, possibly by regulation of AChR neddylation. This study identifies a previously unappreciated enzymatic function of rapsyn and a role of neddylation in synapse formation, and reveals a potential target of therapeutic intervention for relevant neurological disorders.
Collapse
Affiliation(s)
- Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haitao Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xinchun Ye
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhihui Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guanglin Xing
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bin Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoling Xie
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lin Gan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
16
|
Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. PLoS Genet 2016; 12:e1006019. [PMID: 27148972 PMCID: PMC4858180 DOI: 10.1371/journal.pgen.1006019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/08/2016] [Indexed: 01/06/2023] Open
Abstract
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. Muscular dystrophy is a genetic disease with muscle weakness, replacement of muscle tissue with fibrosis, and premature death. The gene for latent TGFβ binding protein 4 (LTBP4) was previously found to modify muscular dystrophy in both mice and humans with variants that confer protection from disease. In order to better understand this modifier gene, the protective version of LTBP4 was overexpressed specifically in the skeletal muscles of mice. Increased levels of LTBP4 protein resulted in increased muscle mass. Overexpression of LTBP4 in a mouse model of Duchenne muscular dystrophy alleviated many disease-associated features producing larger muscles, increased strength, and reduced fibrosis in muscle. LTBP4 formed a complex with myostatin, a protein that when inhibited leads to muscle growth. In LTBP4-overexpressing mice, active myostatin protein was decreased. This study shows that LTBP4 modifies muscular dystrophy based on its ability to scaffold and regulate multiple TGFβ family members including myostatin.
Collapse
|
17
|
Xu R, Singhal N, Serinagaoglu Y, Chandrasekharan K, Joshi M, Bauer JA, Janssen PML, Martin PT. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2668-84. [PMID: 26435413 DOI: 10.1016/j.ajpath.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/14/2015] [Accepted: 06/29/2015] [Indexed: 01/06/2023]
Abstract
Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yelda Serinagaoglu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kumaran Chandrasekharan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mandar Joshi
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - John A Bauer
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - Paulus M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
18
|
Tjondrokoesoemo A, Schips TG, Sargent MA, Vanhoutte D, Kanisicak O, Prasad V, Lin SCJ, Maillet M, Molkentin JD. Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice. J Biol Chem 2016; 291:9920-8. [PMID: 26966179 DOI: 10.1074/jbc.m116.719054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and β-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeffery D Molkentin
- From the Department of Pediatrics and Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229
| |
Collapse
|
19
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
20
|
Tjondrokoesoemo A, Schips T, Kanisicak O, Sargent MA, Molkentin JD. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Hum Mol Genet 2016; 25:1192-202. [PMID: 26744329 DOI: 10.1093/hmg/ddw005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 01/06/2023] Open
Abstract
Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD.
Collapse
Affiliation(s)
| | - Tobias Schips
- Department of Pediatrics, University of Cincinnati and
| | | | | | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati and Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC7020, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Miyake M, Nomura A, Ogura A, Takehana K, Kitahara Y, Takahara K, Tsugawa K, Miyamoto C, Miura N, Sato R, Kurahashi K, Harding HP, Oyadomari M, Ron D, Oyadomari S. Skeletal muscle-specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21-mediated non-cell-autonomous energy metabolism. FASEB J 2015; 30:798-812. [PMID: 26487695 PMCID: PMC4945323 DOI: 10.1096/fj.15-275990] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/13/2015] [Indexed: 01/02/2023]
Abstract
The eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out. We report that profiling of mRNAs of transgenic mice harboring a ligand-activated skeletal muscle-specific derivative of the eIF2α protein kinase R-like ER kinase revealed the expected up-regulation of genes involved in amino acid biosynthesis and transport but also uncovered the induced expression and secretion of a myokine, fibroblast growth factor 21 (FGF21), that stimulates energy consumption and prevents obesity. The link between the ISR and FGF21 expression was further reinforced by the identification of a small-molecule ISR activator that promoted Fgf21 expression in cell-based screens and by implication of the ISR-inducible activating transcription factor 4 in the process. Our findings establish that eIF2α phosphorylation regulates not only cell-autonomous proteostasis and amino acid metabolism, but also affects non-cell-autonomous metabolic regulation by induced expression of a potent myokine.
Collapse
Affiliation(s)
- Masato Miyake
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Akitoshi Nomura
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Atsushi Ogura
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kenji Takehana
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yoshihiro Kitahara
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kazuna Takahara
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kazue Tsugawa
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chinobu Miyamoto
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Naoko Miura
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ryosuke Sato
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kiyoe Kurahashi
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Heather P Harding
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Miho Oyadomari
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Seiichi Oyadomari
- *Division of Molecular Biology, Institute for Genome Research, and Department of Molecular Research, Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan; Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals Company, Limited, Kanagawa, Japan; and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Yoshimura R, Minami K, Matsuda J, Sawada N, Miura S, Kamei Y. Phosphorylation of 4EBP by oral leucine administration was suppressed in the skeletal muscle of PGC-1α knockout mice. Biosci Biotechnol Biochem 2015; 80:288-90. [PMID: 26745679 DOI: 10.1080/09168451.2015.1083397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Leucine is known to increase mTOR-mediated phosphorylation of 4EBP. In this study, leucine was administered to skeletal muscle-PGC-1α knockout mice. We observed attenuated 4EBP phosphorylation in the skeletal muscle, but not in the liver, of the PGC-1α knockout mice. These data suggest that skeletal muscle-PGC-1α is important for leucine-mediated mTOR activation and protein biosynthesis.
Collapse
Affiliation(s)
- Ryoji Yoshimura
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan.,b Research Fellow of Japan Society for the Promotion of Science , Tokyo , Japan
| | - Kimiko Minami
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | - Junichiro Matsuda
- c Laboratory of Animal Models for Human Diseases , National Institutes of Biomedical Innovation, Health and Nutrition , Osaka , Japan
| | - Naoki Sawada
- d Section of Cardiology, Department of Medicine , University of Chicago , Chicago , IL , USA.,e Global COE Program , Tokyo Medical and Dental University , Tokyo , Japan
| | - Shinji Miura
- f Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka , Japan
| | - Yasutomi Kamei
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
23
|
STIM1 elevation in the heart results in aberrant Ca²⁺ handling and cardiomyopathy. J Mol Cell Cardiol 2015; 87:38-47. [PMID: 26241845 DOI: 10.1016/j.yjmcc.2015.07.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor that partners with Orai1 to elicit Ca(2+) entry in response to endoplasmic reticulum (ER) Ca(2+) store depletion. While store-operated Ca(2+) entry (SOCE) is important for maintaining ER Ca(2+) homeostasis in non-excitable cells, it is unclear what role it plays in the heart, although STIM1 is expressed in the heart and upregulated during disease. Here we analyzed transgenic mice with STIM1 overexpression in the heart to model the known increase of this protein in response to disease. As expected, STIM1 transgenic myocytes showed enhanced Ca(2+) entry following store depletion and partial co-localization with the type 2 ryanodine receptor (RyR2) within the sarcoplasmic reticulum (SR), as well as enrichment around the sarcolemma. STIM1 transgenic mice exhibited sudden cardiac death as early as 6weeks of age, while mice surviving past 12weeks of age developed heart failure with hypertrophy, induction of the fetal gene program, histopathology and mitochondrial structural alterations, loss of ventricular functional performance and pulmonary edema. Younger, pre-symptomatic STIM1 transgenic mice exhibited enhanced pathology following pressure overload stimulation or neurohumoral agonist infusion, compared to controls. Mechanistically, cardiac myocytes isolated from STIM1 transgenic mice displayed spontaneous Ca(2+) transients that were prevented by the SOCE blocker SKF-96365, increased L-type Ca(2+) channel (LTCC) current, and enhanced Ca(2+) spark frequency. Moreover, adult cardiac myocytes from STIM1 transgenic mice showed both increased diastolic Ca(2+) and maximal transient amplitude but no increase in total SR Ca(2+) load. Associated with this enhanced Ca(2+) profile was an increase in cardiac nuclear factor of activated T-cells (NFAT) and Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity. We conclude that STIM1 has an unexpected function in the heart where it alters communication between the sarcolemma and SR resulting in greater Ca(2+) flux and a leaky SR compartment.
Collapse
|
24
|
Maurya SK, Bal NC, Sopariwala DH, Pant M, Rowland LA, Shaikh SA, Periasamy M. Sarcolipin Is a Key Determinant of the Basal Metabolic Rate, and Its Overexpression Enhances Energy Expenditure and Resistance against Diet-induced Obesity. J Biol Chem 2015; 290:10840-9. [PMID: 25713078 DOI: 10.1074/jbc.m115.636878] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca(2+) transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln(-/-)) and skeletal muscle-specific SLN overexpression (Sln(OE)) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, Sln(OE) mice lost weight compared with the WT, but Sln(-/-) mice gained weight. Interestingly, when fed with a high-fat diet, Sln(OE) mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln(-/-) mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in Sln(OE) mice. There was also an increase in both mitochondrial number and size in Sln(OE) muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.
Collapse
Affiliation(s)
- Santosh K Maurya
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Naresh C Bal
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Danesh H Sopariwala
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Meghna Pant
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Leslie A Rowland
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Sana A Shaikh
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Muthu Periasamy
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
25
|
Feeney SJ, McGrath MJ, Sriratana A, Gehrig SM, Lynch GS, D’Arcy CE, Price JT, McLean CA, Tupler R, Mitchell CA. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS One 2015; 10:e0117665. [PMID: 25695429 PMCID: PMC4335040 DOI: 10.1371/journal.pone.0117665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.
Collapse
Affiliation(s)
- Sandra J. Feeney
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan J. McGrath
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Absorn Sriratana
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Colleen E. D’Arcy
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - John T. Price
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Rossella Tupler
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
- Dipartimento di Scienze della Vita, Universita di Modena e Reggio Emilia, 41125, Modena, Italy
| | - Christina A. Mitchell
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- * E-mail:
| |
Collapse
|
26
|
The effects of sarcolipin over-expression in mouse skeletal muscle on metabolic activity. Arch Biochem Biophys 2015; 569:26-31. [PMID: 25660043 PMCID: PMC4362768 DOI: 10.1016/j.abb.2015.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
Sarcolipin is insufficient to affect thermogenic activity of SERCA in mouse muscle. The ratio of SLN to SERCA in total limb skeletal muscle is <0.0015 mol/mol. Knocking out this SLN in mice would have a small effect on SERCA function. Overexpressing SLN in transgenic mice only resulted in 0.037 mol SLN/mol SERCA. SLN+/+ mice showed no evidence of an increase in thermogenesis.
Studies in sarcolipin knockout mice have led to the suggestion that skeletal muscle sarcolipin plays a role in thermogenesis. The mechanism proposed is uncoupling of the sarcoplasmic reticulum calcium pump. However, in other work sarcolipin was not detected in mouse skeletal tissue. We have therefore measured sarcolipin levels in mouse skeletal muscle using semi-quantitative western blotting and synthetic mouse sarcolipin. Sarcolipin levels were so low that it is unlikely that knocking out sarcolipin would have a measurable effect on thermogenesis by SERCA. In addition, overexpression of neither wild type nor FLAG-tagged variants of mouse sarcolipin in transgenic mice had any major significant effects on body mass, energy expenditure, even when mice were fed on a high fat diet.
Collapse
|
27
|
Pessemesse L, Lepourry L, Bouton K, Levin J, Cabello G, Wrutniak-Cabello C, Casas F. p28, a truncated form of TRα1 regulates mitochondrial physiology. FEBS Lett 2014; 588:4037-43. [PMID: 25263706 DOI: 10.1016/j.febslet.2014.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
We have previously identified in mitochondria two truncated forms of the T3 nuclear receptor TRα1, with molecular weights of 43kDa (p43) and 28kDa (p28) respectively located in the matrix and in the inner membrane. Previously, we have demonstrated that p43 stimulates mitochondrial transcription and protein synthesis in the presence of T3. Here we report that p28 is targeted into the organelle in a T3-dependent manner and displays an affinity for T3 higher than the nuclear receptor. We tried to generate mice overexpressing p28 using the human α-skeletal actin promoter, however we found an early embryonic lethality that was probably linked to a transient expression of p28 in trophoblast giant cells. This could be partly explained by the observation that overexpression of p28 in human fibroblasts induced alterations of mitochondrial physiology.
Collapse
Affiliation(s)
- Laurence Pessemesse
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - Laurence Lepourry
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - Katia Bouton
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - Jonathan Levin
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - Gérard Cabello
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - Chantal Wrutniak-Cabello
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France
| | - François Casas
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 place Viala, F-34060 Montpellier, France; Université Montpellier I et II, F-34060 Montpellier, France.
| |
Collapse
|
28
|
Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 2014; 4:2805. [PMID: 24241282 PMCID: PMC3868675 DOI: 10.1038/ncomms3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) in skeletal muscle involves signaling between stromal interaction molecule 1 (STIM1) in the sarcoplasmic reticulum and Ca2+ selective Orai1 channels in the sarcolemma. Here we generate transgenic mice with muscle-specific expression of dominant-negative Orai1 (dnOrai1) and demonstrate that Orai1-dependent SOCE promotes growth and limits fatigue in adult skeletal muscle. dnOrai1 mice lack SOCE specifically in muscle but are fertile and thrive well into adulthood. Although muscle ultrastructure, excitation-contraction coupling fiber type, and expression of other Ca2+ regulatory proteins are unaltered, dnOrai1 mice exhibit reduced body weight, muscle mass, and fiber cross-sectional area. Importantly, during intense repetitive activity, dnOrai1 mice display increased susceptibility to fatigue at the single fibre, excised muscle, and whole animal levels. We further show that STIM1 and Orai1 proteins colocalise within the triad junction but do not exist in a preassembled context. These results show that Orai1-dependent SOCE has an important physiological role in muscles of adult mice.
Collapse
|
29
|
Cortes CJ, Ling SC, Guo LT, Hung G, Tsunemi T, Ly L, Tokunaga S, Lopez E, Sopher BL, Bennett CF, Shelton GD, Cleveland DW, La Spada AR. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 2014; 82:295-307. [PMID: 24742458 DOI: 10.1016/j.neuron.2014.03.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 02/07/2023]
Abstract
X-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA and suggest muscle-directed therapies as effective treatments.
Collapse
Affiliation(s)
- Constanza J Cortes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuo-Chien Ling
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ling T Guo
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene Hung
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Taiji Tsunemi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linda Ly
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seiya Tokunaga
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edith Lopez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - C Frank Bennett
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
30
|
Wissing ER, Boyer JG, Kwong JQ, Sargent MA, Karch J, McNally EM, Otsu K, Molkentin JD. P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum Mol Genet 2014; 23:5452-63. [PMID: 24876160 DOI: 10.1093/hmg/ddu270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscular dystrophies are a group of genetic diseases that lead to muscle wasting and, in most cases, premature death. Cytokines and inflammatory factors are released during the disease process where they promote deleterious signaling events that directly participate in myofiber death. Here, we show that p38α, a kinase in the greater mitogen-activated protein kinase (MAPK)-signaling network, serves as a nodal regulator of disease signaling in dystrophic muscle. Deletion of Mapk14 (p38α-encoding gene) in the skeletal muscle of mdx- (lacking dystrophin) or sgcd- (δ-sarcoglycan-encoding gene) null mice resulted in a significant reduction in pathology up to 6 months of age. We also generated MAPK kinase 6 (MKK6) muscle-specific transgenic mice to model heightened p38α disease signaling that occurs in dystrophic muscle, which resulted in severe myofiber necrosis and many hallmarks of muscular dystrophy. Mechanistically, we show that p38α directly induces myofiber death through a mitochondrial-dependent pathway involving direct phosphorylation and activation of the pro-death Bcl-2 family member Bax. Indeed, muscle-specific deletion of Bax, but not the apoptosis regulatory gene Tp53 (encoding p53), significantly reduced dystrophic pathology in the muscles of MKK6 transgenic mice. Moreover, use of a p38 MAPK pharmacologic inhibitor reduced dystrophic disease in Sgcd(-/-) mice suggesting a future therapeutic approach to delay disease.
Collapse
Affiliation(s)
- Erin R Wissing
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jennifer Q Kwong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jason Karch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland, MC 6088, Chicago, IL 60637, USA
| | - Kinya Otsu
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK and
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA, Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
31
|
Doig J, Griffiths LA, Peberdy D, Dharmasaroja P, Vera M, Davies FJC, Newbery HJ, Brownstein D, Abbott CM. In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy. FEBS J 2014; 280:6528-40. [PMID: 24460877 PMCID: PMC4163635 DOI: 10.1111/febs.12554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2‐null mutant wasted mice develop an aggressive, early‐onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue‐specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle‐specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene‐derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term.
Collapse
Affiliation(s)
- Jennifer Doig
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Na+ dysregulation coupled with Ca2+ entry through NCX1 promotes muscular dystrophy in mice. Mol Cell Biol 2014; 34:1991-2002. [PMID: 24662047 DOI: 10.1128/mcb.00339-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Unregulated Ca(2+) entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na(+)-Ca(2+) exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd(-/-)), Dysf(-/-), and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd(-/-) mice. Measured increases in baseline Na(+) and Ca(2+) in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca(2+) influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca(2+) levels. Indeed, Atp1a2(+/-) (encoding Na(+)-K(+) ATPase α2) mice, which have reduced Na(+) clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na(+)-K(+) ATPase inhibitor digoxin. Treatment of Sgcd(-/-) mice with ranolazine, a broadly acting Na(+) channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology.
Collapse
|
33
|
Goonasekera SA, Davis J, Kwong JQ, Accornero F, Wei-LaPierre L, Sargent MA, Dirksen RT, Molkentin JD. Enhanced Ca²⁺ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 2014; 23:3706-15. [PMID: 24556214 DOI: 10.1093/hmg/ddu079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati and Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA and
| |
Collapse
|
34
|
Rogowski MP, Flowers MT, Stamatikos AD, Ntambi JM, Paton CM. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J Lipid Res 2013; 54:2636-46. [PMID: 23918045 DOI: 10.1194/jlr.m035865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated.
Collapse
Affiliation(s)
- Michael P Rogowski
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; and
| | | | | | | | | |
Collapse
|
35
|
Miura S, Kai Y, Tadaishi M, Tokutake Y, Sakamoto K, Bruce CR, Febbraio MA, Kita K, Chohnan S, Ezaki O. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. Am J Physiol Endocrinol Metab 2013; 305:E213-29. [PMID: 23695215 DOI: 10.1152/ajpendo.00114.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LKB1 phosphorylates members of the AMP-activated protein kinase (AMPK) family. LKB1 and AMPK in the skeletal muscle are believed to regulate not only fuel oxidation during exercise but also exercise capacity. LKB1 was also required to prevent diaphragm fatigue, which was shown to affect exercise performance. Using mice expressing dominant negative (DN) mutants of LKB1 and AMPK, specifically in the skeletal muscle but not in the heart, we investigated the roles of LKB1 and AMPK activity in exercise performance and the effects of these kinases on the characteristics of respiratory and locomotive muscles. In the diaphragm and gastrocnemius, both AMPK-DN and LKB1-DN mice showed complete loss of AMPKα2 activity, and LKB1-DN mice showed a reduction in LKB1 activity. Exercise capacity was significantly reduced in LKB1-DN mice, with a marked reduction in oxygen consumption and carbon dioxide production during exercise. The diaphragm from LKB1-DN mice showed an increase in myosin heavy chain IIB and glycolytic enzyme expression. Normal respiratory chain function and CPT I activity were shown in the isolated mitochondria from LKB1-DN locomotive muscle, and the expression of genes related to fiber type, mitochondria function, glucose and lipid metabolism, and capillarization in locomotive muscle was not different between LKB1-DN and AMPK-DN mice. We concluded that LKB1 in the skeletal muscle contributes significantly to exercise capacity and oxygen uptake during exercise. LKB1 mediated the change of fiber-type distribution in the diaphragm independently of AMPK and might be responsible for the phenotypes we observed.
Collapse
Affiliation(s)
- Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
37
|
Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. J Biol Chem 2012; 287:43853-61. [PMID: 23118233 DOI: 10.1074/jbc.m112.419283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.
Collapse
Affiliation(s)
- John Szpyt
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang J, Luo ZG. The role of Wnt/beta-catenin signaling in postsynaptic differentiation. Commun Integr Biol 2012; 1:158-60. [PMID: 19704879 DOI: 10.4161/cib.1.2.7099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023] Open
Abstract
Synapses are basic units that mediate the communication between neurons and their target cells. The formation of synapse is regulated by secreted factors, receptors, adhesion molecules and intracellular signaling molecules. The interplay between positive and negative factors determines synapse assembling, remodeling and elimination, resulting in the formation of precise synaptic connections. However, compared to the abundant identified positive factors, negative factors are largely unknown. We have recently shown that Wnt3a acts as a negative factor that inhibits postsynaptic differentiation at the neuromuscular junction (NMJ), the synapse formed between motor neurons and skeletal muscle fibers. The clustering of acetylcholine receptor (AChR) guarantees efficient and accurate neurotransmission and is a hallmark for postsynaptic differentiation at the NMJ. We found that treatment with Wnt3a or upregulation of beta-catenin inhibited the formation of AChR clusters. Furthermore, we investigated the underlying mechanism and found that Wnt/beta-catenin signaling negatively regulated AChR clustering by downregulating the expression of Rapsyn, an AChR-associated protein required for formation and stabilization of AChR clusters.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience and Key Laboratory of Neurobiology; Chinese Academy of Sciences; Shanghai P.R. China
| | | |
Collapse
|
39
|
Wu H, Lu Y, Shen C, Patel N, Gan L, Xiong WC, Mei L. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron 2012; 75:94-107. [PMID: 22794264 DOI: 10.1016/j.neuron.2012.04.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2012] [Indexed: 01/07/2023]
Abstract
Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act in cis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of cocultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin's receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development.
Collapse
Affiliation(s)
- Haitao Wu
- Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 2012; 18:1575-9. [PMID: 22961106 DOI: 10.1038/nm.2897] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/09/2012] [Indexed: 11/09/2022]
Abstract
The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca(2+)-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln(-/-) mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca(2+) leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca(2+), which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.
Collapse
|
41
|
Palmer SJ, Taylor KM, Santucci N, Widagdo J, Chan YKA, Yeo JL, Adams M, Gunning PW, Hardeman EC. GTF2IRD2 from the Williams-Beuren critical region encodes a mobile-element-derived fusion protein that antagonizes the action of its related family members. J Cell Sci 2012; 125:5040-50. [PMID: 22899722 DOI: 10.1242/jcs.102798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
GTF2IRD2 belongs to a family of transcriptional regulators (including TFII-I and GTF2IRD1) that are responsible for many of the key features of Williams-Beuren syndrome (WBS). Sequence evidence suggests that GTF2IRD2 arose in eutherian mammals by duplication and divergence from the gene encoding TFII-I. However, in GTF2IRD2, most of the C-terminal domain has been lost and replaced by the domesticated remnant of an in-frame hAT-transposon mobile element. In this first experimental analysis of function, we show that transgenic expression of each of the three family members in skeletal muscle causes significant fiber type shifts, but the GTF2IRD2 protein causes an extreme shift in the opposite direction to the two other family members. Mating of GTF2IRD1 and GTF2IRD2 mice restores the fiber type balance, indicating an antagonistic relationship between these two paralogs. In cells, GTF2IRD2 localizes to cytoplasmic microtubules and discrete speckles in the nuclear periphery. We show that it can interact directly with TFII-Iβ and GTF2IRD1, and upon co-transfection changes the normal distribution of these two proteins into a punctate nuclear pattern typical of GTF2IRD2. These data suggest that GTF2IRD2 has evolved as a regulator of GTF2IRD1 and TFII-I; inhibiting their function by direct interaction and sequestration into inactive nuclear zones.
Collapse
Affiliation(s)
- Stephen J Palmer
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iwasaki H, Naka A, Iida KT, Nakagawa Y, Matsuzaka T, Ishii KA, Kobayashi K, Takahashi A, Yatoh S, Yahagi N, Sone H, Suzuki H, Yamada N, Shimano H. TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2012; 302:E896-902. [PMID: 22297304 DOI: 10.1152/ajpendo.00204.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of transcription factor E3 (TFE3), a bHLH transcription factor, in immunology and cancer has been well characterized. Recently, we reported that TFE3 activates hepatic IRS-2 and hexokinase, participates in insulin signaling, and ameliorates diabetes. However, the effects of TFE3 in other organs are poorly understood. Herein, we examined the effects of TFE3 on skeletal muscle, an important organ involved in glucose metabolism. We generated transgenic mice that selectively express TFE3 in skeletal muscles. These mice exhibit a slight acceleration in growth prior to adulthood as well as a progressive increase in muscle mass. In TFE3 transgenic muscle, glycogen stores were more than twofold than in wild-type mice, and this was associated with an upregulation of genes involved in glucose metabolism, specifically glucose transporter 4, hexokinase II, and glycogen synthase. Consequently, exercise endurance capacity was enhanced in this transgenic model. Furthermore, insulin sensitivity was enhanced in transgenic mice and exhibited better improvement after 4 wk of exercise training, which was associated with increased IRS-2 expression. The effects of TFE3 on glucose metabolism in skeletal muscle were different from that in the liver, although they did, in part, overlap. The potential role of TFE3 in regulating metabolic genes and glucose metabolism within skeletal muscle suggests that it may be used for treating metabolic diseases as well as increasing endurance in sport.
Collapse
Affiliation(s)
- Hitoshi Iwasaki
- Department of Internal Medicine, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pearen MA, Eriksson NA, Fitzsimmons RL, Goode JM, Martel N, Andrikopoulos S, Muscat GEO. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol Endocrinol 2012; 26:372-84. [PMID: 22282471 DOI: 10.1210/me.2011-1274] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal muscle, this resulted in a marked increase in: 1) myoglobin expression, 2) mitochondrial DNA and density, 3) oxidative enzyme staining, and 4) genes/proteins encoding subunits of electron transport chain complexes. This was associated with significantly increased type IIA and IIX myosin heavy chain mRNA and proteins and decreased type IIB myosin heavy chain mRNA and protein. The contractile protein/fiber type remodeling driving the acquisition of the oxidative type II phenotype was associated with 1) the significantly increased expression of myocyte-specific enhancer factor 2C, and phospho-histone deacetylase 5, and 2) predominantly cytoplasmic HDAC5 staining in the Tg-Nor-1 mice. Moreover, the Nor-1 transgenic line displayed significant improvements in glucose tolerance, oxygen consumption, and running endurance (in the absence of increased insulin sensitivity), consistent with increased oxidative capacity of skeletal muscle. We conclude that skeletal muscle fiber type is not only regulated by exercise-sensitive calcineurin-induced signaling cascade but also by NR signaling pathways that operate at the nexus that coordinates muscle performance and metabolic capacity in this major mass tissue.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE, Potter AC, Papadimitriou J, Griffiths LM, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS One 2011; 6:e28699. [PMID: 22174871 PMCID: PMC3235150 DOI: 10.1371/journal.pone.0028699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 11/14/2011] [Indexed: 01/13/2023] Open
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Behavior, Animal
- Disease Models, Animal
- Gene Expression
- Green Fluorescent Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Myopathies, Nemaline/pathology
- Myopathies, Nemaline/physiopathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Recombinant Fusion Proteins/metabolism
- Transgenes/genetics
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Connie Jackaman
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Caroline A. Sewry
- Wolfson Centre for Inherited Neuromuscular Diseases, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
| | - Elyshia McNamara
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Sarah E. Squire
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Allyson C. Potter
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Lisa M. Griffiths
- Neuropathology, Royal Perth Hospital and PathWest Anatomical Pathology, Perth, Australia
| | - Anthony J. Bakker
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Kay E. Davies
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nigel G. Laing
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Kristen J. Nowak
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| |
Collapse
|
45
|
Gomez AM, Burden SJ. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev Dyn 2011; 240:2626-33. [PMID: 22038977 DOI: 10.1002/dvdy.22772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 11/09/2022] Open
Abstract
Neuromuscular synapse formation requires an exchange of signals between motor neurons and muscle. Agrin, supplied by motor neurons, binds to Lrp4 in muscle, stimulating phosphorylation of MuSK and recruitment of a signaling complex essential for synapse-specific transcription and anchoring of key proteins in the postsynaptic membrane. Lrp4, like the LDLR and other Lrp-family members, contains an intracellular region with motifs that can regulate receptor trafficking, as well as assembly of an intracellular signaling complex. Here, we show that the intracellular region of Lrp4 is dispensable for Agrin to stimulate MuSK phosphorylation and clustering of acetylcholine receptors in cultured myotubes. Moreover, muscle-selective expression of a Lrp4-CD4 chimera, composed of the extracellular and transmembrane regions of Lrp4 and the intracellular region of CD4, rescues neuromuscular synapse formation and the neonatal lethality of lrp4 mutant mice, demonstrating that Lrp4, lacking the Lrp4 intracellular region, is sufficient for presynaptic and postsynaptic differentiation.
Collapse
Affiliation(s)
- Andrea M Gomez
- Molecular Neurobiology Program, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
46
|
Murray J, Huss JM. Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway. Am J Physiol Cell Physiol 2011; 301:C630-45. [PMID: 21562305 PMCID: PMC3174569 DOI: 10.1152/ajpcell.00033.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023]
Abstract
Myocyte differentiation involves complex interactions between signal transduction pathways and transcription factors. The estrogen-related receptors (ERRs) regulate energy substrate uptake, mitochondrial respiration, and biogenesis and may target structural gene programs in striated muscle. However, ERRα's role in regulating myocyte differentiation is not known. ERRα and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) are coordinately upregulated with metabolic and skeletal muscle-specific genes early in myogenesis. We analyzed effects of ERRα overexpression and loss of function in myogenic models. In C2C12 myocytes ERRα overexpression accelerated differentiation, whereas XCT790 treatment delayed myogenesis and resulted in myotubes with fewer mitochondria and disorganized sarcomeres. ERRα-/- primary myocytes showed delayed myogenesis, resulting in structurally immature myotubes with reduced sarcomeric assembly and mitochondrial function. However, sarcomeric and metabolic gene expression was unaffected or upregulated in ERRα-/- cells. Instead, ERRα-/- myocytes exhibited aberrant ERK activation early in myogenesis, consistent with delayed myotube formation. XCT790 treatment also increased ERK phosphorylation in C2C12, whereas ERRα overexpression decreased early ERK activation, consistent with the opposing effects of these treatments on differentiation. The transient induction of MAP kinase phosphatase-1 (MKP-1), which mediates ERK dephosphorylation at the onset of myogenesis, was lost in ERRα-/- myocytes and in XCT790-treated C2C12. The ERRα-PGC-1α complex activates the Dusp1 gene, which encodes MKP-1, and ERRα occupies the proximal 5' regulatory region during early differentiation in C2C12 myocytes. Finally, treatment of ERRα-/- myocytes with MEK inhibitors rescued normal ERK signaling and myogenesis. Collectively, these data demonstrate that ERRα is required for normal skeletal myocyte differentiation via modulation of MAP kinase signaling.
Collapse
MESH Headings
- Animals
- Butadienes/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Creatine Kinase, Mitochondrial Form/genetics
- Dual Specificity Phosphatase 1/genetics
- Dual Specificity Phosphatase 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- Gene Expression/drug effects
- Gene Expression/genetics
- Kinetics
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle Development/drug effects
- Muscle Development/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/enzymology
- Myoblasts, Skeletal/metabolism
- Myogenin/genetics
- Myosin Heavy Chains/genetics
- Nitriles/pharmacology
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphorylation/drug effects
- Protein Binding/genetics
- Protein Serine-Threonine Kinases/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Sarcomeres/pathology
- Thiazoles/pharmacology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Transduction, Genetic
- Troponin I/genetics
- Troponin I/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Jennifer Murray
- Division of Gene Regulation and Drug Discovery, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | |
Collapse
|
47
|
Kano Y, Poole DC, Sudo M, Hirachi T, Miura S, Ezaki O. Control of microvascular PO₂ kinetics following onset of muscle contractions: role for AMPK. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1350-7. [PMID: 21849631 DOI: 10.1152/ajpregu.00294.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microvascular partial pressure of oxygen (Pmv(o(2))) kinetics following the onset of exercise reflects the relationship between muscle O(2) delivery and uptake (Vo(2)). Although AMP-activated protein kinase (AMPK) is known as a regulator of mitochondria and nitric oxide metabolism, it is unclear whether the dynamic balance of O(2) delivery and Vo(2) at exercise onset is dependent on AMPK activation level. We used transgenic mice with muscle-specific AMPK dominant-negative (AMPK-DN) to investigate a role for skeletal muscle AMPK on Pmv(o(2)) kinetics following onset of muscle contractions. Phosphorescence quenching techniques were used to measure Pmv(o(2)) at rest and across the transition to twitch (1 Hz) and tetanic (100 Hz, 3-5 V, 4-ms pulse duration, stimulus duration of 100 ms every 1 s for 1 min) contractions in gastrocnemius muscles (each group n = 6) of AMPK-DN mice and wild-type littermates (WT) under isoflurane anesthesia with 100% inspired O(2) to avoid hypoxemia. Baseline Pmv(o(2)) before contractions was not different between groups (P > 0.05). Both muscle contraction conditions exhibited a delay followed by an exponential decrease in Pmv(o(2)). However, compared with WT, AMPK-DN demonstrated 1) prolongation of the time delay before Pmv(o(2)) began to decline (1 Hz: WT, 3.2 ± 0.5 s; AMPK-DN, 6.5 ± 0.4 s; 100 Hz: WT, 4.4 ± 1.0 s; AMPK-DN, 6.5 ± 1.4 s; P < 0.05), 2) a faster response time (i.e., time constant; 1 Hz: WT, 19.4 ± 3.9 s; AMPK-DN, 12.4 ± 2.6 s; 100 Hz: WT, 15.1 ± 2.2 s; AMPK-DN, 9.0 ± 1.7 s; P < 0.05). These findings are consistent with the presence of substantial mitochondrial and microvascular dysfunction in AMPK-DN mice, which likely slows O(2) consumption kinetics (i.e., oxidative phosphorylation response) and impairs the hyperemic response at the onset of contractions thereby sowing the seeds for exercise intolerance.
Collapse
Affiliation(s)
- Yutaka Kano
- Dept. of Engineering Science, Bioscience and Technology Program, Univ. of Electro-Communications, Chofu,Tokyo, 1828585, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM, McNamara E, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. ACTA ACUST UNITED AC 2011; 134:1101-15. [PMID: 21303860 DOI: 10.1093/brain/awr004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of pathologically defined congenital myopathies. Most patients have dominant mutations and experience severe skeletal muscle weakness, dying within one year of birth. To determine mutant ACTA1 pathobiology, transgenic mice expressing ACTA1(D286G) were created. These Tg(ACTA1)(D286G) mice were less active than wild-type individuals. Their skeletal muscles were significantly weaker by in vitro analyses and showed various pathological lesions reminiscent of human patients, however they had a normal lifespan. Mass spectrometry revealed skeletal muscles from Tg(ACTA1)(D286G) mice contained ∼25% ACTA1(D286G) protein. Tg(ACTA1)(D286G) mice were crossed with hemizygous Acta1(+/-) knock-out mice to generate Tg(ACTA1)(D286G)(+/+).Acta1(+/-) offspring that were homozygous for the transgene and hemizygous for the endogenous skeletal muscle α-actin gene. Akin to most human patients, skeletal muscles from these offspring contained approximately equal proportions of ACTA1(D286G) and wild-type actin. Strikingly, the majority of these mice presented with severe immobility between postnatal Days 8 and 17, requiring euthanasia. Their skeletal muscles contained extensive structural abnormalities as identified in severely affected human patients, including nemaline bodies, actin accumulations and widespread sarcomeric disarray. Therefore we have created valuable mouse models, one of mild dominant ACTA1 disease [Tg(ACTA1)(D286G)], and the other of severe disease, with a dramatically shortened lifespan [Tg(ACTA1)(D286G)(+/+).Acta1(+/-)]. The correlation between mutant ACTA1 protein load and disease severity parallels effects in ACTA1 families and suggests altering this ratio in patient muscle may be a therapy for patients with dominant ACTA1 disease. Furthermore, ringbinden fibres were observed in these mouse models. The presence of such features suggests that perhaps patients with ringbinden of unknown genetic origin should be considered for ACTA1 mutation screening. This is the first experimental, as opposed to observational, evidence that mutant protein load determines the severity of ACTA1 disease.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Okazaki Y, Ohshima N, Yoshizawa I, Kamei Y, Mariggiò S, Okamoto K, Maeda M, Nogusa Y, Fujioka Y, Izumi T, Ogawa Y, Shiro Y, Wada M, Kato N, Corda D, Yanaka N. A novel glycerophosphodiester phosphodiesterase, GDE5, controls skeletal muscle development via a non-enzymatic mechanism. J Biol Chem 2010; 285:27652-63. [PMID: 20576599 PMCID: PMC2934633 DOI: 10.1074/jbc.m110.106708] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/08/2010] [Indexed: 11/06/2022] Open
Abstract
Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5DeltaC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5DeltaC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Cell Line
- Cloning, Molecular
- Computational Biology
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
Collapse
Affiliation(s)
- Yuri Okazaki
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Noriyasu Ohshima
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Ikumi Yoshizawa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yasutomi Kamei
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Stefania Mariggiò
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Keiko Okamoto
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Masahiro Maeda
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yoshihito Nogusa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yuichiro Fujioka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takashi Izumi
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yoshihiro Ogawa
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshitsugu Shiro
- the RIKEN SPring-8 Center, Harima Institute, Hongo 679-5148, Japan, and
| | - Masanobu Wada
- the Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Norihisa Kato
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Daniela Corda
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Noriyuki Yanaka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
50
|
Fernando SM, Rao P, Niel L, Chatterjee D, Stagljar M, Monks DA. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass. Endocrinology 2010; 151:3125-32. [PMID: 20427479 PMCID: PMC2903941 DOI: 10.1210/en.2010-0018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone and other androgens are thought to increase lean body mass and reduce fat body mass in men by activating the androgen receptor. However, the clinical potential of androgens for improving body composition is hampered by our limited understanding of the tissues and cells that promote such changes. Here we show that selective overexpression of androgen receptor in muscle cells (myocytes) of transgenic male rats both increases lean mass percentage and reduces fat mass. Similar changes in body composition are observed in human skeletal actin promoter driving expression of androgen receptor (HSA-AR) transgenic mice and result from acute testosterone treatment of transgenic female HSA-AR rats. These shifts in body composition in HSA-AR transgenic male rats are associated with hypertrophy of type IIb myofibers and decreased size of adipocytes. Metabolic analyses of transgenic males show higher activity of mitochondrial enzymes in skeletal muscle and increased O(2) consumption by the rats. These results indicate that androgen signaling in myocytes not only increases muscle mass but also reduces fat body mass, likely via increases in oxidative metabolism.
Collapse
Affiliation(s)
- Shannon M Fernando
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 3G3
| | | | | | | | | | | |
Collapse
|