1
|
McParland A, Moulton J, Brann C, Hale C, Otis Y, Ganter G. The brinker repressor system regulates injury-induced nociceptive sensitization in Drosophila melanogaster. Mol Pain 2021; 17:17448069211037401. [PMID: 34399634 PMCID: PMC8375337 DOI: 10.1177/17448069211037401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Chronic pain is a debilitating condition affecting millions of people worldwide, and an improved understanding of the pathophysiology of chronic pain is urgently needed. Nociceptors are the sensory neurons that alert the nervous system to potentially harmful stimuli such as mechanical pressure or noxious thermal temperature. When an injury occurs, the nociceptive threshold for pain is reduced and an increased pain signal is produced. This process is called nociceptive sensitization. This sensitization normally subsides after the injury is healed. However, dysregulation can occur which results in sensitization that persists after the injury has healed. This process is thought to perpetuate chronic pain. The Hedgehog (Hh) signaling pathway has been previously implicated in nociceptive sensitization in response to injury in Drosophila melanogaster. Downstream of Hh signaling, the Bone Morphogenetic Protein (BMP) pathway has also been shown to be necessary for this process. Here, we describe a role for nuclear components of BMP’s signaling pathway in the formation of injury-induced nociceptive sensitization. Brinker (Brk), and Schnurri (Shn) were suppressed in nociceptors using an RNA-interference (RNAi) “knockdown” approach. Knockdown of Brk resulted in hypersensitivity in the absence of injury, indicating that it normally acts to suppress nociceptive sensitivity. Animals in which transcriptional activator Shn was knocked down in nociceptors failed to develop normal allodynia after ultraviolet irradiation injury, indicating that Shn normally acts to promote hypersensitivity after injury. These results indicate that Brk-related transcription regulators play a crucial role in the formation of nociceptive sensitization and may therefore represent valuable new targets for pain-relieving medications.
Collapse
Affiliation(s)
- Aidan McParland
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie Moulton
- College of Arts and Sciences, University of New England, Biddeford, ME, USA
| | - Courtney Brann
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Christine Hale
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Yvonne Otis
- College of Arts and Sciences, University of New England, Biddeford, ME, USA
| | - Geoffrey Ganter
- College of Arts and Sciences, University of New England, Biddeford, ME, USA.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| |
Collapse
|
2
|
Chen J, Horton J, Sagum C, Zhou J, Cheng X, Bedford MT. Histone H3 N-terminal mimicry drives a novel network of methyl-effector interactions. Biochem J 2021; 478:1943-1958. [PMID: 33969871 PMCID: PMC8166343 DOI: 10.1042/bcj20210203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - John Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| |
Collapse
|
3
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
4
|
Kader A, Liu X, Dong K, Song S, Pan J, Yang M, Chen X, He X, Jiang L, Ma Y. Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism BeadChip array. Anim Genet 2016; 47:560-9. [PMID: 27440410 DOI: 10.1111/age.12451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Copy number variation (CNV), an essential form of genetic variation, has been increasingly recognized as one promising genetic marker in the analysis of animal genomes. Here, we used the Equine 70K single nucleotide polymorphism genotyping array for the genome-wide detection of CNVs in 96 horses from three diverse Chinese breeds: Debao pony (DB), Mongolian horse (MG) and Yili horse (YL). A total of 287 CNVs were determined and merged into 122 CNV regions (CNVRs) ranging from 199 bp to 2344 kb in size and distributed in a heterogeneous manner on chromosomes. These CNVRs were integrated with seven existing reports to generate a composite genome-wide dataset of 1558 equine CNVRs, revealing 69 (56.6%) novel CNVRs. The majority (69.7%) of the 122 CNVRs overlapped with 438 genes, whereas 30.3% were located in intergenic regions. Most of these genes were associated with common CNVRs, which were shared by divergent horse breeds. As many as 60, 42 and 91 genes overlapping with the breed-specific ss were identified in DB, MG and YL respectively. Among these genes, FGF11, SPEM1, PPARG, CIDEB, HIVEP1 and GALR may have potential relevance to breed-specific traits. These findings provide valuable information for understanding the equine genome and facilitating association studies of economically important traits with equine CNVRs in the future.
Collapse
Affiliation(s)
- Adiljan Kader
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 83000, China
| | - Xuexue Liu
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Kunzhe Dong
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Shen Song
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Jianfei Pan
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Min Yang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Xiaofei Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Xiaohong He
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.
| |
Collapse
|
5
|
Diepeveen ET, Roth O, Salzburger W. Immune-related functions of the Hivep gene family in East African cichlid fishes. G3 (BETHESDA, MD.) 2013; 3:2205-17. [PMID: 24142922 PMCID: PMC3852383 DOI: 10.1534/g3.113.008839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023]
Abstract
Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host-pathogen interactions within an adaptive radiation.
Collapse
Affiliation(s)
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, Helmholtz Centre of Ocean Research Kiel (GEOMAR), D-24105 Kiel, Germany
| | | |
Collapse
|
6
|
Role of tumor necrosis factor-α in the human systemic endotoxin-induced transcriptome. PLoS One 2013; 8:e79051. [PMID: 24236088 PMCID: PMC3827317 DOI: 10.1371/journal.pone.0079051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022] Open
Abstract
TNFα has been implicated in the pathogenesis of various inflammatory diseases. Different strategies to inhibit TNFα in patients with sepsis and chronic inflammatory conditions have shown contrasting outcomes. Although TNFα inhibitors are widely used in clinical practice, the impact of TNFα antagonism on white blood cell gene expression profiles during acute inflammation in humans in vivo has not been assessed. We here leveraged the established model of human endotoxemia to examine the effect of the TNFα antagonist, etanercept, on the genome-wide transcriptional responses in circulating leukocytes induced by intravenous LPS administration in male subjects. Etanercept pre-treatment resulted in a markedly dampened transcriptional response to LPS. Gene co-expression network analysis revealed this LPS-induced transcriptome can be categorized as TNFα responsive and non-responsive modules. Highly significant TNFα responsive modules include NF-kB signaling, antiviral responses and T-cell mediated responses. Within these TNFα responsive modules we delineate fundamental genes involved in epigenetic modifications, transcriptional initiation and elongation. Thus, we provide comprehensive information about molecular pathways that might be targeted by therapeutic interventions that seek to inhibit TNFα activity during human inflammatory diseases.
Collapse
|
7
|
Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA. Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 2013; 23:928-40. [PMID: 23471540 PMCID: PMC3668361 DOI: 10.1101/gr.151472.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes.
Collapse
Affiliation(s)
- Metewo Selase Enuameh
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
9
|
Sax CM, Piatigorsky J. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:155-201. [PMID: 7817868 DOI: 10.1002/9780470123157.ch5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
10
|
Takagi T, Jin W, Taya K, Watanabe G, Mori K, Ishii S. Schnurri-2 mutant mice are hypersensitive to stress and hyperactive. Brain Res 2006; 1108:88-97. [PMID: 16836985 DOI: 10.1016/j.brainres.2006.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 06/05/2006] [Accepted: 06/05/2006] [Indexed: 12/11/2022]
Abstract
The bone morphogenetic protein (BMP)/transforming growth factor-beta (TGF-beta)/activin superfamily regulates development of the nervous system during embryogenesis and is also suggested to be involved in adult brain function. However, how BMP/TGF-beta/activin signals modulate neuronal function remains unknown. Schnurri is a transcription factor that contains two metal finger regions. Mammalian Shn-2 enters the nucleus from the cytoplasm in response to BMP-2 stimulation and plays an important role in BMP-dependent adipogenesis. To investigate whether mammalian Shn plays a role in adult brain function, we examined the behaviors of mutant mice lacking Shn-2 (Shn-2(-/-)). Shn-2(-/-) mice exhibited hypersensitivity to stress accompanied by anxiety-like behavior. Consistent with this, stress-induced corticosterone levels were significantly higher in Shn-2(-/-) mice compared to wild-type controls. Interestingly, Shn-2(-/-) mice were more active than wild-type mice in a familiar environment. The basal and stress-induced expression levels of the immediate early genes, including c-Fos, were decreased in Shn-2(-/-) mice compared to wild-type mice. Thus, Shn-2 plays a critical role in locomotion and anxiety-like behavior.
Collapse
Affiliation(s)
- Tsuyoshi Takagi
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, Ishii S. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 2006; 10:461-71. [PMID: 16580992 DOI: 10.1016/j.devcel.2006.02.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/25/2005] [Accepted: 02/21/2006] [Indexed: 10/21/2022]
Abstract
Adipocyte differentiation is an important component of obesity, but how hormonal cues mediate adipocyte differentiation remains elusive. BMP stimulates in vitro adipocyte differentiation, but the role of BMP in adipogenesis in vivo is unknown. Drosophila Schnurri (Shn) is required for the signaling of Decapentaplegic, a Drosophila BMP homolog, via interaction with the Mad/Medea transcription factors. Vertebrates have three Shn orthologs, Shn-1, -2, and -3. Here, we report that Shn-2(-/-) mice have reduced white adipose tissue and that Shn-2(-/-) mouse embryonic fibroblasts cannot efficiently differentiate into adipocytes in vitro. Shn-2 enters the nucleus upon BMP-2 stimulation and, in cooperation with Smad1/4 and C/EBPalpha, induces the expression of PPARgamma2, a key transcription factor for adipocyte differentiation. Shn-2 directly interacts with both Smad1/4 and C/EBPalpha on the PPARgamma2 promoter. These results indicate that Shn-2-mediated BMP signaling has a critical role in adipogenesis.
Collapse
Affiliation(s)
- Wanzhu Jin
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang X, Li J, Qin H, Yang H, Li J, Zhou P, Liang Y, Han H. Mint Represses Transactivation of the Type II Collagen Gene Enhancer through Interaction with αA-crystallin-binding Protein 1. J Biol Chem 2005; 280:18710-6. [PMID: 15778499 DOI: 10.1074/jbc.m500859200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen type II is an extracellular matrix protein important for cartilage and bone formation, and its expression is controlled by multiple cis- and trans-acting elements, including the zinc finger transcription factor alpha A-crystallin-binding protein 1 (CRYBP1). Here we show that MSX2-interacting nuclear target protein (MINT), a conserved transcriptional repressor, associates with CRYBP1 and negatively regulates the transactivation of the collagen type II gene (Col2a1) enhancer. We identified CRYBP1 as a binding partner of MINT by screening a mouse embryonic cDNA library using the yeast two-hybrid system. We demonstrated that the C terminus of MINT interacts with the C terminus of CRYBP1 using the mammalian cell two-hybrid assay, glutathione S-transferase pull-down, and co-immunoprecipitation analyses. Furthermore, MINT and CRYBP1 form a complex on the Col2a1 enhancer, as shown by chromatin immunoprecipitation and gel shift assays. In the presence of CRYBP1, overexpression of MINT or its C-terminal fragment in cells repressed a reporter construct driven by the Col2a1 enhancer elements. This transcription repression is dependent on histone deacetylase, the main co-repressor recruited by MINT. The present study shows that MINT is involved in CRYBP1-mediated Col2a1 gene repression and may play a role in regulation of cartilage development.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Genetics and Developmental Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xian 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fujii H, Gabrielson E, Takagaki T, Ohtsuji M, Ohtsuji N, Hino O. Frequent down-regulation of HIVEP2 in human breast cancer. Breast Cancer Res Treat 2005; 91:103-12. [PMID: 15868437 DOI: 10.1007/s10549-004-5779-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The HIVEP2 gene, located on 6q23-q24, belongs to a family of genes that encodes large zinc fingers containing transcription factor proteins. Although this gene has been implicated in the regulation of immune responses and cellular proliferation, its functions are largely unknown. In the present study, we investigated HIVEP2 gene abnormalities in microdissected breast cancer tissue. For real-time quantitational RT-PCR analysis of paired normal and tumor tissues, mRNA levels were down-regulated to a maximum of 96%. The overall median expression level in breast cancer (33 cases) was significantly lower than that in normal breast tissue (normalized median value of 4.49 versus 17.68; p < 0.0001). Through full-length 5'-RACE (rapid amplification of cDNA ends) analysis, we identified multiple exons in the 5'-untranslated regions with multiple transcriptional start sites, four of which were located in a large CpG island. No tissue- or cancer-specific usage patterns for the transcription start sites were identified by multiplex RT-PCR analysis. Only faint methylation was detected in the 5' region of the island in normal cells and breast cancer tissue, indicating physiological, aging and no tumor-specific methylation. Mutation screening showed only germline polymorphisms. Thus, down-regulation of the HIVEP2 genes frequently occurs and may be one of the genetic events responsible for breast cancer, and their transcription may be regulated by complex mechanisms involving interactions with other factors and/or by other genetic/epigenetic mechanisms.
Collapse
Affiliation(s)
- Hiroaki Fujii
- Department of Pathology II, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Dürr U, Henningfeld KA, Hollemann T, Knöchel W, Pieler T. Isolation and characterization of theXenopusHIVEP gene family. ACTA ACUST UNITED AC 2004; 271:1135-44. [PMID: 15009192 DOI: 10.1111/j.1432-1033.2004.04017.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIVEP gene family encodes for very large sequence-specific DNA binding proteins containing multiple zinc fingers. Three mammalian paralogous genes have been identified, HIVEP1, -2 and -3, as well as the closely related Drosophila gene, Schnurri. These genes have been found to directly participate in the transcriptional regulation of a variety of genes. Mammalian HIVEP members have been implicated in signaling by TNF-alpha and in the positive selection of thymocytes, while Schnurri has been shown to be an essential component of the TGF-beta signaling pathway. In this study, we describe the isolation of Xenopus HIVEP1, as well as partial cDNAs of HIVEP2 and -3. Analysis of the temporal and spatial expression of the XHIVEP transcripts during early embryogenesis revealed ubiquitous expression of the transcripts. Assays using Xenopus oocytes mapped XHIVEP1 domains that are responsible for nuclear export and import activity. The DNA binding specificity of XHIVEP was characterized using a PCR-mediated selection and gel mobility shift assays.
Collapse
Affiliation(s)
- Ulrike Dürr
- Abteilung Entwicklungsbiochemie, Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Takagi T, Harada J, Ishii S. Murine Schnurri-2 is required for positive selection of thymocytes. Nat Immunol 2001; 2:1048-53. [PMID: 11668343 DOI: 10.1038/ni728] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key step in T cell development involves the positive selection of cells that recognize antigen presented by self-major histocompatibility complex. Yet, the signals that are activated by T cell receptor engagement and lead to cell survival remain unclear. We show here that mice lacking the transcription factor Schnurri-2 (Shn-2), a large metal-finger protein, had severely defective positive selection of CD4+ and CD8+ cells. Drosophila Shn acts as a cofactor of Smad homolog and is required for Decapentaplegic signaling. Vertebrates have at least three Shn orthologs (Shn-1, Shn-2 and Shn-3), which are thought to act as nuclear targets in the bone morphogenetic protein-transforming growth factor-beta-activin signaling pathways. These data raised the possibility that the Smad-Shn-2 complex is involved in the thymic selection of T cells.
Collapse
Affiliation(s)
- T Takagi
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, CREST Research Project of JST, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
16
|
Tanaka K, Matsumoto Y, Nakatani F, Iwamoto Y, Yamada Y. A zinc finger transcription factor, alphaA-crystallin binding protein 1, is a negative regulator of the chondrocyte-specific enhancer of the alpha1(II) collagen gene. Mol Cell Biol 2000; 20:4428-35. [PMID: 10825206 PMCID: PMC85810 DOI: 10.1128/mcb.20.12.4428-4435.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription of the type II collagen gene (Col2a1) is regulated by multiple cis-acting sites. The enhancer element, which is located in the first intron, is necessary for high-level and cartilage-specific expression of Col2a1. A mouse limb bud cDNA expression library was screened by the Saccharomyces cerevisiae one-hybrid screening method to identify protein factors bound to the enhancer. A zinc finger protein, alphaA-crystallin binding protein 1 (CRYBP1), which had been reported to bind to the mouse alphaA-crystallin gene promoter, was isolated. We herein demonstrate that CRYBP1 is involved in the negative regulation of Col2a1 enhancer activity. CRYBP1 mRNA expression was downregulated during chondrocyte differentiation in vitro. In situ hybridization analysis of developing mouse cartilage showed that CRYBP1 mRNA was also downregulated during mesenchymal condensation and that CRYBP1 mRNA was highly expressed by hypertrophic chondrocytes, but at very low levels by resting and proliferating chondrocytes. Expression of recombinant CRYBP1 in a transfected rat chondrosarcoma cell line inhibited Col2a1 enhancer activity. Electrophoretic mobility shift assays showed that CRYBP1 bound a specific sequence within the Col2a1 enhancer and inhibited the binding of Sox9, an activator for Col2a1, to the enhancer. Cotransfection of CRYBP1 with Sox9 into BALB/c 3T3 cells inhibited activation of the Col2a1 enhancer by Sox9. These results suggest a novel mechanism that negatively regulates cartilage-specific expression of Col2a1.
Collapse
Affiliation(s)
- K Tanaka
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
17
|
Udagawa Y, Hanai J, Tada K, Grieder NC, Momoeda M, Taketani Y, Affolter M, Kawabata M, Miyazono K. Schnurri interacts with Mad in a Dpp-dependent manner. Genes Cells 2000; 5:359-69. [PMID: 10886364 DOI: 10.1046/j.1365-2443.2000.00328.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Decapentaplegic (Dpp) is a member of the transforming growth factor-beta superfamily. Dpp governs various developmental processes in Drosophila through the transcriptional regulation of a variety of genes. Signals of Dpp are transmitted from the cell membrane to the nucleus by Medea and Mad, both belonging to the Smad protein family. Mad was shown to bind to the Dpp-responsive element in genes such as vestigial, labial, and Ultrabithorax. The DNA binding affinity of Smad proteins is relatively low, and requires other nuclear factor(s) to form stable DNA binding complexes. schnurri (shn) was identified as a candidate gene acting downstream of Dpp receptors, but its relevance to Mad has remained unknown. RESULTS We characterized the biochemical functions of Shn. Shn forms homo-oligomers. Shn is localized in the nucleus, and is likely to have multiple nuclear localizing signals. Finally, we found that Shn interacts with Mad in a Dpp-dependent manner. CONCLUSIONS The present results argue that Shn may act as a nuclear component of the Dpp signalling pathway through direct interaction with Mad.
Collapse
Affiliation(s)
- Y Udagawa
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research (JFCR), 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Caderas G, Klauser S, Liu N, Bienz A, Gutte B. Inhibition of HIV-1 enhancer-controlled transcription by artificial enhancer-binding peptides derived from bacteriophage 434 repressor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:599-607. [PMID: 10561603 DOI: 10.1046/j.1432-1327.1999.00899.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An artificial HIV-1 enhancer-binding 42-residue peptide (R42) that had been derived from bacteriophage 434 repressor inhibited the cell-free in vitro transcription of HIV-1 enhancer-containing plasmids [Hehlgans, T., Stolz, M., Klauser, S., Cui, T., Salgam, P., Brenz Verca, S., Widmann, M., Leiser, A., Städler, K. & Gutte, B. (1993) FEBS Lett. 315, 51-55; Caderas, G. (1997) PhD Thesis, University of Zürich]. Here we show that, after N-terminal extension of R42 with a viral nuclear localization signal, the resulting nucR42 peptide was active in intact cells. NucR42 could be detected immunologically in nuclear extracts and produced a 60-70% reduction of the rate of transcription of an HIV-1 enhancer-carrying plasmid in COS-1 cells that had been cotransfected with the HIV enhancer plasmid, an expression plasmid for nucR42, and a control. NucR42 was also synthesized chemically and the synthetic product characterized by HPLC, mass spectrometry, and quantitative amino acid analysis. Band shift, footprint, and in vitro transcription assays in the presence of exogenous NF-kappaBp50 indicated that the binding sites of nucR42 and NF-kappaB on the HIV enhancers overlapped and that a relatively small excess of nucR42 sufficed to displace NF-kappaBp50. Band shift and in vitro transcription experiments showed also that exchange of the 434 repressor-derived nine-residue recognition helix of nucR42 for four glycines abolished the HIV enhancer binding specificity whereas leucine zipper- or retro-leucine zipper-mediated dimerization of R42 analogues increased it suggesting the potential application of such dimeric HIV enhancer-binding peptides as intracellular inhibitors of HIV replication.
Collapse
Affiliation(s)
- G Caderas
- Biochemisches Institut der Universität Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Bachmeyer C, Mak CH, Yu CY, Wu LC. Regulation by phosphorylation of the zinc finger protein KRC that binds the kappaB motif and V(D)J recombination signal sequences. Nucleic Acids Res 1999; 27:643-8. [PMID: 9862992 PMCID: PMC148227 DOI: 10.1093/nar/27.2.643] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA binding protein KRC (forkappaB binding andrecognitioncomponent of the V(D)J recombination signal sequence) belongs to a family of large zinc finger proteins that bind to the kappaB motif and contains two widely separated DNA binding structures. In addition to the kappaB motif, KRC fusion proteins bind to the signal sequences of V(D)J recombination to form highly ordered complexes. Here, we report that KRC may be regulated by post-translational modifications. Specific protein kinases present in the nucleus of pre-B cells phosphorylated a KRC fusion protein at tyrosine and serine residues. Such protein modifications increased DNA binding, thereby providing a mechanism by which KRC responds to signal transduction pathways. KRC is a substrate of epidermal growth factor receptor kinase and P34cdc2 kinase in vitro. Our results suggest that activation of the KRC family of transcription factors may provide a mechanism by which oncogenic tyrosine kinases regulate genes with kappaB-controlled gene regulatory elements.
Collapse
Affiliation(s)
- C Bachmeyer
- Department of Internal Medicine and Department of Medical Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
20
|
Otsuka M, Fujita M, Sugiura Y, Yamamoto T, Inoue J, Maekawa T, Ishii S. Synthetic inhibitors of regulatory proteins involved in the signaling pathway of the replication of human immunodeficiency virus 1. Bioorg Med Chem 1997; 5:205-15. [PMID: 9043672 DOI: 10.1016/s0968-0896(96)00203-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
NF-kappa B, HIV-EP1, Sp1, and E1A are transcriptional proteins involved in the long terminal repeat-directed expression of HIV-1. The inhibitory effect of 18 dimethylaminopyridine-based compounds against these regulatory proteins was studied. Experiments using NF-kappa B-beads showed that histidine-pyridine-histidine compounds and their zinc complexes are inhibitory not only for the NF-kappa B-DNA binding, but also for the binding of NF-kappa B with the inhibitory protein I kappa B. Discriminative inhibition of the DNA binding of two distinct C2H2 type zinc finger proteins HIV-EP1 and Sp1 was also attempted using the synthetic compounds. Whereas some compounds inhibited the DNA binding of both HIV-EP1 and Sp1 at 300 microM, others preferentially and completely inhibited HIV-EP1 without much suppression of Sp1. Mercapto compounds were more potent and uniformly inhibitory against both HIV-EP1 and Sp1 at 30 microM. Disulfide compounds were also remarkably inhibitory against HIV-EP1 and Sp1 also at 30 microM whereas the shorter-chain disulfides 7 and 9 were effective only for HIV-EP1. S-Alkyl derivatives preferentially inhibited HIV-EP1 at 300 microM. The dimethylamino compound was the sole compound inhibitory only against Sp1, being non-inhibitory against HIV-EP1. Relevant combinations of these inhibitors would allow us to inhibit NF-kappa B, HIV-EP1, and Sp1 in any combinations. Inhibition of the TBP binding of C4 type zinc finger protein adenovirus E1A was also examined. It was found that two compounds induced, at 50 mM concentration, effective inhibition of the TBP binding of E1A, demonstrating that it is possible in principle to inhibit the protein-protein interaction of zinc finger proteins.
Collapse
Affiliation(s)
- M Otsuka
- Institute for Chemical Research, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hill CS. Signalling to the nucleus by members of the transforming growth factor-beta (TGF-beta) superfamily. Cell Signal 1996; 8:533-44. [PMID: 9115845 DOI: 10.1016/s0898-6568(96)00122-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C S Hill
- Ludwig Institute For Cancer Research, London, UK
| |
Collapse
|
22
|
Girdlestone J. Transcriptional regulation of MHC class I genes. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1996; 23:395-413. [PMID: 8909948 DOI: 10.1111/j.1744-313x.1996.tb00015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Girdlestone
- Centre for Clinical Research in Immunology and Signalling, Medical School, University of Birmingham, UK
| |
Collapse
|
23
|
Basson M, Horvitz HR. The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and encodes a zinc finger protein. Genes Dev 1996; 10:1953-65. [PMID: 8756352 DOI: 10.1101/gad.10.15.1953] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuronal and mesodermal cell types are generated in separate cell lineages during the larval development of Caenorhabditis elegans. Here we demonstrate that the gene sem-4 is required in both types of lineages for the normal development of neuronal and mesodermal cell types. The sem-4 gene encodes a protein containing seven zinc finger motifs of the C2H2 class, four of which are arranged in two pairs widely separated in the primary sequence of the protein. These pairs of zinc fingers are similar to pairs of zinc fingers in the protein encoded by the Drosophila homeotic gene spalt and in the human transcription factor PRDII-BF1. Analysis of sem-4 alleles suggests that different zinc fingers in the SEM-4 protein may function differentially in neuronal and mesodermal cell types. We propose that sem-4 interacts with different transcription factors in different cell types to control the transcription of genes that function in the processes of neuronal and mesodermal cell development.
Collapse
Affiliation(s)
- M Basson
- Howard Hughes, Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
24
|
Staehling-Hampton K, Laughon AS, Hoffmann FM. A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for dpp signaling. Development 1995; 121:3393-403. [PMID: 7588072 DOI: 10.1242/dev.121.10.3393] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the signal transduction pathways by which cells respond to mammalian TGF-beta s or to decapentaplegic (dpp), a Drosophila TGF-beta-related factor. Here we describe the genetic and molecular characterization of Drosophila schnurri (shn), a putative transcription factor implicated in dpp signaling. The shn protein has eight zinc fingers and is related to a human transcription factor, PRDII/MBPI/HIV-EP1, that binds to nuclear factor-kappa B-binding sites and activates transcription from the HIV long terminal repeat (LTR). shn mRNA is expressed in a dynamic pattern in the embryo that includes most of the known target tissues of dpp, including the dorsal blastoderm, the mesodermal germlayer and parasegments 4 and 7 of the midgut. Mutations in shn affect several developmental processes regulated by dpp including induction of visceral mesoderm cell fate, dorsal/ventral patterning of the lateral ectoderm and wing vein formation. Absence of shn function blocks the expanded expression of the homeodomain protein bagpipe in the embryonic mesoderm caused by ectopic dpp expression, illustrating a requirement for shn function downstream of dpp action. We conclude that shn function is critical for cells to respond properly to dpp and propose that shn protein is the first identified downstream component of the signal transduction pathway used by dpp and its receptors.
Collapse
Affiliation(s)
- K Staehling-Hampton
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
25
|
Arora K, Dai H, Kazuko SG, Jamal J, O'Connor MB, Letsou A, Warrior R. The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 1995; 81:781-90. [PMID: 7774017 DOI: 10.1016/0092-8674(95)90539-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Decapentaplegic (dpp), a TGF beta-related ligand, plays a key role in Drosophila development. Although dpp receptors have been isolated, the downstream components of the signaling pathway remain to be identified. We have cloned the schnurri (shn) gene and show that it encodes a putative zinc finger transcription factor homologous to the human major histocompatibility complex-binding proteins 1 and 2. Mutations in shn affect multiple events that require dpp signaling as well as the transcription of dpp-responsive genes. Genetic interactions and the strikingly similar phenotypes of mutations in shn and the dpp receptors encoded by thick veins and punt suggest that shn plays a downstream role in dpp signaling.
Collapse
Affiliation(s)
- K Arora
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bhandari B, Wenzel UO, Marra F, Abboud HE. A nuclear protein in mesangial cells that binds to the promoter region of the platelet-derived growth factor-A chain gene. Induction by phorbol ester. J Biol Chem 1995; 270:5541-8. [PMID: 7890673 DOI: 10.1074/jbc.270.10.5541] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mesangial cells predominantly express platelet-derived growth factor (PDGF)-A chain mRNA and release PDGF. Mesangial cell PDGF-A chain mRNA abundance is regulated by several agents including phorbol esters. We have recently demonstrated that induction of PDGF-A chain mRNA abundance in response to phorbol 12-myristate 13-acetate is primarily due to gene transcription. We have now analyzed the 5'-flanking region of the PDGF-A chain promoter to identify DNA binding protein(s) which have the potential to regulate PDGF-A chain gene transcription in human mesangial cells. DNase I footprint analysis of the 5'-flanking region of the PDGF-A chain promoter identifies a DNase I protected region at the location -82 to -102 corresponding to the sequence 5'-GGCCCGGAATCCGGGGGAGGC-3'. Therefore, nuclear extracts from human mesangial cells contain a protein, PDGF-A-BP-1, that binds to a DNA sequence (-82 to -102) in the promoter region of the PDGF-A chain gene. Gel mobility shift analysis using labeled oligomer corresponding to the binding site for PDGF-A-BP-1 indicates that PDGF-A-BP-1 is induced by phorbol ester in mesangial cells as well as fat-storing cells (> 20 fold). Egr-1 protein does not bind to labeled PDGF-A-BP-1 oligomer and does not compete with the binding of PDGF-A-BP-1. In addition, SP-1 binding sequence does not compete with the binding sequence of the mesangial cell protein. PDGF-A-BP-1 appears to represent a novel protein which is induced by phorbol ester and thus has the potential for an important role in the transcriptional regulation of the PDGF-A chain gene in mesangial cells and other vascular pericytes.
Collapse
Affiliation(s)
- B Bhandari
- Department of Medicine, University of Texas Health Science Center at San Antonio
| | | | | | | |
Collapse
|
27
|
Brady JP, Kantorow M, Sax CM, Donovan DM, Piatigorsky J. Murine transcription factor alpha A-crystallin binding protein I. Complete sequence, gene structure, expression, and functional inhibition via antisense RNA. J Biol Chem 1995; 270:1221-9. [PMID: 7836383 DOI: 10.1074/jbc.270.3.1221] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
alpha A-crystallin binding protein I (alpha A-CRYBP1) is a ubiquitously expressed DNA binding protein that was previously identified by its ability to interact with a functionally important sequence in the mouse alpha A-crystallin gene promoter. Here, we have cloned a single copy gene with 10 exons spanning greater than 70 kb of genomic DNA that encodes alpha A-CRYBP1. The mouse alpha A-CRYBP1 gene specifies a 2,688-amino acid protein with 72% amino acid identity to its human homologue, PRDII-BF1. Both the human and the mouse proteins contain two sets of consensus C2H2 zinc fingers at each end as well a central nonconsensus zinc finger. The alpha A-CRYBP1 gene produces a 9.5-kb transcript in 11 different tissues as well as a testis-specific, 7.7-kb transcript. alpha A-CRYBP1 cDNA clones were isolated from adult mouse brain and testis as well as from cell lines derived from mouse lens (alpha TN4-1) and muscle (C2C12). A single clone isolated from the muscle C2C12 library contains an additional exon near the 5'-end that would prevent production of a functional protein if the normal translation start site were utilized; however, there is another potential initiation codon located downstream that is in frame with the rest of the coding region. In addition, we identified multiple cDNAs from the testis in which the final intron is still present. Finally, we used an antisense expression construct derived from an alpha A-CRYBP1 cDNA clone to provide the first functional evidence that alpha A-CRYBP1 regulates gene expression. When introduced into the alpha TN4-1 mouse lens cell line, the antisense construct significantly inhibited expression from a heterologous promoter that utilized the alpha A-CRYBP1 binding site as an enhancer.
Collapse
Affiliation(s)
- J P Brady
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
28
|
Favier A, Sappey C, Leclerc P, Faure P, Micoud M. Antioxidant status and lipid peroxidation in patients infected with HIV. Chem Biol Interact 1994; 91:165-80. [PMID: 8194133 DOI: 10.1016/0009-2797(94)90037-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deficiency in antioxidant micronutrients have been observed in patients with AIDS. These observations concerning only some isolated nutrients demonstrate a defect in zinc, selenium, and glutathione. An increase in free radical production and lipid peroxidation has been also found in these patients, and takes a great importance with recent papers presenting an immunodeficiency and more important an increase in HIV-1 replication secondary to free radicals overproduction. We have assessed different studies, trying to obtain a global view of the antioxidant status of these patients. In adults we observe a progressive decrease for zinc, selenium, and vitamin E with the severity of disease, except that selenium remains normal at stage II. However, the main dramatic decrease concerns carotenoids whose level at stage II is only half the normal value. To understand if these decreases in antioxidant and increases in oxidative stress occur secondary to the aggravation of the disease or, conversely, are responsible for it, we undertook a longitudinal survey of asymptotic patients. The preliminary results of this evaluation are presented. Paradoxically, lipid peroxidation is higher at stage II than at stage IV. This may be consecutive to a more intense overproduction of oxygen free radicals by more viable polymorphonuclear (PMN) at the asymptomatic stage. The free radicals production and lipid peroxidation seem secondary to a direct induction by the virus of PMN stimulation and cytokines secretion. N-Acetyl cysteine or ascorbate have been demonstrated in cell culture to be capable of blocking the expression of HIV-1 after oxidative stress and N-acetyl cysteine inhibits in vitro TNF-induced apoptosis of infected cells. In regard to all these experimental data, few serious and large trials of antioxidants have been conducted in HIV-infected patients, although some preliminary studies using zinc or selenium have been performed. In our opinion it is now time to evaluate in humans the beneficial effect of antioxidants. The more promising candidates for presenting synergistic effects when associated with N-acetyl cysteine seem to be beta-carotene, selenium and zinc.
Collapse
Affiliation(s)
- A Favier
- GREPO: Groupe de Recherches sur les Pathologies Oxydatives, Faculté de Pharmacie, Université de Grenoble, La Tronche, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
We have recognized about ten distinct forms of strongly basic hexapeptides, containing at least four arginines and lysines, characteristic of nuclear proteins among all eukaryotic species, including yeast, plants, flies and mammals. These basic hexapeptides are considered to be different versions of a core nuclear localization signal, NLS. Core NLSs are present in nearly all nuclear proteins and absent from nearly all "nonassociated" cytoplasmic proteins that have been investigated. We suggest that the few (approximately 10%) protein factors lacking a typical NLS core peptide may enter the nucleus via their strong crosscomplexation with their protein factor partners that possess a core NLS. Those cytoplasmic proteins found to possess a NLS-like peptide are either tightly associated with cell membrane proteins or are integral components of large cytoplasmic protein complexes. On the other hand, some versions of core NLSs are found in many cell membrane proteins and secreted proteins. It is hypothesized that in these cases the N-terminal hydrophobic signal peptide of extracellular proteins and the internal hydrophobic domains of transmembrane proteins are stronger determinants for their subcellular localization. The position of core NLSs among homologous nuclear proteins may or may not be conserved; however, if lost from an homologous site it appears elsewhere in the protein. This search provides a set of rules to our understanding of the nature of core nuclear localization signals: (1) Core NLS are proposed to consist most frequently of an hexapeptide with 4 arginines and lysines; (2) aspartic and glutamic acid residues as well as bulky amino acids (F, Y, W) need not to be present in this hexapeptide; (3) acidic residues and proline or glycine that break the alpha-helix are frequently in the flanking region of this hexapeptide stretch; (4) hydrophobic residues ought not to be present in the core NLS flanking region allowing for the NLS to be exposed on the protein. In this study we attempt to classify putative core NLS from a wealth of nuclear protein transcription factors from diverse species into several categories, and we propose additional core NLS structures yet to be experimentally verified.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306
| |
Collapse
|
30
|
Richardson JC, Garcia Estrabot AM, Woodland HR. XrelA, a Xenopus maternal and zygotic homologue of the p65 subunit of NF-kappa B. Characterisation of transcriptional properties in the developing embryo and identification of a negative interference mutant. Mech Dev 1994; 45:173-89. [PMID: 8199054 DOI: 10.1016/0925-4773(94)90031-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have isolated two clones (XrelA.1 and XrelA.2) from Xenopus ovary representing differentially processed mRNAs homologous throughout their translated regions to the mammalian p65 subunit of NF-kappa B. The transcripts are ubiquitously present throughout development, but are most abundant in late blastulae and gastrulae. Overproduced protein shows nuclear localisation in both oocytes and early embryos. The XrelA.2 product bound to DNA as an oligomer which was not detected in the normal embryo. Two endogenous kappa B-binding complexes were present, showing no stage-specific variation, although one was relatively deficient in posterior regions of the early neurula. They were not disrupted by dimerization with over-expressed XrelA, suggesting that they were not produced by NF-kappa B/Rel/dorsal family members. The transcriptional properties of the cloned XrelA were assayed in intact embryos by co-injecting XrelA mRNA and a linear HIV LTR-driven CAT reporter gene. CAT levels were stimulated 20-30-fold by XrelA mRNA levels in the 100 pg range, and this was wholly dependent on NF-kappa B binding sites, and largely dependent on those for SP-1. These results were remarkably reproducible and show that quantitative analysis of transcription factor function is possible in intact developing Xenopus embryos A mutant lacking the transcriptional activation domain antagonised co-injected wild-type XrelA, providing a potential dominant negative p65 mutant for interfering with NF-kappa B function in analysing NF-kappa B function in normal development.
Collapse
Affiliation(s)
- J C Richardson
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
31
|
Antoni BA, Stein SB, Rabson AB. Regulation of human immunodeficiency virus infection: implications for pathogenesis. Adv Virus Res 1994; 43:53-145. [PMID: 8191958 DOI: 10.1016/s0065-3527(08)60047-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B A Antoni
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | |
Collapse
|
32
|
Garcia JA, Gaynor RB. The human immunodeficiency virus type-1 long terminal repeat and its role in gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:157-96. [PMID: 7863006 DOI: 10.1016/s0079-6603(08)60050-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J A Garcia
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
33
|
The human immunodeficiency virus type 1 long terminal repeat is activated by monofunctional and bifunctional DNA alkylating agents in human lymphocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74372-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:1-62. [PMID: 8449662 DOI: 10.1016/s0074-7696(08)61873-2] [Citation(s) in RCA: 775] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M Grilli
- Laboratory of Immunology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
35
|
Donovan DM, Sax CM, Klement JF, Li X, Chepelinsky AB, Piatigorsky J. Conservation of mouse alpha A-crystallin promoter activity in chicken lens epithelial cells. J Mol Evol 1992; 35:337-45. [PMID: 1404419 DOI: 10.1007/bf00161171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous transfection experiments have shown that 162 base pairs (bp) of the 5' flanking sequence of the chicken alpha A-crystallin gene are required for promoter activity in primary chicken lens epithelial cells (PLE), while only 111 bp of the 5' flanking sequence are needed for activity of the mouse alpha A-crystallin promoter in transfected chicken PLE cells or in a SV40 T-antigen-transformed transfected mouse lens epithelial cell line (alpha TN4-1). The effect of site-directed mutations covering positions -111 to -34 of the mouse alpha A-crystallin promoter fused to the bacterial chloramphenicol acetyltransferase (CAT) gene was compared in transfected chicken PLE cells and mouse alpha TN4-1 cells; selected mutations were also examined in a nontransformed rabbit lens epithelial cell line (N/N1003A). In general, the same mutations reduced promoter activity in the transfected lens cells from all three species, although differences were noted. The mutations severely affected regions -111/-106 and -69/-40 regions in all the transfected cells examined; by contrast, mutations at positions -105/-99 and -87/-70 had a somewhat greater effect in the chicken PLE than the mouse alpha TN4-1 cells, while mutations of the -93/-88 sequence reduced expression in the alpha TN4-1 but not the PLE cells. A partial cDNA with sequence similarity to alpha A-CRYPB1 of the mouse has been isolated from a chicken lens library; mouse alpha A-CRYBP1 is a putative transcription factor which binds to the -66/-55 sequence of the mouse alpha A-crystallin promoter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D M Donovan
- Laboratory of Molecular and Developmental Biology, NEI, NIH, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
36
|
Omichinski JG, Clore GM, Robien M, Sakaguchi K, Appella E, Gronenborn AM. High-resolution solution structure of the double Cys2His2 zinc finger from the human enhancer binding protein MBP-1. Biochemistry 1992; 31:3907-17. [PMID: 1567844 DOI: 10.1021/bi00131a004] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high-resolution three-dimensional structure of a synthetic 57-residue peptide comprising the double zinc finger of the human enhancer binding protein MBP-1 has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1280 experimental restraints. A total of 30 simulated annealing structures were calculated. The backbone atomic root-mean-square distributions about the mean coordinate positions are 0.32 and 0.33 A for the N- and C-terminal fingers, respectively, and the corresponding values for all atoms, excluding disordered surface side chains, are 0.36 and 0.40 A. Each finger comprises an irregular antiparallel sheet and a helix, with the zinc tetrahedrally coordinated to two cysteines and two histidines. The overall structure is nonglobular in nature, and the angle between the long axes of the helices is 47 +/- 5 degrees. The long axis of the antiparallel sheet in the N-terminal finger is approximately parallel to that of the helix in the C-terminal finger. Comparison of this structure with the X-ray structure of the Zif-268 triple finger complexed with DNA indicates that the relative orientation of the individual zinc fingers is clearly distinct in the two cases. This difference can be attributed to the presence of a long Lys side chain in the C-terminal finger of MBP-1 at position 40, instead of a short Ala or Ser side chain at the equivalent position in Zif-268. This finding suggests that different contacts may be involved in the binding of the zinc fingers of MBP-1 and Zif-268 to DNA, consistent with the findings from methylation interference experiments that the two fingers of MBP-1 contact 10 base pairs, while the three fingers of Zif-268 contact only 9 base pairs.
Collapse
Affiliation(s)
- J G Omichinski
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
37
|
Sudo T, Ozawa K, Soeda EI, Nomura N, Ishii S. Mapping of the human gene for the human immunodeficiency virus type 1 enhancer binding protein HIV-EP2 to chromosome 6q23-q24. Genomics 1992; 12:167-70. [PMID: 1733857 DOI: 10.1016/0888-7543(92)90423-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human gene encoding the human immunodeficiency virus type 1 enhancer binding protein HIV-EP2 has been isolated. Using Southern analysis of human-rodent somatic cell hybrid DNA with a human HIV-EP2-specific cDNA probe, the HIV-EP2 gene was assigned to chromosome 6. The gene was further localized to the region 6q23-24 by fluorescence in situ hybridization.
Collapse
Affiliation(s)
- T Sudo
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | |
Collapse
|
38
|
Arai N, Naito Y, Watanabe M, Masuda ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T, Matsuda I, Yokota K, Koyano-Nakagawa N. Activation of lymphokine genes in T cells: role of cis-acting DNA elements that respond to T cell activation signals. Pharmacol Ther 1992; 55:303-18. [PMID: 1492121 DOI: 10.1016/0163-7258(92)90054-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of T cells is initiated by the recognition of antigen on antigen presenting cells to exert the effector functions in immune and inflammatory responses. Two types of helper T cell (Th) clones (Th1 and Th2) are defined on the basis of different patterns of cytokine (lymphokine) secretion. They determine the outcome of an antigenic response toward humoral or cell-mediated immunity. Although lymphokine genes are coordinately regulated upon antigen stimulation, they are regulated by the mechanisms common to all as well as those which are unique to each gene. For most lymphokine genes, a combination of phorbol esters (phorbol 12-myristate 13 acetate, PMA) and calcium ionophores (A23187) is required for their maximal induction. Yet phorbol ester alone or calcium ionophore alone produce several lymphokines. The production of the granulocyte-macrophage colony stimulating factor (GM-CSF) is completely dependent on the two signals. We have previously found a cis-acting region spanning the GM-CSF promoter region (positions -95 to +27) that confers inducibility to reporter genes in transient transfection assays. Further analysis identified three elements required for efficient induction, referred to as GM2, GC-box and conserved lymphokine element (CLE0). GM2 defines a binding site for protein(s) whose binding is inducible by PMA. One protein, NF-GM2 is similar to the transcription factor NF-kB. GC-box is a binding site for constitutively bound proteins. CLEO defines a binding site for protein(s) whose optimum binding is stimulated by PMA and A23187. Viral trans-activators such as Tax (human T cell leukemia virus-1, HTLV-1) and E2 (bovine papilloma virus, BPV) proteins are other agents which activate lymphokine gene expression by bypassing T cell receptor (TCR) mediated signaling. The trans-activation domain of E2 and Tax is interchangeable although they have no obvious sequence homology between them. The viral trans-activators appear to target specific DNA binding protein such as NF-kB and Sp1 to cis-acting DNA site and promote lymphokine gene expression without TCR-mediated stimulation.
Collapse
Affiliation(s)
- N Arai
- DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- W L Farrar
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702-1201
| | | | | |
Collapse
|
40
|
Abstract
The enhancer region of the human immunodeficiency virus (HIV) long terminal repeat (LTR) contains two 10-bp (5'-GGGACTTTCC) repeats (core enhancers) which constitute the binding sites for the ubiquitous inducible cellular transcription factor, NF-kappa B. The NF-kappa B motifs of the LTR play a central role in transcriptional activation of the LTR by several heterologous viral proteins and various external chemical and physical stimuli. Activation of the HIV enhancer by these agents may lead to the onset of HIV gene expression resulting in active viral replication. Viral genes and chemical agents, which interfere with the activity of the enhancers may be useful in inhibiting HIV gene expression, thereby suppressing HIV replication.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, St. Louis University Medical Center, MO 63110
| |
Collapse
|
41
|
Nomura N, Zhao M, Nagase T, Maekawa T, Ishizaki R, Tabata S, Ishii S. HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)93015-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Baeuerle PA. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1072:63-80. [PMID: 2018779 DOI: 10.1016/0304-419x(91)90007-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P A Baeuerle
- Laboratorium für Molekulare Biologie, Ludwig-Maximilians-Universität, Martinsried, F.R.G
| |
Collapse
|
43
|
Gaynor RB, Muchardt C, Diep A, Mohandas TK, Sparkes RS, Lusis AJ. Localization of the zinc finger DNA-binding protein HIV-EP1/MBP-1/PRDII-BF1 to human chromosome 6p22.3-p24. Genomics 1991; 9:758-61. [PMID: 2037300 DOI: 10.1016/0888-7543(91)90371-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A variety of cellular proteins have been found to bind to related DNA sequences in the enhancer elements of the human immunodeficiency virus, the kappa immunoglobulin gene, the class I major histocompatibility complex gene, and the beta-interferon gene. Recently, lambda gt11 gene expression cloning using ligated oligonucleotide probes complementary to these DNA binding motifs has been performed. An identical cDNA clone encoding a cellular protein, referred to as HIV-EP1, MBP-1, or PRDII-BF1, that binds to each of these sequences has been identified. This cDNA potentially encodes a 298-kDa cellular protein with two widely separated zinc finger binding domains, each of which binds to the same DNA sequence. As part of an effort to examine the chromosomal organization of cellular genes encoding transcription factors, we report the chromosomal mapping of the gene encoding this zinc finger protein (ZNF40) to chromosome 6p22.3-24.
Collapse
Affiliation(s)
- R B Gaynor
- Department of Medicine, University of California, Los Angeles 90024
| | | | | | | | | | | |
Collapse
|
44
|
Sakaguchi K, Appella E, Omichinski JG, Clore GM, Gronenborn AM. Specific DNA binding to a major histocompatibility complex enhancer sequence by a synthetic 57-residue double zinc finger peptide from a human enhancer binding protein. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89645-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Abstract
The development of antiretroviral therapy against acquired immunodeficiency syndrome (AIDS) has been an intense research effort since the discovery of the causative agent, human immunodeficiency virus (HIV). A large array of drugs and biologic substances can inhibit HIV replication in vitro. Nucleoside analogs--particularly those belonging to the dideoxynucleoside family--can inhibit reverse transcriptase after anabolic phosphorylation. 3'-Azido-2',3'-dideoxythymidine (AZT) was the first such drug tested in individuals with AIDS, and considerable knowledge of structure-activity relations has emerged for this class of drugs. However, virtually every step in the replication of HIV could serve as a target for a new therapeutic intervention. In the future, non-nucleoside-type drugs will likely become more important in the experimental therapy of AIDS, and antiretroviral therapy will exert major effects against the morbidity and mortality caused by HIV.
Collapse
Affiliation(s)
- H Mitsuya
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
46
|
Shibasaki Y, Sakura H, Takaku F, Kasuga M. Insulin enhancer binding protein has helix-loop-helix structure. Biochem Biophys Res Commun 1990; 170:314-21. [PMID: 2196879 DOI: 10.1016/0006-291x(90)91276-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin gene expression is restricted to pancreatic B cells and the 5' flanking region is responsible for the tissue specificity. The GCCATCTG motif in this region of the rat insulin 1 gene functions as an enhancer for insulin transcription. A cDNA coding for a GCCATCTG motif-binding protein (IEBP1) was isolated from a rat pancreatic B cell tumor lambda gt11 library. The IEBP1 protein was found to be the rat counterpart of the immunoglobulin (Ig) enhancer binding protein E12/47 having a helix-loop-helix domain. This result indicates that the Ig gene and insulin gene employ the same (or a similar) binding protein as a part of their transcriptional apparatus.
Collapse
Affiliation(s)
- Y Shibasaki
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Weiss MA, Mason KA, Dahl CE, Keutmann HT. Alternating zinc-finger motifs in the human male-associated protein ZFY. Biochemistry 1990; 29:5660-4. [PMID: 2116899 DOI: 10.1021/bi00476a002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ZFY, a putative transcription factor encoded by the human Y chromosome, contains a distinctive two-finger repeat: odd-numbered and even-numbered CC/HH metal-binding motifs exhibit systematic alternation in sequence pattern. Such alternation, which is not generally observed in zinc-finger proteins, has also been described in an extensive family of Kruppel-like genes in Xenopus laevis and in the AIDS-associated human DNA-binding protein HIV-EP1. The strict conservation of a two-finger repeat among ZFY-, Kruppel- and HIV-related zinc-finger proteins suggests distinct mechanisms of protein-nucleic acid recognition. To test whether this sequence pattern reflects an underlying alternation in domain structure, we have synthesized and characterized single-finger peptides from the human ZFY gene. Remarkably, systematic differences in metal-dependent folding are observed in the circular dichroism spectra of even- and odd-numbered domains. Our results suggest the existence of distinct CC/HH finger submotifs, which may play different roles in nucleic acid recognition.
Collapse
Affiliation(s)
- M A Weiss
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
48
|
Fan CM, Maniatis T. A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence. Genes Dev 1990; 4:29-42. [PMID: 2106471 DOI: 10.1101/gad.4.1.29] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have isolated a full-length cDNA clone encoding a protein (PRDII-BF1) that binds specifically to a positive regulatory domain (PRDII) of the human IFN-beta gene promoter, and to a similar sequence present in a number of other promoters and enhancers. The sequence of this protein reveals two novel structural features. First, it is the largest sequence-specific DNA-binding protein reported to date (298 kD). Second, it contains two widely separated sets of C2-H2-type zinc fingers. Remarkably, each set of zinc fingers binds to the same DNA sequence motif with similar affinities and methylation interference patterns. Thus, this protein may act by binding simultaneously to reiterated copies of the same recognition sequence. Although the function of PRDII-BF1 is not known, the level of its mRNA is inducible by serum and virus, albeit with different kinetics.
Collapse
Affiliation(s)
- C M Fan
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|