1
|
Han HS, Soundharrajan I, Valan Arasu M, Kim D, Choi KC. Leuconostoc Citreum Inhibits Adipogenesis and Lipogenesis by Inhibiting p38 MAPK/Erk 44/42 and Stimulating AMPKα Signaling Pathways. Int J Mol Sci 2023; 24:7367. [PMID: 37108530 PMCID: PMC10138540 DOI: 10.3390/ijms24087367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & β (C/EBP-α & β), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Hyo-Shim Han
- Department of Biotechnology, Sunchon University, Suncheon 57922, Republic of Korea;
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Jeonju 55365, Republic of Korea
| | - Ki-Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| |
Collapse
|
2
|
Wojciechowicz T, Kolodziejski PA, Billert M, Strowski MZ, Nowak KW, Skrzypski M. The Effects of Neuropeptide B on Proliferation and Differentiation of Porcine White Preadipocytes into Mature Adipocytes. Int J Mol Sci 2023; 24:ijms24076096. [PMID: 37047072 PMCID: PMC10094185 DOI: 10.3390/ijms24076096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Neuropeptide B (NPB) affects energy homeostasis and metabolism by binding and activating NPBWR1 and NPBWR2 in humans and pigs. Recently, we reported that NPB promotes the adipogenesis of rat white and brown preadipocytes as well as 3T3-L1 cells. In the present study, we evaluated the effects of NPB on the proliferation and differentiation of white porcine preadipocytes into mature adipocytes. We identified the presence of NPB, NPBWR1, and NPBWR2 on the mRNA and protein levels in porcine white preadipocytes. During the differentiation process, NPB increased the mRNA expression of PPARγ, C/EBPβ, C/EBPα, PPARγ, and C/EBPβ protein production in porcine preadipocytes. Furthermore, NPB stimulated lipid accumulation in porcine preadipocytes. Moreover, NPB promoted the phosphorylation of the p38 kinase in porcine preadipocytes, but failed to induce ERK1/2 phosphorylation. NPB failed to stimulate the expression of C/EBPβ in the presence of the p38 inhibitor. Taken together, we report that NPB promotes the differentiation of porcine preadipocytes via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany
- Medical Clinic III, 15236 Frankfurt, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| |
Collapse
|
3
|
Standardized pectolinarin rich-Cirsium setidens Nakai extract attenuates bisphenol A-induced the 3T3-L1 adipocytes differentiation and obese C57BL/6J mice via the suppression of adipogenesis-related transcription factors. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
5
|
Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim D, Choi KC. Novel Bacillus ginsengihumi CMRO6 Inhibits Adipogenesis via p38MAPK/Erk44/42 and Stimulates Glucose Uptake in 3T3-L1 Pre-Adipocytes through Akt/AS160 Signaling. Int J Mol Sci 2022; 23:4727. [PMID: 35563118 PMCID: PMC9104516 DOI: 10.3390/ijms23094727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
The health benefits of probiotics have been known for decades, but there has only been limited use of probiotics in the treatment of obesity. In this study, we describe, for the first time, the role of cell-free metabolites (CM) from Bacillus ginsengihumi-RO6 (CMRO6) in adipogenesis and lipogenesis in 3T3-L1 pre-adipocytes. The experimental results show that CMRO6 treatment effectively reduced lipid droplet accumulation and the expression of CCAAT/enhancer-binding protein α and β (C/EBPα and C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-γ), serum regulatory binding protein 1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), phosphorylated p38MAPK, and Erk44/42. Additionally, CMRO6 treatment significantly increased glucose uptake and phosphorylated Akt (S473), AS160, and TBC1D1 protein expressions. Considering the results of this study, B. ginsengihumi may be a novel probiotic used for the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Kyung Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Soundharrajan Ilavenil
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Muthusamy Karnan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Chul-Ju Yang
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea;
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| |
Collapse
|
6
|
Josan C, Kakar S, Raha S. Matrigel® enhances 3T3-L1 cell differentiation. Adipocyte 2021; 10:361-377. [PMID: 34288778 PMCID: PMC8296963 DOI: 10.1080/21623945.2021.1951985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Culturing cells on bio-gels are believed to provide a more in vivo-like extracellular matrix. 3T3-L1 cells cultured on Matrigel® significantly alteregd their proliferation and differentiation as compared to growth on tissue culture-coated polystyrene surfaces. Growth on a 250-μm thick layer of Matrigel® facilitated the formation of cellular aggregates of 3T3-L1 cells. Differentiation of 3T3-L1 cells cultured on Matrigel® demonstrated increased levels of mRNA levels for key adipogenic transcription factors (PPARγ, C/EBPα, SREBP1), lipogenic markers (FAS, FABP4, LPL, PLIN1) and markers of adipocyte maturity (LEP), compared to cells cultured directly on a polystyrene tissue culture surface. The gene expression of extracellular matrix proteins (FN1, COL1A1, COL4A1, COL6, LAM) was decreased in 3T3-L1 cells cultured on Matrigel®. Furthermore, growth on Matrigel® increased lipid accumulation in 3T3-L1 cells in the presence and absence of rosiglitazone, a thiazolidinedione routinely used to optimize differentiation in these cells. These changes in adipocyte gene expression and lipid accumulation patterns may be a result of the increased cell-cell and cell-ECM interactions occurring on the Matrigel®, a scenario that is more reflective of an in vivo model. Taken together, our data advance the understanding of the value of culturing 3T3-L1 cells on Matrigel®.
Collapse
Affiliation(s)
- Chitmandeep Josan
- Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sachin Kakar
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Saad B, Ghareeb B, Kmail A. Metabolic and Epigenetics Action Mechanisms of Antiobesity Medicinal Plants and Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9995903. [PMID: 34211580 PMCID: PMC8208872 DOI: 10.1155/2021/9995903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Ever-growing research efforts are demonstrating the potential of medicinal plants and their phytochemicals to prevent and manage obesity, either individually or synergistically. Multiple combinations of phytochemicals can result in a synergistic activity that increases their beneficial effects at molecular, cellular, metabolic, and temporal levels, offering advantages over chemically synthesized drug-based treatments. Herbs and their derived compounds have the potential for controlling appetite, inhibiting pancreatic lipase activity, stimulating thermogenesis and lipid metabolism, increasing satiety, promoting lipolysis, regulating adipogenesis, and inducing apoptosis in adipocytes. Furthermore, targeting adipocyte life cycle using various dietary bioactives that affect different stages of adipocyte life cycle represents also an important target in the development of new antiobesity drugs. In this regard, different stages of adipocyte development that are targeted by antiobesity drugs can include preadipocytes, maturing preadipocytes, and mature adipocytes. Various herbal-derived active compounds, such as capsaicin, genistein, apigenin, luteolin, kaempferol, myricetin, quercetin, docosahexaenoic acid, quercetin, resveratrol, and ajoene, affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted single cellular receptor or pathway has resulted in limited success. In this review, we discuss the state-of-the-art knowledge about antiobesity medicinal plants and their active compounds and their effects on several cellular, molecular, and metabolic pathways simultaneously with multiple phytochemicals through synergistic functioning which might be an appropriate approach to better management of obesity. In addition, epigenetic mechanisms (acetylation, methylation, miRNAs, ubiquitylation, phosphorylation, and chromatin packaging) of phytochemicals and their preventive and therapeutic perspective are explored in this review.
Collapse
Affiliation(s)
- Bashar Saad
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, 30100 Baqa Al-Gharbia, Israel
| | - Bilal Ghareeb
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| | - Abdalsalam Kmail
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| |
Collapse
|
8
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
9
|
Won SM, Chen S, Park KW, Yoon JH. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Marandel L, Plagnes-Juan E, Marchand M, Callet T, Dias K, Terrier F, Père S, Vernier L, Panserat S, Rétaux S. Nutritional regulation of glucose metabolism-related genes in the emerging teleost model Mexican tetra surface fish: a first exploration. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191853. [PMID: 32257342 PMCID: PMC7062055 DOI: 10.1098/rsos.191853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
Astyanax mexicanus has gained importance as a laboratory model organism for evolutionary biology. However, little is known about its intermediary metabolism, and feeding regimes remain variable between laboratories holding this species. We thus aimed to evaluate the intermediary metabolism response to nutritional status and to low (NC) or high (HC) carbohydrate diets in various organs of the surface-dwelling form of the species. As expected, glycaemia increased after feeding. Fish fed the HC diet had higher glycaemia than fish fed the NC diet, but without displaying hyperglycaemia, suggesting that carbohydrates are efficiently used as an energy source. At molecular level, only fasn (Fatty Acid Synthase) transcripts increased in tissues after refeeding, suggesting an activation of lipogenesis. On the other hand, we monitored only moderate changes in glucose-related transcripts. Most changes observed were related to the nutritional status, but not to the NC versus HC diet. Such a metabolic pattern is suggestive of an omnivorous-related metabolism, and this species, at least at adult stage, may adapt to a fish meal-substituted diet with high carbohydrate content and low protein supply. Investigation to identify molecular actors explaining the efficient use of such a diet should be pursued to deepen our knowledge on this species.
Collapse
Affiliation(s)
- Lucie Marandel
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Michael Marchand
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Therese Callet
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Stéphane Père
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Louise Vernier
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Stephane Panserat
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Transcriptional Regulation of Acyl-CoA:Glycerol- sn-3-Phosphate Acyltransferases. Int J Mol Sci 2019; 20:ijms20040964. [PMID: 30813330 PMCID: PMC6412627 DOI: 10.3390/ijms20040964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.
Collapse
|
12
|
R-Limonene Enhances Differentiation and 2-Deoxy-D-Glucose Uptake in 3T3-L1 Preadipocytes by Activating the Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4573254. [PMID: 30250490 PMCID: PMC6140011 DOI: 10.1155/2018/4573254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Adipocyte is an important place for lipid storage. Defects in lipid storage in adipocytes can lead to lipodystrophy and lipid accumulation in muscle, liver, and other organs. It is the condition of mixed dyslipidemia which may favor the development of insulin resistance via lipotoxic mechanisms. Our objective of the study was to investigate the potential role of R-limonene (LM) on differentiation, lipid storage, and 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 preadipocytes. Genes and proteins associated with differentiation, lipid accumulation, 2DG uptake and its signaling pathways in the adipocytes were analyzed using qPCR and western blot methods. LM treatment increased differentiation, lipid accumulation, and the expression of adipogenic and lipogenic markers such as C/EBP-α, C/EBP-β, PPARγ, SREBP-1, RXR, FAS, and adiponectin. However, the LM concentration at 10μM decreased (p < 0.05) adipogenesis and lipogenesis via regulating key transcriptional factors. LM treatment increased activation of Akt by increasing its phosphorylation, but p44/42 activation was not altered. MK-2206, an Akt specific inhibitor, reduced the activation of Akt phosphorylation whereas LM treatment aborted the MK-2206 mediated inhibition of Akt activation. LM enhanced glucose uptake in differentiated adipocytes. Overall data suggested that LM treatment favored lipid storage and glucose uptake in adipocytes via activation of key transcriptional factors through activation of Akt phosphorylation in 3T3-L1 adipocytes.
Collapse
|
13
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
15
|
Ilavenil S, Kim DH, Srigopalram S, Kuppusamy P, Valan Arasu M, Lee KD, Lee JC, Song YH, Jeong YI, Choi KC. Ferulic acid in Lolium multiflorum inhibits adipogenesis in 3T3-L1 cells and reduced high-fat-diet-induced obesity in Swiss albino mice via regulating p38MAPK and p44/42 signal pathways. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Pre- and post-prandial expression of genes involved in lipid metabolism at the end of the overfeeding period of mule ducks. Mol Cell Biochem 2017; 438:111-121. [DOI: 10.1007/s11010-017-3118-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/15/2017] [Indexed: 01/23/2023]
|
17
|
Cho BY, Park MR, Lee JH, Ra MJ, Han KC, Kang IJ, Lee OH. Standardized Cirsium setidens Nakai Ethanolic Extract Suppresses Adipogenesis and Regulates Lipid Metabolisms in 3T3-L1 Adipocytes and C57BL/6J Mice Fed High-Fat Diets. J Med Food 2017; 20:763-776. [PMID: 28686516 DOI: 10.1089/jmf.2017.3965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cirsium setidens Nakai, a wild perennial herb, grows mainly in Gangwon province, Korea, and has been reported to contain bioactive ingredients with various medicinal activities, including the treatment of edema, bleeding, and hemoptysis. However, the potential antiobesity effects of C. setidens Nakai have not been fully investigated. This study evaluated the antiobesity effect of standardized C. setidens Nakai ethanolic extract (CNE) in 3T3-L1 adipocytes and in obese C57BL/6J mice fed a high-fat diet. CNE suppressed the expression of lipogenic genes and increased the expression of lipolytic genes. The antiadipogenic and antilipogenic effects of CNE appear to be mediated by the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) expressions. Moreover, CNE stimulated fatty acid oxidation in an AMPK-dependent manner. CNE-treated groups of C57BL/6J mice showed reduced body weights and adipose tissue weight and improved serum lipid profiles through the downregulation of PPARγ, C/EBPα, fatty acid binding protein 4 (FABP4), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) and the upregulation of adiponectin and carnitine palmitoyltransferase-1 (CPT-1) in obese C57BL/6J mice fed a high-fat diet. These results suggest that CNE may have an antiobesity effect on adipogenesis and lipid metabolism in vitro and in vivo and present the possibility of developing a treatment for obesity with nontoxic natural resources.
Collapse
Affiliation(s)
- Bong-Yeon Cho
- 1 Department of Food Science and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| | - Mi-Ryeong Park
- 2 Department of Food Science and Nutrition, Hallym University , Chuncheon, Republic of Korea
| | - Jin-Ha Lee
- 1 Department of Food Science and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| | - Moon-Jin Ra
- 3 Hongcheon Institute of Medicinal Herb , Hongcheon, Republic of Korea
| | | | - Il-Jun Kang
- 2 Department of Food Science and Nutrition, Hallym University , Chuncheon, Republic of Korea
| | - Ok-Hwan Lee
- 1 Department of Food Science and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| |
Collapse
|
18
|
Peng L, Lu Y, Xu Y, Hu J, Wang F, Zhang Y, Xiong W. Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:225-234. [PMID: 28526951 PMCID: PMC5481272 DOI: 10.1007/s13659-017-0127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Obesity is crucially involved in many metabolic diseases, such as type 2 diabetes, cardiovascular disease and cancer. Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity. In this study, we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside (PAQG), a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma, on adipogenesis and lipid metabolism in 3T3-L1 adipocytes. The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process. PAQG significantly reduced the adipogenesis, adiponectin secretion and the expression level of key transcription factors related to adipogenesis, such as PPARγ, C/EBPβ, C/EBPα, and FABP4. Moreover, PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes. Interestingly, PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a, but also inhibited those genes involved in fatty acid biosynthesis, such as SREBP1c, FAS, ACCα and SCD1. In conclusion, PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway, suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
19
|
Viscarra JA, Wang Y, Hong IH, Sul HS. Transcriptional activation of lipogenesis by insulin requires phosphorylation of MED17 by CK2. Sci Signal 2017; 10:eaai8596. [PMID: 28223413 PMCID: PMC5376069 DOI: 10.1126/scisignal.aai8596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
De novo lipogenesis is precisely regulated by nutritional and hormonal conditions. The genes encoding various enzymes involved in this process, such as fatty acid synthase (FASN), are transcriptionally activated in response to insulin. We showed that USF1, a key transcription factor for FASN activation, directly interacted with the Mediator subunit MED17 at the FASN promoter. This interaction recruited Mediator, which can bring POL II and other general transcription machinery to the complex. Moreover, we showed that MED17 was phosphorylated at Ser53 by casein kinase 2 (CK2) in the livers of fed mice or insulin-stimulated hepatocytes, but not in the livers of fasted mice or untreated hepatocytes. Furthermore, activation of the FASN promoter in response to insulin required this CK2-mediated phosphorylation event, which occurred only in the absence of p38 MAPK-mediated phosphorylation at Thr570 Overexpression of a nonphosphorylatable S53A MED17 mutant or knockdown of MED17, as well as CK2 knockdown or inhibition, impaired hepatic de novo fatty acid synthesis and decreased triglyceride content in mice. These results demonstrate that CK2-mediated phosphorylation of Ser53 in MED17 is required for the transcriptional activation of lipogenic genes in response to insulin.
Collapse
Affiliation(s)
- Jose A Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Il-Hwa Hong
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Tung YC, Hsieh PH, Pan MH, Ho CT. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal 2017; 25:100-110. [PMID: 28911527 PMCID: PMC9333434 DOI: 10.1016/j.jfda.2016.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
| | - Pei-Hsuan Hsieh
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402,
Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354,
Taiwan
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| |
Collapse
|
21
|
Sung J, Jeong HS, Lee J. Effect of the Capsicoside G-rich Fraction from Pepper (Capsicum annuum L.) Seeds on High-fat Diet-induced Obesity in Mice. Phytother Res 2016; 30:1848-1855. [PMID: 27538894 DOI: 10.1002/ptr.5692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 01/17/2023]
Abstract
Obesity is one of the most common metabolic syndromes and is a major threat to human health worldwide. Given the size of this problem, there is growing interest in natural agents that may decrease obesity. In this study, we investigated the anti-obesity effect of a capsicoside G-rich fraction (CRF; 13.35% capsicoside G) isolated from pepper seeds in diet-induced obese mice. C57BL/6J mice were fed either a normal diet or a high-fat diet (HFD), with or without CRF (HFD + CRF; 10 and 100 mg/kg body weight). The body weight and food efficiency ratio of mice fed HFD + CRF were lower in comparison to that of mice fed only an HFD. Epididymal adipose tissue weight and adipocyte hypertrophy were significantly lower in HFD + CRF mice than in HFD mice. The fat deposition in the liver of mice fed HFD + CRF was lower compared to that of mice fed only an HFD. CRF significantly reversed the HFD-induced elevation of the expression of key adipocyte differentiation regulators, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, sterol regulatory element binding protein 1c, and their target genes. These results suggest that CRF could be used as dietary therapy for the prevention of obesity and obesity-related metabolic diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeehye Sung
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea.
| |
Collapse
|
22
|
Ilavenil S, Kim DH, Srigopalram S, Arasu MV, Lee KD, Lee JC, Lee JS, Renganathan S, Choi KC. Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes-An in Vitro and in Silico Approach. Molecules 2016; 21:molecules21080997. [PMID: 27490527 PMCID: PMC6274435 DOI: 10.3390/molecules21080997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets.
Collapse
Affiliation(s)
- Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Da Hye Kim
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 980-8577, Japan.
| | - Srisesharam Srigopalram
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Naju 520-714, Korea.
| | - Jeong Chae Lee
- Research Center of Bioactive Materials, Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea.
| | - Jong Suk Lee
- Biocenter, Gyeonggi Institute of Science and Technology, Suwon 443-270, Korea.
| | - Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Tamilnadu 613-403, India.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| |
Collapse
|
23
|
Zhang P, Li L, Bao Z, Huang F. Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab (Lond) 2016; 13:30. [PMID: 27127533 PMCID: PMC4848843 DOI: 10.1186/s12986-016-0090-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lulu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
24
|
Park SB, Park JS, Jung WH, Park A, Jo SR, Kim HY, Dal Rhee S, Ryu SY, Jeong HG, Park S, Lee H, Kim KY. Identification of a novel 11β-HSD1 inhibitor from a high-throughput screen of natural product extracts. Pharmacol Res 2015; 102:245-53. [PMID: 26515507 DOI: 10.1016/j.phrs.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/22/2023]
Abstract
Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as a treatment for metabolic syndrome including type 2 diabetes mellitus and obesity. To identify 11β-HSD1 inhibitors, we conducted high-throughput screening (HTS) of active natural product extracts from the Korea Chemical Bank, including Tanshinone I, Tanshinone IIA, and flavanone derivatives, and 2- and 3-phenyl-4H-chromen-4-one. Then Tanshinone IIA and its derivatives were targeted for the development of a lead compound according to the HTS results. However, the mechanism for anti-adipogenic effect through 11β-HSD1 enzyme inhibition by Tanshinone IIA is not clear. Tanshinone IIA (2a) concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 overexpressed cells and 3T3-L1 adipocytes. Tanshinone IIA (2a) also inhibited 11β-HSD1 enzyme activities in murine liver and fats. Furthermore, Tanshinone IIA (2a)-suppressed adipocyte differentiation of cortisone-induced adipogenesis in 3T3-L1 cells was associated with the suppression of the cortisone-induced adipogenesis-specific markers mRNA and protein expression. In 3T3-L1 preadipocytes, Tanshinone IIA (2a)-inhibited cortisone induced reactive oxygen species formation in a concentration-dependent manner. Thus, these results support the therapeutic potential of Tanshinone IIA (2a) as a 11β-HSD1 inhibitor in metabolic syndrome patients.
Collapse
Affiliation(s)
- Sung Bum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Ji Seon Park
- Department of Human and Environmental Toxicology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Won Hoon Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Areum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Sae Rom Jo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Hee Youn Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Sang Dal Rhee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Shi Yong Ryu
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology, Institute of Basic Sciences, Sungshin Women's University, 55 Dobon-ro 76ga-gil, Gangbuk-gu, Seoul 142-732, Republic of Korea
| | - Hyuk Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| | - Ki Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
25
|
Liu P, Ji H, Li C, Tian J, Wang Y, Yu P. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:867-878. [PMID: 25893904 DOI: 10.1007/s10695-015-0053-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p < 0.05), but C/EBP α declined at 20 dpf. Expression of lipoprotein lipase (LPL) increased from 2 to 16 dpf and then declined. In addition, immunoreaction of PPAR γ was positive on hepatocytes after fertilization for 15 days. These results implied that the early developmental stage of adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.
Collapse
Affiliation(s)
- Pin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp ( Ctenopharyngodon idellus ). Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0833-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun 2014; 445:327-33. [PMID: 24513287 DOI: 10.1016/j.bbrc.2014.01.183] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/09/2023]
Abstract
Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipocyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exosomes produced from these cells was compared by quantitative proteomic analysis. A total of 231 proteins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Especially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN). The total amount of proteins secreted from exosomes increased by 3-4-fold under hypoxic conditions. Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, compared with those produced under normoxic conditions. FASN levels were increased in undifferentiated 3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to characterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.
Collapse
Affiliation(s)
- Soichi Sano
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasukatsu Izumi
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takehiro Yamaguchi
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takanori Yamazaki
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masako Tanaka
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Kyoto Prefectural University, Graduate School of Life and Environmental Sciences, Kyoto, Japan
| | - Yasuhiro Nakamura
- Department of Cardiology, Izumi Municipal Hospital, Izumi-Osaka, Japan
| | - Min Wei
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Iwao
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Cignarelli A, Giorgino F, Vettor R. Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 2013; 119:139-50. [PMID: 23724947 DOI: 10.3109/13813455.2013.796996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The close link between type 2 diabetes and excess body weight highlights the need to consider the effects on weight of different treatments used for correction of hyperglycaemia. Indeed, specific currently available diabetes therapies can cause weight gain, including insulin and its analogues, sulphonylureas, and thiazolidinediones, while others, such as metformin and the GLP-1 receptor agonists, can promote weight loss. Excess body weight in patients with diabetes is largely due to expansion of adipose tissue, and these drugs could interfere with the mechanisms underlying the expansion and differentiation of adipocyte precursors. Almost all anti-diabetes drugs could also potentially affect adipocyte metabolism directly, by modulating lipogenesis, lipolysis, and fat oxidation. This review will examine the available evidence for specific effects of various anti-diabetes drugs on adipose tissue development and function with the ultimate goal of increasing our understanding of how pharmacological agents can modulate energy balance and body fat.
Collapse
Affiliation(s)
- A Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari "Aldo Moro" , Bari , Italy and
| | | | | |
Collapse
|
29
|
Bojanowski K. Hypodermal delivery of cosmetic actives for improved facial skin morphology and functionality. Int J Cosmet Sci 2013; 35:562-7. [PMID: 23802778 DOI: 10.1111/ics.12077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/22/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Skin compartments traditionally targeted by cosmetic actives - epidermis and dermis - are anchored and nourished by the underlying hypodermis, which therefore should be a key target for skin-rejuvenating formulations. However, given the difficulty to reach even the superficial layers of the skin, and to its 'unglamorous' fatty composition, the regenerative potential of hypodermis remains largely untapped. Therefore, this study was to investigate the capacity of a cosmetic material to trigger a regenerative response in dermis and epidermis through a selective action on hypodermis. Furthermore, it aimed to establish the effect of such cosmetic material in transbuccal hypodermal delivery form, on the hypodermal precursor cells - the preadipocytes. METHODS A combination of grape seed extract and soy phospholipids was formulated and standardized for elastase activity and free radical inhibition. This formulation was then used to contact the hypodermal layer of human skin biopsies and - under a transbuccal delivery vehicle form - the 3T3-L1 preadipocytes, and its effects were quantified using PCR arrays and histochemistry. RESULTS Application of the standardized grape/soy material to the hypodermal layer of skin triggered modulation of gene expression in the upper layers of the skin and resulted in the clear morphological improvement at the dermal and epidermal levels. Furthermore, when this material was formulated in a mucoadhesive, intraoral film and applied on 3T3-L1 preadipocytes, the resulting modulation of gene expression in these cells was consistent with differentiation and detoxification effects. CONCLUSIONS These results suggest that transbuccal formulations of nutraceutical grade cosmetics have potential to induce signal transduction pathways in facial hypodermis, resulting in anti-aging effects throughout all skin compartments, including dermal and epidermal layers.
Collapse
Affiliation(s)
- K Bojanowski
- Sunny BioDiscovery Inc., 972 E. Main St., Santa Paula, CA, 93060, USA
| |
Collapse
|
30
|
He Y, Li Y, Zhao T, Wang Y, Sun C. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway. PLoS One 2013; 8:e70135. [PMID: 23922935 PMCID: PMC3724828 DOI: 10.1371/journal.pone.0070135] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/15/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. OBJECTIVE As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. METHODS AND RESULTS The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. CONCLUSIONS Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.
Collapse
Affiliation(s)
- Yonghan He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Tiantian Zhao
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Yanwen Wang
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
31
|
Song Y, Park HJ, Kang SN, Jang SH, Lee SJ, Ko YG, Kim GS, Cho JH. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLoS One 2013; 8:e69925. [PMID: 23936120 PMCID: PMC3723699 DOI: 10.1371/journal.pone.0069925] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/13/2013] [Indexed: 12/18/2022] Open
Abstract
This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity.
Collapse
Affiliation(s)
- Yuno Song
- Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Hyoung Joon Park
- Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Suk Nam Kang
- Dept. of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Sun-Hee Jang
- Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Soo-Jung Lee
- Deptment of Foods and Nutrition, Gyeongsang National University, Jinju, Korea
| | - Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon, Korea
| | - Gon-Sup Kim
- Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae-Hyeon Cho
- Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
- * E-mail:
| |
Collapse
|
32
|
He Y, Li Y, Zhang S, Perry B, Zhao T, Wang Y, Sun C. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2013; 436:169-74. [PMID: 23727383 DOI: 10.1016/j.bbrc.2013.05.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT element binding protein α (C/EBPα), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.
Collapse
Affiliation(s)
- Yonghan He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S. Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 2013; 10:237-48. [PMID: 23659367 DOI: 10.1089/zeb.2012.0835] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish (Danio rerio) have been proposed as a possible model organism for nutritional physiology. However, this potential has not yet been realized and studies on the field remain scarce. In this work, we investigated in this species the effect of a single meal as well as that of an increase in the ratio of dietary carbohydrates/proteins on the postprandial expression of several hepatic and muscle metabolism-related genes and proteins. Fish were fed once either a commercial diet (experiment 1) or one of two experimental diets (experiment 2) containing different protein and carbohydrate levels after 72 h of starvation. Refeeding induced the postprandial expression of genes of glycolysis (GK, HK1) and lipogenesis (FAS, G6PDH, ACCa) and inhibited those of gluconeogenesis (cPEPCK) and beta-oxidation (CPT1b) in the viscera. In the muscle, refeeding increased transcript levels of myogenesis (Myf5, Myogenin), inhibited those of Ub-proteasomal proteolytic system (Atrogin1, Murf1a, Murf1b), and induced the activation of key signaling factors of protein synthesis (Akt, 4EBP1, S6K1, S6). However, diet composition had a low impact on the studied factors. Together, these results highlight some specificity of the zebrafish metabolism and demonstrate the interest and the limits of this species as a model organism for nutritional physiology studies.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique , UR1067 Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ho JN, Choi JW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:485-490. [PMID: 22821258 DOI: 10.1002/jsfa.5792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Kefir, a traditional fermented milk composed of microbial symbionts, is reported to have various health benefits such as anti-tumour, anti-inflammatory, anti-neoplastic and pro-digestive effects. In this study, to elucidate the effects of kefir on adipocyte differentiation and lipid accumulation, three fractions were prepared from kefir culture broth. The inhibitory effects of kefir liquid culture broth fraction (Fr-1), soluble fraction (Fr-2) and insoluble fraction (Fr-3), prepared by sonication of kefir solid culture broth, on adipocyte differentiation in 3T3-L1 preadipocytes were examined. RESULTS Fr-3 (0.1 mg mL(-1)) significantly decreased lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity by 60 and 68% respectively without affecting cell viability. In addition, Fr-3 treatment down-regulated the mRNA expression of adipogenic transcription factors including C/EBPα (32%), PPARγ (46%) and SREBP-1c (34%) during adipocyte differentiation compared with untreated control cells. The mRNA expression of adipocyte-specific genes (aP2, FAS and ACC) was also clearly decreased. CONCLUSION The results suggest that the insoluble fraction of kefir (Fr-3) mediates anti-adipogenic effects through the inhibition of adipocyte differentiation, partly via suppression of the C/EBPα-, SREBP-1c- and PPARγ-dependent pathways.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Department of Medical Nutrition, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Gathercole LL, Morgan SA, Tomlinson JW. Hormonal Regulation of Lipogenesis. VITAMINS & HORMONES 2013; 91:1-27. [DOI: 10.1016/b978-0-12-407766-9.00001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Wang Y, Wong RHF, Tang T, Hudak CS, Yang D, Duncan RE, Sul HS. Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol Cell 2012; 49:283-97. [PMID: 23219531 DOI: 10.1016/j.molcel.2012.10.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/19/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Abstract
Fatty acid and triglyceride synthesis is induced in response to feeding and insulin. This lipogenic induction involves coordinate transcriptional activation of lipogenic enzymes, including fatty acid synthase and glycerol-3-phosphate acyltransferase. We recently reported the importance of USF-1 phosphorylation and subsequent acetylation in insulin-induced lipogenic gene activation. Here, we show that Brg1/Brm-associated factor (BAF) 60c is a specific chromatin remodeling component for lipogenic gene transcription in liver. In response to insulin, BAF60c is phosphorylated at S247 by atypical PKCζ/λ, which causes translocation of BAF60c to the nucleus and allows a direct interaction of BAF60c with USF-1 that is phosphorylated by DNA-PK and acetylated by P/CAF. Thus, BAF60c is recruited to form the lipoBAF complex to remodel chromatin structure and to activate lipogenic genes. Consequently, BAF60c promotes lipogenesis in vivo and increases triglyceride levels, demonstrating its role in metabolic adaption to activate the lipogenic program in response to feeding and insulin.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yan X, Pepper MP, Vatamaniuk MZ, Roneker CA, Li L, Lei XG. Dietary selenium deficiency partially rescues type 2 diabetes-like phenotypes of glutathione peroxidase-1-overexpressing male mice. J Nutr 2012; 142:1975-82. [PMID: 23014491 PMCID: PMC3497934 DOI: 10.3945/jn.112.164764] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study was conducted to determine whether dietary Se deficiency precluded overproduction of glutathione peroxidase-1 (GPX1) activity in mice overexpressing (OE) this gene and thus rescued their type 2 diabetes-like phenotypes. A total of 20 male OE and wild-type (WT) mice were fed an Se-deficient (<0.02 mg/kg) diet or an Se-supplemented (0.3 mg/kg as sodium selenite) diet from 1 to 5 mo of age. Dietary Se deficiency eliminated or attenuated (P < 0.05) genotype differences in concentrations of blood glucose, plasma insulin, and/or hepatic lipids, insulin sensitivity, and glucose-stimulated insulin secretion at the end of the study. Dietary Se deficiency decreased (P < 0.05) OE islet mRNA levels of 2 key transcriptional activators (Beta2 and Foxa2) and removed genotype differences in islet mRNA levels of 7 genes (Beta2, Cfos, Foxa2, Pregluc, Ins1, p53, and Sur1) related to insulin synthesis and secretion. Compared with those of the Se-adequate OE mice, the Se-deficient OE mice had lower (P < 0.05) hepatic mRNA levels of 2 key rate-limiting enzymes for lipogenesis (Acc1) and glycolysis (Gk1), along with lower (P < 0.05) activities of hepatic glucokinase and muscle phosphoenolpyruvate carboxykinase. Dietary Se deficiency also decreased (P < 0.05) blood glucose and hepatic lipid concentrations in the WT mice. In conclusion, dietary Se deficiency precluded the overproduction of GPX1 in full-fed OE mice and partially rescued their metabolic syndromes. This alleviation resulted from modulating the expression and/or function of proinsulin genes, lipogenesis rate-limiting enzyme genes, and key glycolysis and gluconeogenesis enzymes in islets, liver, and muscle.
Collapse
Affiliation(s)
- Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY; and
| | | | | | - Carol A. Roneker
- Department of Animal Science, Cornell University, Ithaca, NY; and
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, U.S. Department of Agriculture, Ithaca, NY
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY; and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 2012; 303:E334-51. [PMID: 22569073 PMCID: PMC3423120 DOI: 10.1152/ajpendo.00084.2012] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To identify new genes that are important in fat metabolism, we utilized the Lexicon-Genentech knockout database of genes encoding transmembrane and secreted factors and whole murine genome transcriptional profiling data that we generated for 3T3-L1 in vitro adipogenesis. Cross-referencing null models evidencing metabolic phenotypes with genes induced in adipogenesis led to identification of a new gene, which we named RIFL (refeeding induced fat and liver). RIFL-null mice have serum triglyceride levels approximately one-third of wild type. RIFL transcript is induced >100-fold during 3T3-L1 adipogenesis and is also increased markedly during adipogenesis of murine and human primary preadipocytes. siRNA-mediated knockdown of RIFL during 3T3-L1 adipogenesis results in an ~35% decrease in adipocyte triglyceride content. Murine RIFL transcript is highly enriched in white and brown adipose tissue and liver. Fractionation of WAT reveals that RIFL transcript is exclusive to adipocytes with a lack of expression in stromal-vascular cells. Nutritional and hormonal studies are consistent with a prolipogenic function for RIFL. There is evidence of an approximately eightfold increase in RIFL transcript level in WAT in ob/ob mice compared with wild-type mice. RIFL transcript level in WAT and liver is increased ~80- and 12-fold, respectively, following refeeding of fasted mice. Treatment of 3T3-L1 adipocytes with insulin increases RIFL transcript ≤35-fold, whereas agents that stimulate lipolysis downregulate RIFL. Interestingly, the 198-amino acid RIFL protein is predicted to be secreted and shows ~30% overall conservation with the NH(2)-terminal half of angiopoietin-like 3, a liver-secreted protein that impacts lipid metabolism. In summary, our data suggest that RIFL is an important new regulator of lipid metabolism.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology and Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
39
|
Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, Thompson TC. Castration-induced changes in mouse epididymal white adipose tissue. Mol Cell Endocrinol 2011; 345:58-67. [PMID: 21782885 PMCID: PMC3867123 DOI: 10.1016/j.mce.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
We analyzed the effects of castration on epididymal white adipose tissue (WAT) in C57BL/6J mice which were fed a regular or high-fat diet. Fourteen days following surgical castration profound effects on WAT tissue such as reductions in WAT wet weight and WAT/body weight ratio, induction of lipolysis and morphologic changes characterized by smaller adipocytes, and increased stromal cell compartment were documented in both dietary groups. Castrated animals had decreased serum leptin levels independent of diet but diet-dependent decreases in serum adiponectin and resistin. The castrated high-fat group had dramatically lower serum triglyceride levels. Immunohistochemical analysis revealed higher staining for smooth muscle actin, macrophage marker Mac-3, and Cxcl5 in the castrated than in the control mice in both dietary groups. We also detected increased fatty-acid synthase expression in the stromal compartment of WAT in the regular-diet group. Castration also reduces the expression of androgen receptor in WAT in the regular-diet group. We conclude that castration reduces tissue mass and affects biologic function of WAT in mice.
Collapse
Affiliation(s)
- Daniel Floryk
- Department of Genitourinary Medical Oncology - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Streptozotocin-induced diabetes affects in rat liver citrate carrier gene expression by transcriptional and posttranscriptional mechanisms. Int J Biochem Cell Biol 2011; 43:1621-9. [PMID: 21820077 DOI: 10.1016/j.biocel.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/22/2022]
Abstract
Citrate carrier (CiC), also known as tricarboxylate carrier, is an integral protein of the mitochondrial inner membrane. It is an essential component of the shuttle system by which mitochondrial acetyl-CoA, primer for both fatty acid and cholesterol synthesis, is transported into the cytosol, where lipogenesis occurs. Here, we report the effect of streptozotocin-induced diabetes on the activity and expression of CiC in rat liver mitochondria. A significant reduction of CiC activity and a parallel decline in the abundance of CiC mRNA were found in liver from diabetic rats. Diabetes did not influence CiC mRNA stability, whereas nuclear run-on assay revealed that the transcriptional rate of CiC mRNA decreased, when compared to control, in the nuclei from diabetic rats. The ratio of mature to precursor CiC RNA decreased in diabetic animals, indicating that the splicing of CiC RNA was also affected. The 3'-end processing rate of CiC mRNA was not altered in diabetes. These results suggest that diabetes affects CiC expression at both transcriptional and posttranscriptional levels. In addition, by in vitro transfection experiments in rat hepatocytes cultured in the absence of insulin, a reduction of CiC promoter activity was observed, and this was ascribed to a decreased expression of sterol regulatory element-binding protein-1 transcriptional factor. Furthermore, the binding of sterol regulatory element-binding protein-1 to the CiC promoter was reduced in STZ-diabetic rats with respect to control ones, and it was restored to the control values after insulin treatment.
Collapse
|
41
|
Xu M, Wang W, Frontera JR, Neely MC, Lu J, Aires D, Hsu FF, Turk J, Swerdlow RH, Carlson SE, Zhu H. Ncb5or deficiency increases fatty acid catabolism and oxidative stress. J Biol Chem 2011; 286:11141-54. [PMID: 21300801 DOI: 10.1074/jbc.m110.196543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endoplasmic reticulum-associated NADH cytochrome b(5) oxidoreductase (Ncb5or) is widely distributed in animal tissues. Ncb5or(-/-) mice develop diabetes at age 7 weeks and have increased susceptibility to the diabetogenic oxidant streptozotocin. Ncb5or deficiency also results in lipoatrophy and increased hepatocyte sensitivity to cytotoxic effects of saturated fatty acids. Here we investigate the mechanisms of these phenomena in prediabetic Ncb5or(-/-) mice and find that, despite increased rates of fatty acid uptake and synthesis and higher stearoyl-CoA desaturase (SCD) expression, Ncb5or(-/-) liver accumulates less triacylglycerol (TAG) than wild type (WT). Increased fatty acid catabolism and oxidative stress are evident in Ncb5or(-/-) hepatocytes and reflect increased mitochondrial content, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression, fatty acid oxidation rates, oxidative stress response gene expression, and oxidized glutathione content. Ncb5or(-/-) hepatocytes readily incorporate exogenous fatty acids into TAG but accumulate more free fatty acids (FFA) and have greater palmitate-induced oxidative stress responses and cell death than WT, all of which are alleviated by co-incubation with oleate via TAG channeling. A high fat diet rich in palmitate and oleate stimulates both lipogenesis and fatty acid catabolism in Ncb5or(-/-) liver, resulting in TAG levels similar to WT but increased intracellular FFA accumulation. Hepatic SCD-specific activity is lower in Ncb5or(-/-) than in WT mice, although Ncb5or(-/-) liver has a greater increase in Scd1 mRNA and protein levels. Together, these findings suggest that increased FFA accumulation and catabolism and oxidative stress are major consequences of Ncb5or deficiency in liver.
Collapse
Affiliation(s)
- Ming Xu
- Department of Physical Therapy and Rehabilitation Science, University of of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lu B, Jiang YJ, Kim P, Moser A, Elias PM, Grunfeld C, Feingold KR. Expression and regulation of GPAT isoforms in cultured human keratinocytes and rodent epidermis. J Lipid Res 2010; 51:3207-16. [PMID: 20719759 DOI: 10.1194/jlr.m007054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phospholipids are required for epidermal lamellar body formation. Glycerol 3-phosphate acyltransferases (GPATs) catalyze the initial step in the biosynthesis of glycerolipids. Little is known about the expression and regulation of GPATs in epidermis/keratinocytes. Here, we demonstrate that GPAT 1, 3, and 4 are expressed in epidermis/keratinocytes, whereas GPAT2 is not detected. In mouse epidermis, GPAT 3 and 4 are mainly localized to the upper layers whereas GPAT1 is found in both the upper and lower layers. GPAT1 and 3 mRNA increase during fetal rat epidermal development. No change in GPAT expression was observed in adult mice following acute permeability barrier disruption. Calcium-induced human keratinocyte differentiation increased GPAT3 mRNA whereas both GPAT1 and 4 mRNA levels decreased. In parallel, total GPAT activity increased 2-fold in differentiated keratinocytes attributable to an increase in N-ethylmaleimide (NEM) sensitive GPAT activity localized to microsomes with little change in NEM resistant activity, consistent with an increase in GPAT3. Furthermore, PPARγ or PPARδ activators increased GPAT3 mRNA, microsomal GPAT activity, and glycerol lipid synthesis without affecting the expression of GPAT1 or 4. Finally, both PPARγ and PPARδ activators increased GPAT3 mRNA via increasing its transcription. Thus, multiple isoforms of GPAT are expressed and differentially regulated in epidermis/keratinocytes.
Collapse
Affiliation(s)
- Biao Lu
- Department of R&D, System Biosciences, Mountain View, CA 94043, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Juman S, Yasui N, Okuda H, Ueda A, Negishi H, Miki T, Ikeda K. Caffeic Acid Phenethyl Ester Inhibits Differentiation to Adipocytes in 3T3-L1 Mouse Fibroblasts. Biol Pharm Bull 2010; 33:1484-8. [DOI: 10.1248/bpb.33.1484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sachiko Juman
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Naomi Yasui
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Hiroto Okuda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Ai Ueda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Hiroko Negishi
- Graduated School of Humanities and Sciences, Nara Women's University
| | - Tomohiro Miki
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Katsumi Ikeda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
44
|
Wong RHF, Chang I, Hudak CSS, Hyun S, Kwan HY, Sul HS. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 2009; 136:1056-72. [PMID: 19303849 DOI: 10.1016/j.cell.2008.12.040] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/25/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Fatty acid synthase (FAS) is a central enzyme in lipogenesis and transcriptionally activated in response to feeding and insulin signaling. The transcription factor USF is required for the activation of FAS transcription, and we show here that USF phosphorylation by DNA-PK, which is dephosphorylated by PP1 in response to feeding, triggers a switch-like mechanism. Under fasting conditions, USF-1 is deacetylated by HDAC9, causing promoter inactivation. In contrast, feeding induces the recruitment of DNA-PK to USF-1 and its phosphorylation, which then allows recruitment of P/CAF, resulting in USF-1 acetylation and FAS promoter activation. DNA break/repair components associated with USF induce transient DNA breaks during FAS activation. In DNA-PK-deficient SCID mice, feeding-induced USF-1 phosphorylation/acetylation, DNA breaks, and FAS activation leading to lipogenesis are impaired, resulting in decreased triglyceride levels. Our study demonstrates that a kinase central to the DNA damage response mediates metabolic gene activation.
Collapse
Affiliation(s)
- Roger H F Wong
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pellon-Maison M, Garcia CF, Cattaneo ER, Coleman RA, Gonzalez-Baro MR. Macrobrachium borellii hepatopancreas contains a mitochondrial glycerol-3-phosphate acyltransferase which initiates triacylglycerol biosynthesis. Lipids 2009; 44:337-44. [PMID: 19130111 PMCID: PMC2823129 DOI: 10.1007/s11745-008-3275-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/26/2008] [Indexed: 11/26/2022]
Abstract
Mammals express four isoforms of glycerol-3-phosphate acyltransferase (GPAT). The mitochondrial isoform GPAT1 may have been the acyltransferase that appeared first in evolution. The hepatopancreas of the crustacean Macrobrachium borellii has a high capacity for triacylglycerol (TAG) biosynthesis and storage. In order to understand the mechanism of glycerolipid biosynthesis in M. borellii, we investigated its hepatopancreas GPAT activity. In hepatopancreas mitochondria, we identified a GPAT activity with characteristics similar to those of mammalian GPAT1. The activity was resistant to inactivation by SH-reactive N-ethylmaleimide, it was activated by polymyxin-B, and its preferred substrate was palmitoyl-CoA. The reaction products were similar to those of mammalian GPAT1. A 70-kDa protein band immunoreacted with an anti-rat liver GPAT1 antibody. Surprisingly, we did not detect high GPAT specific activity in hepatopancreas microsomes. GPAT activity in microsomes was consistent with mitochondrial contamination, and its properties were similar to those of the mitochondrial activity. In microsomes, TAG synthesis was not dependent on the presence of glycerol-3 phosphate as a substrate, and the addition of monoacylglycerol as a substrate increased TAG synthesis 2-fold. We conclude that in M. borellii the de novo triacylglycerol biosynthetic pathway can be completed in the mitochondria. In contrast, TAG synthesis in the ER may function via the monoacylglycerol pathway.
Collapse
Affiliation(s)
- M. Pellon-Maison
- M. Pellon-Maison · C. F. Garcia · E. R. Cattaneo · M. R. Gonzalez-Baro, Instituto de Investigaciones Bioquímicas de La Plata, CCT La Plata, CONICET INIBIOLP, Fac. Cs. Médicas UNLP, Calles 60 & 120, 1900 La Plata, Argentina,
- R. A. Coleman, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - C. F. Garcia
- M. Pellon-Maison · C. F. Garcia · E. R. Cattaneo · M. R. Gonzalez-Baro, Instituto de Investigaciones Bioquímicas de La Plata, CCT La Plata, CONICET INIBIOLP, Fac. Cs. Médicas UNLP, Calles 60 & 120, 1900 La Plata, Argentina,
- R. A. Coleman, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - E. R. Cattaneo
- M. Pellon-Maison · C. F. Garcia · E. R. Cattaneo · M. R. Gonzalez-Baro, Instituto de Investigaciones Bioquímicas de La Plata, CCT La Plata, CONICET INIBIOLP, Fac. Cs. Médicas UNLP, Calles 60 & 120, 1900 La Plata, Argentina,
- R. A. Coleman, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R. A. Coleman
- M. Pellon-Maison · C. F. Garcia · E. R. Cattaneo · M. R. Gonzalez-Baro, Instituto de Investigaciones Bioquímicas de La Plata, CCT La Plata, CONICET INIBIOLP, Fac. Cs. Médicas UNLP, Calles 60 & 120, 1900 La Plata, Argentina,
- R. A. Coleman, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M. R. Gonzalez-Baro
- M. Pellon-Maison · C. F. Garcia · E. R. Cattaneo · M. R. Gonzalez-Baro, Instituto de Investigaciones Bioquímicas de La Plata, CCT La Plata, CONICET INIBIOLP, Fac. Cs. Médicas UNLP, Calles 60 & 120, 1900 La Plata, Argentina,
- R. A. Coleman, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Wortman P, Miyazaki Y, Kalupahana NS, Kim S, Hansen-Petrik M, Saxton AM, Claycombe KJ, Voy BH, Whelan J, Moustaid-Moussa N. n3 and n6 polyunsaturated fatty acids differentially modulate prostaglandin E secretion but not markers of lipogenesis in adipocytes. Nutr Metab (Lond) 2009; 6:5. [PMID: 19159447 PMCID: PMC2646735 DOI: 10.1186/1743-7075-6-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/21/2009] [Indexed: 12/27/2022] Open
Abstract
A dramatic rise in the incidence of obesity in the U.S. has accelerated the search for interventions that may impact this epidemic. One recently recognized target for such intervention is adipose tissue, which secretes a variety of bioactive substances including prostaglandins. Prostaglandin E2 (PGE2) has been shown to decrease lipolysis in adipocytes, but limited studies have explored alternative mechanisms by which PGE2 might impact obesity, such as adipogenesis or lipogenesis. Studies conducted on ApcMin/+ mice indicated that selective inhibition of the cyclooxygenase (COX)-2 enzyme led to significant reductions in fatty acid synthase (FAS) activity in adipose tissue suggesting lipogenic effects of PGE2. To further investigate whether these lipid mediators directly regulate lipogenesis, we used 3T3-L1 adipocytes to determine the impact of eicosapentaenoic acid (EPA) and celecoxib on PGE2 formation and FAS used as a lipogenic marker. Both arachidonic acid (AA) and EPA dose-dependently increased PGE secretion from adipocytes. AA was expectedly more potent and exhibiting at 150 uM dose a 5-fold increase in PGE2 secretion over EPA. Despite higher secretion of PGE by EPA and AA compared to control, neither PUFA significantly altered FAS activity. By contrast both AA and EPA significantly decreased FAS mRNA levels. Addition of celecoxib, a selective COX-2 inhibitor, significantly decreased PGE2 secretion (p < 0.05) versus control, and also significantly decreased FAS activity (p < 0.05). Unexpectedly, the combination of exogenous PGE2 and celecoxib further decreased the FAS activity compared to PGE2 alone or untreated controls. In conclusion, EPA-mediated inhibition of AA metabolism did not significantly alter FAS activity while both AA and EPA significantly decreased FAS mRNA expression. COX-2 inhibition significantly decreased PGE2 production resulting in a decrease in FAS activity and expression that was not reversed with the addition of exogenous PGE2, suggesting an additional mechanism that is independent of COX-2.
Collapse
Affiliation(s)
- Patrick Wortman
- University of Tennessee (UT), Department of Animal Science, Knoxville, TN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang M, Ikeda K, Xu JW, Yamori Y, Gao XM, Zhang BL. Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytother Res 2008; 23:713-8. [DOI: 10.1002/ptr.2724] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Radenne A, Akpa M, Martel C, Sawadogo S, Mauvoisin D, Mounier C. Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. Am J Physiol Endocrinol Metab 2008; 295:E884-94. [PMID: 18682535 DOI: 10.1152/ajpendo.90438.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fatty acid synthase (FAS) is a key enzyme of hepatic lipogenesis responsible for the synthesis of long-chain saturated fatty acids. This enzyme is mainly regulated at the transcriptional level by nutrients and hormones. In particular, glucose, insulin, and T(3) increase FAS activity, whereas glucagon and saturated and polyunsaturated fatty acids decrease it. In the present study we show that, in liver, T(3) and insulin were able to activate FAS enzymatic activity, mRNA expression, and gene transcription. We localized the T(3) response element (TRE) that mediates the T(3) genomic effect, on the FAS promoter between -741 and -696 bp that mediates the T(3) genomic effect. We show that both T(3) and insulin regulate FAS transcription via this sequence. The TRE binds a TR/RXR heterodimer even in the absence of hormone, and this binding is increased in response to T(3) and/or insulin treatment. The use of H7, a serine/threonine kinase inhibitor, reveals that a phosphorylation mechanism is implicated in the transcriptional regulation of FAS in response to both hormones. Specifically, we show that T(3) is able to modulate FAS transcription via a nongenomic action targeting the TRE through the activation of a PI 3-kinase-ERK1/2-MAPK-dependent pathway. Insulin also targets the TRE sequence, probably via the activation of two parallel pathways: Ras/ERK1/2 MAPK and PI 3-kinase/Akt. Finally, our data suggest that the nongenomic actions of T(3) and insulin are probably common to several TREs, as we observed similar effects on a classical DR4 consensus sequence.
Collapse
Affiliation(s)
- Anne Radenne
- Département des Sciences Biologiques, Centre de recherche BioMed, Université du Québec, CP 8888, Succursale Centreville, Montreal, Canada H36 3P8
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.
Collapse
|
50
|
Gimeno RE, Cao J. Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 2008; 49:2079-88. [PMID: 18658143 DOI: 10.1194/jlr.r800013-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycerol-3-phosphate acyltransferases (GPATs; EC2.3.1.15) catalyze the first step in the de novo synthesis of neutral lipids (triglycerides) and glycerophospholipids. The existence of multiple enzyme isoforms with GPAT activity was predicted many years ago when GPAT activities with distinct kinetic profiles and sensitivity to inhibitors were characterized in two subcellular compartments, mitochondria and microsomes. We now know that mammals have at least four GPAT isoforms with distinct tissue distribution and function. GPAT1 is the major mitochondrial GPAT isoform and is characterized by its resistance to sulfhydryl-modifying reagents, such as N-ethylmaleimide (NEM). GPAT2 is a minor NEM-sensitive mitochondrial isoform. The activity referred to as microsomal GPAT is encoded by two closely related genes, GPAT3 and GPAT4. GPAT isoforms are important regulators of cellular triglyceride and phospholipid content, and may channel fatty acids toward particular metabolic fates. Overexpression and knock-out studies suggest that GPAT isoforms can play important roles in the development of hepatic steatosis, insulin resistance, and obesity; GPAT isoforms are also important for lactation. This review summarizes the current state of knowledge on mammalian GPAT isoforms.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140, USA.
| | | |
Collapse
|