1
|
Yamamoto T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y. Biochemistry of uridine in plasma. Clin Chim Acta 2011; 412:1712-24. [PMID: 21689643 DOI: 10.1016/j.cca.2011.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022]
Abstract
Uridine is a pyrimidine nucleoside that plays a crucial role in synthesis of RNA, glycogen, and biomembrane. In humans, uridine is present in plasma in considerably higher quantities than other purine and pyrimidine nucleosides, thus it may be utilized for endogenous pyrimidine synthesis. Uridine has a number of biological effects on a variety of organs with or without disease, such as the reproductive organs, central and peripheral nervous systems, and liver. In addition, it is used in clinical situations as a rescue agent to protect against the adverse effects of 5-fluorouracil. Since the biological actions of uridine may be related to its plasma concentration, it is important to examine factors that have effects on that concentration. Factors associated with an increase in plasma concentration of uridine include enhanced ATP consumption, enhanced uridine diphosphate (UDP)-glucose consumption via glycogenesis, inhibited uridine uptake by cells via the nucleoside transport pathway, increased intestinal absorption, and increased 5-phosphribosyl-1-pyrophosphate and urea synthesis. In contrast, factors that decrease the plasma concentration of uridine are associated with accelerated uridine uptake by cells via the nucleoside transport pathway and decreased pyrimidine synthesis.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.
| | | | | | | | | | | |
Collapse
|
2
|
Braun JS. Ecto-5′-Nucleotidase-Positive Cells in the Choroid and Ciliary Body of the Rat Eye. Anat Rec (Hoboken) 2010; 293:379-82. [DOI: 10.1002/ar.21080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Smith KM, Slugoski MD, Cass CE, Baldwin SA, Karpinski E, Young JD. Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol Membr Biol 2009; 24:53-64. [PMID: 17453413 DOI: 10.1080/09687860600942534] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The SLC28 family of concentrative nucleoside transporter (CNT) proteins in mammalian cells contains members of two distinct phylogenic subfamilies. In humans, hCNT1 and hCNT2 belong to one subfamily, and hCNT3 to the other. All three CNTs mediate inwardly-directed Na(+)/nucleoside cotransport, and are either pyrimidine nucleoside-selective (hCNT1), purine nucleoside-selective (hCNT2), or broadly selective for both pyrimidine and purine nucleosides (hCNT3). While previous studies have characterized cation interactions with both hCNT1 and hCNT3, little is known about the corresponding properties of hCNT2. In the present study, heterologous expression in Xenopus oocytes in combination with radioisotope flux and electrophysiological techniques has allowed us to undertake a side-by-side comparison of hCNT2 with other hCNT family members. Apparent K (50) values for Na(+) activation were voltage-dependent, and similar in magnitude for all three transporters. Only hCNT3 was also able to couple transport of uridine to uptake of H(+). The Na(+)/nucleoside stoichiometry of hCNT2, as determined from both Hill coefficients and direct charge/flux measurements, was 1:1. This result was the same as for hCNT1, but different from that of hCNT3 (2:1). The charge-to-(22)Na(+) uptake stoichiometry was 1:1 for all three hCNTs. In parallel with their division into two separate CNT subfamilies, hCNT2 shares common cation specificity and coupling characteristics with hCNT1, which differ markedly from those of hCNT3.
Collapse
Affiliation(s)
- Kyla M Smith
- The Membrane Protein Research Group, Department of Physiology, University of Alberta, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Govindarajan R, Endres CJ, Whittington D, LeCluyse E, Pastor-Anglada M, Tse CM, Unadkat JD. Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich-cultured human hepatocytes. Am J Physiol Gastrointest Liver Physiol 2008; 295:G570-80. [PMID: 18635603 PMCID: PMC2536788 DOI: 10.1152/ajpgi.00542.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that both the concentrative (hCNT) and equilibrative (hENT) nucleoside transporters are expressed in the human liver (21). Here we report a study that investigated the expression of these transporters (transcripts and proteins) and their role in the hepatobiliary transport of nucleosides/nucleoside drugs using sandwich-cultured human hepatocytes. In the hepatic tissue, the rank order of the mRNA expression of the transporters was hCNT1 approximately hENT1>hENT2 approximately hCNT2>hCNT3. In sandwich-cultured hepatocytes, the mRNA expression of hCNT2 and hENT2 was comparable to that in hepatic tissue, whereas the expression of corresponding transporters in the two-dimensional hepatocyte cultures was lower. Colocalization studies demonstrated predominant localization of these transporters at the sinusoidal membrane and of hENT1, hCNT1, and hCNT2 at the canalicular membrane. In the sandwich-cultured hepatocytes, ENTs were the major contributors to the transport of thymidine (hENT1, 63%; hENT2, 23%) or guanosine (hENT1, 53%; hENT2, 24%) into the hepatocytes followed by hCNT1 (10%) for thymidine or hCNT2 (23%) for guanosine. Although ribavirin was predominately transported (89%) into the hepatocytes by hENT1, fialuridine (FIAU) was transported by both hENT1 (30%) and hCNTs (61%). The extensively metabolized natural nucleosides were not effluxed into the bile, whereas significant biliary-efflux was observed of FIAU (19%), ribavirin (30%), and formycin B (35%). We conclude that the hepatic activity of hENT1 and hCNT1/2 transporters will determine the in vivo hepatic distribution and therefore the efficacy and/or toxicity of nucleoside drugs used to treat hepatic diseases.
Collapse
Affiliation(s)
- Rajgopal Govindarajan
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J. Endres
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dale Whittington
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward LeCluyse
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marçal Pastor-Anglada
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington; CellzDirect, Pittsboro, North Carolina; Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB) University of Barcelona and Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; and Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. PLANT PHYSIOLOGY 2008; 147:1092-109. [PMID: 18480378 PMCID: PMC2442552 DOI: 10.1104/pp.108.117564] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/12/2008] [Indexed: 05/18/2023]
Abstract
Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.
Collapse
Affiliation(s)
- David Riewe
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
6
|
Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J. Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 2007; 292:G785-95. [PMID: 17095758 PMCID: PMC3952495 DOI: 10.1152/ajpgi.00293.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate critical liver functions via the activation of specific transmembrane receptors. The hepatic levels of extracellular nucleotides, and therefore the related downstream signaling cascades, are modulated by cell-surface enzymes called ectonucleotidases, including nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2/CD39L1, and ecto-5'-nucleotidase/CD73. The goal of this study was to determine the molecular identity of the canalicular ecto-ATPase/ATPDase that we hypothesized to correspond to the recently cloned NTPDase8. Human and rat NTPDase8 cDNAs were cloned, and the genes were located on chromosome loci 9q34 and 3p13, respectively. The recombinant proteins, expressed in COS-7 and HEK293T cells, were biochemically characterized. NTPDase8 was also purified from rat liver by Triton X-100 solubilization, followed by DEAE, Affigel Blue, and concanavalin A chromatographies. Importantly, NTPDase8 was responsible for the major ectonucleotidase activity in liver. The ion requirement, apparent K(m) values, nucleotide hydrolysis profile, and preference as well as the resistance to azide were similar for recombinant NTPDase8s and both purified rat NTPDase8 and porcine canalicular ecto-ATPase/ATPDase. The partial NH(2)-terminal amino acid sequences of all NTPDase8s share high identity with the purified liver canalicular ecto-ATPase/ATPDase. Histochemical analysis showed high ectonucleotidase activities in bile canaliculi and large blood vessels of rat liver, in agreement with the immunolocalization of NTPDase1, 2, and 8 with antibodies developed for this study. No NTPDase3 expression could be detected in liver. In conclusion, NTPDase8 is the canalicular ecto-ATPase/ATPDase and is responsible for the main hepatic NTPDase activity. The canalicular localization of this enzyme suggests its involvement in the regulation of bile secretion and/or nucleoside salvage.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, 2705 Boulevard Laurier, local T1-49, G1V 4G2 Québec, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 712] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Frei P, Gao B, Hagenbuch B, Mate A, Biber J, Murer H, Meier PJ, Stieger B. Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver. Am J Physiol Gastrointest Liver Physiol 2005; 288:G771-8. [PMID: 15564340 DOI: 10.1152/ajpgi.00272.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocytes and cholangiocytes release ATP into bile, where it is rapidly degraded into adenosine and P(i). In rat, biliary P(i) concentration (0.01 mM) is approximately 100-fold and 200-fold lower than in hepatocytes and plasma, respectively, indicating active reabsorption of biliary P(i). We aimed to functionally characterize canalicular P(i) reabsorption in rat liver and to identify the involved P(i) transport system(s). P(i) transport was determined in isolated rat canalicular liver plasma membrane (LPM) vesicles using a rapid membrane filtration technique. Identification of putative P(i) transporters was performed with RT-PCR from liver mRNA. Phosphate transporter protein expression was confirmed by Western blotting in basolateral and canalicular LPM and by immunofluorescence in intact liver. Transport studies in canalicular LPM vesicles demonstrated sodium-dependent P(i) uptake. Initial P(i) uptake rates were saturable with increasing P(i) concentrations, exhibiting an apparent K(m) value of approximately 11 muM. P(i) transport was stimulated by an acidic extravesicular pH and by an intravesicular negative membrane potential. These data are compatible with transport characteristics of sodium-phosphate cotransporters NaPi-IIb, PiT-1, and PiT-2, of which the mRNAs were detected in rat liver. On the protein level, NaPi-IIb was detected at the canalicular membrane of hepatocytes and at the brush-border membrane of cholangiocytes. In contrast, PiT-1 and PiT-2 were detected at the basolateral membrane of hepatocytes. We conclude that NaPi-IIb is most probably involved in the reabsorption of P(i) from primary hepatic bile and thus might play an important role in the regulation of biliary P(i) concentration.
Collapse
Affiliation(s)
- Pascal Frei
- Division of Clinical Pharmacology and Toxicology, Dept. of Medicine, Univ. Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5'-nucleotidase/CD73-deficient mice. J Clin Invest 2004; 114:634-42. [PMID: 15343381 PMCID: PMC514589 DOI: 10.1172/jci21851] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022] Open
Abstract
Adenosine coordinates organ metabolism and blood supply, and it modulates immune responses. In the kidney it mediates the vascular response elicited by changes in NaCl concentration in the macula densa region of the nephron, thereby serving as an important regulator of GFR. To determine whether adenosine formation depends on extracellular nucleotide hydrolysis, we studied NaCl-dependent GFR regulation (tubuloglomerular feedback) in mice with targeted deletion of ecto-5'-nucleotidase/CD73 (e-5'NT/CD73), the enzyme responsible for adenosine formation from AMP. e-5'NT/CD73(-/-) mice were viable and showed no gross anatomical abnormalities. Blood pressure, blood and urine chemistry, and renal blood flow were not different between e-5'NT/CD73(+/+) and e-5'NT/CD73(-/-) mice. e-5'NT/CD73(-/-) mice had a significantly reduced fall in stop flow pressure and superficial nephron glomerular filtration rate in response to a saturating increase of tubular perfusion flow. Furthermore, whereas tubuloglomerular feedback responses did not change significantly during prolonged loop of Henle perfusion in e-5'NT/CD73(+/+) mice, a complete disappearance of the residual feedback response was noted in e-5'NT/CD73(-/-) mice over 10 minutes of perfusion. The contractile response of isolated afferent arterioles to adenosine was normal in e-5'NT/CD73(-/-) mice. We conclude that the generation of adenosine at the glomerular pole depends to a major extent on e-5'NT/CD73-mediated dephosphorylation of 5'-AMP, presumably generated from released ATP.
Collapse
Affiliation(s)
- Hayo Castrop
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mateo J, Kreda S, Henry CE, Harden TK, Boyer JL. Requirement of Cys399 for processing of the human ecto-ATPase (NTPDase2) and its implications for determination of the activities of splice variants of the enzyme. J Biol Chem 2003; 278:39960-8. [PMID: 12888562 DOI: 10.1074/jbc.m307854200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ecto-ATPase (CD39L1) corresponds to the type 2 enzyme of the ecto-nucleoside triphosphate diphosphohydrolase family (E-NTPDase). We have isolated from human ECV304 cells three cDNAs with high homology with members of the E-NTPDase family that encode predicted proteins of 495, 472, and 450 amino acids. Sequencing of a genomic DNA clone confirmed that these three sequences correspond to splice variants of the human ecto-ATPase (NTPDase2 alpha,-2 beta, and -2 gamma). Although all three enzyme forms were expressed heterologously to similar levels in Chinese hamster ovary cells clone K-1 (CHO-K1) cells, only the 495-amino acid protein (NTPDase2 alpha exhibited ecto-ATPase activity. Immunolocalization studies demonstrated that NTPDase2 alpha is fully processed and trafficked to the plasma membrane, whereas the NTPDase2 beta and -2 gamma splice variants were retained in not fully glycosylated forms in the endoplasmic reticulum. The potential roles of two highly conserved residues, Cys399 and Asn443, in the activity and cellular trafficking of the ecto-ATPase were examined. Mutation of Cys399, which is absent in NTPDase2 beta and -2 gamma, produced a protein completely devoid of nucleotidase activity, while mutation of Asn443 to Asp resulted in substantial loss of activity. Neither the Cys399 nor Asn443 mutants were fully glycosylated, and both were retained in the endoplasmic reticulum. These results indicate that the lack of ecto-nucleotidase activity exhibited by NTPDase2 beta and -2 gamma and the C399S mutant, as well as the large reduction of activity in the N443D mutant are due to alterations in the folding/maturation of these proteins.
Collapse
Affiliation(s)
- Jesús Mateo
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | |
Collapse
|
11
|
Hamilton SR, Yao SY, Ingram JC, Hadden DA, Ritzel MW, Gallagher MP, Henderson PJ, Cass CE, Young JD, Baldwin SA. Subcellular Distribution and Membrane Topology of the Mammalian Concentrative Na+-Nucleoside Cotransporter rCNT1. J Biol Chem 2001; 276:27981-8. [PMID: 11375981 DOI: 10.1074/jbc.m100518200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat transporter rCNT1 is the archetype of a family of concentrative nucleoside transporters (CNTs) found both in eukaryotes and in prokaryotes. In the present study we have used antibodies to investigate the subcellular distribution and membrane topology of this protein. rCNT1 was found to be expressed predominantly in the brush-border membranes of the polarized epithelial cells of rat jejunum and renal cortical tubules and in the bile canalicular membranes of liver parenchymal cells, consistent with roles in the absorption of dietary nucleosides, of nucleosides in the glomerular filtrate, or of nucleosides arising from the action of extracellular nucleotidases, respectively. The effect of endoglycosidase F treatment on wild-type and mutant rCNT1 expressed in Xenopus oocytes revealed that the recombinant transporter could be glycosylated at either or both of Asn605 and Asn643, indicating that its C terminus is extracellular. In contrast, potential N-glycosylation sites introduced near the N terminus, or between putative transmembrane (TM) helices 4 and 5, were not glycosylated. The deduced orientation of the N terminus in the cytoplasm was confirmed by immunocytochemistry on intact and saponin-permeabilized Chinese hamster ovary cells expressing recombinant rCNT1. These results, in conjunction with extensive analyses of CNT family protein sequences using predictive algorithms, lead us to propose a revised topological model, in which rCNT1 possesses 13 TM helices with the hydrophilic N-terminal and C-terminal domains on the cytoplasmic and extracellular sides of the membrane, respectively. Furthermore, we show that the first three TM helices, which are absent from prokaryote CNTs, are not essential for transporter function; truncated proteins lacking these helices, derived either from rCNT1 or from its human homolog hCNT1, were found to retain significant sodium-dependent uridine transport activity when expressed in oocytes.
Collapse
Affiliation(s)
- S R Hamilton
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, the United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brown JR, Cornell K, Cook PW. Adenosine- and adenine-nucleotide-mediated inhibition of normal and transformed keratinocyte proliferation is dependent upon dipyridamole-sensitive adenosine transport. J Invest Dermatol 2000; 115:849-59. [PMID: 11069623 DOI: 10.1046/j.1523-1747.2000.00145.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular adenosine and its related nucleotides have been referred to as retaliatory metabolites that can be released into the extracellular environment during inflammation, wounding, and other pathologic states. We have previously reported that these compounds reversibly inhibit the proliferation of normal keratinocyte cultures and we now demonstrate that these compounds also arrest the proliferation of transformed keratinocytes. Although our study shows that keratinocytes express mRNA corresponding to the A2B purinoreceptors and that adenosine or AMP treatment elevates intracellular cAMP in these cells, our study also demonstrates that dipyridamole-inhibitable transport of adenosine into the keratinocyte is central to the mechanism by which adenosine and adenine nucleotides arrest proliferation in these cells. In support of this mechanism, our results demonstrate that human keratinocytes express mRNA corresponding to the recently cloned dipyridamole-sensitive human equilibrative nucleoside transporter. Interestingly, coincubation with adenosine deaminase reverses the antiproliferative action of adenosine and exerts no effect on the antiproliferative activity of the adenine nucleotides, thus supporting a model in which adenine nucleotides are enzymatically converted to adenosine and transported into the keratinocyte in a tightly coupled and adenosine-deaminase-resistant manner. Analysis of adenosine- and adenosine-monophosphate-treated keratinocytes demonstrated that quiescence is induced within 12-24 h, and fluorescence-activated cell sorter analysis suggests that treatment with these compounds may result in the inhibition of keratinocyte proliferation at both G1 and S phases of the cell cycle. In addition to their documented antiproliferative action on other cell types, adenosine, adenine nucleotides, and related analogs may also represent a potential new class of pharmacologic regulators of keratinocyte proliferation in vivo.
Collapse
Affiliation(s)
- J R Brown
- Department of Dermatology and Division of Molecular Medicine, The Oregon Health Sciences University, and Veterans Affairs Medical Center, Portland, Oregon, USA
| | | | | |
Collapse
|
13
|
Dragan Y, Valdés R, Gomez-Angelats M, Felipe A, Javier Casado F, Pitot H, Pastor-Anglada M. Selective loss of nucleoside carrier expression in rat hepatocarcinomas. Hepatology 2000; 32:239-46. [PMID: 10915730 DOI: 10.1053/jhep.2000.9546] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Evidence that hepatoma cell lines show differential expression of concentrative nucleoside transporters (CNT1 and CNT2) prompted us to study the transporter proteins in 2 models of hepatocarcinogenesis, the chemically induced Solt and Farber model and the albumin-SV40 large T antigen (Alb-SV40) transgenic rat. CNT1 expression was lower in tumor biopsy specimens from Alb-SV40 rat livers than in normal tissue. Immunocytochemistry revealed that the CNT1 protein was indeed absent in the tumor lesions. CNT1 was also absent in a cell line, L25, derived from the Alb-SV40 transgenic rat liver tumors, whereas another cell line, L37, derived from the normal-appearing parenchyma, retained the expression of both carrier isoforms. The protein expression correlated with the nucleoside transport properties of these cell lines. Moreover, although CNT2 expression was highly dependent on the growth characteristics of the 2 cell lines, as was CNT1 (albeit to a lower extent) in L37 cells, it was not expressed in L25 cells at any stage of cell growth. In contrast to the transgenic model of hepatocarcinogenesis, in the chemically induced tumors the expression of CNT2 was lower, although still detectable. In summary, these data indicate that hepatocarcinogenesis leads to a selective loss or diminished expression of nucleoside carrier isoforms, a feature that may be relevant to our understanding of the molecular basis of the bioavailability of those drugs that are nucleoside derivatives and may be substrates of these carriers. The transport properties and isoform-expression profile of the L25 and L37 cell lines make them suitable hepatocyte culture models with which to study nucleoside transport processes and drug sensitivity.
Collapse
Affiliation(s)
- Y Dragan
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Yegutkin GG, Burnstock G. Inhibitory effects of some purinergic agents on ecto-ATPase activity and pattern of stepwise ATP hydrolysis in rat liver plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:234-44. [PMID: 10825445 DOI: 10.1016/s0005-2736(00)00165-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.
Collapse
Affiliation(s)
- G G Yegutkin
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK
| | | |
Collapse
|
15
|
Kichenin K, Decollogne S, Angignard J, Seman M. Cardiovascular and pulmonary response to oral administration of ATP in rabbits. J Appl Physiol (1985) 2000; 88:1962-8. [PMID: 10846006 DOI: 10.1152/jappl.2000.88.6.1962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular purines such as ATP and adenosine participate in the regulation of cardiovascular and respiratory functions through specific P1 and P2 purine receptors. These properties have mainly been described after intravenous infusion. Experiments reported herein were designed to explore the possible effect of oral ATP administration (3 or 20 mg. kg(-1). day(-1)) on vascular, cardiac, and pulmonary functions in rabbits. Whereas a unique oral dose of ATP has no effect, chronic supplementation during 14 days reduces peripheral vascular resistance, pulmonary resistance, and respiratory frequency and increases arterial PO(2). No effect on central blood pressure and heart rate is observed, but an increase of the left ventricular work index is noticed subsequent to the diminution of vascular resistance. Rather similar cardiovascular modifications are observed in rabbits given 20 mg. kg(-1). day(-1) adenosine for 14 days but without variation of respiratory parameters. These original effects of repeated oral treatment with ATP may result from an adaptive metabolic response to nucleoside supplementation that might affect the turnover of extracellular purines leading to P1- and/or P2-receptor activation.
Collapse
Affiliation(s)
- K Kichenin
- Groupe d'Immunologie Denis Diderot, Université Paris 7, CP7124, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
16
|
Sévigny J, Robson SC, Waelkens E, Csizmadia E, Smith RN, Lemmens R. Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 2000; 275:5640-7. [PMID: 10681547 DOI: 10.1074/jbc.275.8.5640] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have identified and characterized a novel ATP diphosphohydrolase (ATPDase) with features of E-type ATPases from porcine liver. Immunoblotting with a specific monoclonal antibody to this ectoenzyme revealed high expression in liver with lesser amounts in kidney and duodenum. This ATPDase was localized by immunohistochemistry to the bile canalicular domain of hepatocytes and to the luminal side of the renal ductular epithelium. In contrast, ATPDase/cd39 was detected in vascular endothelium and smooth muscle in these organs. We purified the putative ATPDase from liver by immunoaffinity techniques and obtained a heavily glycosylated protein with a molecular mass estimated at 75 kDa. This enzyme hydrolyzed all tri- and diphosphonucleosides but not AMP or diadenosine polyphosphates. There was an absolute requirement for divalent cations (Ca(2+) > Mg(2+)). Biochemical activity was unaffected by sodium azide or other inhibitors of ATPases. Kinetic parameters derived from purified preparations of hepatic ATPDase indicated V(max) of 8.5 units/mg of protein with apparent K(m) of 100 microM for both ATP or ADP as substrates. NH(2)-terminal amino acid sequencing revealed near 50% identity with rat liver lysosomal (Ca(2+)-Mg(2+))-ATPase. The different biochemical properties and localization of the hepatic ATPDase suggest pathophysiological functions that are distinct from the vascular ATPDase/cd39.
Collapse
Affiliation(s)
- J Sévigny
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Roman RM, Fitz JG. Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology 1999; 116:964-79. [PMID: 10092320 DOI: 10.1016/s0016-5085(99)70081-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- R M Roman
- Division of Gastroenterology, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
18
|
Thomas C, Sun Y, Naus K, Lloyd A, Roux S. Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. PLANT PHYSIOLOGY 1999; 119:543-52. [PMID: 9952450 PMCID: PMC32131 DOI: 10.1104/pp.119.2.543] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/1998] [Accepted: 10/26/1998] [Indexed: 05/18/2023]
Abstract
ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the gamma- and beta-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the gamma-phosphate without promoting the transport of the purine or the ribose.
Collapse
Affiliation(s)
- C Thomas
- Botany Department and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78713, USA
| | | | | | | | | |
Collapse
|
19
|
Cass CE, Young JD, Baldwin SA, Cabrita MA, Graham KA, Griffiths M, Jennings LL, Mackey JR, Ng AM, Ritzel MW, Vickers MF, Yao SY. Nucleoside transporters of mammalian cells. PHARMACEUTICAL BIOTECHNOLOGY 1999; 12:313-52. [PMID: 10742981 DOI: 10.1007/0-306-46812-3_12] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In this review, we have summarized recent advances in our understanding of the biology of nucleoside transport arising from new insights provided by the isolation and functional expression of cDNAs encoding the major nucleoside transporters of mammalian cells. Nucleoside transporters are required for permeation of nucleosides across biological membranes and are present in the plasma membranes of most cell types. There is growing evidence that functional nucleoside transporters are required for translocation of nucleosides between intracellular compartments and thus are also present in organellar membranes. Functional studies during the 1980s established that nucleoside transport in mammalian cells occurs by two mechanistically distinct processes, facilitated diffusion and Na(+)-nucleoside cotransport. The determination of the primary amino acid sequences of the equilibrative and concentrative transporters of human and rat cells has provided a structural basis for the functional differences among the different transporter subtypes. Although nucleoside transporter proteins were first purified from human erythrocytes a decade ago, the low abundance of nucleoside transporter proteins in membranes of mammalian cells has hindered analysis of relationships between transporter structure and function. The molecular cloning of cDNAs encoding nucleoside transporters and the development of heterologous expression systems for production of recombinant nucleoside transporters, when combined with recombinant DNA technologies, provide powerful tools for characterization of functional domains within transporter proteins that are involved in nucleoside recognition and translocation. As relationships between molecular structure and function are determined, it should be possible to develop new approaches for optimizing the transportability of nucleoside drugs into diseased tissues, for development of new transport inhibitors, including reagents that are targeted to the concentrative transporters, and, eventually, for manipulation of transporter function through an understanding of the regulation of transport activity.
Collapse
Affiliation(s)
- C E Cass
- Molecular Biology of Membranes Group, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
del Santo B, Valdés R, Mata J, Felipe A, Casado FJ, Pastor-Anglada M. Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology 1998; 28:1504-11. [PMID: 9828213 DOI: 10.1002/hep.510280609] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary cultures of rat-liver parenchymal cells show carrier-mediated nucleoside uptake by a mechanism that mainly involves concentrative, Na+-dependent transport activity. In contrast, the hepatoma cell line FAO shows high nucleoside transport activity, although it is mostly accounted for by Na+-independent transport processes. This is associated with a low amount of sodium purine nucleoside transporter (SPNT) mRNA. SPNT encodes a purine-preferring transporter expressed in liver parenchymal cells. To analyze whether SPNT expression is modulated during cell proliferation, SPNT mRNA levels were determined in the early phase of liver growth after partial hepatectomy and in synchronized FAO cells that had been induced to proliferate. SPNT mRNA amounts increased as early as 2 hours after partial hepatectomy. FAO cells induced to proliferate after serum refeeding show an increase in SPNT mRNA levels, which is followed by an increase in Na+-dependent nucleoside uptake and occurs before the peak of 3H-thymidine incorporation into DNA. FAO cells also express significant equilibrative nucleoside transport activity, which may be accounted for by the expression of the nitrobenzylthioinosine (NBTI)-sensitive and -insensitive isoforms, rat equilibrative nucleoside transporter 1 (rENT1) and rENT2, respectively. Interestingly, rENT2 mRNA levels follow a similar pattern to that described for SPNT when FAO cells are induced to proliferate, whereas rENT1 appears to be constitutively expressed. Liver parenchymal cells show low and negligible mRNA levels for rENT1 and rENT2 transporters, respectively, although most of the equilibrative transport activity found in hepatocytes is NBTI-resistant. It is concluded that: 1) SPNT expression is regulated both in vivo and in vitro in a way that appears to be dependent on cell cycle progression; 2) SPNT expression may be a feature of differentiated hepatocytes; and 3) equilibrative transporters are differentially regulated, rENT2 expression being cell cycle-dependent. This is consistent with its putative role as a growth factor-induced delayed early response gene.
Collapse
Affiliation(s)
- B del Santo
- Departament de Bioquímica i Biologia Molecular Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol 1998; 15:203-11. [PMID: 10087507 DOI: 10.3109/09687689709044322] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two Na(+)-dependent nucleoside transporters implicated in adenosine and uridine transport in mammalian cells are distinguished functionally on the basis of substrate specificity: CNT1 is selective for pyrimidine nucleosides but also transports adenosine; CNT2 (also termed SPNT) is selective for purine nucleosides but also transports uridine. Both proteins belong to a gene family that includes the NupC proton/nucleoside symporter of E. coli. cDNAs encoding members of the CNT family have been isolated from rat tissues (jejunum, brain, liver; rCNT1 and rCNT2/SPNT) and, most recently, human kidney (hCNT1 and hSPNT1). Here, the molecular cloning and functional characterization of a CNT2/SPNT-type transporter from human small intestine are described. The encoded 658-residue protein (hCNT2 in the nomenclature) had the same predicted amino acid sequence as human kidney hSPNT1, except for a polymorphism at residue 75 (Arg substituted by Ser), and was 83 and 72% identical to rCNT2 and hCNT1, respectively. Sequence differences between hCNT2 and rCNT2 were greatest at the N-terminus. In Xenopus oocytes, recombinant hCNT2 exhibited the functional characteristics of a Na(+)-dependent nucleoside transporter with selectivity for adenosine, other purine nucleosides and uridine (adenosine and uridine K(m) app values 8 and 40 microM, respectively). hCNT2 transcripts were found in kidney and small intestine but, unlike rCNT2, were not detected in liver. Deoxyadenosine, which undergoes net renal secretion in humans, was less readily transported than adenosine. hCNT2 also mediated small, but significant, fluxes of the antiviral purine nucleoside analogue 2',3'-dideoxyinosine. hCNT2 is, therefore potentially involved in both the intestinal absorption and renal handling of purine nucleosides (including adenosine), uridine and purine nucleoside drugs. The gene encoding hCNT2 was mapped to chromosome 15q15.
Collapse
Affiliation(s)
- M W Ritzel
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Laidlaw SM, Anwar MA, Thomas W, Green P, Shaw K, Skinner MA. Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an orphan human homolog of a secreted nematode protein. J Virol 1998; 72:6742-51. [PMID: 9658122 PMCID: PMC109882 DOI: 10.1128/jvi.72.8.6742-6751.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The genome of fowlpox virus (FWPV), type species of the Avipoxviridae, is considerably rearranged compared with that of vaccinia virus (the prototypic poxvirus and type species of the Orthopoxviridae) and is 30% larger. It is likely that the genome of FWPV contains genes in addition to those found in vaccinia virus, probably involved with its replication and survival in the chicken. A 7,470-bp segment of the FWPV genome has five open reading frames (ORFs), two of which encode ankyrin repeat proteins, many examples of which have been found in poxviruses. The remaining ORFs encode homologs of cellular genes not reported in any other virus. ORF-2 encodes a homolog of the yeast Sec17p and mammalian SNAP proteins, crucial to vesicular transport in the exocytic pathway. ORF-3 encodes a homolog of an orphan human protein, R31240_2, encoded on 19p13.2. ORF-3 is also homologous to three proteins (YLS2, YMV6, and C07B5.5) from the free-living nematode Caenorhabditis elegans and to a 43-kDa antigen from the parasitic nematode Trichinella spiralis. ORF-5 encodes a homolog of the mammalian plasma cell antigen PC-1, a type II glycoprotein with exophosphodiesterase activity. The ORFs are present in the virulent precursor, HP1, of the sequenced attenuated virus (FP9) and are conserved in other strains of FWPV. They were shown, by deletion mutagenesis, to be nonessential to virus replication in tissue culture. RNA encoding the viral homolog of PC-1 is expressed strongly early and late in infection, but RNAs encoding the homologs of SNAP and R31240_2 are expressed weakly and late.
Collapse
Affiliation(s)
- S M Laidlaw
- Institute for Animal Health, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Ohata H, Fujita T, Yamakita J, Nakano T, Hiroishi K, Higashino K. Effect of bucladesine sodium on the plasma concentrations and urinary excretion of purine bases and uridine. Metabolism 1998; 47:1005-8. [PMID: 9712000 DOI: 10.1016/s0026-0495(98)90359-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To examine whether bucladesine sodium affects the plasma concentrations of purine bases (hypoxanthine, xanthine, and uric acid) and uridine, 100 mL of physiological saline containing bucladesine sodium (6 mg/kg weight) was administered intravenously to eight healthy subjects for 1 hour after overnight fast except for water. Blood was drawn 30 minutes before, and 30 minutes and 1 hour after the beginning of the infusion, and 1-hour urine was collected before and after the beginning of the infusion. Two weeks later, 100 mL of only physiological saline was administered under the same protocol. Bucladesine sodium decreased the plasma concentrations of hypoxanthine by 36% and by 37%, and of xanthine by 16% and 33%, and of uridine by 17% and 30%, 30 minutes and 1 hour after the beginning of the infusion, respectively, and increased the urinary excretion of hypoxanthine and uric acid by 140% and 30%, respectively, after the beginning of the infusion. However, it did not affect the plasma concentration of uric acid or the urinary excretion of xanthine, and the urinary excretion of uridine was less than 0.2 micromol/h before or after bucladesine sodium infusion. On the other hand, physiological saline alone did not affect any of the values described. These results suggest that bucladesine sodium acts on the secretory process of the renal transport of hypoxanthine, resulting in the increased urinary excretion of hypoxanthine, and further suggest that bucladesine sodium enhances the uptake of uridine in plasma to liver cells.
Collapse
Affiliation(s)
- T Yamamoto
- Third Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Ohata H, Yamakita J, Nakano T, Hiroishi K, Higashino K. Effect of glucagon on the plasma concentration of uridine. Metabolism 1998; 47:695-8. [PMID: 9627369 DOI: 10.1016/s0026-0495(98)90033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine whether glucagon affects the plasma concentration of uridine, we administered 100 mL physiological saline containing 1 mg glucagon or 100 mL physiological saline alone intravenously over 1 hour to healthy subjects. Glucagon decreased the plasma concentration of uridine from 5.72 +/- 1.05 to 4.80 +/- 0.60 micromol/L but increased the concentrations of cyclic adenosine monophosphate (cAMP) in plasma and pyruvic acid and lactic acid in blood 59-, 1.4-, and 1.3-fold, respectively. Although glucagon increased urinary excretion of uric acid, it did not affect the plasma concentration of purine bases (hypoxanthine, xanthine, and uric acid) or urinary excretion of oxypurines and uridine, indicating that glucagon does not affect purine degradation and suggesting that glucagon does not affect adenosine triphosphate (ATP) consumption-induced pyrimidine degradation. In contrast, physiological saline did not affect any of the measured variables. These results suggest that glucagon enhanced Na+-dependent uridine uptake from the blood into the cells, since glucagon stimulates Na+-dependent uridine uptake into cells in vitro.
Collapse
Affiliation(s)
- T Yamamoto
- Third Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwarzbaum PJ, Frischmann ME, Krumschnabel G, Rossi RC, Wieser W. Functional role of ecto-ATPase activity in goldfish hepatocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1031-8. [PMID: 9575966 DOI: 10.1152/ajpregu.1998.274.4.r1031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular [gamma-32P]ATP added to a suspension of goldfish hepatocytes can be hydrolyzed to ADP plus gamma-32Pi due to the presence of an ecto-ATPase located in the plasma membrane. Ecto-ATPase activity was a hyperbolic function of ATP concentration ([ATP]), with apparent maximal activity of 8.3 +/- 0.4 nmol P(i).(10(6) cells)-1.min-1 and substrate concentration at which a half-maximal hydrolysis rate is obtained of 667 +/- 123 microM. Ecto-ATPase activity was inhibited 70% by suramin but was insensitive to inhibitors of transport ATPases. Addition of 5 microM [alpha-32P]ATP to the hepatocyte suspension induced the extracellular release of alpha-32P(i) [8.2 pmol.(10(6) cells)-1.min-1] and adenosine, suggesting the presence of other ectonucleotidase(s). Exposure of cell suspensions to 5 microM [2,8-3H]ATP resulted in uptake of [2,8-3H]adenosine at 7.9 pmol.(10(6) cells)-1.min-1. Addition of low micromolar [ATP] strongly increased cytosolic free Ca2+ (Ca2+i). This effect could be partially mimicked by adenosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of ATP. The blockage of both glycolysis and oxidative phosphorylation led to a sixfold increase of Ca2+i and an 80% decrease of intracellular ATP, but ecto-ATPase activity was insensitive to these metabolic changes. Ecto-ATPase activity represents the first step leading to the complete hydrolysis of extracellular ATP, which allows 1) termination of the action of ATP on specific purinoceptors and 2) the resulting adenosine to be taken up by the cells.
Collapse
Affiliation(s)
- P J Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
26
|
Clair T, Krutzsch HC, Liotta LA, Stracke ML. Nucleotide binding to autotaxin: crosslinking of bound substrate followed by lysC digestion identifies two labeled peptides. Biochem Biophys Res Commun 1997; 236:449-54. [PMID: 9240459 DOI: 10.1006/bbrc.1997.6982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autotaxin (ATX) is a 125 kDa glycoprotein motility factor and exoenzyme which can catalyze the hydrolysis of either the alpha-beta or at the beta-gamma phosphodiester bond in ATP. Its motility stimulating activity requires an intact 5'-nucleotide phosphodiesterase (PDE) active site. Photolysis-dependent labeling of ATX with alpha-[32P]-8-N3-ATP, lysC digestion, and peptide HPLC resolved two radioactive fractions containing single peptides whose amino-terminal sequences were determined. Peptide A (T210FPNLYTLATG. . .) was derived from the PDE active site and peptide B (Y318GPFGPEMTNP. . .) was not previously known to be involved in any of the activities of ATX. The differential effect of NaCl concentration on the labeling of these two peptides, as well as on the two reaction types catalyzed by ATX, allows a classification of activities which predicts both the position of preferential peptide labeling by bound ATP and also the position of phosphodiester bond hydrolysis.
Collapse
Affiliation(s)
- T Clair
- Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
27
|
Chandrasena G, Giltay R, Patil SD, Bakken A, Unadkat JD. Functional expression of human intestinal Na+-dependent and Na+-independent nucleoside transporters in Xenopus laevis oocytes. Biochem Pharmacol 1997; 53:1909-18. [PMID: 9256166 DOI: 10.1016/s0006-2952(97)00170-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have shown previously that the human jejunal brush border membrane expresses both the N1 (cif) and the N2 (cit) Na+-dependent (concentrative) nucleoside transporters but not the Na+-independent (facilitative) nitrobenzylmercaptopurineriboside (NBMPR)-sensitive (es) transporter (Patil SD and Unadkat JD, Am J Physiol, 272: 1314-1320, 1997). In the present study, we have demonstrated that when Xenopus laevis oocytes are microinjected with human jejunal mRNA, four nucleoside transporters are expressed simultaneously, namely the N1 and N2 Na+-dependent nucleoside transporters and the es and the NBMPR-insensitive (ei) Na+-independent transporters. The expressed Na+-dependent nucleoside transporters showed substrate specificity identical to that previously described by us using jejunal brush border membrane vesicles (Patil SD and Unadkat JD, Am J Physiol, 272: 1314-1320, 1997). The expressed es and ei Na+-independent transporters demonstrated broad substrate selectivity with both purines and pyrimidines capable of inhibiting the uptake of guanosine and thymidine mediated by this transporter. The expressed Na+-dependent nucleoside transporters mediated the transport of their respective nucleoside substrates with a high affinity and a low capacity, whereas the es and the ei transporters mediated the transport of nucleosides with a low affinity and a high capacity. Collectively, these observations suggest that the Na+-independent nucleoside transporters are expressed in the basolateral membrane of the human jejunal epithelium. Based on these data, we hypothesize that the concentrative transporters in the brush border membrane and equilibrative transporters in the basolateral membrane are arranged in series in the human jejunal epithelium to allow efficient vectorial transport of nucleosides from the lumen to the blood. The simultaneous expression of four nucleoside transporters in X. laevis oocytes establishes a basis for molecular cloning of these four human nucleoside transporters.
Collapse
Affiliation(s)
- G Chandrasena
- Department of Pharmaceutics, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD. Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C707-14. [PMID: 9124315 DOI: 10.1152/ajpcell.1997.272.2.c707] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report identification of a new human nucleoside transporter protein by molecular cloning and functional expression of its cDNA. Previously, we used expression selection in Xenopus oocytes to isolate a cDNA from rat jejunal epithelium encoding the pyrimidine-selective Na+-dependent nucleoside transporter rCNT1 (Q.-Q. Huang, S. Y. M. Yao, M. W. L. Ritzel, A. R. P. Paterson, C. E. Cass, and J. D. Young. J. Biol. Chem. 269: 17757-17760, 1994). cDNAs for a human homologue of rCNT1, designated hCNT1, have been isolated from human kidney by hybridization cloning and reverse transcriptase polymerase chain reaction amplification strategies. hCNT1 was 83% identical to rCNT1 in amino acid sequence and exhibited the transport characteristics of an Na+-dependent nucleoside transporter with selectivity for pyrimidine nucleosides and adenosine when expressed in Xenopus oocytes. Deoxyadenosine, which undergoes net renal secretion, and guanosine were poor permeants. hCNT1 did, however, transport 3'-azido-3'-deoxythymidine. This is the first demonstration that members of the CNT family exist in human cells and provides evidence of their involvement in the renal transport of physiological nucleosides and nucleoside drugs. The hCNT1 gene was mapped to chromosome 15q25-26.
Collapse
Affiliation(s)
- M W Ritzel
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Clair T, Lee HY, Liotta LA, Stracke ML. Autotaxin is an exoenzyme possessing 5'-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 1997; 272:996-1001. [PMID: 8995394 DOI: 10.1074/jbc.272.2.996] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autotaxin (ATX) is an extracellular enzyme and an autocrine motility factor that stimulates pertussis toxin-sensitive chemotaxis in human melanoma cells at picomolar to nanomolar concentrations. This 125-kDa glycoprotein contains a peptide sequence identified as the catalytic site in type I alkaline phosphodiesterases (PDEs), and it possesses 5'-nucleotide PDE (EC 3.1.4.1) activity (Stracke, M. L., Krutzsch, H. C., Unsworth, E. J., Arestad, A., Cioce, V., Schiffmann, E., and Liotta, L. (1992) J. Biol. Chem. 267, 2524-2529; Murata, J., Lee, H. Y., Clair, T., Krutsch, H. C., Arestad, A. A., Sobel, M. E., Liotta, L. A., and Stracke, M. L. (1994) J. Biol. Chem. 269, 30479-30484). ATX binds ATP and is phosphorylated only on threonine. Thr210 at the PDE active site of ATX is required for phosphorylation, 5'-nucleotide PDE, and motility-stimulating activities (Lee, H. Y., Clair, T., Mulvaney, P. T., Woodhouse, E. C., Aznavoorian, S., Liotta, L. A., and Stracke, M. L. (1996) J. Biol. Chem. 271, 24408-24412). In this article we report that the phosphorylation of ATX is a transient event, being stable at 0 degrees C but unstable at 37 degrees C, and that ATX has adenosine-5'-triphosphatase (ATPase; EC 3.6.1.3) and ATP pyrophosphatase (EC 3.6.1.8) activities. Thus ATX catalyzes the hydrolysis of the phosphodiester bond on either side of the beta-phosphate of ATP. ATX also catalyzes the hydrolysis of GTP to GDP and GMP, of either AMP or PPi to Pi, and the hydrolysis of NAD to AMP, and each of these substrates can serve as a phosphate donor in the phosphorylation of ATX. ATX possesses no detectable protein kinase activity toward histone, myelin basic protein, or casein. These results lead to the proposal that ATX is capable of at least two alternative reaction mechanisms, threonine (T-type) ATPase and 5'-nucleotide PDE/ATP pyrophosphatase, with a common site (Thr210) for the formation of covalently bound reaction intermediates threonine phosphate and threonine adenylate, respectively.
Collapse
Affiliation(s)
- T Clair
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
30
|
Griffith DA, Jarvis SM. Nucleoside and nucleobase transport systems of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:153-81. [PMID: 8982282 DOI: 10.1016/s0304-4157(96)00008-1] [Citation(s) in RCA: 377] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D A Griffith
- Research School of Biosciences, University of Kent, Canterbary, UK
| | | |
Collapse
|
31
|
Abstract
ATP hydrolysis and the products of ATP metabolism were measured in intact rat parotid acini. The purpose was to determine the contribution of extracellular enzymes in metabolizing ATP and its metabolites. The total enzyme activity accounting for extracellular ATP breakdown was at least 75% dependent on added divalent cations, consistent with the presence of ectoATPase. Approximately 50% of the added ATP was hydrolysed in 1 h by the cells and this percentage was independent of cell protein concentration from 80 to 296 micrograms/ml and independent of ATP concentration from 4 to 80 microM. ADP. AMP and adenosine were identified as metabolites. Cell adenosine uptake was not a factor in controlling the levels of extracellular adenosine. Generation of adenosine was limited under conditions of higher rates of ATP hydrolysis. Studies in parotid cell membranes showed that very little feedback inhibition of ectoATPase was observed. 5' Nucleotidase was present at levels of activity of 0.06-0.19 mumol/mg protein/h in intact acini. The results confirm the presence of ectonucleotidases which can generate ADP, AMP and adenosine. Ectonucleotidase could contribute to reducing the effect of extracellular ATP on the parotid cell.
Collapse
Affiliation(s)
- F J Dowd
- Department of Pharmacology, Creighton University Medical School, Omaha, NE 68178, USA
| | | | | |
Collapse
|
32
|
James SG, Appleby GJ, Miller KA, Steen JT, Colquhoun EQ, Clark MG. Purine and pyrimidine nucleotide metabolism of vascular smooth muscle cells in culture. GENERAL PHARMACOLOGY 1996; 27:837-44. [PMID: 8842687 DOI: 10.1016/0306-3623(95)02087-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Cultures of vascular smooth muscle cells accumulate extracellular breakdown products of purine and pyrimidine nucleotides that, over 9 hr, represent 60 +/- 7 and 78 +/- 17%, respectively, of the intracellular nucleotide content. 2. The accumulation is stimulated during contracture with 20 mM KCl or 70 microM carbachol, consistent with the notion that both pyrimidine and purine nucleotides are involved in the energetics of smooth muscle contracture. 3. Because the intracellular levels of pyrimidine and purine nucleotides remain constant, it appears likely that rates of synthesis match the rates of release. 4. Ectonucleotidases are present that can degrade ATP, UTP, and CTP. High-energy nucleotides may be the primary products released.
Collapse
Affiliation(s)
- S G James
- Department of Biochemistry, University of Tasmania, Hobart, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
CD39, a 70- to 100-kDa molecule expressed primarily on activated lymphoid cells, was previously identified as a surface marker of Epstein Barr virus (EBV)-transformed B cells. In this report, we show that an ecto-(Ca2+,Mg2+)-apyrase activity is present on EBV-transformed B cells, but not on B or T lymphomas. The coincidence between CD39 expression and ecto-apyrase activity on immune cells suggests that CD39 may be an ecto-apyrase. This supposition is supported by the observation that the amino acid sequence of CD39 is significantly homologous to those of several newly identified nucleotide triphosphatases. Finally, we show that CD39 indeed has ecto-apyrase activity by expression in COS-7 cells.
Collapse
Affiliation(s)
- T F Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
34
|
Roovers KI, Meckling-Gill KA. Characterization of equilibrative and concentrative Na+-dependent (cif) nucleoside transport in acute promyelocytic leukemia NB4 cells. J Cell Physiol 1996; 166:593-600. [PMID: 8600163 DOI: 10.1002/(sici)1097-4652(199603)166:3<593::aid-jcp14>3.0.co;2-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleoside transport processes can be classified by the transport mechanism, e=equilibrative and c=concentrative, by the sensitivity to inhibition by nitrobenzylthioinosine (NBMPR), s=sensitive and i=insensitive, and also by permeant selectivity. To characterize nucleoside transport in acute promyelocytic NB4 cells, nucleoside transport was resolved into different components by selective elimination of transport processes with NBMPR and with Na+-deficient media. Initial transport rates were estimated from time course experiments. For adenosine, uridine, and formycin B, equilibrative transport accounted for approximately 60% of their uptake, with ei and es transport contributing almost equally, and Na+-dependent transport accounting for the remaining 40% of the total uptake. Thymidine uptake was mediated exclusively by equilibrative systems with ei and es systems each contributing 50% to total uptake. Adenosine accumulated above equilibrative concentrations, suggesting that a concentrative transport process was active and/or that metabolism led to adenosine's accumulation. Formycin B, a nonmetabolizable analog, also accumulated in the cells, supporting the concentrative potential of the Na+-dependent transporter. Kinetic analyses also provided evidence for three distinct high affinity transport mechanisms. NBMPR binding assays indicated the presence of two high affinity (Km 0.10 and 0.35 nM) binding sites. In conclusion, NB4 cells express ei and es transport, as well as a large ci transport component, which appears to correspond to cif (f=formycin B or purine selective) nucleoside transport, not previously described in human cells.
Collapse
Affiliation(s)
- K I Roovers
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
35
|
Che M, Ortiz DF, Arias IM. Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na(+)-nucleoside cotransporter. J Biol Chem 1995; 270:13596-9. [PMID: 7775409 DOI: 10.1074/jbc.270.23.13596] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously characterized a purine-specific Na(+)-nucleoside cotransport system in bile canalicular membrane. The function of this transport system may be related to conserving nucleosides and preventing cholestasis. We report here the isolation of a cDNA encoding a Na(+)-dependent nucleoside transporter from rat liver using an expression cloning strategy. The substrate specificities and kinetic characteristics of the cloned cotransporter are consistent with the properties of the Na(+)-dependent, purine-selective nucleoside transporter in bile canalicular membranes. The nucleotide sequence predicts a protein of 659 amino acids (72 kDa) with 14 putative membrane-spanning domains. Northern blot analysis showed that the transcripts are present in liver and several other tissues. Data base searches indicate significant sequence similarity to the pyrimidine-selective nucleoside transporter (cNT1) of rat jejunum. Although these two subtypes of Na(+)-nucleoside cotransporter have different substrate specificities and tissue localizations, they are members of a single gene family.
Collapse
Affiliation(s)
- M Che
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
36
|
Abstract
Ecto-ATPases are ubiquitous in eukaryotic cells. They hydrolyze extracellular nucleoside tri- and/or diphosphates, and, when isolated, they exhibit E-type ATPase activity, (that is, the activity is dependent on Ca2+ or Mg2+, and it is insensitive to specific inhibitors of P-type, F-type, and V-type ATPases; in addition, several nucleotide tri- and/or diphosphates are hydrolysed, but nucleoside monophosphates and nonnucleoside phosphates are not substrates). Ecto-ATPases are glycoproteins; they do not form a phosphorylated intermediate during the catalytic cycle; they seem to have an extremely high turnover number; and they present specific experimental problems during solubilization and purification. The T-tubule Mg2+-ATPase belongs to this group of enzymes, which may serve at least two major roles: they terminate ATP/ADP-induced signal transduction and participate in adenosine recycling. Several other functions have been discussed and identity to certain cell adhesion molecules and the bile acid transport protein was suggested on the basis of cDNA clone isolation and immunological work.
Collapse
Affiliation(s)
- L Plesner
- Department of Biophysics, University of Aarhus, Denmark
| |
Collapse
|
37
|
Braun JS, Le Hir M, Kaissling B. Morphology and distribution of ecto-5'-nucleotidase-positive cells in the rat choroid plexus. JOURNAL OF NEUROCYTOLOGY 1994; 23:193-200. [PMID: 8006679 DOI: 10.1007/bf01181560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this report was to find out whether adenosine can be produced locally in the choroid plexus of rats. Therefore we investigated the distribution of the enzyme ecto-5'-nucleotidase which hydrolyzes extracellular adenosine monophosphate to adenosine and phosphate. Enzyme activity histochemistry and immunohistochemistry demonstrated that ecto-5'-nucleotidase is present in the stroma but not in the epithelium. The positive cells in the stroma were identified as fibroblasts by their localization and by their shape. Double-labelling immunohistochemistry actually showed that ecto-5'-nucleotidase was absent from MHC class II-positive cells and from vessel walls. These data indicate that adenosine may be produced in the choroid plexus, and specifically in the interstitium. From there, adenosine would have direct access to nerves, immune cells, the epithelium and microvessels. Because adenosine has been reported to modulate blood supply and the rate of production of cerebrospinal fluid, a local control mechanism involving adenosine might operate in the choroid plexus in a similar way to that described in other tissues. Effects of adenosine on nerves and immune cells are discussed. The exclusive presence of ecto-5'-nucleotidase in the fibroblasts that are in contact with choroid plexus epithelium suggests that the expression of the enzyme is controlled by factors produced by epithelial cells, for instance by extracellular nucleotides.
Collapse
Affiliation(s)
- J S Braun
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
38
|
Belli SI, van Driel IR, Goding JW. Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1 (5'-nucleotide phosphodiesterase). EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:421-8. [PMID: 8223581 DOI: 10.1111/j.1432-1033.1993.tb18261.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PC-1 is a membrane glycoprotein, found on the surface of plasma cells and a few types of nonlymphoid cells, which has recently been found to have 5'-nucleotide phosphodiesterase activity. In this paper, we demonstrate the existence of enzymically active water-soluble forms of PC-1 in ascites from plasmacytoma-bearing mice, normal mouse serum, and in supernatants of cultured mouse plasmacytoma cells and mouse L cells transfected with a cDNA encoding the membrane form of PC-1. The water-soluble enzyme activity can be specifically immunoprecipitated by a monoclonal antibody to an allotypic determinant on the membrane form of PC-1, and resides on a slightly smaller polypeptide than membrane PC-1. Biosynthetic studies revealed a single, monomeric, endoglycosidase-H-sensitive membrane PC-1 precursor, which was gradually converted to a disulphide-bonded, endoglycosidase-H-resistant form over a period of about 2 h. Soluble PC-1 was first detectable in the supernatant after about 2 h. A distinct intracellular form of soluble PC-1 was not seen. The soluble form of PC-1 does not appear to arise by proteolytic cleavage from the cell surface, although cleavage inside the cell remains a possibility. When taken together with the structure of the relevant portions of PC-1 gene exons, the data suggest that the most likely site of cleavage is between Pro152 and Ala153.
Collapse
Affiliation(s)
- S I Belli
- Department of Pathology and Immunology, Monash Medical School, Victoria, Australia
| | | | | |
Collapse
|
39
|
Dombrowski KE, Trevillyan JM, Cone JC, Lu Y, Phillips CA. Identification and partial characterization of an ectoATPase expressed by human natural killer cells. Biochemistry 1993; 32:6515-22. [PMID: 8329381 DOI: 10.1021/bi00077a004] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An extracellular membrane-associated ectoATPase has been identified on the human natural killer cell line NK3.3. The enzyme is distinct from other classes of ATPases, kinases, and phosphatases. NK3.3 ectoATPase demonstrated a Km for ATP of 41 microM and a Vmax of 0.2 mumol/min and required both Ca2+ and Mg2+ for maximal activity. Purine and pyrimidine nucleotides were competitive inhibitors of the catalytic reaction. Inhibition increased with the addition of increasing negative charge of the phosphate side chain and was also dependent on contributions from the nucleoside. NK3.3 ectoATPase activity was inhibited by reaction with the affinity label [p-(fluorosulfonyl)benzoyl]-5'-adenosine (5'-FSBA), which is shown to modify the enzyme at or near the ATP-binding domain. Photoaffinity labeling of intact NK3.3 cells with [alpha-32P]-8-azidoATP demonstrated an ATP-binding protein of 68-80 kDa unique to NK3.3 cells. A positive correlation was observed between the ability of the various nucleotides to block photoincorporation into the 68-80-kDa protein and their ability to inhibit ectoATPase activity. NK3.3 cells which were made ectoATPase-deficient by reaction with 5'-FSBA demonstrated that this enzyme does not have a major role in the protection of this cytolytic effector cell from the possible lytic effects of extracellular ATP.
Collapse
Affiliation(s)
- K E Dombrowski
- Department of Veterans Affairs Medical Center, Amarillo, Texas 79106
| | | | | | | | | |
Collapse
|
40
|
Campbell C, Spray D, Wolkoff A. Extracellular ATP4- modulates organic anion transport by rat hepatocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82271-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Ruiz-Montasell B, Martinez-Mas JV, Enrich C, Casado FJ, Felipe A, Pastor-Anglada M. Early induction of Na(+)-dependent uridine uptake in the regenerating rat liver. FEBS Lett 1993; 316:85-8. [PMID: 8422942 DOI: 10.1016/0014-5793(93)81741-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Na(+)-dependent uridine transport into liver plasma membrane vesicles from partially hepatectomized and sham-operated rats was studied. Preparations purified 6 h after 70% hepatectomy exhibited an increased Vmax of uridine uptake (3.7 vs. 1.4 pmol/mg prot/3 s) without any change in Km (6 microM). Incubation of the vesicles in the presence of monensin decreased uridine uptake although the differences between both experimental groups remained identical. It is concluded that uridine transport is induced early after partial hepatectomy by a mechanism which does not involve changes in the transmembrane Na+ gradient. This is the first evidence in favor of modulation of nucleoside transport into liver cells.
Collapse
Affiliation(s)
- B Ruiz-Montasell
- Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|