1
|
Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl Psychiatry 2018; 8:148. [PMID: 30097568 PMCID: PMC6086890 DOI: 10.1038/s41398-018-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of brain-targeted autoantibodies in children with autism spectrum disorder (ASD) raises the possibility of autoimmune encephalopathy (AIE). Intravenous immunoglobulin (IVIG) is effective for AIE and for some children with ASD. Here, we present the largest case series of children with ASD treated with IVIG. Through an ASD clinic, we screened 82 children for AIE, 80 of them with ASD. IVIG was recommended for 49 (60%) with 31 (38%) receiving the treatment under our care team. The majority of parents (90%) reported some improvement with 71% reporting improvements in two or more symptoms. In a subset of patients, Aberrant Behavior Checklist (ABC) and/or Social Responsiveness Scale (SRS) were completed before and during IVIG treatment. Statistically significant improvement occurred in the SRS and ABC. The antidopamine D2L receptor antibody, the anti-tubulin antibody and the ratio of the antidopamine D2L to D1 receptor antibodies were related to changes in the ABC. The Cunningham Panel predicted SRS, ABC, parent-based treatment responses with good accuracy. Adverse effects were common (62%) but mostly limited to the infusion period. Only two (6%) patients discontinued IVIG because of adverse effects. Overall, our open-label case series provides support for the possibility that some children with ASD may benefit from IVIG. Given that adverse effects are not uncommon, IVIG treatment needs to be considered cautiously. We identified immune biomarkers in select IVIG responders but larger cohorts are needed to study immune biomarkers in more detail. Our small open-label exploratory trial provides evidence supporting a neuroimmune subgroup in patients with ASD.
Collapse
|
2
|
Singer BF, Bryan MA, Popov P, Robinson TE, Aragona BJ. Rapid induction of dopamine sensitization in the nucleus accumbens shell induced by a single injection of cocaine. Behav Brain Res 2017; 324:66-70. [PMID: 28223145 DOI: 10.1016/j.bbr.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
Abstract
Repeated intermittent exposure to cocaine results in the neurochemical sensitization of dopamine (DA) transmission within the nucleus accumbens (NAc). Indeed, the excitability of DA neurons in the ventral tegmental area (VTA) is enhanced within hours of initial psychostimulant exposure. However, it is not known if this is accompanied by a comparably rapid change in the ability of cocaine to increase extracellular DA concentrations in the ventral striatum. To address this question we used fast-scan cyclic voltammetry (FSCV) in awake-behaving rats to measure DA responses in the NAc shell following an initial intravenous cocaine injection, and then again 2-h later. Both injections quickly elevated DA levels in the NAc shell, but the second cocaine infusion produced a greater effect than the first, indicating sensitization. This suggests that a single injection of cocaine induces sensitization-related plasticity very rapidly within the mesolimbic DA system.
Collapse
Affiliation(s)
- Bryan F Singer
- Biopsychology Area, Department of Psychology, University of Michigan, 530 Church Street, East Hall, Ann Arbor, MI 48109, USA.
| | - Myranda A Bryan
- Biopsychology Area, Department of Psychology, University of Michigan, 530 Church Street, East Hall, Ann Arbor, MI 48109, USA
| | - Pavlo Popov
- Biopsychology Area, Department of Psychology, University of Michigan, 530 Church Street, East Hall, Ann Arbor, MI 48109, USA
| | - Terry E Robinson
- Biopsychology Area, Department of Psychology, University of Michigan, 530 Church Street, East Hall, Ann Arbor, MI 48109, USA
| | - Brandon J Aragona
- Biopsychology Area, Department of Psychology, University of Michigan, 530 Church Street, East Hall, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
4
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
5
|
CaM Kinases: From Memories to Addiction. Trends Pharmacol Sci 2015; 37:153-166. [PMID: 26674562 DOI: 10.1016/j.tips.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is a major psychiatric disorder with a neurobiological basis that is still insufficiently understood. Initially, non-addicted, controlled drug consumption and drug instrumentalization are established. They comprise highly systematic behaviours acquired by learning and the establishment of drug memories. Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important Ca(2+) sensors translating glutamatergic activation into synaptic plasticity during learning and memory formation. Here we review the role of CaMKs in the establishment of drug-related behaviours in animal models and in humans. Converging evidence now shows that CaMKs are a crucial mechanism of how addictive drugs induce synaptic plasticity and establish various types of drug memories. Thereby, CaMKs are not only molecular relays for glutamatergic activity but they also directly control dopaminergic and serotonergic activity in the mesolimbic reward system. They can now be considered as major molecular pathways translating normal memory formation into establishment of drug memories and possibly transition to drug addiction.
Collapse
|
6
|
Easton AC, Lourdusamy A, Havranek M, Mizuno K, Solati J, Golub Y, Clarke TK, Vallada H, Laranjeira R, Desrivières S, Moll GH, Mössner R, Kornhuber J, Schumann G, Giese KP, Fernandes C, Quednow BB, Müller CP. αCaMKII controls the establishment of cocaine's reinforcing effects in mice and humans. Transl Psychiatry 2014; 4:e457. [PMID: 25290264 PMCID: PMC4350526 DOI: 10.1038/tp.2014.97] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
Although addiction develops in a considerable number of regular cocaine users, molecular risk factors for cocaine dependence are still unknown. It was proposed that establishing drug use and memory formation might share molecular and anatomical pathways. Alpha-Ca(2+)/calmodulin-dependent protein kinase-II (αCaMKII) is a key mediator of learning and memory also involved in drug-related plasticity. The autophosphorylation of αCaMKII was shown to accelerate learning. Thus, we investigated the role of αCaMKII autophosphorylation in the time course of establishing cocaine use-related behavior in mice. We found that αCaMKII autophosphorylation-deficient αCaMKII(T286A) mice show delayed establishment of conditioned place preference, but no changes in acute behavioral activation, sensitization or conditioned hyperlocomotion to cocaine (20 mg kg(-1), intraperitoneal). In vivo microdialysis revealed that αCaMKII(T286A) mice have blunted dopamine (DA) and blocked serotonin (5-HT) responses in the nucleus accumbens (NAcc) and prefrontal cortex after acute cocaine administration (20 mg kg(-1), intraperitoneal), whereas noradrenaline responses were preserved. Under cocaine, the attenuated DA and 5-HT activation in αCaMKII(T286A) mice was followed by impaired c-Fos activation in the NAcc. To translate the rodent findings to human conditions, several CAMK2A gene polymorphisms were tested regarding their risk for a fast establishment of cocaine dependence in two independent samples of regular cocaine users from Brazil (n=688) and Switzerland (n=141). A meta-analysis across both samples confirmed that CAMK2A rs3776823 TT-allele carriers display a faster transition to severe cocaine use than C-allele carriers. Together, these data suggest that αCaMKII controls the speed for the establishment of cocaine's reinforcing effects.
Collapse
Affiliation(s)
- A C Easton
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - A Lourdusamy
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - M Havranek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - K Mizuno
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London, UK
| | - J Solati
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
- Department of Biology, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Y Golub
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
| | - T-K Clarke
- Translational Research Laboratory, Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Vallada
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - R Laranjeira
- UNIAD, Federal University of São Paulo, São Paulo, Brazil
| | - S Desrivières
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - G H Moll
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
| | - R Mössner
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - G Schumann
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - K P Giese
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London, UK
| | - C Fernandes
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - B B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - C P Müller
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
8
|
Wang Y, Lee JW, Oh G, Grady SR, McIntosh JM, Brunzell DH, Cannon JR, Drenan RM. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs. J Neurochem 2013; 129:315-27. [PMID: 24266758 DOI: 10.1111/jnc.12616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022]
Abstract
α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels.
Collapse
Affiliation(s)
- Yuexiang Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Coultrap SJ, Buard I, Kulbe JR, Dell'Acqua ML, Bayer KU. CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin. J Biol Chem 2010; 285:17930-7. [PMID: 20353941 DOI: 10.1074/jbc.m109.069351] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca(2+)-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active ( approximately 70-100%), implicating that it is no longer regulated and that its dramatically increased Ca(2+)/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15-25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca(2+)/CaM, both in vitro and within cells. Altered K(m) and V(max) made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca(2+) signals, but prevents complete uncoupling from subsequent cellular stimulation.
Collapse
Affiliation(s)
- Steven J Coultrap
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Kaufman S. Tyrosine hydroxylase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 70:103-220. [PMID: 8638482 DOI: 10.1002/9780470123164.ch3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S Kaufman
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Kirvan CA, Swedo SE, Snider LA, Cunningham MW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J Neuroimmunol 2006; 179:173-9. [PMID: 16875742 DOI: 10.1016/j.jneuroim.2006.06.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/17/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Behavioral and movement disorders may have antibody responses where mimicry and signal transduction may lead to neuropsychiatric abnormalities. In our study, antibodies in pediatric autoimmune neuropsychiatric disorders associated with streptococci (PANDAS) reacted with the neuronal cell surface and caudate-putamen and induced calcium-calmodulin dependent protein (CaM) kinase II activity in neuronal cells. Depletion of serum IgG abrogated CaM kinase II cell signaling and reactivity of CSF was blocked by streptococcal antigen N-acetyl-beta-d-glucosamine (GlcNAc). Antibodies against GlcNAc in PANDAS sera were inhibited by lysoganglioside G(M1). Results suggest that antibodies from an infection may signal neuronal cells in some behavioral and movement disorders.
Collapse
Affiliation(s)
- Christine A Kirvan
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95618-6077, USA
| | | | | | | |
Collapse
|
13
|
Royo M, Colette Daubner S. Kinetics of regulatory serine variants of tyrosine hydroxylase with cyclic AMP-dependent protein kinase and extracellular signal-regulated protein kinase 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:786-92. [PMID: 16503426 PMCID: PMC1855258 DOI: 10.1016/j.bbapap.2006.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/24/2022]
Abstract
Rat tyrosine hydroxylase is phosphorylated at four serine residues, at positions 8, 19, 31, and 40 in its amino terminal regulatory domain by multiple protein kinases. Cyclic AMP-dependent protein kinase phosphorylates S40, which results in alleviation of inhibition by dopamine. Extracellular signal-regulated protein kinase 2 phosphorylates S8 and S31. Site-directed serine-to-glutamate mutations were introduced into tyrosine hydroxylase to mimic prior phosphorylation of the regulatory serines; these proteins were used as substrates for cAMP-dependent kinase and extracellular signal-regulated kinase 2. The activity of cAMP-dependent kinase was unaffected by the substitution of serines 8, 19 or 31 with glutamate and the activity of extracellular signal-regulated kinase 2 was unaffected by substitution of serines 19 or 40 with glutamate. Cyclic AMP-dependent kinase was less active in phosphorylating S40 if dopamine was bound to tyrosine hydroxylase, but extracellular signal-regulated kinase 2 phosphorylation at S31 was unaffected by the presence of dopamine.
Collapse
Affiliation(s)
- Montserrat Royo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
14
|
Hund TJ, Rudy Y. A role for calcium/calmodulin-dependent protein kinase II in cardiac disease and arrhythmia. Handb Exp Pharmacol 2006:201-20. [PMID: 16610345 DOI: 10.1007/3-540-29715-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
More than 20 years have passed since the discovery that a collection of specific calcium/calmodulin-dependent phosphorylation events is the result of a single multifunctional kinase. Since that time, we have learned a great deal about this multifunctional and ubiquitous kinase, known today as calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII is interesting not only for its widespread distribution and broad specificity but also for its biophysical properties, most notably its activation by the critical second messenger complex calcium/calmodulin and its autophosphorylating capability. A central role for CaMKII has been identified in regulating a diverse array of fundamental cellular activities. Furthermore, altered CaMKII activity profoundly impacts function in the brain and heart. Recent findings that CaMKII expression in the heart changes during hypertrophy, heart failure, myocardial ischemia, and infarction suggest that CaMKII may be a viable therapeutic target for patients suffering from common forms of heart disease.
Collapse
Affiliation(s)
- T J Hund
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, 660 S. Euclid Ave., Campus Box 8118, Saint Louis, MO 63118, USA.
| | | |
Collapse
|
15
|
Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW. Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 2004; 91:1025-43. [PMID: 15569247 DOI: 10.1111/j.1471-4159.2004.02797.x] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.
Collapse
Affiliation(s)
- Peter R Dunkley
- School of Biomedical Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
16
|
Licata SC, Schmidt HD, Pierce RC. Suppressing calcium/calmodulin-dependent protein kinase II activity in the ventral tegmental area enhances the acute behavioural response to cocaine but attenuates the initiation of cocaine-induced behavioural sensitization in rats. Eur J Neurosci 2004; 19:405-14. [PMID: 14725635 DOI: 10.1111/j.0953-816x.2003.03110.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present experiments we administered an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist (CNQX), N-methyl-D-aspartate (NMDA) receptor antagonist (AP-5), or l-type calcium channel blocker (diltiazem) directly into the ventral tegmental area (VTA) before each of four daily systemic cocaine injections in order to assess their influence on the initiation phase of behavioural sensitization. Results indicated that pretreatment with CNQX or AP-5 impaired the initiation of cocaine-induced behavioural sensitization. Intra-VTA administration of diltiazem significantly increased the behavioural activation induced by an acute cocaine injection, but impaired the development of cocaine-induced behavioural sensitization. Because AMPA and NMDA receptors, as well as l-type calcium channels are calcium permeable, we also investigated the role of the calcium-activated second messenger calcium/calmodulin-dependent protein kinase II (CaM-KII). Similar to the results obtained with diltiazem, administration of the CaM-KII inhibitor KN-93 into the VTA enhanced the acute behavioural response to cocaine but prevented the augmentation of cocaine-induced behavioural hyperactivity following repeated injections. Consistent with this finding, the behavioural hyperactivity produced by cocaine was markedly enhanced among homozygous alpha-CaM-KII knockout mice but the initiation of behavioural sensitization to cocaine was attenuated relative to wild-type mice. Separate experiments performed in rats demonstrated an increase in total protein levels of CaM-KII in the VTA 24 h after the last of seven daily injections of cocaine. Taken together, these results indicate that blocking l-type calcium channels or impairing CaM-KII activity in the VTA augments the acute behavioural hyperactivity induced by cocaine. The present findings also suggest that increased calcium influx through AMPA receptors, NMDA receptors and l-type calcium channels on dopaminergic neurons in the VTA contributes significantly to the initiation of behavioural sensitization by amplifying calcium signalling through CaM-KII.
Collapse
Affiliation(s)
- Stephanie C Licata
- Department of Pharmacology, Laboratory of Neuropsychopharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
17
|
Licata SC, Pierce RC. The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization. J Neurochem 2003; 85:14-22. [PMID: 12641723 DOI: 10.1046/j.1471-4159.2003.01662.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Stephanie C Licata
- Laboratory of Neuropsychopharmacology, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
18
|
Azuma M. [Possible role of a neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) on stimulus-secretion coupling in catecholamine neuron]. YAKUGAKU ZASSHI 2002; 122:643-9. [PMID: 12235856 DOI: 10.1248/yakushi.122.643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide first isolated from ovine hypothalamic tissue. This peptide stimulates adenylate cyclase activation. However, few details were known of the function of this peptide on stimulus-secretion coupling in neuronal cells. The authors have investigated the role of PACAP on catecholamine biosynthesis and secretion using cultured bovine adrenal chromaffin cells as a model for catecholamine-containing neurons. PACAP38, the 38-amino acid form of PACAP, increased cAMP formation in bovine adrenal chromaffin cells. In addition, PACAP38 increased [Ca2+]i associated with PI turnover and Ca2+ influx into the cells. The synthesis of catecholamine and the phosphorylation of tyrosine hydroxylase, a rate-limiting enzyme of catecholamine biosynthesis, stimulated by the maximal effective concentration of dibutyryl cAMP or a high concentration (56 mM) of K+ were further enhanced by PACAP38. Thus PACAP38 stimulated the pathway of catecholamine biosynthesis mainly by both activation of cAMP- and Ca2(+)-dependent protein kinases. On catecholamine secretion from the cells, the effect of PACAP38 was markedly potentiated by addition of ouabain, an inhibitor of Na+/K+ ATPase. This markedly potentiated secretion was greatly reduced with Na+ omitted-sucrose medium. PACAP38 increased 22Na+ influx into the cells treated with ouabain. Thus PACAP38 with ouabain stimulated catecholamine secretion by accumulation of intracellular Na+, resulting in an increase in Ca2+ influx. These results indicate that the neuropeptide PACAP has an important role in stimulus-secretion coupling in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Mami Azuma
- Division of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
19
|
Guo FF, Kumahara E, Saffen D. A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem 2001; 276:25568-81. [PMID: 11292831 DOI: 10.1074/jbc.m101277200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we examine signaling pathways linking the M(1) subtype of muscarinic acetylcholine receptor (M(1) mAChR) to activation of extracellular signal-regulated kinases (ERK) 1 and 2 in neuronal PC12D cells. We first show that activation of ERK1/2 by the M(1) mAChR agonist carbachol takes place primarily via a Ras-independent pathway that depends largely upon Rap1, another small GTP-binding protein in the Ras family. Rap1 in turn activates B-Raf, an upstream activator of ERK1/2. Consistent with these results, carbachol was found to activate Rap1 more potently than Ras. Similar to other small GTP-binding proteins, activation of Rap1 requires a guanine nucleotide exchange factor (GEF) to promote its conversion from the GDP- to GTP-bound form. Using specific antibodies, we show that a recently identified Rap1 GEF, calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is expressed in PC12D cells and that carbachol stimulates the formation of a complex containing CalDAG-GEFI, Rap1, and activated B-Raf. Finally, we show that expression of CalDAG-GEFI antisense RNA largely blocks carbachol-stimulated activation of hemagglutinin (HA)1-tagged B-Raf and formation of the CalDAG-GEFI/Rap1/HA1-tagged B-Raf complex. Together, these data define a novel signaling pathway for M(1) mAChR, where increases in Ca(2+) and diacylglycerol stimulate the sequential activation of CalDAG-GEFI, Rap1, and B-Raf, resulting in the activation of MEK and ERK1/2.
Collapse
Affiliation(s)
- F F Guo
- Department of Neurochemistry, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
20
|
Abstract
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a small family of monooxygenases that utilize tetrahydropterins as substrates. When from eukaryotic sources, these enzymes are composed of a homologous catalytic domain to which are attached discrete N-terminal regulatory domains and short C-terminal tetramerization domains, whereas the bacterial enzymes lack the N-terminal and C-terminal domains. Each enzyme contains a single ferrous iron atom bound to two histidines and a glutamate. Recent mechanistic studies have begun to provide insights into the mechanisms of oxygen activation and hydroxylation. Although the hydroxylating intermediate in these enzymes has not been identified, the iron is likely to be involved. Reversible phosphorylation of serine residues in the regulatory domains affects the activities of all three enzymes. In addition, phenylalanine hydroxylase is allosterically regulated by its substrates, phenylalanine and tetrahydrobiopterin.
Collapse
Affiliation(s)
- P F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.
| |
Collapse
|
21
|
Fitzpatrick PF. The aromatic amino acid hydroxylases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2000; 74:235-94. [PMID: 10800597 DOI: 10.1002/9780470123201.ch6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The enzymes phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute the family of pterin-dependent aromatic amino acid hydroxylases. Each enzyme catalyzes the hydroxylation of the aromatic side chain of its respective amino acid substrate using molecular oxygen and a tetrahydropterin as substrates. Recent advances have provided insights into the structures, mechanisms, and regulation of these enzymes. The eukaryotic enzymes are homotetramers comprised of homologous catalytic domains and discrete regulatory domains. The ligands to the active site iron atom as well as residues involved in substrate binding have been identified from a combination of structural studies and site-directed mutagenesis. Mechanistic studies with nonphysiological and isotopically substituted substrates have provided details of the mechanism of hydroxylation. While the complex regulatory properties of phenylalanine and tyrosine hydroxylase are still not fully understood, effects of regulation on key kinetic parameters have been identified. Phenylalanine hydroxylase is regulated by an interaction between phosphorylation and allosteric regulation by substrates. Tyrosine hydroxylase is regulated by phosphorylation and feedback inhibition by catecholamines.
Collapse
Affiliation(s)
- P F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| |
Collapse
|
22
|
Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, Horigome T, Omata S, Ichinose H, Nagatsu T, Greene LA, Ichimura T. Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 1999; 38:15673-80. [PMID: 10569954 DOI: 10.1021/bi9914255] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine hydroxylase (TH) is phosphorylated by CaM kinase II and is activated in situ in response to a variety of stimuli that increase intracellular Ca(2+). We report here, using baculovirus-expressed TH, that the 14-3-3 protein binds and activates the expressed TH when the enzyme is phosphorylated at Ser-19, a site of CaM kinase II-dependent phosphorylation located in the regulatory domain of TH. Site-directed mutagenesis showed that a TH mutant in which Ser-19 was substituted by Ala retained enzymatic activity at the same level as the non-mutated enzyme, but was a poor substrate for CaM kinase II and did not bind the 14-3-3 protein. Likewise, a synthetic phosphopeptide (FRRAVpSELDA) corresponding to the part of the TH sequence, including phosphoSer-19, inhibited the interaction between the expressed TH and 14-3-3, while the phosphopeptide (GRRQpSLIED) corresponding to the site of cAMP-dependent phosphorylation (Ser-40) had little effect on complex formation. The complex was very stable with a dissociation constant of 3 nM. Furthermore, analysis of PC12nnr5 cells transfected with myc-tagged 14-3-3 showed that 14-3-3 formed a complex with endogenous TH when the cultured cells were exposed to a high K(+) concentration that increases intracellular Ca(2+) and phosphorylation of Ser-19 in TH. These findings suggest that the 14-3-3 protein participates in the stimulus-coupled regulation of catecholamine synthesis that occurs in response to depolarization-evoked, Ca(2+)-dependent phosphorylation of TH.
Collapse
Affiliation(s)
- C Itagaki
- Department of Biochemistry, Faculty of Science, Niigata University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Solà C, Barrón S, Tusell JM, Serratosa J. The Ca2+/calmodulin signaling system in the neural response to excitability. Involvement of neuronal and glial cells. Prog Neurobiol 1999; 58:207-32. [PMID: 10341361 DOI: 10.1016/s0301-0082(98)00082-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ plays a critical role in the normal function of the central nervous system. However, it can also be involved in the development of different neuropathological and neurotoxicological processes. The processing of a Ca2+ signal requires its union with specific intracellular proteins. Calmodulin is a major Ca(2+)-binding protein in the brain, where it modulates numerous Ca(2+)-dependent enzymes and participates in relevant cellular functions. Among the different calmodulin-binding proteins, the Ca2+/calmodulin-dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. We present an overview on different works aimed at the study of the Ca2+/calmodulin signalling system in the neural response to convulsant agents. Ca2+ and calmodulin antagonists inhibit the seizures induced by different convulsant agents, showing that the Ca2+/calmodulin signalling system plays a role in the development of the seizures induced by these agents. Processes occurring in association with seizures, such as activation of c-fos, are not always sensitive to calmodulin, but depend on the convulsant agent considered. We characterized the pattern of expression of the three calmodulin genes in the brain of control mice and detected alterations in specific areas after inducing seizures. The results obtained are in favour of a differential regulation of these genes. We also observed alterations in the expression of the Ca2+/calmodulin-dependent protein kinase II and calcineurin after inducing seizures. In addition, we found that reactive microglial cells increase the expression of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the brain after seizures.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consell, Superior d'Investigacions Cientifiques.
| | | | | | | |
Collapse
|
24
|
White DM, Cousins MJ. Effect of subcutaneous administration of calcium channel blockers on nerve injury-induced hyperalgesia. Brain Res 1998; 801:50-8. [PMID: 9729273 DOI: 10.1016/s0006-8993(98)00539-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies suggest that calcium contributes to peripheral neural mechanisms of hyperalgesia associated with nerve damage. In this animal behavioural study, we examined further the contribution of calcium in neuropathic pain by testing whether subcutaneous administration of either a calcium chelating agent or voltage-dependent calcium channel blockers attenuate nerve injury-induced hyperalgesia to mechanical stimulation. Studies were carried out in animals with partially ligated sciatic nerves, an established animal model of neuropathic pain. The nociceptive flexion reflex was quantified using an Ugo Basile Analgesymeter. Partial nerve injury induced a significant decrease in mechanical threshold compared to the sham operated controls. Daily subcutaneous injections of the calcium chelating agent, Quin 2 (20 microgram/2.5 microliter), significantly attenuated the nerve injury-induced hyperalgesia. Similarly, SNX-111, a N-type channel blocker, also significantly attenuated the nerve injury-induced hyperalgesia. SNX-230, a P and/or Q-type channel blocker, and nifedipine, a L-type channel blocker, had no effect on the hyperalgesia to mechanical stimulation. In control experiments, SNX-111 had no effect on mechanical thresholds when administered subcutaneously in either the hindpaw of normal animals or the back of the neck in nerve injury animals. This study shows that neuropathic pain involves a local calcium-dependent mechanism in the receptive field of intact neurons of an injured nerve, since it can be alleviated by subcutaneous injections of either a calcium chelating agent or SNX-111, a N-type calcium channel blocker. These agents may be effective, peripherally acting therapeutic agents for neuropathic pain.
Collapse
Affiliation(s)
- D M White
- Department of Anaesthesia and Pain Management, Royal North Shore Hospital, St. Leonards, N.S.W., 2065, Australia.
| | | |
Collapse
|
25
|
Withers MD, Kennedy MB, Marder E, Griffith LC. Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster, Panulirus interruptus. INVERTEBRATE NEUROSCIENCE : IN 1998; 3:335-45. [PMID: 10212401 DOI: 10.1007/bf02577693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nervous system tissue from Panulirus interruptus has an enzyme activity that behaves like calcium/calmodulin-dependent protein kinase II (CaM KII) This activity phosphorylates known targets of CaM KII, such as synapsin I and autocamtide 3. It is inhibited by a CaM KII-specific autoinhibitory domain peptide. In addition, this lobster brain activity displays calcium-independent activity after autophosphorylation, another characteristic of CaM KII. A cDNA from the lobster nervous system was amplified using polymerase chain reaction. The fragment was cloned and found to be structurally similar to CaM KII. Serum from rabbits immunized with a fusion protein containing part of this sequence immunoprecipitated a CaM KII enzyme activity and a family of phosphoproteins of the appropriate size for CaM KII subunits. Lobster CaM KII activity is found in the brain and stomatogastric nervous system including the commissural ganglia, commissures, stomatogastric ganglion and stomatogastric nerve. Immunoblot analysis of these same regions also identifies bands at an apparent molecular weight characteristic of CaM KII.
Collapse
Affiliation(s)
- M D Withers
- Volen Center, Brandeis University, Waltham, MA 02254, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
The use of antisense oligodeoxynucleotides, targeted to the transcripts encoding biologically active proteins in the nervous system, provides a novel and highly selective means to further our understanding of the function of these proteins. Recent studies of these agents also suggest the possibility of their being used therapeutically for a variety of diseases involving neuronal tissue. In this paper we review studies showing the in vitro and in vivo effects of antisense oligodeoxynucleotides as they relate to neurobiological functions. Particular attention is paid to the behavioral and biochemical effects of antisense oligodeoxynucleotides directed to the various subtypes of receptors for the neurotransmitter dopamine. An example is also provided showing the effects of a plasmid vector expressing an antisense RNA targeted to the calmodulin mRNAs in the PC12 pheochromocytoma cell line. The advantages of antisense oligodeoxynucleotides over traditional pharmacological treatments are assessed, and the advantages of using vectors encoding antisense RNA over the use of antisense oligodeoxynucleotides are also considered. We also describe the criteria that should be used in designing antisense oligodeoxynucleotides and several controls that should be employed to assure their specificity of action.
Collapse
Affiliation(s)
- B Weiss
- Department of Pharmacology, Medical College of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
27
|
Abstract
Activation of glutamate receptors has been linked to a diversity of lasting physiologic and pathologic changes in the mammalian nervous system. The cellular and molecular mechanisms underlying permanent modifications of nervous system structure and function following brief episodes of neuronal activity are unknown. Immediate early genes (IEGs) have been implicated in the conversion of short-term stimuli to long-term changes in cellular phenotype by regulation of gene expression. Many of the long-term consequences of glutamate receptor activation correlate with increases in specific IEGs; the intracellular signalling pathways coupling activation of receptors at the cell surface with induction of IEGs in the nucleus are incompletely understood. Analysis of mechanisms of how extracellular factors control gene expression implicate activation of second messenger systems and protein kinases. Activation of glutamate receptors results in an initial increase in intracellular calcium; the route of calcium influx may differ depending on the specific receptor subtype activated. Intracellular calcium is often the first messenger in response to an extracellular stimulus and can be the trigger for activating numerous other signalling pathways. Results obtained over the past several years support a hypothesis where selective activation of distinct intracellular signalling pathways and IEG responses, following activation of different glutamate receptor subtypes, involve spatial restriction of key enzymes to sites of local calcium increases. The specificity in long-term neuronal responses following brief synaptic activation may depend on the specific intracellular signalling mechanisms triggered and the unique array of IEGs transcribed.
Collapse
Affiliation(s)
- L S Lerea
- Department of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
28
|
Yanagihara N, Oishi Y, Yamamoto H, Tsutsui M, Kondoh J, Sugiura T, Miyamoto E, Izumi F. Phosphorylation of chromogranin A and catecholamine secretion stimulated by elevation of intracellular Ca2+ in cultured bovine adrenal medullary cells. J Biol Chem 1996; 271:17463-8. [PMID: 8663339 DOI: 10.1074/jbc.271.29.17463] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have recently isolated a new endogenous substrate of 70 kDa for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) from bovine adrenal medullary cells (Yanagihara, N., Toyohira, Y., Yamamoto, H., Ohta, Y., Tsutsui, M., Miyamoto, E., and Izumi, F. (1994) Mol. Pharmacol. 46, 423-430). Here we report the sequence analysis of the 70-kDa protein and examine its phosphorylation by various protein kinases in vitro and by depolarization of the cultured cells. Protein sequencing and immunoblotting revealed that the 70-kDa protein is chromogranin A (CgA) or a closely related protein. Partially purified CgA was phosphorylated by cyclic AMP-dependent protein kinase and protein kinase C as well as CaM kinase II. Tryptic phosphopeptide mapping patterns of CgA differed among these protein kinases. In 32P-labeled bovine adrenal medullary cells, 56 mM K+ increased the phosphorylation of CgA and catecholamine secretion in similar time- and concentration-dependent manners, both of which were inhibited by 20 mM MgSO4, an inhibitor of voltage-dependent Ca2+ channels. These findings suggest that CgA serves as a substrate for several multifunctional protein kinases and that the elevation of the intracellular Ca2+ stimulates the phosphorylation of CgA associated with catecholamine secretion in cultured adrenal medullary cells.
Collapse
Affiliation(s)
- N Yanagihara
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Inagaki N, Tsujimura K, Tanaka J, Sekimata M, Kamei Y, Inagaki M. Visualization of protein kinase activities in single cells by antibodies against phosphorylated vimentin and GFAP. Neurochem Res 1996; 21:795-800. [PMID: 8992382 DOI: 10.1007/bf02532302] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vimentin and glial fibrillary acidic protein (GFAP) are intermediate filament proteins expressed in the cytoplasm of various types of cells. The head domains of these proteins are phosphorylated by various protein kinases. Site- and phosphorylation-specific antibodies which recognize a phosphorylated serine/threonine residue in the head domains and its flanking sequence provide a useful tool to monitor and visualize protein kinase activities in single cells.
Collapse
Affiliation(s)
- N Inagaki
- Department of Biochemistry, Aichi Open Center Research Institute, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Isobe K, Yukimasa N, Nakai T, Takuwa Y. Pituitary adenylate cyclase-activating polypeptide induces gene expression of the catecholamine synthesizing enzymes, tyrosine hydroxylase and dopamine beta hydroxylase, through 3',5'-cyclic adenosine monophosphate- and protein kinase C-dependent mechanisms in cultured porcine adrenal medullary chromaffin cells. Neuropeptides 1996; 30:167-75. [PMID: 8771559 DOI: 10.1016/s0143-4179(96)90084-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)i a potent stimulant of catecholamine secretion, increased catecholamine production in cultured porcine adrenal medullary chromaffin cells. PACAP induced dose-and time-dependent increases in mRNAs for the catecholamine synthesizing enzymes, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), with maximal 6- and 4-fold increases occurring at 8-16 h, respectively. The half-maximally and maximally effective PACAP concentrations for stimulation of TH and DBH gene expression were 0.5 and 3 nM, respectively. The TH protein level also showed an increase over the unstimulated basal level at 16-24 h in PACAP-stimulate cells. We previously demonstrated that PACAP activates both phospholipase C and adenylate cyclase in adrenal medullary cells. Addition of forskolin alone induced increases in mRNA expression of both TH and DBH. The phosphodiesterase inhibitor 3- isobutyl-1-methylxanthine potentiated the induction of TH and DBH mRNAs by PACAP. Addition of the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also caused increases in TH and DBH mRNA levels. In protein kinase C-downregulated cells pretreated with PMA for 24 h, the stimulatory effect of PACAP on TH and DBH gene expression was diminished. These results suggest that cAMP and protein kinase C mediate the PACAP-induced TH and DBH gene expression. Removal of extracellular Ca2+ with EGTA enhanced the PACAP-induced increases in both cellular cAMP and mRNA levels of TH and DBH, suggesting that Ca2+ has an inhibitory effect on the induction of TH and DBH mRNAs. In conclusion, the present study indicates that PACAP coordinately upregulates the gene expression of both TH and DBH by activating the cAMP and protein kinase C signaling pathways, leading to simulation of cate-cholamine synthesis, while Ca2+ negatively regulates TH and DBH gene expression in porcine adrenal medullary cells.
Collapse
Affiliation(s)
- K Isobe
- Department of Clinical Pathology, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
31
|
Eaton MJ, Whittemore SR. Adrenocorticotropic hormone activation of adenylate cyclase in raphe neurons: multiple regulatory pathways control serotonergic neuronal differentiation. JOURNAL OF NEUROBIOLOGY 1995; 28:465-81. [PMID: 8592107 DOI: 10.1002/neu.480280407] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The RN46A cell line was derived from embryonic day 13 rat medullary raphe cells by infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T antigen (tsT-ag). The RN46A cell line is neuronally restricted and constitutively differentiates following a shift to nonpermissive temperature. Differentiated RN46A cells express low levels of tryptophan hydroxylase (TPH) but no detectable levels of serotonin (5-HT). Treatment of cultures with the adrenocorticotropic hormone peptide ACTH4-10 up-regulates the expression of TPH immunoreactivity in differentiated RN46A cells, but 5-HT synthesis requires initial treatment with ACTH4-10, followed by partial membrane depolarizing conditions. Up-regulation of TPH by ACTH4-10 is apparently due to activation of adenylate cyclase, whereas the increased 5-HT synthesis with membrane depolarization can be blocked with the voltage-sensitive Ca(2+)-channel blockers nifedipine and omega-conotoxin. ACTH4-10 treatment also markedly up-regulates the expression of the 5-HT reuptake transporter, as do dibutyryl cyclic AMP and forskolin; chronic membrane depolarization has no effect on 5-HT reuptake. The expression of the high-affinity 5-HT1A receptor is increased threefold by ACTH4-10 treatment during differentiation and fivefold by differentiation under partial membrane depolarizing conditions. Combining ACTH4-10 treatment and membrane depolarization does not increase expression of the 5-HT1A receptor further. 5-HT release is constitutive in ACTH-treated RN46A cells and linked to spontaneous synaptic vesicle fusion in RN46A cells. Considered with previous results, these data indicate that multiple effectors, ACTH, brain-derived neurotrophic factor, and membrane depolarization, have both distinct and overlapping effects that regulate specific elements of the serotonergic neuronal phenotype during differentiation and maturation.
Collapse
Affiliation(s)
- M J Eaton
- Miami Project, Department of Neurological Surgery, University of Miami School of Medicine, Florida 33136, USA
| | | |
Collapse
|
32
|
Terakado A, Tagawa M, Goto S, Yamazaki M, Moriya H, Fujimura S. Elevation of alkaline phosphatase activity induced by parathyroid hormone in osteoblast-like cells from the spinal hyperostotic mouse TWY (twy/twy). Calcif Tissue Int 1995; 56:135-9. [PMID: 7736322 DOI: 10.1007/bf00296345] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the alkaline phosphatase (AP) activity of primary calvaria-derived osteoblast-like cells from the twy (tip-toe walking Yoshimura) and normal ICR control mouse. The twy mouse displays elevated osseous formation particularly in the spine, and the pathophysiological features resemble that of human ankylosing spinal hyperostosis. In the proliferative stage of cultured bone cells, parathyroid hormone (PTH) stimulation induced the elevation of AP activity of both twy and ICR mouse-derived cells. When they reached confluence, the AP activity of ICR mouse-derived cells ceased to increase with PTH stimulation. The twy mouse-derived cells, however, continued to respond to PTH, with the enzyme activity increasing even in the confluent, stationary stage. PTH stimulation also increased the intracellular cAMP content of twy mouse-derived cells but it did not influence that of ICR mouse-derived cells in the stationary stage. Moreover, stimulation with dibutyryl cAMP, but not with phorbol myristate acetate, increased the AP activity of both twy and ICR-derived bone cells irrespective of culture conditions, either in the proliferative or in the confluent stage. These data suggest that the protein kinase A-mediated pathway plays a pivotal role in bone cells with PTH stimulation, and that the uninhibited AP activity observed in twy mouse-derived bone cells might be due to some deviating process between the PTH ligand/receptor interaction and cAMP generation.
Collapse
Affiliation(s)
- A Terakado
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Churn SB. Multifunctional calcium and calmodulin-dependent kinase II in neuronal function and disease. ADVANCES IN NEUROIMMUNOLOGY 1995; 5:241-59. [PMID: 8748069 DOI: 10.1016/0960-5428(95)00016-u] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S B Churn
- Department of Neurology, Medical College of Virginia, Richmond 23298-0599, USA
| |
Collapse
|
34
|
Schmidt J. Depolarization-transcription coupling in excitable cells. Rev Physiol Biochem Pharmacol 1995; 127:251-79. [PMID: 8533010 DOI: 10.1007/bfb0048269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J Schmidt
- Department of Biochemistry and Cell Biology, State University of Stony Brook, NY 11794, USA
| |
Collapse
|
35
|
Houchi H, Hamano S, Masuda Y, Ishimura Y, Azuma M, Ohuchi T, Oka M. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine synthesis in cultured bovine adrenal chromaffin cells: involvements of tyrosine hydroxylase phosphorylation caused by Ca2+ influx and cAMP. JAPANESE JOURNAL OF PHARMACOLOGY 1994; 66:323-30. [PMID: 7869619 DOI: 10.1254/jjp.66.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In cultured bovine adrenal chromaffin cells, pituitary adenylate cylase-activating polypeptide (PACAP) stimulated [14C]catecholamine synthesis from [14C]tyrosine (but not from [14C]DOPA) in a concentration-dependent manner, causing maximal stimulation at 10(-7) M. The stimulatory action of PACAP was not affected by staurosporine (an inhibitor of protein kinase C) or in the cells in which protein kinase C was down-regulated by prolonged exposure to TPA (an activator of protein kinase C), whereas it was partially attenuated in Ca(2+)-free medium. PACAP (10(-7) M) increased the formation of [3H]inositol phosphates, [Ca2+]i and 45Ca2+ uptake as well as cAMP. The peptide also stimulated the phosphorylation of tyrosine hydroxylase, the enzyme catalyzing the rate-limiting step in catecholamine synthesis. Catecholamine synthesis and tyrosine hydroxylase phosphorylation stimulated by the maximal effective concentration of dibutyryl cAMP or high K+, which activates Ca2+ uptake, were further enhanced by PACAP, suggesting that both cAMP- and Ca(2+)-dependent protein kinases may be involved in the stimulation of tyrosine hydroxylase phosphorylation and catecholamine synthesis caused by PACAP.
Collapse
Affiliation(s)
- H Houchi
- Department of Pharmacology, Tokushima University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Greenberg ME, Thompson MA, Sheng M. Calcium regulation of immediate early gene transcription. ACTA ACUST UNITED AC 1994; 86:99-108. [PMID: 1343600 DOI: 10.1016/s0928-4257(05)80013-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cellular immediate early genes (IEGs) are a class of genes whose transcription is transiently activated within minutes of exposure of cells to a wide range of extracellular stimuli. In mature neurons IEG expression can be triggered by a variety of neutrotransmitters and neurotrophic factors. The IEGs, many of which encode transcription factors, are believed to control the physiological response of the cells to the initial stimulation event by activating secondary programs of gene expression. The mechanism by which membrane depolarization/Ca2+ influx trigger the activation of one IEG, c-fos, has been characterized in PC12 cells. In these cells, the cAMP response element-binding protein (CREB) functions as a Ca2+ regulated transcription factor. In addition, CREB is an in vitro substrate for several Ca2+ calmodulin-dependent protein kinases (CaM kinases). These results suggest a model whereby activation of voltage sensitive Ca2+ channels stimulates CaM kinase activation leading to CREB phosphorylation and c-fos transcriptional activation.
Collapse
Affiliation(s)
- M E Greenberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
37
|
Guy GR, Philip R, Tan YH. Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells. Electrophoresis 1994; 15:417-40. [PMID: 8055870 DOI: 10.1002/elps.1150150160] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two-dimensional (2-D) gel electrophoresis has been used to map proteins from various cell types in an effort to eventually link such maps to the sequencing of the entire human genome. While this analysis indicates the cellular disposition and expression of proteins, another application of 2-D gels, the analysis of phosphoproteins, can provide much information as to the assembly and "wiring" of the signal transduction circuits within cells which appear to be enervated by phosphate exchange. The preparation and separation of 32P-labeled proteins is described, as well as various analytical methods, including: the variety of gel systems available for specialist types of analyses, comparing 33P- and 32P-labeling of proteins, imaging techniques, phosphoamino analysis, phosphopeptide separation, identifying the amino acid groups that are phosphorylated, and the identification of phosphoproteins on 2-D gels by immunoprecipitation, corunning of purified proteins, comparative mapping and microsequencing, and by Western blotting. Examples (in brackets) are given of applications in which 2-D phosphogels can be applied, which offer advantages over other techniques. These include: (i) identifying in vivo substrates for kinases (protein kinase C activated by phorbol myristate acetate), (ii) investigating cytokine signaling pathways (tumor necrosis factor and interleukin-1), (iii) investigating the effects of drugs on signaling pathways (okadaic acid, menadione and cyclooxygenase inhibitors), (iv) characterization of specific phosphoproteins (heat-shock protein Hsp27 and stathmin), (v) comparing normal and transformed cells (MRC-5 human lung fibroblasts and their SV-40-transformed counterparts, MRC-5 SV1 cells), (vi) purifying phosphoproteins, (vii) investigating the relationship of protein phosphorylation to stages in the cell cycle (stathmin), (viii) investigating protein/protein interactions, (ix) mapping in vitro kinase substrates (protein kinase C, protein kinase A, and mitogen activated protein kinase activated protein kinase 2), and (x) locating and identifying cellular phosphatases (Hsp27 phosphatase). It is possible that the mapping of phosphoproteins can be linked to other 2-D gel databases and that information derived from these can be used in the future to better understand the signaling mechanisms of normal and cancerous cells.
Collapse
Affiliation(s)
- G R Guy
- Signal Transduction Laboratory, National University of Singapore
| | | | | |
Collapse
|
38
|
Griffith LC, Verselis LM, Aitken KM, Kyriacou CP, Danho W, Greenspan RJ. Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron 1993; 10:501-9. [PMID: 8384859 DOI: 10.1016/0896-6273(93)90337-q] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
One of the major mediators of calcium action in neurons is the multifunctional calcium/calmodulin-dependent protein kinase (CaM kinase), an enzyme with the capability of directly regulating its own activity by autophosphorylation. To assess the involvement of CaM kinase in experience-dependent behavior in an intact animal, we have designed a specific peptide inhibitor of CaM kinase and made transgenic Drosophila that express it under control of an inducible promoter. These flies fail to learn normally in two behavioral plasticity paradigms: acoustic priming, a nonassociative measure of sensitization, and courtship conditioning, a measure of associative learning. The magnitude of the learning defect in the associative paradigm appears to be proportional to the level of expression of the peptide gene in the two transgenic lines and can be increased by heat shock induction of gene expression. These results suggest that CaM kinase activity is required for plastic behaviors in an intact animal.
Collapse
Affiliation(s)
- L C Griffith
- Department of Neurosciences, Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | | | | | | | |
Collapse
|
39
|
Liu F, Thompson M, Wagner S, Greenberg M, Green M. Activating transcription factor-1 can mediate Ca(2+)- and cAMP-inducible transcriptional activation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53308-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
|
41
|
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly well to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.
Collapse
Affiliation(s)
- H Schulman
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | |
Collapse
|
42
|
Lerea LS, McNamara JO. Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron 1993; 10:31-41. [PMID: 8427701 DOI: 10.1016/0896-6273(93)90239-n] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
N-Methyl-D-aspartate (NMDA) or non-NMDA receptor activation is sufficient to induce transcription of the immediate early gene c-fos in a calcium-requiring manner. We sought to determine whether the calcium-dependent mechanisms inducing c-fos transcription are identical following activation of these two receptor subtypes. We used in situ hybridization and fura-2 imaging to detect c-fos mRNA and intracellular calcium in individual dentate gyrus neurons maintained in vitro. Structurally distinct inhibitors of phospholipase A2 and cyclooxygenase abolished NMDA--but not kainic acid-induced increases of c-fos mRNA. Conversely, the calmodulin antagonist calmidazolium markedly inhibited kainic acid--but not NMDA-mediated increases of c-fos mRNA. We propose that the dissociation in the mechanisms transducing the calcium influx signals to the nucleus following NMDA and non-NMDA receptor activation is due to spatially distinct sites of calcium entry, resulting in activation of different enzymes located at distinct sites in the cell.
Collapse
Affiliation(s)
- L S Lerea
- Department of Medicine, Veterans Administration Medical Center, Durham, North Carolina
| | | |
Collapse
|
43
|
Churn SB, Yaghmai A, Povlishock J, Rafiq A, DeLorenzo RJ. Global forebrain ischemia results in decreased immunoreactivity of calcium/calmodulin-dependent protein kinase II. J Cereb Blood Flow Metab 1992; 12:784-93. [PMID: 1324253 DOI: 10.1038/jcbfm.1992.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies utilizing crude brain homogenates have shown that forebrain ischemia results in inhibition of calcium/calmodulin-dependent protein kinase II (CaM kinase II) activity without large-scale proteolysis of the enzyme. In this report, a monoclonal antibody (1C3-3D6) directed against the beta- (60-kDa) subunit of CaM kinase II that does not recognize ischemically altered enzyme was utilized to further investigate the ischemia-induced inhibition of CaM kinase II. Immunohistochemical investigations showed that the ischemia-induced decreased immunoreactivity of CaM kinase II occurred immediately following ischemic insult in ischemia-sensitive cells such as pyramidal cells of the hippocampus. No decrease in CaM kinase II immunoreactivity was observed in ischemia-resistant cells such as granule cells of the dentate gyrus. The decreased immunoreactivity was observed for CaM kinase II balanced for protein staining and calmodulin binding in vitro. In addition, autophosphorylation of CaM kinase II in the presence of low (7 microM) or high (500 microM) ATP did not alter immunoreactivity of the enzyme with 1C3-3D6. The data demonstrate the production of a monoclonal antibody that recognizes the beta-subunit of CaM kinase II in a highly specific manner, but does not recognize ischemic enzyme. Together with previous studies, the data support the hypothesis that rapid, ischemia-induced inhibition of CaM kinase II activity may be involved in the cascade of events that lead to selective neuronal cell loss in stroke.
Collapse
Affiliation(s)
- S B Churn
- Department of Neurology, Medical College of Virginia, Richmond 23298
| | | | | | | | | |
Collapse
|
44
|
Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42325-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Abstract
A diverse family of transcription factors bind to the cAMP-response elements found in a variety of mammalian and viral gene promoters. One of the members of this family, CREB, is being intensively studied so as to elucidate the mechanisms by which second messenger signal transduction pathways act to positively and negatively regulate transcription.
Collapse
Affiliation(s)
- P K Brindle
- Salk Institute for Biological Science, La Jolla, California
| | | |
Collapse
|
46
|
Haycock JW, Wakade AR. Activation and Multiple-Site Phosphorylation of Tyrosine Hydroxylase in Perfused Rat Adrenal Glands. J Neurochem 1992; 58:57-64. [PMID: 1345770 DOI: 10.1111/j.1471-4159.1992.tb09276.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptic digestion of tyrosine hydroxylase (TH) isolated from rat adrenal glands labeled with 32Pi produced five phosphopeptides. Based on the correspondence of these phosphopeptides with those identified in TH from rat pheochromocytoma cells, four phosphorylation sites (Ser8, Ser19, Ser31, and Ser40) were inferred. Field stimulation of the splanchnic nerves at either 1 or 10 Hz (300 pulses) increased 32P incorporation into TH. At 10 Hz, the phosphorylation of Ser19 and Ser40 was increased, whereas at 1 Hz, Ser19, Ser31, and Ser40 phosphorylation was increased. Stimulation at either 1 or 10 Hz also increased the catalytic activity of TH, as measured in vitro (pH 7.2) at either 30 or 300 microM tetrahydrobiopterin. Nicotine (3 microM, 3 min) increased Ser19 phosphorylation, vasoactive intestinal polypeptide (10 microM, 3 min) increased Ser40 phosphorylation, and muscarine (100 microM, 3 min) increased TH phosphorylation primarily at Ser19 and Ser31. Vasoactive intestinal polypeptide, but not nicotine or muscarine, mimicked the effects of field stimulation on TH activity. Thus, the regulation of rat adrenal medullary TH phosphorylation by nerve impulses is mediated by multiple first and second messenger systems, as previously shown for catecholamine secretion. However, different sets of second messengers are involved in the two processes. The action of vasoactive intestinal polypeptide as a secretagogue involves the mobilization of intracellular calcium, whereas its effects on TH phosphorylation are mediated by cyclic AMP. This latter effect of vasoactive intestinal polypeptide and the consequent increase in Ser40 phosphorylation appear to be responsible for the rapid activation of TH by splanchnic nerve stimulation.
Collapse
Affiliation(s)
- J W Haycock
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70119
| | | |
Collapse
|
47
|
Bai G, Weiss B. The increase of calmodulin in PC12 cells induced by NGF is caused by differential expression of multiple mRNAs for calmodulin. J Cell Physiol 1991; 149:414-21. [PMID: 1660480 DOI: 10.1002/jcp.1041490309] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rat pheochromocytoma cell line (PC12 cells) was used as a model to investigate the role of calmodulin and its multiple mRNAs in NGF-induced neuronal differentiation. The effect of NGF on the degree of differentiation was assayed using a simple differentiation scoring system. Significant increases in the differentiation score were seen by one day, and the scores increased about 10-fold by 8 days of treatment. NGF also increased calmodulin in the PC12 cells; significant increases were seen by 2 days of treatment, and a maximum increase of 3-fold was seen by 4 days. Northern blot analysis using a calmodulin riboprobe revealed that all five calmodulin mRNAs found in rat tissue were present in PC12 cells. The relative abundance of the calmodulin mRNAs was 1.7 greater than 1.4 greater than 2.3 greater than 4.1 greater than 0.9 kb. NGF treatment caused a differential increase in these mRNAs. The 1.4 kb transcript (from Gene II) was increased earlier (at 1 day) and to a greater extent (3-fold) than any of the other mRNAs. Studies of the half-lives (t1/2) of these mRNAs suggested that the t1/2 varied with the mRNA; the smaller the mRNA, the shorter the t1/2. However, there were no significant effects of NGF on the t1/2 of any of the mRNAs. These studies indicate that NGF elevates calmodulin in PC12 cells by causing a differential increase in the multiple mRNAs for calmodulin and that the increase in calmodulin may play some part in NGF-induced neuronal differentiation in PC12 cells.
Collapse
Affiliation(s)
- G Bai
- Department of Pharmacology, Medical College of Pennsylvania/EPPI, Philadelphia 19129
| | | |
Collapse
|
48
|
Induction of immediate early genes by Ca2+ influx requires cAMP-dependent protein kinase in PC12 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47394-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Churn SB, Anderson WW, DeLorenzo RJ. Exposure of hippocampal slices to magnesium-free medium produces epileptiform activity and simultaneously decreases calcium and calmodulin-dependent protein kinase II activity. Epilepsy Res 1991; 9:211-7. [PMID: 1660400 DOI: 10.1016/0920-1211(91)90054-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of magnesium-free medium on electrical and CaM kinase II activity in the rat hippocampal slice was examined. Experimental slices were incubated in 2 mM Mg, then exposed to magnesium-free medium for 1 h. Control slices were concurrently run in 2 mM Mg. Slices were then frozen and CaM kinase II activity was measured in homogenates. Exposure of hippocampal slices to magnesium-free medium resulted in spontaneous epileptiform activity and a concurrent 38 +/- 5.47% decrease in CaM kinase II activity (range 38.8-75.4% of control; n = 7, P less than 0.001, paired Student's t test). The decrease in CaM kinase II activity was not reversible by treatment with protein phosphatases 1 and 2A (58.8 +/- 4.77% of control activity; range 28.6-69.7, P less than 0.01, paired Student's t-test), indicating that the decrease in CaM kinase II activity cannot be accounted for exclusively by autophosphorylation. The results demonstrate that magnesium-free medium treatment can induce spontaneous epileptiform activity and simultaneous changes in CaM kinase II activity.
Collapse
Affiliation(s)
- S B Churn
- Department of Pharmacology and Toxicology, Medical College of Virginia, Richmond 23298
| | | | | |
Collapse
|
50
|
Sheng M, Thompson MA, Greenberg ME. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 1991; 252:1427-30. [PMID: 1646483 DOI: 10.1126/science.1646483] [Citation(s) in RCA: 1170] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism by which Ca2+ mediates gene induction in response to membrane depolarization was investigated. The adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) was shown to function as a Ca(2+)-regulated transcription factor and as a substrate for depolarization-activated Ca(2+)-calmodulin-dependent protein kinases (CaM kinases) I and II. CREB residue Ser133 was the major site of phosphorylation by the CaM kinases in vitro and of phosphorylation after membrane depolarization in vivo. Mutation of Ser133 impaired the ability of CREB to respond to Ca2+. These results suggest that CaM kinases may transduce electrical signals to the nucleus and that CREB functions to integrate Ca2+ and cAMP signals.
Collapse
Affiliation(s)
- M Sheng
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|