1
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Zhang M, Zhao F, Zhang X, Brouwer LA, Burgess JK, Harmsen MC. Fibroblasts alter the physical properties of dermal ECM-derived hydrogels to create a pro-angiogenic microenvironment. Mater Today Bio 2023; 23:100842. [PMID: 37942422 PMCID: PMC10628774 DOI: 10.1016/j.mtbio.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
This study aimed to investigate the impact of fibroblasts (MRC-5) on the extracellular matrix (ECM) microenvironment of endothelial cells (ECs) during the vascularization of skin-derived ECM hydrogel in vitro. Two types of ECs were studied: human dermal microvascular endothelial cells (HMEC) and human pulmonary microvascular endothelial cells (HPMEC). Results showed that the presence of MRC-5 fibroblasts increased the stiffness of the hydrogel and led to larger fiber diameters and increased porosity. Extensive collagen fiber remodeling occurred in the ECM hydrogel with MRC-5 fibroblasts. Additionally, higher levels of fibulin-1 and fibronectin were deposited in the hydrogel when co-cultured with MRC-5 fibroblasts. These findings suggest that MRC-5 fibroblasts play a role in modifying the ECM microenvironment, promoting vascularization through dynamic ECM remodeling.
Collapse
Affiliation(s)
- Meng Zhang
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Fenghua Zhao
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Xue Zhang
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Linda A. Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713, AV Groningen, the Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713, AV Groningen, the Netherlands
| |
Collapse
|
3
|
Yokoyama U, Oka S, Saito J. Molecular mechanisms regulating extracellular matrix-mediated remodeling in the ductus arteriosus. Semin Perinatol 2023; 47:151716. [PMID: 36906477 DOI: 10.1016/j.semperi.2023.151716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Progressive remodeling throughout the fetal and postnatal period is essential for anatomical closure of the ductus arteriosus (DA). Internal elastic lamina interruption and subendothelial region widening, elastic fiber formation impairment in the tunica media, and intimal thickening are distinctive features of the fetal DA. After birth, the DA undergoes further extracellular matrix-mediated remodeling. Based on the knowledge obtained from mouse models and human disease, recent studies revealed a molecular mechanism of DA remodeling. In this review, we focus on matrix remodeling and regulation of cell migration/proliferation associated with DA anatomical closure and discuss the role of prostaglandin E receptor 4 (EP4) signaling and jagged1-Notch signaling as well as myocardin, vimentin, and secretory components including tissue plasminogen activator, versican, lysyl oxidase, and bone morphogenetic proteins 9 and 10.
Collapse
Affiliation(s)
- Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, Japan 160-8402.
| | - Sayuki Oka
- Department of Physiology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, Japan 160-8402
| | - Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, Japan 160-8402
| |
Collapse
|
4
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524278. [PMID: 36711975 PMCID: PMC9882209 DOI: 10.1101/2023.01.16.524278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - M Brent Hawkins
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Greg Holmes
- Dept. of _Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sevan Hopyan
- Dept. of Developmental Biology, Hospital for Sick Kids, Toronto, Canada
| | - Matthew P Harris
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| |
Collapse
|
5
|
Zhang JL, Richetti S, Ramezani T, Welcker D, Lütke S, Pogoda HM, Hatzold J, Zaucke F, Keene DR, Bloch W, Sengle G, Hammerschmidt M. Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 2022; 112:132-154. [PMID: 36007682 PMCID: PMC10015821 DOI: 10.1016/j.matbio.2022.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Stefania Richetti
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Daniela Welcker
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Research Unit for Osteoarthritis, Department for Orthopedics, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, United States
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, González-Lucán M, Funcasta-Calderón R. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol Biol Rep 2021; 48:4865-4878. [PMID: 34129188 DOI: 10.1007/s11033-021-06478-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Raquel Funcasta-Calderón
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
7
|
Sang Y, Mao KM, Huang Y, Wu XF, Wang XF, Ruan L, Zhang CT. Relationship between the Plasma Fibulin-1 Levels, Pulse Wave Velocity, and Vascular Age in Asymptomatic Hyperuricemia. Curr Med Sci 2021; 41:94-99. [PMID: 33582912 DOI: 10.1007/s11596-021-2324-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Fibulin-1 (FBLN-1), an elastin-associated extracellular matrix protein, has been found in blood and may play a role in the pathophysiological processes leading to cardiovascular disease (CVD). We aimed to investigate the relationship between fibulin-1 levels and the risk of CVD by evaluating vascular age derived from the Framingham Heart Study and brachial-ankle Pulse Wave Velocity (baPWV) in patients with asymptomatic hyperuricemia (AHU). In total, 66 patients with AHU and 66 gender- and age-matched healthy individuals were enrolled. The plasma fibulin-1 levels were measured by immunochemistry. Patients with AHU presented significantly higher vascular age [median (interquartile range): 54 (22) vs. 48 (14) years, P=0.01] and baPWV [mean±SD: 1373±223 vs. 1291±177 cm/s, P=0.02] than the healthy subjects; however, no significant difference was observed in the plasma fibulin-1 level between the patients with AHU and healthy subjects [median (interquartile range): 4018 (3838) vs. 3099 (3405) ng/mL, P=0.31]. A correlation between fibulin-1 levels and baPWV was observed only in patients with AHU (r=0.29, P=0.02); and there was also a suggestively statistically significant correlation between fibulin-1 levels and vascular age (r=0.22, P=0.08). However, these associations were rendered insignificant after adjustments for potential confounders. In healthy subjects, no correlation was observed between fibulin-1 levels and CVD risk. This study reveals that plasma fibulin-1 levels may reflect the CVD risk in patients with AHU, but the relationship is not robust.
Collapse
Affiliation(s)
- Yu Sang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai-Min Mao
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Fen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing-Fen Wang
- Department of Geriatrics, Beijing Aerospace General Hospital, Beijing, 100076, China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
10
|
Jiang L, Liu X, He X, Jin Y, Cao Y, Zhan X, Griffin CH, Gragnoli C, Wu R. A behavioral model for mapping the genetic architecture of gut-microbiota networks. Gut Microbes 2021; 13:1820847. [PMID: 33131416 PMCID: PMC8381822 DOI: 10.1080/19490976.2020.1820847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota may play an important role in affecting human health. To explore the genetic mechanisms underlying microbiota-host relationships, many genome-wide association studies have begun to identify host genes that shape the microbial composition of the gut. It is becoming increasingly clear that the gut microbiota impacts host processes not only through the action of individual microbes but also their interaction networks. However, a systematic characterization of microbial interactions that occur in densely packed aggregates of the gut bacteria has proven to be extremely difficult. We develop a computational rule of thumb for addressing this issue by integrating ecological behavioral theory and genetic mapping theory. We introduce behavioral ecology theory to derive mathematical descriptors of how each microbe interacts with every other microbe through a web of cooperation and competition. We estimate the emergent properties of gut-microbiota networks reconstructed from these descriptors and map host-driven mutualism, antagonism, aggression, and altruism QTLs. We further integrate path analysis and mapping theory to detect and visualize how host genetic variants affect human diseases by perturbing the internal workings of the gut microbiota. As the proof of concept, we apply our model to analyze a published dataset of the gut microbiota, showing its usefulness and potential to gain new insight into how microbes are organized in human guts. The new model provides an analytical tool for revealing the "endophenotype" role of microbial networks in linking genotype to end-point phenotypes.
Collapse
Affiliation(s)
- Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yige Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiang Zhan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher H. Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
- Division of Endocrinology, Diabetes, and Metabolic Disease, Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Molecular Biology Laboratory, Bios Biotech Multi Diagnostic Health Center, Rome, Italy
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Ito S, Yokoyama U, Nakakoji T, Cooley MA, Sasaki T, Hatano S, Kato Y, Saito J, Nicho N, Iwasaki S, Umemura M, Fujita T, Masuda M, Asou T, Ishikawa Y. Fibulin-1 Integrates Subendothelial Extracellular Matrices and Contributes to Anatomical Closure of the Ductus Arteriosus. Arterioscler Thromb Vasc Biol 2020; 40:2212-2226. [PMID: 32640908 PMCID: PMC7447190 DOI: 10.1161/atvbaha.120.314729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The ductus arteriosus (DA) is a fetal artery connecting the aorta and pulmonary arteries. Progressive matrix remodeling, that is, intimal thickening (IT), occurs in the subendothelial region of DA to bring anatomic DA closure. IT is comprised of multiple ECMs (extracellular matrices) and migrated smooth muscle cells (SMCs). Because glycoprotein fibulin-1 binds to multiple ECMs and regulates morphogenesis during development, we investigated the role of fibulin-1 in DA closure. Approach and Results: Fibulin-1-deficient (Fbln1-/-) mice exhibited patent DA with hypoplastic IT. An unbiased transcriptome analysis revealed that EP4 (prostaglandin E receptor 4) stimulation markedly increased fibulin-1 in DA-SMCs via phospholipase C-NFκB (nuclear factor κB) signaling pathways. Fluorescence-activated cell sorting (FACS) analysis demonstrated that fibulin-1 binding protein versican was derived from DA-endothelial cells (ECs). We examined the effect of fibulin-1 on directional migration toward ECs in association with versican by using cocultured DA-SMCs and ECs. EP4 stimulation promoted directional DA-SMC migration toward ECs, which was attenuated by either silencing fibulin-1 or versican. Immunofluorescence demonstrated that fibulin-1 and versican V0/V1 were coexpressed at the IT of wild-type DA, whereas 30% of versican-deleted mice lacking a hyaluronan binding site displayed patent DA. Fibulin-1 expression was attenuated in the EP4-deficient mouse (Ptger4-/-) DA, which exhibits patent DA with hypoplastic IT, and fibulin-1 protein administration restored IT formation. In human DA, fibulin-1 and versican were abundantly expressed in SMCs and ECs, respectively. CONCLUSIONS Fibulin-1 contributes to DA closure by forming an environment favoring directional SMC migration toward the subendothelial region, at least, in part, in combination with EC-derived versican and its binding partner hyaluronan.
Collapse
Affiliation(s)
- Satoko Ito
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Utako Yokoyama
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Taichi Nakakoji
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, GA (M.A.C.)
| | - Takako Sasaki
- Department of Biochemistry II, Oita University, Japan (T.S.)
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan (S.H.)
| | - Yuko Kato
- Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Junichi Saito
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Naoki Nicho
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Shiho Iwasaki
- Department of Pediatrics (S.I.), Yokohama City University, Japan
| | - Masanari Umemura
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Takayuki Fujita
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Munetaka Masuda
- Department of Surgery (M.M.), Yokohama City University, Japan
| | - Toshihide Asou
- Department of Cardiovascular Surgery, Kanagawa Children's Medical Center, Yokohama, Japan (T.A.)
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| |
Collapse
|
12
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
13
|
Liu G, Cooley MA, Nair PM, Donovan C, Hsu AC, Jarnicki AG, Haw TJ, Hansbro NG, Ge Q, Brown AC, Tay H, Foster PS, Wark PA, Horvat JC, Bourke JE, Grainge CL, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 2017; 243:510-523. [PMID: 28862768 DOI: 10.1002/path.4979] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Qi Ge
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, The Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
14
|
Fresco VM, Kern CB, Mohammadi M, Twal WO. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL. J Biol Chem 2016; 291:18730-9. [PMID: 27402846 DOI: 10.1074/jbc.m115.702761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 11/06/2022] Open
Abstract
Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development.
Collapse
Affiliation(s)
- Victor M Fresco
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Christine B Kern
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Moosa Mohammadi
- the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Waleed O Twal
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
15
|
Liu G, Cooley MA, Jarnicki AG, Hsu ACY, Nair PM, Haw TJ, Fricker M, Gellatly SL, Kim RY, Inman MD, Tjin G, Wark PAB, Walker MM, Horvat JC, Oliver BG, Argraves WS, Knight DA, Burgess JK, Hansbro PM. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight 2016; 1. [PMID: 27398409 DOI: 10.1172/jci.insight.86380] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke-induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c-/- mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andrew G Jarnicki
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C-Y Hsu
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Prema M Nair
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shaan L Gellatly
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Mark D Inman
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Marjorie M Walker
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, The University of Technology, Sydney, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Darryl A Knight
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, New South Wales, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Philip M Hansbro
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
DiScipio RG, Liddington RC, Schraufstatter IU. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose. Protein Expr Purif 2016; 121:118-24. [PMID: 26826315 DOI: 10.1016/j.pep.2016.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma.
Collapse
Affiliation(s)
- Richard G DiScipio
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States.
| | - Robert C Liddington
- Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines RD La Jolla, CA 92037, United States
| | - Ingrid U Schraufstatter
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States
| |
Collapse
|
17
|
Twal WO, Hammad SM, Guffy SL, Argraves WS. A novel intracellular fibulin-1D variant binds to the cytoplasmic domain of integrin beta 1 subunit. Matrix Biol 2015; 43:97-108. [PMID: 25661773 DOI: 10.1016/j.matbio.2015.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/03/2023]
Abstract
Fibulin-1 is a member of a growing family of proteins that includes eight members and is involved in cellular functions such as adhesion, migration and differentiation. Fibulin-1 has also been implicated in embryonic development of the heart and neural crest-derived structures. It is an integral part of the extracellular matrix (ECM) and has been shown to bind to a multitude of ECM proteins. However, fibulin-1 was first identified as a protein purified from placental extracts that binds to the cytoplasmic domain of integrin β1. Human fibulin-1 is alternatively spliced into four different isoforms namely A-D. These isoforms share a common N-terminus sequence that contains a secretion sequence but differ in their carboxy-terminal fibulin-1 module. In this report we identify a new splice variant of fibulin-1 that differs from all other fibulin-1 variants in the N-terminus sequence and has a similar carboxy-terminus sequence as fibulin-1D. This variant that we named fibulin-1D prime (fibulin-1D') lacks a secretion sequence and the anaphlatoxin region of fibulin-1 variants. The protein has an apparent molecular weight of 70.5kDa. Herein we show that fibulin-1D' binds to the intracellular domain of integrin β1 as well as to integrin α5β1. The protein was localized intracellularly in CHO cells transfected with a pEF4 plasmid containing full-length coding sequence of fibulin-1D'. We also localized the protein in human placenta. We propose that the fibulin-1D' variant might play a role in early embryo development as well as in modulating integrin β1 functions including adhesion and motility.
Collapse
Affiliation(s)
- Waleed O Twal
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, MSC 508, Charleston, SC 29412, USA.
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, MSC 508, Charleston, SC 29412, USA.
| | - Sharon L Guffy
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, MSC 508, Charleston, SC 29412, USA
| | - William S Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, MSC 508, Charleston, SC 29412, USA
| |
Collapse
|
18
|
Overgaard M, Cangemi C, Jensen ML, Argraves WS, Rasmussen LM. Total and isoform-specific quantitative assessment of circulating fibulin-1 using selected reaction monitoring MS and time-resolved immunofluorometry. Proteomics Clin Appl 2015; 9:767-75. [PMID: 25331251 DOI: 10.1002/prca.201400070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Targeted proteomics using SRM-MS combined with stable-isotope dilution has emerged as a promising quantitative technique for the study of circulating protein biomarkers. The purpose of this study was to develop and characterize robust quantitative assays for the emerging cardiovascular biomarker fibulin-1 and its circulating isoforms in human plasma. EXPERIMENTAL DESIGN We used bioinformatics analysis to predict total and isoform-specific tryptic peptides for absolute quantitation using SRM-MS. Fibulin-1 was quantitated in plasma by nanoflow-LC-SRM-MS in undepleted plasma and time-resolved immunofluorometric assay (TRIFMA). Both methods were validated and compared to a commercial ELISA (CircuLex). Molecular size determination was performed under native conditions by SEC analysis coupled to SRM-MS and TRIFMA. RESULTS Absolute quantitation of total fibulin-1, isoforms -1C, and -1D was performed by SRM-MS. Fibulin-1C was the most abundant isoform in plasma. Circulating fibulin-1 isoforms were homo -or hetero multimeric complexes (range 318-364 kDa). Good correlation was obtained between SRM-MS and TRIFMA but not CircuLex. CONCLUSIONS AND CLINICAL RELEVANCE For biomarker studies using smaller cohorts, SRM-MS provides an alternative measure of total and specific fibulin-1 isoforms in undepleted plasma. For larger cohorts TRIFMA provides a faster platform for fibulin-1 quantitation in plasma. While the correlation between these methods was acceptable, low correlation was obtained between the commercial CircuLex assay and SRM-MS or TRIFMA.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Martin L Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William S Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Feitosa NM, Zhang J, Carney TJ, Metzger M, Korzh V, Bloch W, Hammerschmidt M. Hemicentin 2 and Fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development. Dev Biol 2012; 369:235-48. [PMID: 22771579 DOI: 10.1016/j.ydbio.2012.06.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 01/03/2023]
Abstract
Hemicentin 1 (Hmcn1) and Hemicentin 2 (Hmcn2) belong to the fibulin family of extracellular matrix (ECM) proteins that play pivotal roles during development and homeostasis of a variety of vertebrate tissues. Recently, we have shown that mutations in zebrafish Hmcn1, also called Fibulin 6, lead to massive fin blistering, similar to the defects caused by the Fraser syndrome gene Fras1. In contrast, the role of Hmcn2 during vertebrate development has thus far been uncharacterized. In zebrafish, hmcn2, like fibulin 1 (fbln1), another member of the fibulin family, is predominantly expressed in fin mesenchymal cells and developing somites, contrasting the strict epithelial expression of hmcn1. While antisense morpholino oligonucleotide (MO)-based knockdown of hmcn2 did not yield any discernable defects, hmcn2/fbln1 double knockdown fish displayed blistering in the trunk, pointing to an essential contribution of these proteins from mesodermal sources for proper epidermal-dermal junction formation. In contrast, and unlike hmcn1 mutants, epidermal-dermal junctions in the fin folds of hmcn2/fbln1 double knockdown fish were only moderately affected. Instead, they displayed impaired migration of fin mesenchymal cells into the fin folds, pointing to a crucial role of Hmcn2 and Fbln1 to remodel the ECM of the fin fold interepidermal space, which is a prerequisite for fibroblast ingrowth. TEM analyses suggest that this ECM remodeling occurs at the level of actinotrichia, the collageneous migration substrate of mesenchymal cells, and at the level of cross fibers, which resemble mammalian microfibers. This work provides first insights into the role of Hmcn2 during vertebrate development, identifying it as an evolutionary conserved protein that acts in functional redundancy with Fbln1C and/or Fbln1D isoforms to regulate tissue adhesion and cell migration, while extending the current knowledge of the functions of vertebrate Fbln1.
Collapse
|
20
|
Satoskar AA, Shapiro JP, Bott C, Song H, Nadasdy GM, Brodsky SV, Hebert L, Birmingham DJ, Nadasdy T, Freitas M, Rovin BH. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol 2012; 25:709-21. [PMID: 22282304 PMCID: PMC3432020 DOI: 10.1038/modpathol.2011.205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The application of molecular techniques to characterize clinical kidney biopsies has the potential to provide insights into glomerular diseases that cannot be revealed by traditional renal pathology. The present work is a proof-of-concept approach to test whether proteomic analysis of glomeruli isolated from clinical biopsies by laser capture microdissection can provide unique information regarding differentially expressed proteins relevant to disease pathogenesis. The proteomes of glomeruli isolated by laser capture microdissection from biopsies of normal kidneys (living-related donor kidneys) were compared with those from patients with diabetic nephropathy, lupus nephritis, and fibronectin glomerulopathy. Glomerular proteins were extracted, trypsin digested, and subjected to liquid chromatography-tandem mass spectrometry for identification and quantitation. Relative to normal glomeruli, all disease-associated glomeruli showed an increased presence of complement components, a marked decline in podocyte-associated proteins, and a decrease in proteins associated with cellular metabolism. Additionally, fibronectin glomerulopathy glomeruli differed from all the other glomeruli because of a significant accumulation of fibronectin and fibulin. This study demonstrates that our method acquires reproducible and quantitative proteomic information from laser capture microdissection isolates that can be used to characterize the molecular features of glomerular diseases.
Collapse
Affiliation(s)
- AA Satoskar
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - JP Shapiro
- Dept of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - C Bott
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - H Song
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - GM Nadasdy
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - SV Brodsky
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - L Hebert
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - DJ Birmingham
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - T Nadasdy
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - M Freitas
- Dept of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - BH Rovin
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
21
|
Maurer LM, Ma W, Eickstaedt NL, Johnson IA, Tomasini-Johansson BR, Annis DS, Mosher DF. Ligation of the fibrin-binding domain by β-strand addition is sufficient for expansion of soluble fibronectin. J Biol Chem 2012; 287:13303-12. [PMID: 22351755 PMCID: PMC3339936 DOI: 10.1074/jbc.m111.294041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/02/2012] [Indexed: 11/06/2022] Open
Abstract
How fibronectin (FN) converts from a compact plasma protein to a fibrillar component of extracellular matrix is not understood. "Functional upstream domain" (FUD), a polypeptide based on F1 adhesin of Streptococcus pyogenes, binds by anti-parallel β-strand addition to discontinuous sets of N-terminal FN type I modules, (2-5)FNI of the fibrin-binding domain and (8-9)FNI of the gelatin-binding domain. Such binding blocks assembly of FN. To learn whether ligation of (2-5)FNI, (8-9)FNI, or the two sets in combination is important for inhibition, we tested "high affinity downstream domain" (HADD), which binds by β-strand addition to the continuous set of FNI modules, (1-5)FNI, comprising the fibrin-binding domain. HADD and FUD were similarly active in blocking fibronectin assembly. Binding of HADD or FUD to soluble plasma FN exposed the epitope to monoclonal antibody mAbIII-10 in the tenth FN type III module ((10)FNIII) and caused expansion of FN as assessed by dynamic light scattering. Soluble N-terminal constructs truncated after (9)FNI or (3)FNIII competed better than soluble FN for binding of FUD or HADD to adsorbed FN, indicating that interactions involving type III modules more C-terminal than (3)FNIII limit β-strand addition to (1-5)FNI within intact soluble FN. Preincubation of FN with mAbIII-10 or heparin modestly increased binding to HADD or FUD. Thus, ligation of FNIII modules involved in binding of integrins and glycosaminoglycans, (10)FNIII and (12-14)FNIII, increases accessibility of (1-5)FNI. Allosteric loss of constraining interactions among (1-5)FNI, (10)FNIII, and (12-14)FNIII likely enables assembly of FN into extracellular fibrils.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ian A. Johnson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Bianca R. Tomasini-Johansson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
22
|
Fibronectin promotes proplatelet formation in the human megakaryocytic cell line UT-7/TPO. Cell Biol Int 2012; 36:39-45. [PMID: 21970435 DOI: 10.1042/cbi20110383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated PPF (proplatelet formation) in the human megakaryocytic cell line UT-7/TPO in vitro and signal transduction pathways responsible for PPF. The megakaryocytic cell lines are useful for studying megakaryocyte biology, although PPF is induced only in the presence of phorbol ester. TPO (thrombopoietin) stimulates megakaryocyte proliferation and differentiation; however, no PPF occurred in the megakaryocytic cell lines, even after the addition of TPO. Therefore, factors other than TPO may play an important role in the process of PPF. As PPF occurs in the bone marrow in vivo, we noted extracellular matrix proteins and found that soluble FN (fibronectin) induced potent PPF in UT-7/TPO without phorbol ester. A Western blot analysis showed that the expression of integrins was not increased by FN treatment. Anti-β1 antibody and the RGD (arginine-glycine-aspartate) peptide inhibited FN-induced PPF. This result indicates that the signal originated from integrin β1, which is essential to inducing PPF in UT-7/TPO. Results of the experiments using several inhibitors suggest that activation of the MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]-ERK and PI3K (phosphoinositide 3-kinase) pathways are necessary for PPF. The phosphorylation of ERK gradually increased for 2 h after the addition of soluble FN, which suggests that activation of ERK is essential for the initial induction of FN-induced PPF in UT-7/TPO. UT-7/TPO is a useful cell line that enables us to study the signals of PPF without effects of chemical compounds.
Collapse
|
23
|
Beattie J, McIntosh L, van der Walle CF. Cross-talk between the insulin-like growth factor (IGF) axis and membrane integrins to regulate cell physiology. J Cell Physiol 2010; 224:605-11. [PMID: 20432472 DOI: 10.1002/jcp.22183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biology of cross-talk between activated growth factor receptors and cell-surface integrins is an area which has attracted much interest in recent years (Schwartz and Ginsberg, 2002). This review discusses the relationship between the insulin-like growth factor (IGF) axis and cell-surface integrin receptors in the regulation of various aspects of cell physiology. Key to these interactions are signals transmitted between integrins and the IGF-I receptor (IGF-IR) when either or both are bound to their cognate ligands and we will review the current state of knowledge in this area. The IGF axis comprises many molecular components and we will also discuss the potential role of these species in cross-talk with the integrin receptor. With respect to integrin ligands, we will mainly focus on the well-characterized interactions of the two extracellular matrix (ECM) glycoproteins fibronectin (FN) and vitronectin (VN) with cell-surface ligands, and, how this affects activity through the IGF axis. However, we will also highlight the importance of other integrin activation mechanisms and their impact on IGF activity.
Collapse
Affiliation(s)
- James Beattie
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
24
|
Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol 2010; 2010:956071. [PMID: 20671930 PMCID: PMC2910554 DOI: 10.1155/2010/956071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/04/2022] Open
Abstract
Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a multifunctional protein and in addition to its opacification activity, it binds to a number of host proteins that mediate adhesion of streptococci to host cells, and it plays a role in resistance to phagocytosis in human blood. This article will provide an overview of the structure and function of SOF, its role in the pathogenesis of streptococcal infections, its vaccine potential, its prevalence and distribution in bacteria, and the molecular mechanism whereby SOF opacifies serum and how an understanding of this mechanism may lead to therapies for reducing high-cholesterol concentrations in blood, a major risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | |
Collapse
|
25
|
Cain SA, McGovern A, Small E, Ward LJ, Baldock C, Shuttleworth A, Kielty CM. Defining elastic fiber interactions by molecular fishing: an affinity purification and mass spectrometry approach. Mol Cell Proteomics 2009; 8:2715-32. [PMID: 19755719 PMCID: PMC2816023 DOI: 10.1074/mcp.m900008-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deciphering interacting networks of the extracellular matrix is a major challenge. We describe an affinity purification and mass spectrometry strategy that has provided new insights into the molecular interactions of elastic fibers, essential extracellular assemblies that provide elastic recoil in dynamic tissues. Using cell culture models, we defined primary and secondary elastic fiber interaction networks by identifying molecular interactions with the elastic fiber molecules fibrillin-1, MAGP-1, fibulin-5, and lysyl oxidase. The sensitivity and validity of our method was confirmed by identification of known interactions with the bait proteins. Our study revealed novel extracellular protein interactions with elastic fiber molecules and delineated secondary interacting networks with fibronectin and heparan sulfate-associated molecules. This strategy is a novel approach to define the macromolecular interactions that sustain complex extracellular matrix assemblies and to gain insights into how they are integrated into their surrounding matrix.
Collapse
Affiliation(s)
- Stuart A Cain
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M139PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Argraves WS, Tanaka A, Smith EP, Twal WO, Argraves KM, Fan D, Haudenschild CC. Fibulin-1 and fibrinogen in human atherosclerotic lesions. Histochem Cell Biol 2009; 132:559-65. [PMID: 19693531 DOI: 10.1007/s00418-009-0628-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2009] [Indexed: 01/03/2023]
Abstract
Fibulin-1 is a fibrinogen-binding blood protein and a component of many extracellular matrices (ECM) including those of blood vessels. In this study, the deposition patterns of fibulin-1 and fibrinogen were examined in human coronary artery atherosclerotic lesions excised by atherectomy from 20 patients. Fibulin-1 deposition was found to be closely overlapping with fibrinogen located within the atherosclerotic lesions and in regions containing fresh thrombi. Pronounced intracellular fibulin-1 immunostaining was apparent in lesion areas rich in macrophages and foam cells, although THP-1 macrophages and foam cells were found not to express fibulin-1. Strong ECM deposition of fibulin-1 was observed in acellular atheromatous and myxomatous regions. By contrast, fibulin-1 was present at relatively low levels in the ECM associated with smooth muscle cells within and outside of lesions and was not detected in sclerotic regions. These results reveal the pattern of fibulin-1 within human atherosclerotic lesions and highlight the potential for fibulin-1, perhaps derived from the blood and acting in conjunction with fibrinogen, to play a role in the etiology and cardiovascular disease progression, particularly with respect to thrombotic aspects of atherosclerosis.
Collapse
Affiliation(s)
- W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2204, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Williams SA, Schwarzbauer JE. A shared mechanism of adhesion modulation for tenascin-C and fibulin-1. Mol Biol Cell 2008; 20:1141-9. [PMID: 19109427 DOI: 10.1091/mbc.e08-06-0621] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adhesion modulatory proteins are important effectors of cell-matrix interactions during tissue remodeling and regeneration. They comprise a diverse group of matricellular proteins that confer antiadhesive properties to the extracellular matrix (ECM). We compared the inhibitory effects of two adhesion modulatory proteins, fibulin-1 and tenascin-C, both of which bind to the C-terminal heparin-binding (HepII) domain of fibronectin (FN) but are structurally distinct. Here, we report that, like tenascin-C, fibulin-1 inhibits fibroblast spreading and cell-mediated contraction of a fibrin-FN matrix. These proteins act by modulation of focal adhesion kinase and extracellular signal-regulated kinase signaling. The inhibitory effects were bypassed by lysophosphatidic acid, an activator of RhoA GTPase. Fibroblast response to fibulin-1, similar to tenascin-C, was dependent on expression of the heparan sulfate proteoglycan syndecan-4, which also binds to the HepII domain. Therefore, blockade of HepII-mediated signaling by competitive binding of fibulin-1 or tenascin-C represents a shared mechanism of adhesion modulation among disparate modulatory proteins.
Collapse
Affiliation(s)
- Selwyn A Williams
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
28
|
Manabe T, Jin Y. Noncovalent interactions in human plasma proteins analyzed by the comparison of nondenaturing and denaturing micro‐2‐D gel electrophoresis patterns after polypeptide assignment using matrix‐assisted laser desorption/ionization‐mass spectrometry and peptide mass fingerprinting. Electrophoresis 2008; 29:2672-88. [DOI: 10.1002/elps.200700893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Hergeth SP, Aicher WK, Essl M, Schreiber TD, Sasaki T, Klein G. Characterization and functional analysis of osteoblast-derived fibulins in the human hematopoietic stem cell niche. Exp Hematol 2008; 36:1022-34. [PMID: 18468769 DOI: 10.1016/j.exphem.2008.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE In the bone marrow stem cell niche, osteoblasts lining the endosteum are of major importance in supporting hematopoietic stem cell maintenance. Our objective was to analyze expression of the fibulins, highly conserved calcium-binding glycoproteins, which are components of the extracellular matrix of human osteoblasts, and to provide insights into their functional interactions with hematopoietic progenitor cells. MATERIALS AND METHODS Expression of the fibulins by human osteoblasts was determined by reverse transcription polymerase chain reaction analysis and by immunofluorescence staining and immunoblotting using fibulin-specific antisera. Recombinant fibulins were used in cell proliferation and differentiation assays with human CD34(+) hematopoietic progenitor cells. Adhesive interactions of CD34(+) cells with fibulins were investigated using cell-adhesion assays. RESULTS Human osteoblasts strongly express and secrete fibulin-1 and -2. Whereas fibulin-1 is secreted in its intact form, fibulin-2 synthesized by human osteoblasts undergoes rapid proteolytic degradation. The matrix metalloproteinase-2, which is constitutively expressed by the osteoblasts, seems to be responsible for fibulin-2 degradation. Fibulin-1 showed an inhibitory effect on short-term CD34(+) hematopoietic progenitor cell proliferation. Both fibulin-1 and fibulin-2 were able to diminish erythroid and myeloid colony formation. The CD34(+) cell line KG1a strongly attached to fibulin-2, whereas magnetic-activated cell sorted CD34(+) hematopoietic progenitors did not adhere to either fibulin-1 or fibulin-2. On the other hand, fibulin-1 can strongly interfere with CD34(+) cell adhesion to fibronectin. CONCLUSION Fibulins seem to be important components of the extracellular matrix of osteoblasts and are likely to negatively influence the proliferation rate of stem cells and the overall adhesive properties of the endosteal stem cell niche.
Collapse
Affiliation(s)
- Sonja P Hergeth
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University Medical Clinic, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, Twal WO, Mjaatvedt CH, Drake CJ, Argraves WS. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 2008; 319:336-45. [PMID: 18538758 DOI: 10.1016/j.ydbio.2008.04.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
Abstract
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.
Collapse
Affiliation(s)
- Marion A Cooley
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi N, Kostka G, Garbe JHO, Keene DR, Bächinger HP, Hanisch FG, Markova D, Tsuda T, Timpl R, Chu ML, Sasaki T. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem 2007; 282:11805-16. [PMID: 17324935 DOI: 10.1074/jbc.m611029200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibulins are a family of five extracellular matrix proteins characterized by tandem arrays of epidermal growth factor-like domains and a C-terminal fibulin-type module. They are widely distributed and often associated with vasculature and elastic tissues. In this study, we expressed the three more recently identified family members, fibulin-3, fibulin-4, and fibulin-5, as recombinant proteins in mammalian cells. The purified proteins showed short rod structures of approximately 20 nm with a globule at one end, after rotary shadowing and electron microscopy. Two forms of mouse fibulin-3 were purified, and the O-glycan profiles of the larger form were characterized. Polyclonal antibodies raised against the purified proteins did not show any cross-reactivity with other family members and were used to assess the levels and localization of the fibulins in mouse tissues. Their binding interactions, cell adhesive properties, and tissue localization were analyzed in parallel with the previously characterized fibulin-1 and -2. Binding to tropoelastin was strong for fibulin-2 and -5, moderate for fibulin-4 and -1, and relatively weak for fibulin-3. Fibulin-4, but not fibulin-3 and -5, exhibited distinct interactions with collagen IV and nidogen-2 and moderate binding to the endostatin domain from collagen XV. Cell adhesive activities were not observed for all fibulins, except mouse fibulin-2, with various cell lines tested. All five fibulins were found in perichondrium and various regions of the lungs. Immunoelectron microscopy localized fibulin-4 and -5 to fibrillin microfibrils at distinct locations. Our studies suggest there are unique and redundant functions shared by these structurally related proteins.
Collapse
|
32
|
Ruggeri ZM. Platelet interactions with vessel wall components during thrombogenesis. Blood Cells Mol Dis 2006; 36:145-7. [PMID: 16469513 DOI: 10.1016/j.bcmd.2005.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/11/2005] [Indexed: 10/25/2022]
Abstract
We discuss the interrelationships of platelet glycoprotein receptors, von Willebrand factor, collagen, non-collagen matrix protein, and vascular cells in the complex events of platelet plug and subsequent thrombus formation.
Collapse
Affiliation(s)
- Zaverio M Ruggeri
- Roon Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute-MEM 175, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S. Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 2005; 153:607-12. [PMID: 16120151 DOI: 10.1111/j.1365-2133.2005.06716.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fibulin-5 was recently found as a secreted extracellular matrix protein that functions as a scaffold for elastic fibres. However, the distribution of fibulin-5 in human skin and its changes during the ageing process are not known. OBJECTIVES To explore the involvement of fibulin-5 in skin ageing, the age-dependent changes in fibulin-5 localization in human skin were examined compared with those of other elastic fibre components including elastin, fibrillin-1 and fibulin-2. Methods The distribution of elastin, fibrillin-1, fibrillin-2, fibulin-2 and fibulin-5 was investigated by means of immunohistochemistry using their specific antibodies. Skin samples were recovered from 12 healthy subjects undergoing plastic surgery. Ultraviolet (UV) B-irradiated or control nonirradiated buttock skin samples were obtained from two healthy volunteers at 2 days after the irradiation at 2 minimal erythemal doses. RESULTS In the reticular dermis of young sun-protected skin from the upper arm, fibulin-5 colocalized with the other elastic fibre components, while in the papillary dermis fibulin-5 showed candelabra-like structures perpendicular to the epidermis with an unstained area just beneath the epidermis, which was similar to that of elastin but not fibrillin-1. Fibulin-5 in the reticular dermis decreased and disappeared with age even in sun-protected skin from the thigh, abdomen and upper arm. In sun-exposed skin, fibulin-5 was extremely reduced in the dermis of cheek skin even from a 20-year-old man. UVB irradiation reduced fibulin-5, fibulin-2 and elastin markedly, moderately and weakly, respectively, compared with levels in control nontreated skin. Interestingly, the deposition of fibulin-5 was increased in solar elastosis, like that of other elastic fibre components. CONCLUSIONS These results suggest that fibulin-5 is a good marker of skin ageing and that the earlier loss of fibulin-5 may involve age-dependent changes in other elastic fibre components.
Collapse
Affiliation(s)
- K Kadoya
- Skin Biology Research Laboratories, Shiseido Life Science Research Centre, 2-12-1 Fukuura, Kanazawa-ku, Yokohama-shi 236-8643, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee NV, Rodriguez-Manzaneque JC, Thai SNM, Twal WO, Luque A, Lyons KM, Argraves WS, Iruela-Arispe ML. Fibulin-1 acts as a cofactor for the matrix metalloprotease ADAMTS-1. J Biol Chem 2005; 280:34796-804. [PMID: 16061471 DOI: 10.1074/jbc.m506980200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ADAMTS-1 is a metalloprotease that has been implicated in the inhibition of angiogenesis and is a mediator of proteolytic cleavage of the hyaluronan binding proteoglycans, aggrecan and versican. In an attempt to further understand the biological function of ADAMTS-1, a yeast two-hybrid screen was performed using the carboxyl-terminal region of ADAMTS-1 as bait. As a result, the extracellular matrix protein fibulin-1 was identified as a potential interacting molecule. Through a series of analyses that included ligand affinity chromatography, co-immunoprecipitation, pulldown assays, and enzyme-linked immunosorbent assay, the ability of these two proteins to interact was substantiated. Additional studies showed that ADAMTS-1 and fibulin-1 colocalized in vivo. Furthermore, fibulin-1 was found to enhance the capacity of ADAMTS-1 to cleave aggrecan, a proteoglycan known to bind to fibulin-1. We confirmed that fibulin-1 was not a proteolytic substrate for ADAMTS-1. Together, these findings indicate that fibulin-1 is a new regulator of ADAMTS-1-mediated proteoglycan proteolysis and thus may play an important role in proteoglycan turnover in tissues where there is overlapping expression.
Collapse
Affiliation(s)
- Nathan V Lee
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tran H, Marlowe K, McKenney K, Petrosian G, Griko Y, Burgess WH, Drohan WN, Imboden MA, Kempf C, Boschetti N, Mann DM. Functional integrity of intravenous immunoglobulin following irradiation with a virucidal dose of gamma radiation. Biologicals 2005; 32:94-104. [PMID: 15454188 DOI: 10.1016/j.biologicals.2004.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 01/12/2004] [Indexed: 11/23/2022] Open
Abstract
Although intravenous immunoglobulins (IVIG) and other plasma therapeutics have had a relatively good safety record, improved methods for viral clearance are constantly being evaluated and incorporated into new manufacturing processes. Gamma irradiation has been used routinely to assure sterility of healthcare products and medical devices, but it has not been applied successfully as a viral inactivation method for biologics. We examine whether virucidal doses of gamma irradiation (50 kGy) can be delivered to a manufacturing intermediate form of IVIG, a fractionated plasma paste, with negligible effect on structural and functional integrity of purified IgG product. Immunoglobulins from paste were examined for radiation-induced damage by SDS-PAGE and ELISAs utilizing viral antigens specific for rubella, CMV and mumps. Fc domain integrity was assessed by immunoblotting, quantitatively comparing the binding of irradiated and non-irradiated materials to cell surface Fcgamma receptors, and by employing quantitative RT-PCR to study the kinetics of accumulation of mRNA for the immune modulatory cytokines IL-1alpha, IL-1beta, IL-4, IL-8, IFNgamma, and TNFalpha. The results demonstrate that Fab and Fc domains of IVIG remain essentially intact and functional after gamma irradiation to virucidal doses, suggesting that this method could be used to enhance the safety of IVIG products.
Collapse
Affiliation(s)
- Huan Tran
- Clearant, Inc. 401, Professional Drive, Gaithersburg, MD 20879, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Person AD, Klewer SE, Runyan RB. Cell Biology of Cardiac Cushion Development. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:287-335. [PMID: 15797462 DOI: 10.1016/s0074-7696(05)43005-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The valves of the heart develop in the embryo from precursor structures called endocardial cushions. After cardiac looping, endocardial cushion swellings form and become populated by valve precursor cells formed by an epithelial-mesenchymal transition (EMT). Endocardial cushions subsequently undergo directed growth and remodeling to form the valvular structures and the membranous septa of the mature heart. The developmental processes that mediate cushion formation include many prototypic cellular actions including adhesion, signaling, migration, secretion, replication, differentiation, and apoptosis. Cushion morphogenesis is unique in that these cellular possesses occur in a functioning organ where the cushions act as valves even while developing into definitive valvular structures. Cardiovascular defects are the most common congenital defects, and one of the most common causes of death during infancy. Thus, there is significant interest in understanding the mechanisms that underlie this complex developmental process. In this regard, substantial progress has been made by incorporating an understanding of cardiac morphology and cell biology with the rapidly expanding repertoire of molecular mechanisms gained through human genetics and research using animal models. This article reviews cardiac morphogenesis as it relates to heart valve formation and highlights selected growth factors, intracellular signaling mediators, and extracellular matrix components involved in the creation and remodeling of endocardial cushions into mature cardiac structures.
Collapse
Affiliation(s)
- Anthony D Person
- Department of Cell Biology and Anatomy, University of Arizona School of Medicine, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
37
|
Abstract
Fibulins are a family of five extracellular glycoproteins found in a variety of tissues in association with diverse supramolecular structures, including elastic fibers, basement membrane networks, fibronectin microfibrils, and proteoglycan aggregates. Studies of the developmental expression patterns have indicated that several fibulins are prominently expressed at sites of epithelial-mesenchymal transformations during embryogenesis; among these sites, the cardiovascular system has been analyzed in more detail. Gene targeting of fibulins in mice has provided important insights into their biological roles, and has led to the identification of gene mutations in a congenital disorder of humans, cutis laxa. Genetic linkage and molecular studies have also associated several fibulin genes with various human heritable disorders that affect a wide range of organs, including limb, eye, blood, and arteries. In this review, we discuss the role of fibulins in development, with an emphasis on the cardiovascular system, and their involvement in human genetic disease.
Collapse
Affiliation(s)
- Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
38
|
Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 2003; 4:479-89. [PMID: 12778127 DOI: 10.1038/nrm1130] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibulins are a newly recognized family of extracellular matrix proteins. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. New insights into their biological roles are now emerging from studies of transgenic mice and of some inherited human diseases.
Collapse
Affiliation(s)
- Rupert Timpl
- Laboratory of Protein Chemistry, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
39
|
Greene LM, Twal WO, Duffy MJ, McDermott EW, Hill AD, O'Higgins NJ, McCann AH, Dervan PA, Argraves WS, Gallagher WM. Elevated expression and altered processing of fibulin-1 protein in human breast cancer. Br J Cancer 2003; 88:871-8. [PMID: 12644824 PMCID: PMC2377096 DOI: 10.1038/sj.bjc.6600802] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extracellular matrix protein fibulin-1 suppresses the motility and invasiveness of a variety of tumour cell types in vitro as well as the growth of fibrosarcoma tumours in nude mice. In this study, fibulin-1 protein expression in breast carcinoma specimens and normal breast tissue was evaluated immunohistologically. Fibulin-1 protein expression was also semiquantitatively assessed by immunoblot analysis in a collection of normal breast tissues (n=18), benign tumours (n=5) and breast carcinomas (n=39). In normal breast tissue, fibulin-1 protein expression predominated in the ductal epithelium and underlying myoepithelium, with weaker staining evident in the loose connective surrounding the ducts. Examination of breast carcinomas revealed that the tumour cells also expressed fibulin-1 protein. The level of mature fibulin-1 polypeptide (100 kDa) was higher in the breast carcinoma specimens as compared to normal breast tissue (Mann-Whitney U-test, P=0.0005). In addition to the mature fibulin-1 polypeptide, several smaller sized polypeptides of 55, 50 and 25 kDa were detected using monoclonal antibodies reactive towards an epitope located at the N-terminus of fibulin-1. The immunoreactive 50 kDa polypeptide was detected more frequently in breast carcinoma specimens than in normal breast tissue (chi(2)=17.22, P<0.0001). Furthermore, the ratio of the 50 kDa fragment to the mature fibulin-1 polypeptide correlated with the level of oestrogen receptor alpha (Spearman correlation coefficient, rs=0.49, P<0.003, n=36) and progesterone receptor (rs=0.43, P=0.008, n=36) expression in the tumour specimens. Taken together, these findings indicate that elevated expression and altered processing of fibulin-1 is associated with human breast cancer.
Collapse
Affiliation(s)
- L M Greene
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - W O Twal
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, USA
| | - M J Duffy
- Department of Nuclear Medicine, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - E W McDermott
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - A D Hill
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - N J O'Higgins
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - A H McCann
- Department of Pathology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Mater Hospital, Eccles Street, Dublin 7, Ireland
| | - P A Dervan
- Department of Pathology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Mater Hospital, Eccles Street, Dublin 7, Ireland
| | - W S Argraves
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, USA
| | - W M Gallagher
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. E-mail:
| |
Collapse
|
40
|
Affiliation(s)
- Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
41
|
Lafont J, Laurent M, Thibout H, Lallemand F, Le Bouc Y, Atfi A, Martinerie C. The expression of novH in adrenocortical cells is down-regulated by TGFbeta 1 through c-Jun in a Smad-independent manner. J Biol Chem 2002; 277:41220-9. [PMID: 12149257 DOI: 10.1074/jbc.m204405200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human NOV secreted glycoprotein (NOVH) is abundant in the fetal and adult adrenal cortex. The amount of NOVH increases in benign adrenocortical tumors and decreases in malignant adrenocortical tumors, suggesting that NOVH plays a role in tumorigenesis in the adrenal cortex. Transforming growth factor beta1 (TGFbeta1), fibroblast growth factor 2 (FGF2), and insulin growth factors (IGFs) play crucial roles in the physiology of the adrenal cortex. We investigated the effects of these factors on the expression of novH in the NCI H295R adrenocortical cell line. The amounts of NOVH protein and novH transcripts were down-regulated by TGFbeta1 and up-regulated by FGF2, whereas IGFs had no effect. Furthermore, the TGFbeta1-dependent inhibition of novH promoter activity was completely abrogated following site-directed mutation of two activating protein (AP-1) sequences (positions -473 and -447), whereas the stimulatory effect of FGF2 was not affected. Co-transfection with dominant negative forms of c-Jun and MEKK1 also abrogated novH-targeted regulation by TGFbeta1, whereas the overproduction of Smad proteins or dominant negative forms of Smad had no effect. Taken together, these results suggest that c-Jun and MEKK1 signaling but not Smad signaling are involved in the TGFbeta1-dependent decrease in NOVH in NCI H295R cells. In conclusion, our data provide evidence that novH is a new target of TGFbeta1; unlike other members of the CCN (cyr61, ctgf, nov) family, however, its expression is repressed rather than induced.
Collapse
Affiliation(s)
- Jérôme Lafont
- INSERM U515 and INSERM U482, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Du M, Fan X, Hong E, Chen JJ. Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem Biophys Res Commun 2002; 296:962-9. [PMID: 12200142 DOI: 10.1016/s0006-291x(02)02041-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The papillomavirus E6 gene is essential for virus-induced cellular transformation and the viral life cycle. Important insight into the mechanism of E6 function came from the discovery that cancer-related HPV E6 proteins promote the degradation of the tumor suppressor p53. However, mounting evidence indicates that interaction with p53 does not mediate all E6 activities. To explore the p53-independent functions of E6, we performed a yeast two-hybrid screen and identified fibulin-1 as an E6 binding protein. Fibulin-1 is a calcium-binding plasma and extracellular matrix protein that has been implicated in cellular transformation and tumor invasion. The interaction between E6 and fibulin-1 was demonstrated by both in vitro and in vivo assays. Fibulin-1 is associated specifically with cancer-related HPV E6s and the transforming bovine papillomavirus type 1 E6. Significantly, overexpression of fibulin-1 specifically inhibited E6-mediated transformation. These results suggest that fibulin-1 plays an important role in the biological activities of E6.
Collapse
Affiliation(s)
- Minjie Du
- Department of Medicine, University of Massachusetts Medical School, LRB Room 323, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | |
Collapse
|
43
|
Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF. Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem 2002; 277:27367-77. [PMID: 12021267 DOI: 10.1074/jbc.m200148200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibulin-5 (FBLN-5; also known as DANCE or EVEC) is an integrin-binding extracellular matrix protein that mediates endothelial cell adhesion; it is also a calcium-dependent elastin-binding protein that scaffolds cells to elastic fibers, thereby preventing elastinopathy in the skin, lung, and vasculature. Transforming growth factor-beta (TGF-beta) regulates the production of cytokines, growth factors, and extracellular matrix proteins by a variety of cell types and tissues. We show here that TGF-beta stimulates murine 3T3-L1 fibroblasts to synthesize FBLN-5 transcript and protein through a Smad3-independent pathway. Overexpression of FBLN-5 in 3T3-L1 cells increased DNA synthesis and enhanced basal and TGF-beta-stimulated activation of ERK1/ERK2 and p38 mitogen-activated protein kinase (MAPK). FBLN-5 overexpression also augmented the tumorigenicity of human HT1080 fibrosarcoma cells by increasing their DNA synthesis, migration toward fibronectin, and invasion through synthetic basement membranes. In stark contrast, FBLN-5 expression was down-regulated in the majority of metastatic human malignancies, particularly in cancers of the kidney, breast, ovary, and colon. Unlike its proliferative response in fibroblasts, FBLN-5 overexpression in mink lung Mv1Lu epithelial cells resulted in an antiproliferative response, reducing their DNA synthesis and cyclin A expression. Moreover, FBLN-5 synergizes with TGF-beta in stimulating AP-1 activity in Mv1Lu cells, an effect that was abrogated by overexpression of dominant-negative versions of either MKK1 or p38 MAPKalpha. Accordingly, both the stimulation and duration of ERK1/ERK2 and p38 MAPK by TGF-beta was enhanced in Mv1Lu cells expressing FBLN-5. Our findings identify FBLN-5 as a novel TGF-beta-inducible target gene that regulates cell growth and motility in a context-specific manner and affects protein kinase activation by TGF-beta. Our findings also indicate that aberrant FBLN-5 expression likely contributes to tumor development in humans.
Collapse
|
44
|
Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett 2002; 514:263-8. [PMID: 11943163 DOI: 10.1016/s0014-5793(02)02376-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here that aggregated beta-amyloid (Abeta) 1-42 promotes tau aggregation in vitro in a dose-dependent manner. When Abeta-mediated aggregated tau was used as a substrate for tau protein kinase II (TPK II), an 8-fold increase in the rate of TPK II-mediated tau phosphorylation was observed. The extent of TPK II-dependent tau phosphorylation increased as a function of time and Abeta 1-42 concentration, and hyperphosphorylated tau was found to be decorated with an Alzheimer's disease-related phosphoepitope (P-Thr-231). In HEK 293 cells co-expressing CT-100 amyloid precursor protein and tau, the release of Abeta 1-42 from these cells was impaired. Taken together, these in vitro results suggest that Abeta 1-42 promotes both tau aggregation and hyperphosphorylation.
Collapse
Affiliation(s)
- Kenneth B Rank
- Protein Science, 7240-267-117, Pharmacia Corporation, Kalamazoo, MI 49007, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Moll F, Katsaros D, Lazennec G, Hellio N, Roger P, Giacalone PL, Chalbos D, Maudelonde T, Rochefort H, Pujol P. Estrogen induction and overexpression of fibulin-1C mRNA in ovarian cancer cells. Oncogene 2002; 21:1097-107. [PMID: 11850827 DOI: 10.1038/sj.onc.1205171] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Revised: 10/26/2001] [Accepted: 11/07/2001] [Indexed: 01/03/2023]
Abstract
Fibulin-1 is an extracellular matrix protein induced by estradiol in estrogen receptor (ER) positive ovarian cancer cell lines. Alternative splicing of fibulin-1 mRNA results in four different variants named A, B, C and D that may have distinct biological functions. We studied the relative expression of fibulin-1 mRNA variants and their estrogen regulation in human ovarian cancer cells. In ovarian tissues and cancer cell lines, fibulin-1C and -1D are the predominant forms, whereas fibulin-1A and -1B are weakly expressed. We developed a competitive PCR assay based on coamplification of fibulin-1C and -1D to study the relative expression of these fibulin-1 variants in human ovarian samples. In ovarian cancer cell lines and ovarian cancer samples, there was a marked increase in the fibulin-1C:1D and fibulin-1C:HPRT mRNA ratios as compared to normal ovaries. In the BG1 estrogen receptor positive ovarian cancer cell line, fibulin-1C mRNA was induced by estradiol in a dose- and time-dependent manner. Since others and we have previously shown an increased expression of ERalpha as compared to ERbeta in ovarian cancer cells, we investigated whether ERalpha or ERbeta is involved in this induction. For this aim, MDA-MB-231 breast cancer cell line, which expresses both low basal levels of ERs and fibulin-1, was infected with recombinant ERalpha or ERbeta encoding adenovirus and treated with estradiol. Fibulin-1C was induced by estradiol in ERalpha- but not ERbeta-infected cells, suggesting that fibulin-1C induction is mediated through ERalpha. In ovarian tumors, a trend towards a correlation between fibulin-1C and ERalpha expression levels was noted. In conclusion, this study showed an increased fibulin-1C:-1D mRNA ratio in ovarian cancer cells as compared to normal ovaries. This finding suggests that the C variant may be involved in ovarian carcinogenesis. Fibulin-1C overexpression may thus be a clue for the understanding of a putative role of estrogens in ERalpha promoted ovarian tumor progression.
Collapse
Affiliation(s)
- Frederic Moll
- Unité INSERM 540, 60 rue de Navacelles, 34095 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Twal WO, Czirok A, Hegedus B, Knaak C, Chintalapudi MR, Okagawa H, Sugi Y, Argraves WS. Fibulin-1 suppression of fibronectin-regulated cell adhesion and motility. J Cell Sci 2001; 114:4587-98. [PMID: 11792823 DOI: 10.1242/jcs.114.24.4587] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibulin-1 is an extracellular matrix protein often associated with fibronectin (FN) in vivo. In this study, the ability of fibulin-1 to modulate adhesion, spreading and motility-promoting activities of FN was investigated. Fibulin-1 was found to have pronounced inhibitory effects on the cell attachment and spreading promoted by FN. Fibulin-1 was also found to inhibit the motility of a variety of cell types on FN substrata. For example, the FN-dependent haptotactic motility of breast carcinoma (MDA MB231) cells, epidermal carcinoma (A431), melanoma (A375 SM), rat pulmonary aortic smooth muscle cells (PAC1) and Chinese hamster ovary (CHO) cells was inhibited by the presence of fibulin-1 bound to FN-coated Boyden chamber membranes. Cells transfected to overproduce fibulin-1 displayed reduced velocity, distance of movement and persistence time on FN substrata. Similarly, the incorporation of fibulin-1 into FN-containing type I collagen gels inhibited the invasion of endocardial cushion mesenchymal cells migrating from cultured embryonic heart explants. By contrast, incorporation of fibulin-1 into collagen gels lacking FN had no effect on the migration of endocardial cushion cells.
These results suggest that the motility-suppressive effects of fibulin-1 might be FN specific. Furthermore, such effects are cell-type specific, in that the migration of gingival fibroblasts and endothelial cells on FN substrata is not responsive to fibulin-1. Additional studies found that the mechanism for the motility-suppressive effects of fibulin-1 does not involve perturbations of interactions between α5β1 or α4 integrins, or heparan sulfate proteoglycans with FN. However, fibulin-1 was found to inhibit extracellular signal regulated kinase (ERK) activation and to suppress phosphorylation of myosin heavy chain. This ability to influence signal transduction cascades that modulate the actin-myosin motor complex might be the basis for the effects of fibulin-1 on adhesion and motility.
Collapse
Affiliation(s)
- W O Twal
- Medical University of South Carolina, Department of Cell Biology, 171 Ashley Avenue, Charleston, SC 29425-2204, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fässler R, Chu ML. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol 2001; 21:7025-34. [PMID: 11564885 PMCID: PMC99878 DOI: 10.1128/mcb.21.20.7025-7034.2001] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix protein fibulin-1 is a distinct component of vessel walls and can be associated with other ligands present in basement membranes, microfibrils, and elastic fibers. Its biological role was investigated by the targeted inactivation of the fibulin-1 gene in mice. This led to massive hemorrhages in several tissues starting at midgestation, ultimately resulting in the death of almost all homozygous embryos upon birth. Histological analysis demonstrated dilation and ruptures in the endothelial lining of various small vessels but not in that of larger vessels. Kidneys displayed a distinct malformation of glomeruli and disorganization of podocytes. A delayed development of lung alveoli suggested impairment in lung inflation. Immunohistology demonstrated the absence of fibulin-1 in its typical localizations but no aberrant patterns for several other extracellular matrix proteins. Electron microscopy revealed intact basement membranes but very irregular cytoplasmic processes of capillary endothelial cells in the organs that were most severely affected. Absence of fibulin-1 caused considerable blood loss but did not compromise blood clotting. The data indicate a strong but restricted abnormality in some endothelial compartments which, together with some kidney and lung defects, may be responsible for early death.
Collapse
Affiliation(s)
- G Kostka
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Gu YC, Talts JF, Gullberg D, Timpl R, Ekblom M. Glucocorticoids down-regulate the extracellular matrix proteins fibronectin, fibulin-1 and fibulin-2 in bone marrow stroma. Eur J Haematol 2001; 67:176-84. [PMID: 11737251 DOI: 10.1034/j.1600-0609.2001.5790528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glucocorticoids regulate hematopoietic cell interactions with the bone marrow microenvironment, but the molecules involved in the regulation are still largely unknown. We have studied the effect of glucocorticoids on mRNA expression and protein synthesis of the major extracellular matrix adhesion protein fibronectin and three other extracellular proteins, fibulin-1, fibulin-2 and nidogen-1, in mouse bone marrow cultures and in a hematopoiesis supporting the stromal MC3T3-G2/PA6 cell line. Glucocorticoids suppressed mRNA expression and protein synthesis of fibronectin, fibulin-1 and fibulin-2, but not nidogen-1, in adherent cells of bone marrow cultures, as shown by Northern blot analysis and immunoprecipitation. mRNA levels of all four proteins were down-regulated by dexamethasone in MC3T3-G2/PA6 cells, indicating a direct glucocorticoid effect on cells synthesizing extracellular matrix proteins. Dexamethasone down-regulated fibronectin mRNA rapidly, within 2 h of treatment, in the stromal cells. This effect did not require mRNA or protein synthesis, as shown by Northern blot analysis after treatment by actinomycin D and cycloheximide. Interferon-alpha, which also has been reported to modulate haematopoietic cell-matrix interactions, did not affect mRNA expression of the proteins in MC3T3-G2/PA6 cells. Our results indicate that glucocorticoids down-regulate expression of several mesenchymal-type extracellular matrix molecules in bone marrow, but with a variable effect on different proteins. Thus one mechanism by which glucocorticoids regulate haematopoiesis may be by altering the relative proportions of extracellular matrix proteins.
Collapse
Affiliation(s)
- Y C Gu
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
49
|
Ohsawa I, Takamura C, Kohsaka S. Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function. J Neurochem 2001; 76:1411-20. [PMID: 11238726 DOI: 10.1046/j.1471-4159.2001.00144.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetic studies have implicated amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease. While accumulating lines of evidence indicate that APP has various functions in cells, little is known about the proteins that modulate its biological activity. Toward this end, we employed a two-hybrid system to identify potential interacting factors. We now report that fibulin-1, which contains repetitive Ca(2+)-binding EGF-like elements, binds to APP at its amino-terminal growth factor-like domain, the region that is responsible for its neurotrophic activities. Fibulin-1 expression in the brain is confined to neurons, and is not expressed significantly by astrocytes or microglia. Direct binding of fibulin-1 to the secreted form of APP (sAPP) was demonstrated with a pull-down assay using fragments of both fibulin-1 fused with glutathione-S transferase and sAPP, produced in bacteria and yeast, respectively. The fibulin-1/sAPP heteromer was shown to form in the conditioned medium of transfected COS-7 cells. Furthermore, fibulin-1 blocks sAPP-mediated proliferation of primary cultured rat neural stem cells. These results suggest that fibulin-1 may play a significant role in modulating the neurotrophic activities of APP.
Collapse
Affiliation(s)
- I Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Gallagher WM, Greene LM, Ryan MP, Sierra V, Berger A, Laurent-Puig P, Conseiller E. Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett 2001; 489:59-66. [PMID: 11231014 DOI: 10.1016/s0014-5793(00)02389-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here, we report the identification of a human orthologue of fibulin-4, along with analysis of its biosynthetic processing and mRNA expression levels in normal and tumour tissues. Comparative sequence analysis of fibulin-4 cDNAs revealed apparent polymorphisms in the signal sequence that could account for previously reported inefficient secretion in fibulin-4 transfectants. In vitro translation of fibulin-4 mRNA revealed the presence of full-length and truncated polypeptides, the latter apparently generated from an alternative translation initiation site. Since this polypeptide failed to incorporate into endoplasmic reticulum membrane preparations, it was concluded that it lacked a signal sequence and thus could represent an intracellular form of fibulin-4. Using fluorescence in situ hybridisation analysis, the human fibulin-4 gene was localised to chromosome 11q13, this region being syntenic to portions of mouse chromosomes 7 and 19. Considering the fact that translocations, amplifications and other rearrangements of the 11q13 region are associated with a variety of human cancers, the expression of human fibulin-4 was evaluated in a series of colon tumours. Reverse transcription-polymerase chain reaction analysis of RNA from paired human colon tumour and adjacent normal tissue biopsies showed that a significant proportion of tumours had approximately 2-7-fold increases in the level of fibulin-4 mRNA expression. Taken together, results reported here suggest that an intracellular form of fibulin-4 protein may exist and that dysregulated expression of the fibulin-4 gene is associated with human colon tumourigenesis.
Collapse
Affiliation(s)
- W M Gallagher
- Conway Institute of Biomolecular and Biomedical Research, Department of Pharmacology, University College Dublin, Belfield, Ireland.
| | | | | | | | | | | | | |
Collapse
|