1
|
Chew NW, Chong B, Ng CH, Kong G, Chin YH, Xiao W, Lee M, Dan YY, Muthiah MD, Foo R. The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front Genet 2022; 13:971484. [PMID: 36035124 PMCID: PMC9399730 DOI: 10.3389/fgene.2022.971484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the development of cardiovascular disease (CVD) has sparked interests in understanding the common mediators between the two biologically distinct entities. This comprehensive review identifies and curates genetic studies of NAFLD overlapping with CVD, and describes the colinear as well as opposing correlations between genetic associations for the two diseases. Here, CVD described in relation to NAFLD are coronary artery disease, cardiomyopathy and atrial fibrillation. Unique findings of this review included certain NAFLD susceptibility genes that possessed cardioprotective properties. Moreover, the complex interactions of genetic and environmental risk factors shed light on the disparity in genetic influence on NAFLD and its incident CVD. This serves to unravel NAFLD-mediated pathways in order to reduce CVD events, and helps identify targeted treatment strategies, develop polygenic risk scores to improve risk prediction and personalise disease prevention.
Collapse
Affiliation(s)
- Nicholas W.S. Chew
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Wang Xiao
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D. Muthiah
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| |
Collapse
|
2
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zang Y, Samii SS, Myers WA, Bailey HR, Davis AN, Grilli E, McFadden JW. Methyl donor supplementation suppresses the progression of liver lipid accumulation while modifying the plasma triacylglycerol lipidome in periparturient Holstein dairy cows. J Dairy Sci 2018; 102:1224-1236. [PMID: 30471914 DOI: 10.3168/jds.2018-14727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Co-supplementation of methyl donors may lower hepatic lipid content in transition cows. To define the ability of methyl donor supplementation (MDS) to reduce hepatic lipid content and modify the plasma lipidome, 30 multiparous Holstein cows (2.04 ± 0.69 lactations; 689 ± 58 kg of body weight; 3.48 ± 0.10 units of body condition score) were fed a ration with or without rumen-protected methyl donors (22 g/d of Met, 10 g/d of choline chloride, 3 g/d of betaine, 96 mg/d of riboflavin, and 1.4 mg/d of vitamin B12) from d -28 before expected calving through d 14 postpartum. Cows were randomly enrolled based on predefined selection criteria (body condition score and parity). Base diets without MDS were formulated for gestation (15.4% crude protein with a predicted Lys-to-Met ratio of 3.25; 1.44 Mcal of net energy for lactation/kg of dry matter) and lactation (16.6% crude protein with a predicted Lys-to-Met ratio of 3.36; 1.64 Mcal of net energy for lactation/kg of dry matter). Blood sampling occurred from d -28 relative to expected calving through d 14 postpartum. Liver tissue was biopsied at d -28 relative to expected calving and on d 5 and 14 postpartum. In addition to routine analyses, serum AA concentrations on d 10 and 12 were quantified using mass spectrometry. Plasma triacylglycerol (TAG) and cholesteryl esters (CE) were qualitatively measured using time-of-flight mass spectrometry. Data were analyzed using a mixed model with repeated measures. Dry matter intake and milk yield were not modified by MDS. The transition from d -28 relative to expected parturition to d 14 postpartum was characterized by increased plasma fatty acid (0.15 to 0.71 mmol/L) and β-hydroxybutyrate (0.34 to 0.43 mmol/L) levels and liver lipid content (3.91 to 9.16%). Methyl donor supplementation increased the serum Met level by 26% and decreased the serum Lys-to-Met ratio by 21% on d 10 and 12, respectively. Moreover, the increase in hepatic lipid content from d 5 through 14 postpartum was suppressed with MDS relative to control (3.57 vs. -0.29%). Dietary MDS modified the TAG and CE lipidome. For example, MDS increased plasma TAG 46:3 (carbon number:double bond) by 116% relative to control cows on d 5 postpartum. Moreover, MDS tended to increase plasma CE 34:6. In contrast, MDS lowered plasma TAG 54:8 by 39% relative to control cows on d 5 postpartum. We concluded that in the absence of gains in dry matter intake and milk and milk protein yields, dietary MDS slows the progression of hepatic lipid accumulation and modifies the plasma TAG lipidome in transition cows.
Collapse
Affiliation(s)
- Y Zang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - S Saed Samii
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - W A Myers
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - H R Bailey
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - A N Davis
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - E Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy 40064
| | - J W McFadden
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca 14853.
| |
Collapse
|
4
|
May T, Klatt KC, Smith J, Castro E, Manary M, Caudill MA, Jahoor F, Fiorotto ML. Choline Supplementation Prevents a Hallmark Disturbance of Kwashiorkor in Weanling Mice Fed a Maize Vegetable Diet: Hepatic Steatosis of Undernutrition. Nutrients 2018; 10:nu10050653. [PMID: 29786674 PMCID: PMC5986532 DOI: 10.3390/nu10050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 12/03/2022] Open
Abstract
Hepatic steatosis is a hallmark feature of kwashiorkor malnutrition. However, the pathogenesis of hepatic steatosis in kwashiorkor is uncertain. Our objective was to develop a mouse model of childhood undernutrition in order to test the hypothesis that feeding a maize vegetable diet (MVD), like that consumed by children at risk for kwashiorkor, will cause hepatic steatosis which is prevented by supplementation with choline. A MVD was developed with locally sourced organic ingredients, and fed to weanling mice (n = 9) for 6 or 13 days. An additional group of mice (n = 4) were fed a choline supplemented MVD. Weight, body composition, and liver changes were compared to control mice (n = 10) at the beginning and end of the study. The MVD resulted in reduced weight gain and hepatic steatosis. Choline supplementation prevented hepatic steatosis and was associated with increased hepatic concentrations of the methyl donor betaine. Our findings show that (1) feeding a MVD to weanling mice rapidly induces hepatic steatosis, which is a hallmark disturbance of kwashiorkor; and that (2) hepatic steatosis associated with feeding a MVD is prevented by choline supplementation. These findings support the concept that insufficient choline intake may contribute to the pathogenesis of hepatic steatosis in kwashiorkor.
Collapse
Affiliation(s)
- Thaddaeus May
- Childrens' Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | - Kevin C Klatt
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jacob Smith
- University of Texas Rio Grande Valley School of Medicine, 1210 West Schunior Street, Edinburg, TX 78541, USA.
| | - Eumenia Castro
- Childrens' Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | - Mark Manary
- Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Farook Jahoor
- Childrens' Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | - Marta L Fiorotto
- Childrens' Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:754-61. [PMID: 21979151 DOI: 10.1016/j.bbalip.2011.09.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022]
Abstract
Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Laura K Cole
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
6
|
Dong H, Wang J, Li C, Hirose A, Nozaki Y, Takahashi M, Ono M, Akisawa N, Iwasaki S, Saibara T, Onishi S. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population. J Hepatol 2007; 46:915-20. [PMID: 17391797 DOI: 10.1016/j.jhep.2006.12.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 12/05/2006] [Accepted: 12/11/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The genetic predisposition on the development of nonalcoholic steatohepatitis (NASH) has been poorly understood. A functional polymorphism Val175Met was reported in phosphatidylethanolamine N-methyltransferase (PEMT) that catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine. The aim of this study was to investigate whether the carriers of Val175Met variant impaired in PEMT activity are more susceptible to NASH. METHODS Blood samples of 107 patients with biopsy-proven NASH and of 150 healthy volunteers were analyzed by the polymerase chain reaction (PCR) and restriction fragment length polymorphism. RESULTS Val175Met variant allele of the PEMT gene was significantly more frequent in NASH patients than in healthy volunteers (p<0.001), and carriers of Val175Met variant were significantly more frequent in NASH patients than in healthy volunteers (p<0.01). Among NASH patients, body mass index was significantly lower (p<0.05), and non-obese patients were significantly more frequent (p<0.001) in carriers of Val175Met variant than in homozygotes of wild type PEMT. CONCLUSIONS Val175Met variant of PEMT could be a candidate molecule that determines the susceptibility to NASH, because it is more frequently observed in NASH patients and non-obese persons with Val175Met variant of PEMT are facilitated to develop NASH.
Collapse
Affiliation(s)
- Hang Dong
- Department of Gastroenterology and Hepatology, Kochi Medical School, Nankoku 783-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ono M, Saibara T. Clinical features of nonalcoholic steatohepatitis in Japan: Evidence from the literature. J Gastroenterol 2006; 41:725-32. [PMID: 16988759 DOI: 10.1007/s00535-006-1876-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome, that is, obesity, hypertension, hyperlipidemia, and insulin resistance with hyperinsulinemia, is a new disease entity prevailing worldwide, and nonalcoholic steatohepatitis (NASH) is believed to be a hepatic expression of this syndrome. NASH is characterized by zone 3-dominant hepatic steatosis with ballooned hepatocytes and Mallory bodies, zone 3 pericellular and perivenular fibrosis with or without bridging fibrosis, and lobular inflammatory cell infiltration. Indeed, 90% of NASH has been revealed to be complicated by visceral obesity, and two-thirds of NASH patients fulfill the criteria of metabolic syndrome. Therefore, a variety of lifestyle-related diseases such as obesity, hypertension, hyperlipidemia, and diabetes mellitus may share the same background. NASH is most prevalent and well characterized in Caucasians; however, little is known about its occurrence in Asia-Oceania, because obesity has not been frequent in countries in these areas. Obesity is expected to become a serious social problem in Asia-Oceania in the next two decades, so we need to prevent a corresponding increase of NASH. For that purpose, we need to know much about not only NASH but also ourselves. To elucidate the status of NASH in Japan, recent progress in the study of NASH in Japan is reviewed in this article.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Oko, Nankoku 783-8505, Japan
| | | |
Collapse
|
8
|
Jacobs RL, Devlin C, Tabas I, Vance DE. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J Biol Chem 2004; 279:47402-10. [PMID: 15331603 DOI: 10.1074/jbc.m404027200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Hepatic cells express both an alpha and a beta2 isoform of CT and can also synthesize phosphatidylcholine via the sequential methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase. To ascertain the functional importance of CTalpha, we created a mouse in which the hepatic CTalpha gene was specifically inactivated by the Cre/LoxP procedure. In CTalpha knockout mice, hepatic CT activity (due to residual CTbeta2 activity as well as activity in nonhepatic cells) was 15% of normal, whereas phosphatidylethanolamine N-methyltransferase activity was elevated 2-fold compared with controls. Lipid analyses of the liver indicated that female knockout mice had reduced phosphatidylcholine levels and accumulated triacylglycerols. The plasma phosphatidylcholine concentration was reduced in the CTalpha knockout (independent of gender), as were levels of high density lipoproteins (cholesterol and apoAI) and very low density lipoproteins (triacylglycerols and apoB100). Experiments in which mice were injected with Triton WR1339 indicated that apoB secretion was decreased in hepatic-specific CTalpha knockout mice compared with controls. These results suggest an important role for hepatic CTalpha in regulating both hepatic and systemic lipid and lipoprotein metabolism.
Collapse
Affiliation(s)
- René L Jacobs
- Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
9
|
Rasouli M, Trischuk TC, Lehner R. Calmodulin antagonist W-7 inhibits de novo synthesis of cholesterol and suppresses secretion of de novo synthesized and preformed lipids from cultured hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1682:92-101. [PMID: 15158760 DOI: 10.1016/j.bbalip.2004.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 01/05/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
The effects of a calmodulin antagonist W-7 were studied on the synthesis and secretion of lipids in primary rat hepatocytes and McArdle-RH7777 cells. In time course experiments, W-7 (20 microM) inhibited secretion of newly synthesized triacyl[(3)H]glycerol by 35%. When the cells were pre-treated overnight with W-7 (20 microM), followed by incubation with [(3)H]oleate, a significant decrease in the secretion of triacylglycerol (TG) and cholesteryl ester (CE) was observed. De novo synthesis of cholesterol from acetate or mevalonolactone was inhibited by W-7, but not glycerolipid synthesis from glycerol and oleic acid precursors. Concentration-response curves for the effects of overnight pre-incubation with W-7 followed labeling with [(3)H]glycerol and [(14)C]mevalonolactone revealed that: (1). the inhibitory effect of W-7 was concentration-dependent and appeared even at the lowest concentration examined (1 microM). W-7 at a concentration of 20 microM suppressed secretion of TG by 60% (P<or=0.002), phosphatidylcholine (PC) by 31% (P<or=0.05), CE by 59% (P<or=0.002) and cholesterol by 64% (P<or=0.002). (2). The incorporation of [(14)C]mevalonolactone into cellular cholesterol and CE was decreased significantly, while W-7 did not have any significant effect upon incorporation of [(3)H]glycerol into glycerolipids, except at the highest concentration examined (50 microM), where synthesis of both TG and PC was significantly suppressed. (3). While the percentage of secreted de novo synthesized glycerolipids and CE decreased proportionally with increasing concentration of W-7, the percentage of secreted newly made cholesterol remained unaffected at any concentration of W-7. In the absence of W-7, about 19% of newly formed cholesterol became esterified into CE, whereas W-7 increased cholesterol esterification in a concentration-dependent manner. (4) W-7 (20 microM) also suppressed the secretion of preformed cholesterol by 24% and CE by 55% but did not affect the recruitment of preformed cholesterol for esterification. About 6.5% of pre-labeled cholesterol and 20% of CE were directed to secretion, which was suppressed in the presence of W-7 by 17% (P<or=0.09) and 48% (P<or=0.001), respectively. These results suggest that, W-7 in the range of 1-20 microM inhibited de novo synthesis of cholesterol and the secretion of both de novo synthesized and preformed lipids.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Departments of Pediatrics and Cell Biology, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
10
|
Post SM, Groenendijk M, Solaas K, Rensen PCN, Princen HMG. Cholesterol 7α-Hydroxylase Deficiency in Mice on an APOE*3-Leiden Background Impairs Very-Low-Density Lipoprotein Production. Arterioscler Thromb Vasc Biol 2004; 24:768-74. [PMID: 14962946 DOI: 10.1161/01.atv.0000121572.21122.59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cholesterol 7alpha-hydroxylase (cyp7a1) catalyzes the rate-limiting step in conversion of cholesterol to bile acids. To study the relationship between bile acid biosynthesis and triglyceride metabolism, we cross-bred mice lacking cyp7a1 on a hyperlipidemic APOE*3-Leiden background. METHODS AND RESULTS Female mice received a chow or lipogenic diet. On both diets, fecal bile acid excretion was 70% decreased concomitantly with a 2-fold increased neutral sterol output. The differences in bile acid biosynthesis did not change plasma cholesterol levels. However, plasma triglyceride levels decreased by 41% and 38% in the cyp7a1-/-. APOE*3-Leiden mice as compared with APOE*3-Leiden mice on chow and lipogenic diet, respectively. Mechanistic studies showed that very-low-density lipoprotein (VLDL)-apolipoprotein B and VLDL-triglyceride production rates were reduced in cyp7a1-/-. APOE*3-Leiden mice as compared with APOE*3-Leiden mice (-34% and -35%, respectively). Cyp7a1 deficiency also increased the hepatic cholesteryl ester and triglyceride content (2.8-fold and 2.5-fold, respectively). In addition, hepatic anti-oxidative vitamin content, which can influence VLDL-production, was lower. Hepatic mRNA analysis showed decreased expression of genes involved in lipogenesis including srebf1. CONCLUSIONS Cyp7a1 deficiency in APOE*3-Leiden mice decreases the VLDL particle production rate, as a consequence of a strongly reduced bile acid biosynthesis, leading to a decrease in plasma triglycerides. These data underscore the close relationship between bile acid biosynthesis and triglyceride levels.
Collapse
Affiliation(s)
- Sabine M Post
- TNO Prevention and Health, Gaubius Laboratory, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Piepenbrink MS, Marr AL, Waldron MR, Butler WR, Overton TR, Vázquez-Añón M, Holt MD. Feeding 2-Hydroxy-4-(Methylthio)-Butanoic Acid to Periparturient Dairy Cows Improves Milk Production but not Hepatic Metabolism. J Dairy Sci 2004; 87:1071-84. [PMID: 15259243 DOI: 10.3168/jds.s0022-0302(04)73253-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Forty-eight Holstein cows, entering second or later lactation, were utilized to determine the effects of 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on milk production, hepatic lipid metabolism, and gluconeogenesis during the periparturient period. Cows were fed one of 3 diets as TMR starting 21 d before expected calving. These diets contained 0 (the basal diet), 0.09 (+HMB), or 0.18 (++HMB)% HMB. From parturition to 84 DIM, cows were fed diets that contained 0, 0.13, or 0.20% HMB. Prepartum and postpartum dry matter intakes were similar among cows fed the basal diet, +HMB and ++HMB. There was a quadratic effect on milk yield such that cows fed +HMB had the greatest milk yield; yields of milk by cows fed the basal diet and ++HMB were similar. This led to trends for increased yields of 3.5% fat-corrected milk and total solids when cows were fed +HMB. Percentages of fat, protein, and total solids in milk were not affected by treatment. Despite differences in milk yield, calculated energy balance was not affected by treatment. Plasma concentrations of NEFA, beta-hydroxybutyrate, and glucose were not different among treatments. Liver triglyceride content was similar among treatments on d 1 postpartum and was increased for cows consuming +HMB on d 21 postpartum compared with the other dietary treatments. Capacities for metabolism of [1-14C]palmitate by liver slices in vitro were not affected by treatment; however, conversion of [1-14C]propionate to CO2 and glucose decreased as the amount of HMB consumed by cows increased on d 21 postpartum. Cows consuming +HMB had greater days to first ovulation compared with cows consuming the basal diet and ++HMB as measured by plasma progesterone concentrations. These data suggest that adding HMB to low Met diets to achieve a predicted Met supply of approximately 2.3% of metabolizable protein supply is beneficial for increasing milk production but does not appear to benefit hepatic energy metabolism during early lactation.
Collapse
Affiliation(s)
- M S Piepenbrink
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kulinski A, Vance DE, Vance JE. A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion. J Biol Chem 2004; 279:23916-24. [PMID: 15024002 DOI: 10.1074/jbc.m312676200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine is a major component of very low density lipoproteins (VLDLs) secreted by the liver. Hepatic phosphatidylcholine is synthesized from choline via the CDP-choline pathway and from the phosphatidylethanolamine N-methyltransferase pathway. Elimination of the methyltransferase in male mice reduces hepatic VLDL secretion. Our objective was to determine whether inhibition of the CDP-choline pathway for phosphatidylcholine synthesis (by restricting the supply of choline) also impaired VLDL secretion. In mice fed a choline-deficient (CD), compared with a choline-supplemented, diet for 21 days, the amounts of plasma apolipoproteins (apo) B100 and B48 were reduced and the liver triacylglycerol content was increased. Hepatocytes were isolated from male mice that had been fed the CD diet for 3 or 21 days, and the cells were incubated with or without choline. The secretion of apoB100 and B48 from CD hepatocytes was not reduced, and triacylglycerol secretion was only modestly decreased, compared with that from cells supplemented with choline. Remarkably, in light of widely held assumptions, the rate of phosphatidylcholine synthesis from the CDP-choline pathway was not decreased in CD hepatocytes. Rather, there was a trend toward increased phosphatidylcholine synthesis that might be explained by enhanced CTP:phosphocholine cytidylyltransferase activity. Although the concentration of phosphocholine in CD hepatocytes was reduced, the size of the phosphocholine pool remained well above the K for the cytidylyltransferase. Moreover, the amount and m activity of the cytidylyltransferase and methyltransferase were increased. The reduction in plasma apoB in mice deprived of dietary choline cannot, therefore, be attributed to decreased apoB secretion.
Collapse
Affiliation(s)
- Agnes Kulinski
- Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids and the Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
13
|
Elzinga BM, Baller JFW, Mensenkamp AR, Yao Z, Agellon LB, Kuipers F, Verkade HJ. Inhibition of apolipoprotein B secretion by taurocholate is controlled by the N-terminal end of the protein in rat hepatoma McArdle-RH7777 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:93-103. [PMID: 14729072 DOI: 10.1016/j.bbalip.2003.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.
Collapse
Affiliation(s)
- Baukje M Elzinga
- Department of Pediatrics, Groningen University Institute for Drug Exploration, Pediatric Gastroenterology, Academic Hospital, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Noga AA, Vance DE. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J Biol Chem 2003; 278:21851-9. [PMID: 12668679 DOI: 10.1074/jbc.m301982200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT)is involved in a secondary pathway for production of phosphatidylcholine (PC) in liver. We fed Pemt-/-mice a high fat/high cholesterol diet for 3 weeks to determine whether or not PC derived from PEMT is required for very low density lipoprotein secretion. Lipid analyses of plasma and liver indicated that male Pemt-/- mice accumulated triacylglycerols in their livers and were unable to secrete the same amount of triacylglycerols from the liver as did Pemt+/+ mice. Plasma levels of triacylglycerol and both apolipoproteins B100 and B48 were significantly decreased only in male Pemt-/- mice. Experiments in which mice were injected with Triton WR1339 showed that, whereas hepatic apoB100 secretion was decreased in male Pemt-/- mice, the decrease in plasma apoB48 in male Pemt-/- mice was not due to reduced secretion. Moreover, female and, to a lesser extent, male Pemt-/- mice showed a striking 40% decrease in plasma PC and cholesterol in high density lipoproteins. These results suggest that, even though the content of hepatic PC was normal in PEMT-deficient mice, plasma lipoprotein levels were profoundly altered in a gender-specific manner.
Collapse
Affiliation(s)
- Anna A Noga
- Department of Biochemistry, Research Group on Molecular and Cell Biology of Lipids, Canadian Institutes for Health, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
15
|
Piepenbrink MS, Overton TR. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. J Dairy Sci 2003; 86:1722-33. [PMID: 12778583 DOI: 10.3168/jds.s0022-0302(03)73758-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Forty-eight multiparous Holstein cows were fed treatments consisting of either 0, 45, 60, or 75 g/d of a rumen-protected choline (RPC) source in a completely randomized design from 21 d before expected calving to 63 d postpartum to determine whether choline supplementation to the diet would affect hepatic fatty acid and glucose metabolism, key metabolites in plasma, and cow performance. Dry matter intake (DMI), milk yield, body condition score, and body weights (BW) were similar for cows receiving the four treatments. Feeding RPC tended to increase yields of milk fat, 3.5% fat-corrected milk, and total solids. Plasma concentrations of nonesterified fatty acids and beta-hydroxybutyrate were not different among cows fed the four treatments. Concentrations of triglycerides in liver were similar, but concentrations of glycogen in liver increased as cows consumed increasing amounts of RPC. Hepatic capacity for storage of [1-(14)C]palmitate as esterified products within liver slices tended to decrease as the amount of RPC consumed by cows increased; however, effects of treatment on hepatic capacity for oxidation of [1-(14)C]palmitate to CO2 were not significant. These data imply that choline may increase the rate of very low density lipoprotein synthesis and secretion of esterified lipid products from liver. Hepatic capacities for conversion of [1-(14)C] propionate to CO2 and to glucose in liver were similar among cows fed the four treatments. Collectively, these results suggest that hepatic fatty acid metabolism and cow performance are responsive to increasing the supply of choline during the periparturient period.
Collapse
Affiliation(s)
- M S Piepenbrink
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
Noga AA, Zhao Y, Vance DE. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem 2002; 277:42358-65. [PMID: 12193594 DOI: 10.1074/jbc.m204542200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine (PC). We investigated whether there was diminished secretion of lipoproteins from hepatocytes derived from mice that lacked PEMT (Pemt(-/-)) compared with Pemt(+/+) mice. Hepatocytes were incubated with 0.75 mm oleate, the media were harvested, and triacylglycerol (TG), PC, apolipoprotein (apo) B100, and apoB48 were isolated and quantified. Compared with hepatocytes from Pemt(+/+) mice, hepatocytes from Pemt(-/-) mice secreted 50% less TG, whereas secretion of PC was unaffected. Fractionation of the secreted lipoproteins on density gradients demonstrated that the decrease in TG was in the very low density lipoprotein (VLDL)/low density lipoprotein fractions. The secretion of apoB100 was decreased by approximately 70% in VLDLs/low density lipoproteins, whereas there was no significant decrease in apoB48 secretion in any fraction. Transfection of McArdle hepatoma cells (that lack PEMT) with PEMT cDNA enhanced secretion of TG in the VLDLs. Because the levels of PC in the hepatocytes and hepatoma cells were unaffected by the lack of PEMT expression, there appears to be an unexpected requirement for PEMT in the secretion of apoB100-containing VLDLs.
Collapse
Affiliation(s)
- Anna A Noga
- Department of Biochemistry and the Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
17
|
Fisher EA, Pan M, Chen X, Wu X, Wang H, Jamil H, Sparks JD, Williams KJ. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J Biol Chem 2001; 276:27855-63. [PMID: 11285257 DOI: 10.1074/jbc.m008885200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that Omega-3 fatty acids reduce secretion of apolipoprotein B (apoB) from cultured hepatocytes by stimulating post-translational degradation. In this report, we now characterize this process, particularly in regard to the two known processes that degrade newly synthesized apoB, endoplasmic reticulum (ER)-associated degradation and re-uptake from the cell surface. First, we found that Omega-3-induced degradation preferentially reduces the secretion of large, assembled apoB-lipoprotein particles, and apoB polypeptide length is not a determinant. Second, based on several experimental approaches, ER-associated degradation is not involved. Third, re-uptake, the only process known to destroy fully assembled nascent lipoproteins, was clearly active in primary hepatocytes, but Omega-3-induced degradation of apoB continued even when re-uptake was blocked. Cell fractionation showed that Omega-3 fatty acids induced a striking loss of apoB100 from the Golgi, while sparing apoB100 in the ER, indicating a post-ER process. To determine the signaling involved, we used wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, which blocked most, if not all, of the Omega-3 fatty acid effect. Therefore, nascent apoB is subject to ER-associated degradation, re-uptake, and a third distinct degradative pathway that appears to target lipoproteins after considerable assembly and involves a post-ER compartment and PI3K signaling. Physiologic, pathophysiologic, and pharmacologic regulation of net apoB secretion may involve alterations in any of these three degradative steps.
Collapse
Affiliation(s)
- E A Fisher
- Laboratory of Lipoprotein Research, The Zena and Michael A. Wiener Cardiovascular Institute and Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hebbachi A, Gibbons GF. Inactivation of microsomal triglyceride transfer protein impairs the normal redistribution but not the turnover of newly synthesized glycerolipid in the cytosol, endoplasmic reticulum and Golgi of primary rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1441:36-50. [PMID: 10526226 DOI: 10.1016/s1388-1981(99)00138-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The requirements for microsomal triglyceride transfer protein (MTP) during the turnover and transfer of glycerolipids from intracellular compartments into secretory very low-density lipoprotein (VLDL) were studied by pre-labelling lipids with [(3)H]glycerol and [(14)C]oleate in primary cultures of rat hepatocytes. The intracellular redistribution of pre-labelled glycerolipids was then compared at the end of subsequent chase periods during which the MTP inhibitor BMS-200150 was either present or absent in the medium. Inhibition of MTP resulted in a decreased output of VLDL triacylglycerol (TAG) and a delayed removal of labelled TAG from the cytosol and from the membranes of the smooth endoplasmic reticulum (SER), the cis- and the trans-Golgi. Inactivation of MTP did not decrease the bulk lipolytic turnover of cellular TAG as reflected by changes in its [(3)H]glycerol:[(14)C]oleate ratios. However, a larger proportion of the resultant TAG fatty acids was re-esterified and remained with the membranes of the various subcellular fractions rather than emerging as VLDL. The effects of BMS-200150 on the pattern of phospholipid (PL) mechanism and redistribution suggested that inhibition of MTP prevented the normal lipolytic transfer of PL-derived fatty acids out of the SER, cis- and trans-Golgi membrane pools. Finally, changes in the (14)C specific radioactivities of the cytosolic and membrane pools of TAG suggested that inhibition of MTP prevented a normal influx of relatively unlabelled fatty acids into these pools during the chase period.
Collapse
Affiliation(s)
- A Hebbachi
- Oxford Lipid Metabolism Group, Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, UK
| | | |
Collapse
|
19
|
Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:1-31. [PMID: 10477822 DOI: 10.1016/s1388-1981(99)00083-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triglycerides are one of the most efficient storage forms of free energy. Because of their insolubility in biological fluids, their transport between cells and tissues requires that they be assembled into lipoprotein particles. Genetic disruption of the lipoprotein assembly/secretion pathway leads to several human disorders associated with malnutrition and developmental abnormalities. In contrast, patients displaying inappropriately high rates of lipoprotein production display increased risk for the development of atherosclerotic cardiovascular disease. Insights provided by diverse experimental approaches describe an elegant biological adaptation of basic chemical interactions required to overcome the thermodynamic dilemma of producing a stable emulsion vehicle for the transport and tissue targeting of triglycerides. The mammalian lipoprotein assembly/secretion pathway shows an absolute requirement for: (1) the unique amphipathic protein: apolipoprotein B, in a form that is sufficiently large to assemble a lipoprotein particle containing a neutral lipid core; and, (2) a lipid transfer protein (microsomal triglyceride transfer protein-MTP). In the endoplasmic reticulum apolipoprotein B has two distinct metabolic fates: (1) entrance into the lipoprotein assembly pathway within the lumen of the endoplasmic reticulum; or, (2) degradation in the cytoplasm by the ubiquitin-dependent proteasome. The destiny of apolipoprotein B is determined by the relative availability of individual lipids and level of expression of MTP. The dynamically varied expression of cholesterol-7alpha-hydroxylase indirectly influences the rate of lipid biosynthesis and the assembly and secretion lipoprotein particles by the liver.
Collapse
Affiliation(s)
- R A Davis
- Mammalian Cell and Molecular Biology Laboratory, Department of Biology, The Molecular Biology Institute, San Diego State University, San Diego, CA 92182-0057, USA.
| |
Collapse
|
20
|
Abstract
Synthesis and secretion of chylomicrons by the intestine is essential to transport dietary fats in the circulation and to deliver these fats to the appropriate peripheral tissues. The assembly of chylomicrons within the enterocyte and the subsequent secretion of these lipoprotein particles into the lymph is a complex, multi-step process that includes absorption of lipids by the enterocytes, cellular lipid (re)synthesis and translocation of cellular lipid pools, synthesis and post-translational modification of various apolipoproteins and, finally, the assembly of lipid and lipoprotein components into a chylomicron. The key process in chylomicron synthesis is the intracellular association of apolipoprotein (apo)B48, the structural protein of chylomicrons, with lipids.
Collapse
Affiliation(s)
- M M van Greevenbroek
- Laboratory for Molecular Metabolism and Endocrinology, Maastricht University, The Netherlands
| | | |
Collapse
|
21
|
|