1
|
Huynh TN, Havrda MC, Zanazzi GJ, Chang CCY, Chang TY. Inhibiting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Myelin Debris-Treated Microglial Cell Lines Activates the Gene Expression of Cholesterol Efflux Transporter ABCA1. Biomolecules 2024; 14:1301. [PMID: 39456234 PMCID: PMC11505751 DOI: 10.3390/biom14101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Aging is the major risk factor for Alzheimer's disease (AD). In the aged brain, myelin debris accumulates and is cleared by microglia. Phagocytosed myelin debris increases neutral lipid droplet content in microglia. Neutral lipids include cholesteryl esters (CE) and triacylglycerol (TAG). To examine the effects of myelin debris on neutral lipid content in microglia, we added myelin debris to human HMC3 and mouse N9 cells. The results obtained when using 3H-oleate as a precursor in intact cells reveal that myelin debris significantly increases the biosynthesis of CE but not TAG. Mass analyses have shown that myelin debris increases both CE and TAG. The increase in CE biosynthesis was abolished using inhibitors of the cholesterol storage enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1/SOAT1). ACAT1 inhibitors are promising drug candidates for AD treatment. In myelin debris-loaded microglia, treatment with two different ACAT1 inhibitors, K604 and F12511, increased the mRNA and protein content of ATP-binding cassette subfamily A1 (ABCA1), a protein that is located at the plasma membrane and which controls cellular cholesterol disposal. The effect of the ACAT1 inhibitor on ABCA1 was abolished by preincubating cells with the liver X receptor (LXR) antagonist GSK2033. We conclude that ACAT1 inhibitors prevent the accumulation of cholesterol and CE in myelin debris-treated microglia by activating ABCA1 gene expression via the LXR pathway.
Collapse
Affiliation(s)
- Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Matthew C. Havrda
- Department of Molecular and System Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
2
|
Fouillen L, Maneta-Peyret L, Moreau P. ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis. Methods Mol Biol 2024; 2772:137-148. [PMID: 38411811 DOI: 10.1007/978-1-0716-3710-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Plant ER membranes are the major site of biosynthesis of several lipid families (phospholipids, sphingolipids, neutral lipids such as sterols and triacylglycerols). The structural diversity of lipids presents considerable challenges to comprehensive lipid analysis. This chapter will briefly review the various biosynthetic pathways and will detail several aspects of the lipid analysis: lipid extraction, handling, separation, detection, identification, and data presentation. The different tools/approaches used for lipid analysis will also be discussed in relation to the studies to be carried out on lipid metabolism and function.
Collapse
Affiliation(s)
- Laetitia Fouillen
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRAe Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRAe Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRAe Bordeaux Aquitaine, Villenave d'Ornon, France.
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Harned TC, Stan RV, Cao Z, Chakrabarti R, Higgs HN, Chang CCY, Chang TY. Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity. Int J Mol Sci 2023; 24:5525. [PMID: 36982602 PMCID: PMC10059652 DOI: 10.3390/ijms24065525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.
Collapse
Affiliation(s)
- Taylor C. Harned
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ze Cao
- Chinese Academy of Sciences, Beijing 100045, China;
| | - Rajarshi Chakrabarti
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| |
Collapse
|
4
|
Asressu KH, Zhang Q. Detection and Semi-quantification of Lipids on High-Performance Thin-Layer Chromatography Plate using Ceric Ammonium Molybdate Staining. EUR J LIPID SCI TECH 2023; 125:2200096. [PMID: 36818638 PMCID: PMC9937734 DOI: 10.1002/ejlt.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/05/2022]
Abstract
It is desirable to quickly check the composition of lipids in small size samples, but achieving this is challenging using the existing staining methods. Herein, we developed a highly sensitive and semi-quantitative method for analysis of lipid samples with ceric ammonium molybdate (CAM) staining. The CAM detection method was systematically evaluated with a wide range of lipid classes including phospholipids, sphingolipids, glycerolipids, fatty acids (FA) and sterols, demonstrating high sensitivity, stability, and overall efficiency. Additionally, CAM staining provides a clean yellow background in high performance thin-layer chromatography (HPTLC) which facilitates quantification of lipids using image processing software. Lipids can be stained with CAM reagent regardless of their head group types, position of the carbon-carbon double bonds, geometric isomerism and the variation in the length of FA chain, but staining is mostly affected by the degree of unsaturation of the FA backbone. The mechanism of the CAM staining of lipids was proposed on principles of the reduction-oxidation reaction, in which Mo(VI) oxidizes the unsaturated lipids into carbonyl compounds on the HPTLC plate upon heating, while itself being reduced to Mo(IV). This method was applied for the separation, identification, and quantification of lipid extracts from porcine brain.
Collapse
Affiliation(s)
- Kesatebrhan Haile Asressu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
5
|
Gu J, Chen L, Sun R, Wang JL, Wang J, Lin Y, Lei S, Zhang Y, Lv D, Jiang F, Deng Y, Collman JP, Fu L. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front Mol Biosci 2022; 9:815320. [PMID: 35281262 PMCID: PMC8906368 DOI: 10.3389/fmolb.2022.815320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration is a pathological condition in which nervous system or neuron losses its structure, function, or both leading to progressive neural degeneration. Growing evidence strongly suggests that reduction of plasmalogens (Pls), one of the key brain lipids, might be associated with multiple neurodegenerative diseases, including Alzheimer’s disease (AD). Plasmalogens are abundant members of ether-phospholipids. Approximately 1 in 5 phospholipids are plasmalogens in human tissue where they are particularly enriched in brain, heart and immune cells. In this study, we employed a scheme of 2-months Pls intragastric administration to aged female C57BL/6J mice, starting at the age of 16 months old. Noticeably, the aged Pls-fed mice exhibited a better cognitive performance, thicker and glossier body hair in appearance than that of aged control mice. The transmission electron microscopic (TEM) data showed that 2-months Pls supplementations surprisingly alleviate age-associated hippocampal synaptic loss and also promote synaptogenesis and synaptic vesicles formation in aged murine brain. Further RNA-sequencing, immunoblotting and immunofluorescence analyses confirmed that plasmalogens remarkably enhanced both the synaptic plasticity and neurogenesis in aged murine hippocampus. In addition, we have demonstrated that Pls treatment inhibited the age-related microglia activation and attenuated the neuroinflammation in the murine brain. These findings suggest for the first time that Pls administration might be a potential intervention strategy for halting neurodegeneration and promoting neuroregeneration.
Collapse
Affiliation(s)
- Jinxin Gu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lixue Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuwen Lei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - James P. Collman
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Lei Fu,
| |
Collapse
|
6
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
7
|
Comprehensive Mouse Skin Ceramide Analysis on a Solid-Phase and TLC Separation with High-Resolution Mass Spectrometry Platform. Methods Mol Biol 2021. [PMID: 33954945 DOI: 10.1007/978-1-0716-1410-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipidomic analyses by mass spectrometry (MS) of epidermal ceramides, a large family of lipids crucial to the permeability barrier of the skin, have been reported previously. To ensure the accuracy of lipid identification, we describe here the isolation of mouse newborn epidermal lipids followed by fractionation with solid-phase extraction columns, and lipidomic analyses by high-resolution MS for structural identification. We also describe here the employment of thin layer chromatography, an old but useful tool, in facilitating the structural characterization of the epidermal lipid species by MS.
Collapse
|
8
|
Landfield Q, Saito M, Hashim A, Canals-Baker S, Sershen H, Levy E, Saito M. Cocaine Induces Sex-Associated Changes in Lipid Profiles of Brain Extracellular Vesicles. Neurochem Res 2021; 46:2909-2922. [PMID: 34245421 PMCID: PMC8490334 DOI: 10.1007/s11064-021-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
Cocaine is a highly addictive stimulant with diverse effects on physiology. Recent studies indicate the involvement of extracellular vesicles (EVs) secreted by neural cells in the cocaine addiction process. It is hypothesized that cocaine affects secretion levels of EVs and their cargos, resulting in modulation of synaptic transmission and plasticity related to addiction physiology and pathology. Lipids present in EVs are important for EV formation and for intercellular lipid exchange that may trigger physiological and pathological responses, including neuroplasticity, neurotoxicity, and neuroinflammation. Specific lipids are highly enriched in EVs compared to parent cells, and recent studies suggest the involvement of various lipids in drug-induced synaptic plasticity during the development and maintenance of addiction processes. Therefore, we examined interstitial small EVs isolated from the brain of mice treated with either saline or cocaine, focusing on the effects of cocaine on the lipid composition of EVs. We demonstrate that 12 days of noncontingent repeated cocaine (10 mg/kg) injections to mice, which induce locomotor sensitization, cause lipid composition changes in brain EVs of male mice as compared with saline-injected controls. The most prominent change is the elevation of GD1a ganglioside in brain EVs of males. However, cocaine does not affect the EV lipid profiles of the brain in female mice. Understanding the relationship between lipid composition in EVs and vulnerability to cocaine addiction may provide insight into novel targets for therapies for addiction.
Collapse
Affiliation(s)
- Qwynn Landfield
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Mitsuo Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Henry Sershen
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Efrat Levy
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Okubo N, Nakano Y, Mita M. Lipid composition of gametes in scleractinian reef-building corals: wax-esters generate buoyancy for the gametes. INVERTEBR REPROD DEV 2020. [DOI: 10.1080/07924259.2020.1815875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nami Okubo
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| | - Yoshikatsu Nakano
- Tropical Biosphere Research Center, Sesoko Station, Ryukyu University, Okinawa, Japan
| | - Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Sakae Y, Oikawa A, Sugiura Y, Mita M, Nakamura S, Nishimura T, Suematsu M, Tanaka M. Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka ( Olyzias latipes). Biol Open 2020; 9:9/4/bio050054. [PMID: 32265199 PMCID: PMC7132775 DOI: 10.1242/bio.050054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The teleost fish, medaka (Oryzias latipes), employs the XX/XY genetic sex determination system. We show here that the phenotypic sex of medaka is affected by changes in lipid metabolism. Medaka larvae subjected to 5 days of starvation underwent female-to-male sex reversal. Metabolomic and RT-qPCR analyses indicated that pantothenate metabolism was suppressed by starvation. Consistently, inhibiting the pantothenate metabolic pathway caused sex reversal. The final metabolite in this pathway is coenzyme A, an essential factor for lipogenesis. Inhibiting fatty acid synthesis, the first step of lipogenesis, also caused sex reversal. The expression of dmrt1, a critical gene for male development, was suppressed by starvation, and a dmrt1 (Δ13) mutant did not show sex reversal under starvation. Collectively, these results indicate that fatty acid synthesis is involved in female-to-male sex reversal through ectopic expression of male gene dmrt1 under starvation. Summary: We investigated the effects of starvation on sex differentiation in medaka. Starvation caused female-to-male sex reversal through pantothenate metabolism, fatty acid synthesis and dmrt1 expression.
Collapse
Affiliation(s)
- Yuta Sakae
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Department of Basic Biology, Faculty of Life Science, Okazaki 444-8787, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Metabolomics Research Group, Yokohama 230-0045, Japan.,Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Shuhei Nakamura
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan .,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Department of Basic Biology, Faculty of Life Science, Okazaki 444-8787, Japan
| |
Collapse
|
11
|
Doxorubicin Inhibits Phosphatidylserine Decarboxylase and Modifies Mitochondrial Membrane Composition in HeLa Cells. Int J Mol Sci 2020; 21:ijms21041317. [PMID: 32075281 PMCID: PMC7072979 DOI: 10.3390/ijms21041317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DXR) is a drug widely used in chemotherapy. Its mode of action is based on its intercalation properties, involving the inhibition of topoisomerase II. However, few studies have reported the mitochondrial effects of DXR while investigating cardiac toxicity induced by the treatment, mostly in pediatric cases. Here, we demonstrate that DXR alters the mitochondrial membrane composition associated with bioenergetic impairment and cell death in human cancer cells. The remodeling of the mitochondrial membrane was explained by phosphatidylserine decarboxylase (PSD) inhibition by DXR. PSD catalyzes phosphatidylethanolamine (PE) synthesis from phosphatidylserine (PS), and DXR altered the PS/PE ratio in the mitochondrial membrane. Moreover, we observed that DXR localized to the mitochondrial compartment and drug uptake was rapid. Evaluation of other topoisomerase II inhibitors did not show any impact on the mitochondrial membrane composition, indicating that the DXR effect was specific. Therefore, our findings revealed a side molecular target for DXR and PSD, potentially involved in DXR anti-cancer properties and the associated toxicity.
Collapse
|
12
|
West A, Zoni V, Teague WE, Leonard AN, Vanni S, Gawrisch K, Tristram-Nagle S, Sachs JN, Klauda JB. How Do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes? J Phys Chem B 2020; 124:828-839. [PMID: 31916765 PMCID: PMC8157475 DOI: 10.1021/acs.jpcb.9b08850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ethanolamine plasmalogen (EtnPLA) is a conical-shaped ether lipid and an essential component of neurological membranes. Low stability against oxidation limits its study in experiments. The concentration of EtnPLA in the bilayer varies depending on cell type and disease progression. Here we report on mixed bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine (C18(Plasm)-18:1PE, PLAPE), an EtnPLA lipid subtype, at mole ratios of 2:1, 1:1, and 1:2. We present X-ray diffuse scattering (XDS) form factors F(qz) from oriented stacks of bilayers, related electron-density profiles, and hydrocarbon chain NMR order parameters. To aid future research on EtnPLA lipids and associated proteins, we have also extended the CHARMM36 all-atom force field to include the PLAPE lipid. The ability of the new force-field parameters to reproduce both X-ray and NMR structural properties of the mixed bilayer is remarkable. Our results indicate a thickening of the bilayer upon incorporation of increasing amounts of PLAPE into mixed bilayers, a reduction of lateral area per molecule, and an increase in lipid tail-ordering. The lateral compressibility modulus (KA) calculated from simulations yielded values for PLAPE similar to POPC.
Collapse
Affiliation(s)
- Ana West
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Valeria Zoni
- Department of Biology , University of Fribourg , 1700 Fribourg , Switzerland
| | - Walter E Teague
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism , NIH , Bethesda , Maryland 20892 , United States
| | - Alison N Leonard
- Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Stefano Vanni
- Department of Biology , University of Fribourg , 1700 Fribourg , Switzerland
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism , NIH , Bethesda , Maryland 20892 , United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Jonathan N Sachs
- Department of Biomedical Engineering , University of Minnesota , Twin Cities , Minnesota 55455 , United States
| | - Jeffery B Klauda
- Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
13
|
Das K, Ghosh M. Comparative qualitative assessment of DAG production from medium chain fatty acids mediated by enzymatic and chemical catalysts under individually optimized conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
15
|
Peng KY, Pérez-González R, Alldred MJ, Goulbourne CN, Morales-Corraliza J, Saito M, Saito M, Ginsberg SD, Mathews PM, Levy E. Apolipoprotein E4 genotype compromises brain exosome production. Brain 2019; 142:163-175. [PMID: 30496349 PMCID: PMC6308312 DOI: 10.1093/brain/awy289] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to being the greatest genetic risk factor for Alzheimer's disease, expression of the ɛ4 allele of apolipoprotein E can lead to cognitive decline during ageing that is independent of Alzheimer's amyloid-β and tau pathology. In human post-mortem tissue and mouse models humanized for apolipoprotein E, we examined the impact of apolipoprotein E4 expression on brain exosomes, vesicles that are produced within and secreted from late-endocytic multivesicular bodies. Compared to humans or mice homozygous for the risk-neutral ɛ3 allele we show that the ɛ4 allele, whether homozygous or heterozygous with an ɛ3 allele, drives lower exosome levels in the brain extracellular space. In mice, we show that the apolipoprotein E4-driven change in brain exosome levels is age-dependent: while not present at age 6 months, it is detectable at 12 months of age. Expression levels of the exosome pathway regulators tumor susceptibility gene 101 (TSG101) and Ras-related protein Rab35 (RAB35) were found to be reduced in the brain at the protein and mRNA levels, arguing that apolipoprotein E4 genotype leads to a downregulation of exosome biosynthesis and release. Compromised exosome production is likely to have adverse effects, including diminishing a cell's ability to eliminate materials from the endosomal-lysosomal system. This reduction in brain exosome levels in 12-month-old apolipoprotein E4 mice occurs earlier than our previously reported brain endosomal pathway changes, arguing that an apolipoprotein E4-driven failure in exosome production plays a primary role in endosomal and lysosomal deficits that occur in apolipoprotein E4 mouse and human brains. Disruption of these interdependent endosomal-exosomal-lysosomal systems in apolipoprotein E4-expressing individuals may contribute to amyloidogenic amyloid-β precursor protein processing, compromise trophic signalling and synaptic function, and interfere with a neuron's ability to degrade material, all of which are events that lead to neuronal vulnerability and higher risk of Alzheimer's disease development. Together, these data suggest that exosome pathway dysfunction is a previously unappreciated component of the brain pathologies that occur as a result of apolipoprotein E4 expression.
Collapse
Affiliation(s)
- Katherine Y Peng
- Department of Neurology, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Langone Health, New York, NY, USA.,Division of Neurochemistry, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Health, New York, NY, USA.,Division of Analytical Psychopharmacology, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.,Department of Neuroscience and Physiology, New York University Langone Health, New York, NY, USA
| | - Paul M Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
16
|
Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson's Disease. ASN Neuro 2019; 10:1759091418781889. [PMID: 29932343 PMCID: PMC6024349 DOI: 10.1177/1759091418781889] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder involving the selective loss of dopamine-producing neurons in the substantia nigra (SN). Differences in disease presentation, prevalence, and age of onset have been reported between males and females with PD. The content and composition of the major glycosphingolipids, phospholipids, and cholesterol were evaluated in the SN from 12 PD subjects and in 18 age-matched, neurologically normal controls. Total SN ganglioside sialic acid content and water content (%) were significantly lower in the male PD subjects than in the male controls. The content of all major gangliosides were reduced in the male PD subjects to some degree, but the neuronal-enriched gangliosides, GD1a and GT1b, were most significantly reduced. The distribution of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was also significantly lower in the male PD subjects than in the male controls. However, the distribution of myelin-enriched cerebrosides and sulfatides was significantly higher in the male PD subjects than in the male controls suggesting myelin sparing in the male PD subjects. No elevation was detected for astrocytosis-linked GD3. These neurochemical changes provide evidence of selective neuronal loss in SN of the males with PD without robust astrocytosis. In contrast to the SN lipid abnormalities found in the male PD subjects, no significant abnormalities were found in the female PD subjects for SN water content or for any major SN lipids. These data indicate sex-related differences in SN lipid abnormalities in PD.
Collapse
Affiliation(s)
- T N Seyfried
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - H Choi
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - A Chevalier
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - D Hogan
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Z Akgoc
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - J S Schneider
- 2 Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Platre MP, Bayle V, Armengot L, Bareille J, Marquès-Bueno MDM, Creff A, Maneta-Peyret L, Fiche JB, Nollmann M, Miège C, Moreau P, Martinière A, Jaillais Y. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 2019; 364:57-62. [PMID: 30948546 DOI: 10.1126/science.aav9959] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Maria Del Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Christine Miège
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France.,Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000 Bordeaux, France
| | | | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
18
|
Jurkiewicz P, Melser S, Maucourt M, Ayeb H, Veljanovski V, Maneta-Peyret L, Hooks M, Rolin D, Moreau P, Batoko H. The multistress-induced Translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:274-286. [PMID: 30003614 DOI: 10.1111/tpj.14028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 05/11/2023]
Abstract
Translocator proteins (TSPO) are conserved membrane proteins extensively studied in mammals, but their function is still unclear. Angiosperm TSPO are transiently induced by abiotic stresses in vegetative tissues. We showed previously that constitutive expression of the Arabidopsis TSPO (AtTSPO) could be detrimental to the cell. Degradation of AtTSPO requires an active autophagy pathway. We show here that genetic modifications of TSPO expression in plant and yeast cells reduce the levels of cytoplasmic lipid droplets (LD). Transgenic Arabidopsis seedlings overexpressing AtTSPO contain less LD as compared with wild type (WT). LD levels were increased in Arabidopsis AtTSPO knockout (KO) seedlings. Deletion of the Schizosaccharomyces pombe TSPO resulted in an increase in LD level in the cell. As compared with the WT, the mutant strain was more sensitive to cerulenin, an inhibitor of fatty acids and sterol biosynthesis. We found that in contrast with seedlings, overexpression of AtTSPO (OE) resulted in an up to 50% increase in seeds fatty acids as compared with WT. A time course experiment revealed that after 4 days of seed imbibition, the levels of triacylglycerol (TAG) was still higher in the OE seeds as compared with WT or KO seeds. However, the de novo synthesis of phospholipids and TAG after 24 h of imbibition was substantially reduced in OE seeds as compared with WT or KO seeds. Our findings support a plant TSPO role in energy homeostasis in a tissue-specific manner, enhancing fatty acids and LD accumulation in mature seeds and limiting LD levels in seedlings.
Collapse
Affiliation(s)
- Pawel Jurkiewicz
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Su Melser
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Vasko Veljanovski
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - Mark Hooks
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000, Bordeaux, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Grobe N, Narayanan L, Brown DN, Law ST, Sibomana I, Shiyanov P, Reo NV, Hack CE, Sterner TR, Mattie DR. Lipid, water, and protein composition to facilitate kinetic modeling of the auditory pathway. Toxicol Mech Methods 2018; 29:53-59. [PMID: 30084267 DOI: 10.1080/15376516.2018.1508263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Environments combining JP-8 jet fuel exposure with heightened ambient noise may accelerate hearing loss induced by noise. To reduce animal use and facilitate kinetic modeling of this military aviation fuel, tissue-specific parameters are required, including water, protein, and lipid content. However, tissues involved in hearing, including cochlea, brainstem, frontal, and temporal lobe, have not been characterized before. Therefore, water content was determined by lyophilization of rat auditory tissues and the protein of the freeze dried remainder was quantified using a bicinchoninic acid assay. Lipids were extracted from fresh-frozen rat auditory tissues and separated into neutral lipids, free fatty acids, neutral phospholipids, and acidic phospholipids using solid phase extraction. Phospholipid fractions were confirmed by 31 P nuclear magnetic resonance analysis showing distinct phospholipid profiles. Lipid content in reference tissues, such as kidney and adipose, confirmed literature values. For the first time, lipid content in the rat auditory pathway was determined showing that total lipid content was lowest in cochlea and highest in brainstem compared with frontal and temporal lobes. Auditory tissues displayed distinct lipid fraction profiles. The information on water, protein, and lipid composition is necessary to validate algorithms used in mathematical models and predict partitioning of chemicals of future interest into these tissues. This research may reduce the use of animals to measure partition coefficients for prospective physiological models.
Collapse
Affiliation(s)
- Nadja Grobe
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| | - Latha Narayanan
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Dominique N Brown
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| | - Sarah T Law
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Isaie Sibomana
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,c Department of Biochemistry and Molecular Biology Magnetic Resonance Laboratory, Boonshoft School of Medicine , Wright State University , Dayton , OH , USA
| | - Pavel Shiyanov
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Nicholas V Reo
- c Department of Biochemistry and Molecular Biology Magnetic Resonance Laboratory, Boonshoft School of Medicine , Wright State University , Dayton , OH , USA
| | - C Eric Hack
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Teresa R Sterner
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - David R Mattie
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| |
Collapse
|
20
|
Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P, Caillaud MC, Potocký M, Čopič A, Moreau P, Jaillais Y. A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Dev Cell 2018; 45:465-480.e11. [PMID: 29754803 DOI: 10.1016/j.devcel.2018.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Mehdi Doumane
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Mathilde Laetitia Audrey Simon
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux- CS 20032, Villenave d'Ornon 33140, France
| | - Laetitia Fouillen
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux- CS 20032, Villenave d'Ornon 33140, France; Metabolome-Lipidome Facility of Bordeaux, Functional Genomics Center, Villenave d'Ornon, France
| | - Thomas Stanislas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6 - Lysolaje, Czech Republic
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6 - Lysolaje, Czech Republic
| | - Alenka Čopič
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux- CS 20032, Villenave d'Ornon 33140, France; Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, Bordeaux 33000, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon 69342, France.
| |
Collapse
|
21
|
Fouillen L, Maneta-Peyret L, Moreau P. ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis. Methods Mol Biol 2018; 1691:125-137. [PMID: 29043674 DOI: 10.1007/978-1-4939-7389-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant ER membranes are the major site of biosynthesis of several lipid families (phospholipids, sphingolipids, neutral lipids such as sterols and triacylglycerols). The structural diversity of lipids presents considerable challenges to comprehensive lipid analysis. This chapter will briefly review the various biosynthetic pathways and will detail several aspects of the lipid analysis: lipid extraction, handling, separation, detection, identification, and data presentation. The different tools/approaches used for lipid analysis will also be discussed in relation to the studies to be carried out on lipid metabolism and function.
Collapse
Affiliation(s)
- Laetitia Fouillen
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
- MetaboHub-Metabolome Facility of Bordeaux, Functional Genomics Center, Bordeaux, France
| | - Lilly Maneta-Peyret
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France.
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
22
|
Smrt ST, Draney AW, Singaram I, Lorieau JL. Structure and Dynamics of Membrane Proteins and Membrane Associated Proteins with Native Bicelles from Eukaryotic Tissues. Biochemistry 2017; 56:5318-5327. [PMID: 28915027 DOI: 10.1021/acs.biochem.7b00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sean T. Smrt
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Adrian W. Draney
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Indira Singaram
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin L. Lorieau
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
24
|
Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V, Hosy E, Platre MP, Gouguet P, Raffaele S, Martinez D, Grelard A, Loquet A, Simon-Plas F, Gerbeau-Pissot P, Der C, Bayer EM, Jaillais Y, Deleu M, Germain V, Lins L, Mongrand S. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 2017; 6:e26404. [PMID: 28758890 PMCID: PMC5536944 DOI: 10.7554/elife.26404] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Jean-Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, CNRS, University of BordeauxBordeauxFrance
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | | | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Axelle Grelard
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Christophe Der
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| |
Collapse
|
25
|
Kinoshita M, Suzuki KGN, Matsumori N, Takada M, Ano H, Morigaki K, Abe M, Makino A, Kobayashi T, Hirosawa KM, Fujiwara TK, Kusumi A, Murata M. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 2017; 216:1183-1204. [PMID: 28330937 PMCID: PMC5379944 DOI: 10.1083/jcb.201607086] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/30/2016] [Accepted: 02/02/2017] [Indexed: 01/01/2023] Open
Abstract
Sphingomyelin (SM) has been proposed to form cholesterol-dependent raft domains and sphingolipid domains in the plasma membrane (PM). How SM contributes to the formation and function of these domains remains unknown, primarily because of the scarcity of suitable fluorescent SM analogs. We developed new fluorescent SM analogs by conjugating a hydrophilic fluorophore to the SM choline headgroup without eliminating its positive charge, via a hydrophilic nonaethylene glycol linker. The new analogs behaved similarly to the native SM in terms of their partitioning behaviors in artificial liquid order-disorder phase-separated membranes and detergent-resistant PM preparations. Single fluorescent molecule tracking in the live-cell PM revealed that they indirectly interact with each other in cholesterol- and sphingosine backbone-dependent manners, and that, for ∼10-50 ms, they undergo transient colocalization-codiffusion with a glycosylphosphatidylinositol (GPI)-anchored protein, CD59 (in monomers, transient-dimer rafts, and clusters), in CD59-oligomer size-, cholesterol-, and GPI anchoring-dependent manners. These results suggest that SM continually and rapidly exchanges between CD59-associated raft domains and the bulk PM.
Collapse
Affiliation(s)
- Masanao Kinoshita
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.,The Institute for Stem Cell Biology and Regenerative Medicine, The National Centre for Biological Sciences, Bangalore 560065, India
| | - Nobuaki Matsumori
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan .,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Misa Takada
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hikaru Ano
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan
| | - Kenichi Morigaki
- Research Center for Environmental Genomics, Kobe University, Kobe 657-8501, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Cellular Informatics Laboratory, Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- UMR 7213 Centre National de la Recherche Scientifique, University of Strasbourg, Illkirch 67401, France
| | - Koichiro M Hirosawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan .,Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Michio Murata
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
26
|
Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P. Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro. J Biol Chem 2017; 292:4484-4498. [PMID: 28119456 DOI: 10.1074/jbc.m116.747816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
Collapse
Affiliation(s)
- Corey Heffernan
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Mohit R Jain
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Tong Liu
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Hyosung Kim
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Kevin Barretto
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Hong Li
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Patrice Maurel
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| |
Collapse
|
27
|
Park KT, Shon JC, Kim JE, Park GH, Choi HJ, Liu KH. Sulfatides Primarily Exist in the Substantia Nigra Region of Mouse Brain Tissue. Lipids 2017; 52:179-187. [PMID: 28078602 DOI: 10.1007/s11745-016-4224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022]
Abstract
Lipid distribution in the brain is important for many biological functions and has been associated with some brain diseases. The aim of this study was to investigate lipid distribution in different regions of brain tissue in mice. To this end, substantia nigra (SN), caudate putamen (CPu), hippocampus (Hip), hypothalamus (Hyp), and cortex (Cx) tissues of mice were analyzed using direct infusion nanoelectrospray-ion trap mass spectrometry and multivariate analyses. The SN, CPu, Hip, Hyp, and Cx groups showed clear differences in lipid distribution using principal component analysis and a partial least-squares discriminant analysis score plot, and lipid levels were significantly different in different brain regions. In particular, sulfatides were mainly distributed in the SN region. Our results could be used to help understand the functions and mechanisms of lipids in various brain diseases.
Collapse
Affiliation(s)
- Kab-Tae Park
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Ji-Eun Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Gyu Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
28
|
Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 2016; 7:12788. [PMID: 27681606 PMCID: PMC5056404 DOI: 10.1038/ncomms12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
Collapse
|
29
|
Bartoli D, Piobbico D, Bellet MM, Bennati AM, Roberti R, Della Fazia MA, Servillo G. Impaired cell proliferation in regenerating liver of 3 β-hydroxysterol Δ14-reductase (TM7SF2) knock-out mice. Cell Cycle 2016; 15:2164-2173. [PMID: 27341299 PMCID: PMC4993425 DOI: 10.1080/15384101.2016.1195939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 β-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.
Collapse
Affiliation(s)
- Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Anna Maria Bennati
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br J Nutr 2016; 115:1155-66. [PMID: 26856891 DOI: 10.1017/s0007114515005528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.
Collapse
|
31
|
Influence of Serum and Hypoxia on Incorporation of [14C]-d-Glucose or [14C]-l-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids 2015; 50:1167-84. [DOI: 10.1007/s11745-015-4075-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
|
32
|
Gatticchi L, Bellezza I, Del Sordo R, Peirce MJ, Sidoni A, Roberti R, Minelli A. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS One 2015; 10:e0141885. [PMID: 26540160 PMCID: PMC4635018 DOI: 10.1371/journal.pone.0141885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is essential for diverse cellular functions and cellular and whole-body cholesterol homeostasis is highly controlled. Cholesterol can also influence cellular susceptibility to injury. The connection between cholesterol metabolism and inflammation is exemplified by the Tm7sf2 gene, the absence of which reveals an essential role in cholesterol biosynthesis under stress conditions but also results in an inflammatory phenotype, i.e. NF-κB activation and TNFα up-regulation. Here, by using Tm7sf2+/+and Tm7sf2−/− mice, we investigated whether the Tm7sf2 gene, through its role in cholesterol biosynthesis under stress conditions, is involved in the renal failure induced by the administration of LPS. We found that the loss of Tm7sf2 gene results in significantly reduced blood urea nitrogen levels accompanied by decreased renal inflammatory response and neutral lipid accumulation. The increased expression of fatty acids catabolic enzymes reduces the need of the renal autophagy, a known crucial nutrient-sensing pathway in lipid metabolism. Moreover, we observed that the Tm7sf2 insufficiency is responsible for the inhibition of the NF-κB signalling thus dampening the inflammatory response and leading to a reduced renal damage. These results suggest a pivotal role for Tm7sf2 in renal inflammatory and lipotoxic response under endotoxemic conditions.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Matthew J. Peirce
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
- * E-mail:
| |
Collapse
|
33
|
Saito M, Wu G, Hui M, Masiello K, Dobrenis K, Ledeen RW, Saito M. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice. J Lipid Res 2015; 56:1434-48. [PMID: 26063460 PMCID: PMC4513985 DOI: 10.1194/jlr.m056580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Mariko Saito
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| | - Gusheng Wu
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Maria Hui
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kurt Masiello
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Robert W. Ledeen
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Mitsuo Saito
- Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| |
Collapse
|
34
|
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol (PtdGro) with an unusual sn-1:sn-1' fatty acyl configuration and is found almost exclusively in late endosomes/lysosomes. BMP comprises only about 1-2% of the total phospholipids in most mammalian cells, but accumulates in tissues of humans and animals with lysosomal storage disorders including the gangliosidoses. Total BMP content was significantly greater in cells of macrophage/microglial origin than in cells of macroglial origin. BMP composition was similar in tumorigenic/metastatic macrophages and non-tumorigenic macrophages/microglia. Finally, BMP fatty acid composition differed between cells grown in culture and obtained in vivo suggesting an influence from growth environment.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Biology Department, Boston College, 140 Commonwealth Ave, MA, 02467, Chestnut Hill, USA,
| | | | | |
Collapse
|
35
|
Rockwell HE, McCurdy VJ, Eaton SC, Wilson DU, Johnson AK, Randle AN, Bradbury AM, Gray-Edwards HL, Baker HJ, Hudson JA, Cox NR, Sena-Esteves M, Seyfried TN, Martin DR. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro 2015; 7:7/2/1759091415569908. [PMID: 25873306 PMCID: PMC4720176 DOI: 10.1177/1759091415569908] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.
Collapse
Affiliation(s)
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Samuel C Eaton
- Boston College Biology Department, Chestnut Hill, MA, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| |
Collapse
|
36
|
Chadwick AC, Holme RL, Chen Y, Thomas MJ, Sorci-Thomas MG, Silverstein RL, Pritchard KA, Sahoo D. Acrolein impairs the cholesterol transport functions of high density lipoproteins. PLoS One 2015; 10:e0123138. [PMID: 25849485 PMCID: PMC4388475 DOI: 10.1371/journal.pone.0123138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.
Collapse
Affiliation(s)
- Alexandra C. Chadwick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rebecca L. Holme
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yiliang Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mary G. Sorci-Thomas
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kirkwood A. Pritchard
- Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer EM. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. THE PLANT CELL 2015; 27:1228-50. [PMID: 25818623 PMCID: PMC4558693 DOI: 10.1105/tpc.114.135731] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Centre, INRA, 33883 Villenave-d'Ornon Cedex, France University of Bordeaux/CNRS/UMS3420 and University of Bordeaux/Institut National de la Santé et de la Recherche Médicale/US004, 33000 Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Houda Nacir
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yoselin Benitez-Alfonso
- Centre for Plant Sciences, School of Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Stéphane Claverol
- Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - Véronique Germain
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yohann Boutté
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
38
|
Bellezza I, Gatticchi L, del Sordo R, Peirce MJ, Sidoni A, Roberti R, Minelli A. The loss of Tm7sf gene accelerates skin papilloma formation in mice. Sci Rep 2015; 5:9471. [PMID: 25804527 PMCID: PMC4372794 DOI: 10.1038/srep09471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023] Open
Abstract
The 3β-hydroxysterol Δ14-reductase, encoded by the Tm7sf2 gene, is an enzyme involved in cholesterol biosynthesis. Cholesterol and its derivatives control epidermal barrier integrity and are protective against environmental insults. To determine the role of the gene in skin cholesterol homeostasis, we applied 12-o-tetradecanoylphorbol-13-acetate (TPA) to the skin of Tm7sf2+/+ and Tm7sf2-/- mice. TPA increased skin cholesterol levels by inducing de novo synthesis and up-take only in Tm7sf2+/+ mouse, confirming that the gene maintains cholesterol homeostasis under stress conditions. Cholesterol sulfate, one of the major players in skin permeability, was doubled by TPA treatment in the skin of wild-type animals but this response was lost in Tm7sf2-/- mice. The expression of markers of epidermal differentiation concomitant with farnesoid-X-receptor and p38 MAPK activation were also disrupted in Tm7sf2-/- mice. We then subjected Tm7sf2+/+ and Tm7sf2-/- mice to a classical two-stage skin carcinogenesis protocol. We found that the loss of Tm7sf2 increased incidence and multiplicity of skin papillomas. Interestingly, the null genotype showed reduced expression of nur77, a gene associated with resistance to neoplastic transformation. In conclusion, the loss of Tm7sf2 alters the expression of proteins involved in epidermal differentiation by reducing the levels of cholesterol sulfate.
Collapse
Affiliation(s)
- I Bellezza
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - L Gatticchi
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - R del Sordo
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - M J Peirce
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - A Sidoni
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - R Roberti
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - A Minelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| |
Collapse
|
39
|
Akgoc Z, Sena-Esteves M, Martin DR, Han X, d'Azzo A, Seyfried TN. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses. J Lipid Res 2015; 56:1006-13. [PMID: 25795792 DOI: 10.1194/jlr.m057851] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/24/2023] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Douglas R Martin
- Scott-Ritchey Research Center and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | | | | |
Collapse
|
40
|
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 2015; 4:378-99. [PMID: 25701665 PMCID: PMC4359744 DOI: 10.1242/bio.201410249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Assunta Gagliardi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Luca Bini
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Claudia Landi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P. A. Mattioli 4, 53100 Siena, Italy
| | - Aurora Irene Idilli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Present address: Institute of Biophysics, National Research Council and FBK, 38123 Trento, Italy
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
41
|
Heinecke KA, Luoma A, d'Azzo A, Kirschner DA, Seyfried TN. Myelin abnormalities in the optic and sciatic nerves in mice with GM1-gangliosidosis. ASN Neuro 2015; 7:7/1/1759091415568913. [PMID: 25694553 PMCID: PMC4342369 DOI: 10.1177/1759091415568913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve.
Collapse
Affiliation(s)
| | - Adrienne Luoma
- Department of Biology, Boston College, Chestnut Hill, MA, USA Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, IL, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
42
|
Yang DS, Stavrides P, Saito M, Kumar A, Rodriguez-Navarro JA, Pawlik M, Huo C, Walkley SU, Saito M, Cuervo AM, Nixon RA. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. ACTA ACUST UNITED AC 2014; 137:3300-18. [PMID: 25270989 DOI: 10.1093/brain/awu278] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Philip Stavrides
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Mitsuo Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Asok Kumar
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Jose A Rodriguez-Navarro
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Monika Pawlik
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Steven U Walkley
- 4 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Mariko Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Ana M Cuervo
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ralph A Nixon
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA 5 Department of Cell Biology, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
43
|
Lin MH, Miner JH. Fatty acid transport protein 1 can compensate for fatty acid transport protein 4 in the developing mouse epidermis. J Invest Dermatol 2014; 135:462-470. [PMID: 25184958 PMCID: PMC4289464 DOI: 10.1038/jid.2014.378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective barrier; they die neonatally due to dehydration and restricted movements. Mutations in SLC27A4, the gene encoding FATP4, cause ichthyosis prematurity syndrome (IPS), characterized by premature birth, respiratory distress, and edematous skin with severe ichthyotic scaling. Symptoms of surviving patients become mild, though atopic manifestations are common. We previously showed that suprabasal keratinocyte expression of a Fatp4 transgene in Fatp4 mutant skin rescues the lethality and ameliorates the skin phenotype. Here we tested the hypothesis that FATP1, the closest FATP4 homolog, can compensate for the lack of FATP4 in our mouse model of IPS, as it might do postnatally in IPS patients. Transgenic expression of FATP1 in suprabasal keratinocytes rescued the phenotype of Fatp4 mutants, and FATP1 sorted to the same intracellular organelles as endogenous FATP4. Thus, FATP1 and FATP4 likely have overlapping substrate specificities, enzymatic activities, and biological functions. These results suggest that increasing expression of FATP1 in suprabasal keratinocytes could normalize the skin of IPS patients and perhaps prevent the atopic manifestations.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
44
|
Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11:23. [PMID: 24910707 PMCID: PMC4047269 DOI: 10.1186/1743-7075-11-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. METHODS We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. RESULTS The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. CONCLUSIONS These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition.
Collapse
Affiliation(s)
| | - Nathan Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
45
|
da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJA, Just WW, Kirschner DA, Sousa MM, Brites P. Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 2014; 124:2560-70. [PMID: 24762439 DOI: 10.1172/jci72063] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.
Collapse
|
46
|
Muthupalani S, Torres PA, Wang BC, Zeng BJ, Eaton S, Erdelyi I, Ducore R, Maganti R, Keating J, Perry BJ, Tseng FS, Waliszewski N, Pokras M, Causey R, Seger R, March P, Tidwell A, Pfannl R, Seyfried T, Kolodny EH, Alroy J. GM1-gangliosidosis in American black bears: clinical, pathological, biochemical and molecular genetic characterization. Mol Genet Metab 2014; 111:513-21. [PMID: 24581871 DOI: 10.1016/j.ymgme.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
Abstract
G(M1)-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American black bears (Ursus americanus) found in the Northeast United States suffering from G(M1)-gangliosidosis. This report describes the clinical features, brain MRI, and morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of a G(M1)-mouse. The bears presented at ages 10-14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T(2)-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of the brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1-2% of control values. In the brain, ganglioside-bound sialic acid was increased more than 2-fold with G(M1)-ganglioside predominating. G(A1) content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in the G(M1)-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the G(M1) mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T(1042) to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several black bears with G(M1)-gangliosidosis in the same geographic area suggests increased frequency of a founder mutation in this animal population.
Collapse
Affiliation(s)
- Sureshkumar Muthupalani
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Paola A Torres
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Betty C Wang
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Bai Jin Zeng
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Samuel Eaton
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Ildiko Erdelyi
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rebecca Ducore
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rajanikarath Maganti
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - John Keating
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Bain J Perry
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Florina S Tseng
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Nicole Waliszewski
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Mark Pokras
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Robert Causey
- Animal Disease Diagnostic Laboratory, University of Maine, Orono, ME, USA
| | - Rita Seger
- Animal Disease Diagnostic Laboratory, University of Maine, Orono, ME, USA
| | - Philip March
- Department of Clinical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Amy Tidwell
- Department of Clinical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rolf Pfannl
- Department of Pathology, Tufts University School of Medicine, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA
| | - Thomas Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Edwin H Kolodny
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| | - Joseph Alroy
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA; Department of Pathology, Tufts University School of Medicine, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
47
|
Khan HA, Arif IA, Williams JB, Champagne AM, Shobrak M. Skin lipids from Saudi Arabian birds. Saudi J Biol Sci 2014; 21:173-7. [PMID: 24600311 PMCID: PMC3942862 DOI: 10.1016/j.sjbs.2013.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/10/2013] [Accepted: 09/15/2013] [Indexed: 02/05/2023] Open
Abstract
Skin lipids play an important role in the regulation of cutaneous water loss (CWL). Earlier studies have shown that Saudi desert birds exhibit a tendency of reduced CWL than birds from temperate environment due to adaptive changes in composition of their skin lipids. In this study, we used thin-layer chromatography (TLC) for separation and detection of non-polar and polar lipids from the skin of six bird species including sooty gull, brown booby, house sparrow, Arabian waxbill, sand partridge, and laughing dove. The lipids were separated and detected on Silica gel G coated TLC plates and quantified by using densitometric image analysis. Rf values of the non-polar lipids were as follows: cholesterol (0.29), free fatty acids (0.58), triacylglycerol (0.69), fatty acids methyl esters (0.84) and cholesterol ester (0.97). Rf values for the polar lipids were: cerebroside (0.42), ceramide (0.55) and cholesterol (0.73). The results showed the abundance of fatty acids methyl esters (47.75-60.46%) followed by triacylglycerol (12.69-24.14%). The remaining lipid compositions were as follows: cholesterol (4.09-13.18%), ceramide (2.18-13.27%), and cerebroside (2.53-12.81%). In conclusion, our findings showed that TLC is a simple and sensitive method for the separation and quantification of skin lipids. We also reported a new protocol for lipid extraction using the zirconia beads for efficient disruption of skin tissues. This study will help us better understand the role of skin lipids in adaptive physiology towards adverse climatic conditions.
Collapse
Affiliation(s)
- Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author. Address: Department of Biochemistry College of Science, Bld 5 King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia. Tel.: +966 11 4675859.
| | - Ibrahim A. Arif
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joseph B. Williams
- Department of Evolution, Ecology and Organismal Biology, Aronoff Laboratory, Ohio State University, Columbus, USA
| | - Alex M. Champagne
- Department of Evolution, Ecology and Organismal Biology, Aronoff Laboratory, Ohio State University, Columbus, USA
| | - Mohammad Shobrak
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
48
|
Dufort FJ, Gumina MR, Ta NL, Tao Y, Heyse SA, Scott DA, Richardson AD, Seyfried TN, Chiles TC. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for atp-citrate lyase in lipopolysaccharide-induced differentiation. J Biol Chem 2014; 289:7011-7024. [PMID: 24469453 DOI: 10.1074/jbc.m114.551051] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterially derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY), and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrially derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (compound-9; C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, and neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation.
Collapse
Affiliation(s)
- Fay J Dufort
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Maria R Gumina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Nathan L Ta
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Yongzhen Tao
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Shannon A Heyse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - David A Scott
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Adam D Richardson
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Thomas C Chiles
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467.
| |
Collapse
|
49
|
Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS One 2014; 9:e85025. [PMID: 24454781 PMCID: PMC3890293 DOI: 10.1371/journal.pone.0085025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, contribute to tumor development and progression. Silencing of tumor suppressor genes may be ascribed to promoter DNA hypermethylation, a reversible phenomenon intensely investigated as potential therapeutic target. Previously, we demonstrated that eicosapentaenoic acid (EPA) exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). The C/EBPβ/C/EBPδ heterodimer formed appears essential for the monocyte differentiation commitment. The present study aims to evaluate the effect of EPA on RAS/extracellular signal regulated kinases (ERK1/2)/C/EBPβ pathway, known to be induced during the monocyte differentiation program. We found that EPA conditioning of U937 leukemia cells activated RAS/ERK/C/EBPβ pathway, increasing the C/EBPβ and ERK1/2 active phosphorylated forms. Transcriptional induction of the upstream activator H-Ras gene resulted in increased expression of H-Ras protein in the active pool of non raft membrane fraction. H-Ras gene analysis identified an hypermethylated CpG island in intron 1 that can affect the DNA-protein interaction modifying RNA polymerase II (RNAPII) activity. EPA treatment demethylated almost completely this CpG island, which was associated with an enrichment of active RNAPII. The increased binding of the H-Ras transcriptional regulator p53 to its consensus sequence within the intronic CpG island further confirmed the effect of EPA as demethylating agent. Our results provide the first evidence that an endogenous polyunsaturated fatty acid (PUFA) promotes a DNA demethylation process responsible for the activation of RAS/ERK/C/EBPβ pathway during the monocyte differentiation commitment. The new role of EPA as demethylating agent paves the way for studying PUFA action when aberrant DNA methylation is involved.
Collapse
|
50
|
Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity. Lipids 2013; 49:113-7. [PMID: 24243001 DOI: 10.1007/s11745-013-3857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4 and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.
Collapse
|