1
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Elmas MA, Ozakpinar OB, Kolgazi M, Sener G, Arbak S, Ercan F. Exercise improves testicular morphology and oxidative stress parameters in rats with testicular damage induced by a high-fat diet. Andrologia 2022; 54:e14600. [PMID: 36146902 DOI: 10.1111/and.14600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity and male infertility are problems that affect population. Exercise is a nonpharmacological way to reduce the negative health effects of obesity. The purpose of this study was to examine the effects of exercise on hormone levels, blood-testis barrier, and inflammatory and oxidative biomarkers in rats that became obese due to a high-fat diet (HFD). Male rats received a standard diet (STD group) or a HFD (HFD group) for 18 weeks. During the final 6 weeks of the experiment, swimming exercises (1 h/5 days/week) were given to half of these animals (STD + EXC and HFD + EXC groups). Finally, blood and testicular tissues were analysed by biochemical and histological methods. Body weight, leptin, malondialdehyde, interleukin-6, TNF-alpha and myeloperoxidase levels, apoptotic cells and DNA fragmentation were increased, and testis weight, insulin, FSH, LH, testosterone, glutathione and superoxide dysmutase levels, proliferative cells, ZO-1, occludin, and gap junction protein Cx43 immunoreactivity were decreased in the HFD group. All these hormonal, morphological, oxidative and inflammatory biomarkers were enhanced in the HFD + EXC group. It is thought that exercise protected testicular cytotoxicity by regulating hormonal and oxidant/antioxidant balances and testicular function, inhibiting inflammation and apoptosis, as well as preserving blood-testis barrier.
Collapse
Affiliation(s)
- Merve Acikel Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Fenerbahçe University, Vocational School of Health Service, Istanbul, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Peripheral Blood Mononuclear Cells Oxidative Stress and Plasma Inflammatory Biomarkers in Adults with Normal Weight, Overweight and Obesity. Antioxidants (Basel) 2021; 10:antiox10050813. [PMID: 34065281 PMCID: PMC8161114 DOI: 10.3390/antiox10050813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Obesity is an important pathology in public health worldwide. Obese patients are characterized by higher cardiovascular risk and a pro-inflammatory profile. Objective: To assess the oxidative stress in peripheral blood mononuclear cells (PBMCs) and inflammatory biomarkers in plasma in adults with normal weight, overweight and obesity. Methods: One hundred and fifty adults (55-80-years-old; 60% women) from the Balearic Islands, Spain, were recruited and classified according to body mass index (BMI). Anthropometric measurements were carried out, fasting blood samples were collected and plasma and PBMCs were obtained. Biochemical parameters, hemogram, antioxidant enzyme activities and protein levels, reactive oxygen species production (ROS), malondialdehyde (MDA), and cytokine (tumour necrosis factor, TNFα, and interleukin 6, IL-6) levels were measured. Results: Glycaemia, triglyceridemia, abdominal obesity, and waist-to-height ratio (WHtR) were higher, and HDL-cholesterol was lower in obese patients. MDA and TNFα plasma levels were higher in the obese compared to normal-weight group, while the levels of IL-6 were higher in both obese and overweight subjects with respect to normal-weight peers. The activities of all antioxidant enzymes in PBMCs as well as the production ROS progressively increased with BMI. The protein levels of catalase in PBMCs were higher in obese and glutathione reductase in obese and overweight subjects compared to normal-weight peers. No other differences were observed. Conclusion: The current results show that overweight and obesity are related to an increase in pro-oxidant and proinflammatory status in plasma and PBMCs. The studied biomarkers may be useful for monitoring the progression/reversal of obesity.
Collapse
|
4
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Yin P, Wang Y, Yang L, Sui J, Liu Y. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules 2018; 23:molecules23051046. [PMID: 29710864 PMCID: PMC6100579 DOI: 10.3390/molecules23051046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Our previous reports showed that crude extract prepared with 50% ethanol (ethanol crude extract, ECE) from Mongolian oak cups possessed excellent in vitro antioxidant capacities as well as inhibitory activities against α-glucosidase, α-amylase and protein glycation caused by its enrichment in phenolics, including mainly ellagic acid, kaempferol and their derivatives. Nevertheless, few in vivo studies on antidiabetic activities of these phenolics were conducted. The present study investigated hypoglycemic effects with normal and diabetic rats being administrated orally without or with ECE at 200 and 800 mg/kg for 15 days. In normal rats, no significant differences were exhibited after ECE administration in body weight, fasting blood glucose level, levels of cholesterol, triglyceride, LDL and AST in serum, organ indexes, and levels of GSH and MDA in organs. In diabetic rats, the fasting blood glucose level, indexes of heart and liver, and levels of cholesterol and triglyceride in serum and MDA in heart tissue were significantly decreased. Moreover, HDL levels in serum and SOD activities in the four organs of diabetic rats were significantly improved after ECE administration at 800 mg/kg. Thus, in addition to inhibiting α-glucosidase, α-amylase and protein glycation reported previously, oak cups might contain novel dietary phytonutrients in preventing abnormal changes in blood glucose and lipid profile and attenuating oxidant stress in vivo. The results also implied that it is ellagic acid, kaempferol and their derivatives enriched in ECE that might play vital roles in managing type 1 as well as type 2 diabetes.
Collapse
Affiliation(s)
- Peipei Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yu Wang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Lingguang Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinling Sui
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Jarrar YB, Al-Essa L, Kilani A, Hasan M, Al-Qerem W. Alterations in the gene expression of drug and arachidonic acid-metabolizing Cyp450 in the livers of controlled and uncontrolled insulin-dependent diabetic mice. Diabetes Metab Syndr Obes 2018; 11:483-492. [PMID: 30288071 PMCID: PMC6162993 DOI: 10.2147/dmso.s172664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic patients have lower capacity to metabolize drugs in comparison to normal people. Therefore, the present study aimed to investigate the alterations in gene expression of drug and arachidonic acid metabolizing cytochrome p450s (cyp450s) in the livers of controlled (CDM) and uncontrolled (UDM) insulin-dependent diabetic mice. METHODS Balb/c mice were treated with single dose of streptozocin (240 mg/kg) to induce diabetes and compared with control group, which was treated with citric buffer (pH =4.5). After 3 days, the blood glucose level was measured to confirm the induction of diabetes. Normalization of blood glucose level in diabetic mice was achieved after 0.1 mL/kg Mixtard® insulin therapy for more 5 days. Then, the mice livers were isolated to extract RNA and convert it to cDNA. The gene expression of 14 genes, which play a major role in drug and arachidonic acid metabolism, were measured using quantitative real-time polymerase chain reaction technique. RESULTS It was found that the gene expression was downregulated (ANOVA test, P-value <0.05) in the livers of UDM mice. The most downregulated genes were cyp4a12, cyp1a2, and slc22a1 with more than 10-fold reduction. The livers of CDM mice showed significantly (P-value <0.05) higher levels of mRNA than UDM mice, but still lower than the non-diabetic mice. CONCLUSION This study concluded that hepatic gene expression of drug metabolizing and arachidonic acid- cyp450 enzymes is reduced in insulin-dependent diabetic mice, which can explain, at least in part, the variation in drug and fatty acid metabolism between normal and diabetic patients.
Collapse
Affiliation(s)
- Yazun Bashir Jarrar
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Luay Al-Essa
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Abdulhasib Kilani
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Mariam Hasan
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Walid Al-Qerem
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| |
Collapse
|
7
|
Ameyaw EO, Koffuor GA, Asare KK, Konja D, Du-Bois A, Kyei S, Forkuo AD, Abankwah Owusu Mensah RN. Cryptolepine, an indoloquinoline alkaloid, in the management of diabetes mellitus and its associated complications. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:263-73. [PMID: 27366353 PMCID: PMC4927132 DOI: 10.5455/jice.20160606124435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2016] [Indexed: 01/14/2023]
Abstract
Background: Effective long-term management is the key to treatment of diabetes mellitus (DM) and its complications. Aim: To ascertain the ability of cryptolepine (CRP) in managing DM and some associated complications. Materials and Methods: Changes in fasting blood sugar (FBS), body weight, response to thermally-induced pain, and semen quality were assessed in normal and alloxan-induced diabetic rats treated with CRP (10, 30, or 100 mg/kg), glibenclamide (10 mg/kg), or normal saline (2 ml/kg) per os. Hematological profile, liver and kidney function tests, lipid profile, as well as liver, kidney, and pancreas histopathological examinations were also conducted to establish possible effects of CRP treatment. Results: CRP treatment reduced (P ≤ 0.001) FBS and body weight, inhibited (P ≤ 0.05 - 0.001) the latency to tail flick or withdrawal from pain stimulus. It did not alter (P > 0.05): Hematological parameters, elevated (P ≤ 0.05 - 0.001) plasma aspartate transaminase, alanine transaminase, and gamma-glutamyl transferase, reduced (P ≤ 0.01) plasma urea, and elevated (P ≤ 0.001) plasma creatinine associated with DM. CRP, however, reversed (P ≤ 0.05 - 0.001) DM-associated elevation (P ≤ 0.05 - 0.001) of plasma cholesterol, triglycerides, and low-density lipoproteins, and the reduction in high-density lipoproteins. CRP (10-30 mg/kg) showed dose-dependent regeneration of β-islet cells but could not repair degenerated liver and kidney tissue. CRP worsens dose-dependently (P ≤ 0.001) reduced sperm quality associated with DM. Conclusion: CRP abolishes hyperglycemia, weight loss, cold allodynia, neuropathic pain, and hyperlipidemia as well as pancreatic β-islet cell damage associated with DM. It, however, does not improve liver and kidney damage and lowered semen quality.
Collapse
Affiliation(s)
- Elvis Ofori Ameyaw
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Asumeng Koffuor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniels Konja
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Asante Du-Bois
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- Department of Optometry, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Arnold Donkor Forkuo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Nana Abankwah Owusu Mensah
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
8
|
Rifa'i M, Widodo N. Significance of propolis administration for homeostasis of CD4(+)CD25(+) immunoregulatory T cells controlling hyperglycemia. SPRINGERPLUS 2014; 3:526. [PMID: 25279317 PMCID: PMC4179640 DOI: 10.1186/2193-1801-3-526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023]
Abstract
In the present study, we examined the effect of ethanolic soluble derivative of propolis (EEP) extract on immunological function in diabetic mouse models with the aim of highlighting the role of regulatory T cell, the change of cell surface molecule, and in vivo productions of IFN-γ. Murine models of diabetes mellitus (DM) were created by injecting normal mice with S961 peptide. Normal BALB/c mice were injected intraperitoneally with peptide S961 300 mg/kg body weight (BW) twice a day for eight days. On day 15, the spleen was isolated; then, cell surface molecules and regulatory T cells were analyzed using flow cytometry. The histopathological changes were monitored in the liver of treated and control mice. Afterward, we tested the ability of propolis as an immunomodulator that initiate normality metabolism and homeostasis. The propolis decreased blood sugar levels and increased the number of naïve T cells expressing CD62L molecule by suppressing the development of effector cells in diabetic mice. However, the propolis stimulated development of effector cells, which was indicated by increasing the number of CD4+CD25+ T cells in normal mice. Moreover, the propolis increased the production of IFN-γ in normal mice, whereas in mouse models of diabetes mellitus propolis tends to suppress the production of IFN-γ. The histological analysis of the liver shows that at a dose of 50–200 mg/kg BW propolis does not show a toxic effect so that the dose is categorized safe. Therefore, the ethanolic soluble derivative of propolis (EEP) extract warrant for further exploited as an antidiabetic agent that safe for human.
Collapse
Affiliation(s)
- Muhaimin Rifa'i
- Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Jl Veteran, Malang, 65145 Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Jl Veteran, Malang, 65145 Indonesia
| |
Collapse
|
9
|
Oršolić N, Sirovina D, Gajski G, Garaj-Vrhovac V, Jazvinšćak Jembrek M, Kosalec I. Assessment of DNA damage and lipid peroxidation in diabetic mice: effects of propolis and epigallocatechin gallate (EGCG). Mutat Res 2013; 757:36-44. [PMID: 23859956 DOI: 10.1016/j.mrgentox.2013.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
There is growing recognition that polyphenolic compounds present in many plants and natural products may have beneficial effects on human health. Propolis - a substance produced by honeybees - and catechins in tea, in particular (-)-epigallocatechin gallate (EGCG), are strong antioxidants that appear to have anti-obesity and anti-diabetic effects. The present study was designed to elucidate the anti-diabetic effect of the water-soluble derivative of propolis (WSDP), which contains phenolic acids as the main compounds, and EGCG in alloxan-induced (75mg/kg, iv) diabetes in mice. Intraperitoneal administration of EGCG or propolis at doses of 50mg/kg body weight (bw) to diabetic mice for a period of 7 days resulted in a significant increase in body weight and in haematological/immunological blood parameters, as well as in 100% survival of the mice. A significant decrease in lipid peroxidation in liver, kidney and brain tissue was also observed in diabetic mice treated with these two agents. Additionally, EGCG and propolis clearly reduced DNA damage in peripheral lymphocytes of diabetic mice. Our studies demonstrate the anti-oxidative and anti-inflammatory potential of WSDP and EGCG, which could exert beneficial effects against diabetes and the associated consequences of free-radical formation in kidney, liver, spleen and brain tissue. The results suggest that dietary supplementation with WSDP or EGCG could potentially contribute to nutritional strategies for the prevention and treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
10
|
Sirovina D, Oršolić N, Končić MZ, Kovačević G, Benković V, Gregorović G. Quercetin vs chrysin. Hum Exp Toxicol 2013; 32:1058-66. [DOI: 10.1177/0960327112472993] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Effects of flavonoids quercetin and chrysin on lipid peroxidation and histopathological changes in liver of diabetic mice were studied and compared with the antioxidant and reducing ability of quercetin and chrysin and their ability to chelate Fe2+ ions in vitro. Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg−1). Two days after alloxan injection, flavonoid preparations (50 mg kg−1 per day) were given intraperitoneally for 7 days in diabetic mice. The lipid peroxidation was evaluated by measuring the malondialdehyde production using the 2-thiobarbituric acid test. Administration of quercetin and chrysin to diabetic mice resulted in a significant decrease in lipid peroxidation level in liver tissue. Treatment of diabetic mice with flavonoids solutions results in decreased number of vacuolated cells and degree of vacuolization of the liver tissue. The protective role of flavonoids against the reactive oxygen species–induced damages in diabetic mice gives a hope that they may exert similar protective action in humans.
Collapse
Affiliation(s)
- D. Sirovina
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - N. Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - M. Z. Končić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - G. Kovačević
- Division of Biology, Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - V. Benković
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - G. Gregorović
- Division of Biology, Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Kaur P, Rizk N, Ibrahim S, Luo Y, Younes N, Perry B, Dennis K, Zirie M, Luta G, Cheema AK. Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. MOLECULAR BIOSYSTEMS 2012; 9:307-17. [PMID: 23247761 DOI: 10.1039/c2mb25384d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type 2 diabetes (T2DM) is a multi-factorial disease with a complex pathogenic mechanism; however a complete understanding of precise biochemical alterations accompanying the onset and progression of T2DM is lacking. Using a combination of untargeted and targeted metabolomic profiling approach we were able to delineate significantly altered metabolites in the diabetic (T2DM) group. Our results indicate significant perturbations in amino acid metabolism, TCA cycle and glycerol-phospholipid metabolism possibly impacting the overall glucose homeostasis in T2DM. A systems approach offers promise towards identification of clinically relevant markers of T2DM and novel molecular targets to foster drug discovery for effective therapeutic development for diabetes.
Collapse
Affiliation(s)
- Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, Munusamy A, Marimuthu Prabhu N, Vaseeharan B. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol 2012; 690:226-35. [DOI: 10.1016/j.ejphar.2012.05.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/25/2012] [Accepted: 05/15/2012] [Indexed: 01/15/2023]
|
13
|
Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:117. [PMID: 22866906 PMCID: PMC3551731 DOI: 10.1186/1472-6882-12-117] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 12/23/2022]
Abstract
Background In the present study, we examined the antioxidant effect of water soluble derivative of propolis (WSDP) and ethanolic (EEP) extract of propolis on renal and liver function in alloxan-induced diabetic mice. In addition, we examined whether different extract of propolis could prevent diabetic nephropathy and liver toxicity by inhibiting lipid peroxidation in vivo. Methods Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg-1). Two days after alloxan injection, propolis preparations (50 mg kg-1 per day) were given intraperitoneally for 7 days in diabetic mice. Survival analysis and body weights as well as hematological and biochemical parameters were measured. The renal and liver oxidative stress marker malonaldehyde levels and histopathological changes were monitored in the liver and kidney of treated and control mice. Results Administration of propolis to diabetic mice resulted in a significant increase of body weight, haematological and immunological parameters of blood as well as 100% survival of diabetic mice. Alloxan-injected mice showed a marked increase in oxidative stress in liver and kidney homogenate, as determined by lipid peroxidation. Histopathological observation of the liver sections of alloxan-induced diabetic mice showed several lesions including cellular vacuolization, cytoplasmic eosinophilia and lymphocyte infiltrations, but with individual variability.Treatment of diabetic mice with propolis extracts results in decreased number of vacuolized cells and degree of vacuolization; propolis treatment improve the impairment of fatty acid metabolism in diabetes. Renal histology showed corpuscular, tubular and interstitial changes in alloxan-induced diabetic mice. Test components did not improve renal histopathology in diabetic mice. Conclusions Propolis preparations are able to attenuate diabetic hepatorenal damage, probably through its anti-oxidative action and its detoxification proccess as well as the potential to minimize the deleterious effects of free radicals on tissue. The protective role of propolis against the ROS induced damages in diabetic mice gives a hope that they may have similar protective action in humans.
Collapse
|
14
|
Taleb-Senouci D, Lacaille-Dubois MA, Bouchenak M. Ajuga iva aqueous extract improves reverse cholesterol transport in streptozotocin-induced diabetic rat. J Pharm Pharmacol 2012; 64:1188-94. [DOI: 10.1111/j.2042-7158.2012.01501.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The aim of this study was to determine the effects of Ajuga iva aqueous extract on lecithin : cholesterol acyltransferase (LCAT) activity and amount and composition of high-density lipoprotein (HDL)2 and (HDL)3, in streptozotocin (STZ)-induced diabetic rats.
Methods
Diabetes was induced in male Wistar rats by intraperitoneal injection of STZ (60 mg/kg body weight). Diabetic rats (n = 12) were divided into two groups. The diabetic control group (D) received a 20% casein diet and the diabetic treated group received the same diet supplemented with A. iva aqueous extract (0.5 g/100 g diet) (DAi), for 4 weeks.
Key findings
Total cholesterol and HDL3-C were respectively decreased by 32% and 55% in the DAi group compared with the D group, whereas HDL2-C was increased by 30%. The amounts of HDL2 and HDL3, which were the sum of apolipoproteins, unesterified cholesterol (UC), cholesteryl esters (CEs), triacylglycerols (TGs) and phospholipids (PLs), showed no significant difference. A. iva treatment increased LCAT by 33% and its cofactor-activator, apolipoprotein A-I, by 58%. HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were respectively decreased by 70% and 57%, whereas HDL2-CE (product of LCAT reaction) was enhanced by 30%.
Conclusions
In STZ-induced diabetic rats, A. iva improves reverse cholesterol transport by enhancing LCAT activity, leading to anti-atherogenic effects.
Collapse
Affiliation(s)
- Douja Taleb-Senouci
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences, Université d'Oran, Oran, Algeria
| | - Marie A Lacaille-Dubois
- Laboratoire de Pharmacognosie, Unité de Molécules d'Intérêt Biologique, Faculté de Pharmacie, Université de Bourgogne, Dijon, France
| | - Malika Bouchenak
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences, Université d'Oran, Oran, Algeria
| |
Collapse
|
15
|
Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Yonsei Med J 2012; 53:294-303. [PMID: 22318816 PMCID: PMC3282981 DOI: 10.3349/ymj.2012.53.2.294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Hyperglycemia increases reactive oxygen species (ROS) and the resulting oxidative stress plays a key role in the pathogenesis of diabetic complications. Nicotinamide dinucleotide phosphate (NADPH) oxidase is one of the major sources of ROS production in diabetes. We, therefore, examined the possibility that NADPH oxidase activation is increased in various tissues, and that the antioxidant N-acetylcysteine (NAC) may have tissue specific effects on NADPH oxidase and tissue antioxidant status in diabetes. MATERIALS AND METHODS Control (C) and streptozotocin-induced diabetic (D) rats were treated either with NAC (1.5 g/kg/day) orally or placebo for 4 weeks. The plasma, heart, lung, liver, kidney were harvested immediately and stored for biochemical or immunoblot analysis. RESULTS levels of free 15-F(2t)-isoprostane were increased in plasma, heart, lung, liver and kidney tissues in diabetic rats, accompanied with significantly increased membrane translocation of the NADPH oxidase subunit p67phox in all tissues and increased expression of the membrane-bound subunit p22phox in heart, lung and kidney. The tissue antioxidant activity in lung, liver and kidney was decreased in diabetic rats, while it was increased in heart tissue. NAC reduced the expression of p22phox and p67phox, suppressed p67phox membrane translocation, and reduced free 15-F(2t)-isoprostane levels in all tissues. NAC increased antioxidant activity in liver and lung, but did not significantly affect antioxidant activity in heart and kidney. CONCLUSION The current study shows that NAC inhibits NADPH oxidase activation in diabetes and attenuates tissue oxidative damage in all organs, even though its effects on antioxidant activity are tissue specific.
Collapse
Affiliation(s)
- Shaoqing Lei
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yanan Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Preetha PP, Devi VG, Rajamohan T. Hypoglycemic and antioxidant potential of coconut water in experimental diabetes. Food Funct 2012; 3:753-7. [DOI: 10.1039/c2fo30066d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
|
18
|
Oršolić N, Gajski G, Garaj-Vrhovac V, Dikić D, Prskalo ZŠ, Sirovina D. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol 2011; 656:110-8. [PMID: 21277296 DOI: 10.1016/j.ejphar.2011.01.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 12/15/2010] [Accepted: 01/07/2011] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus is associated with a high production of reactive oxygen species, which may cause oxidative DNA damage. High levels of genomic damage have been associated with liver and renal failure as well as immune-system decline. Flavonoids are effective antioxidants and may protect against several chronic diseases including diabetes. This study used the comet assay to assess the levels of DNA damage in the blood, liver and kidney cells in untreated and quercetin (QU) or naringenin treated diabetic mice. In addition, the study was designed to establish whether QU or naringenin might have a biological effect in protecting diabetic mice against oxidative stress by using survival studies to observe total body injury at the level of the organism. QU or naringenin were injected to mice intraperitoneally (i.p.) at a dose of 50mg/kg for 7days starting 2days after a single dose (75mg/kg, i.v.) alloxan injection. These findings suggest that QU or naringenin treatment resulted in a significant increase in the body weight, the haematological and immunological parameters of blood, as well as leading to 100% survival of diabetic mice. The tested flavonoids have protective effects against alloxan-induced DNA-damage in peripheral lymphocytes but not in the liver and kidney cells of diabetic mice. It might be hypothesised that diabetic mice with a high intake of flavonoid-rich foods, and specifically foods rich in quercetin or naringenin, might be relatively protected against long-term complications of diabetes due to decreased oxidative stress. Various co-operative and synergistic action mechanisms of the tested flavonoids may lead to the protection of the whole organism against diabetes.
Collapse
Affiliation(s)
- Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
To address whether diabetes enhances lipid peroxidation and attenuates nitric oxide (NO) generation resulting in tissue complications, we measured oxysterols and NO metabolites (NOx) in the tissues of diabetic Wistar rats. After 4 weeks of streptozotocin injection (STZ, 80 mg/kg, i.p.), we measured 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH), 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH) and 7-ketocholesterol (7-keto) by HPLC in the kidneys, heart, and liver. All the oxysterols were much higher in the diabetic than in sham rats, while the extent of the increase was higher in the order of the kidney, heart, and liver. Together with high blood urea nitrogen, the data indicate that the kidney is the predominant target of early diabetic complications. Plasma NOx were decreased by 20% in the STZ rats. The enhanced oxidative stress in diabetes would increase oxysterols by peroxidation, while superoxide is known to reduce NO by reaction to form another potent oxidant peroxynitrite.
Collapse
Affiliation(s)
- Naoki Yoshioka
- Department of Legal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
Glutathione and the related enzymes belong to the defence system protecting the eye against chemical and oxidative stress. This review focuses on GSH and two key enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase in lens, cornea, and retina. Lens contains a high concentration of reduced glutathione, which maintains the thiol groups in the reduced form. These contribute to lens complete transparency as well as to the transparent and refractive properties of the mammalian cornea, which are essential for proper image formation on the retina. In cornea, gluthatione also plays an important role in maintaining normal hydration level, and in protecting cellular membrane integrity. In retina, glutathione is distributed in the different types of retinal cells. Intracellular enzyme, glutathione reductase, involved in reducing the oxidized glutathione has been found at highest activity in human and primate lenses, as compared to other species. Besides the enzymes directly involved in maintaining the normal redox status of the cell, glucose-6-phosphate dehydrogenase which catalyzes the first reaction of the pentose phosphate pathway, plays a key role in protection of the eye against reactive oxygen species. Cornea has a high activity of the pentose phosphate pathway and glucose-6-phosphate dehydrogenase activity. Glycation, the non-enzymic reaction between a free amino group in proteins and a reducing sugar, slowly inactivates gluthathione-related and other enzymes. In addition, glutathione can be also glycated. The presence of glutathione, and of the related enzymes has been also reported in other parts of the eye, such as ciliary body and trabecular meshwork, suggesting that the same enzyme systems are present in all tissues of the eye to generate NADPH and to maintain gluthatione in the reduced form. Changes of glutathione and related enzymes activity in lens, cornea, retina and other eye tissues, occur with ageing, cataract, diabetes, irradiation and administration of some drugs.
Collapse
Affiliation(s)
- Elena Ganea
- Institute of Biochemistry, Splaiul Independentei 296, Bucharest, Romania.
| | | |
Collapse
|
21
|
Park SK, Park NY, Lim Y. Effects of Short Term Antioxidant Cocktail Supplementation on the Oxidative Stress and Inflammatory Response of Renal Inflammation in Diabetic Mice. ACTA ACUST UNITED AC 2009. [DOI: 10.4163/kjn.2009.42.8.673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Seul-Ki Park
- Department of Food and Nutrition, Research Institute of Human Ecology, Kyunghee University, Seoul 130-701, Korea
| | - Na-Young Park
- Department of Food and Nutrition, Research Institute of Human Ecology, Kyunghee University, Seoul 130-701, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Research Institute of Human Ecology, Kyunghee University, Seoul 130-701, Korea
| |
Collapse
|
22
|
Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E, Scalbert A. A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 2008; 7:2388-98. [PMID: 18484765 DOI: 10.1021/pr800034h] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unbalanced diets generate oxidative stress commonly associated with the development of diabetes, atherosclerosis, obesity and cancer. Dietary flavonoids have antioxidant properties and may limit this stress and reduce the risk of these diseases. We used a metabolomic approach to study the influence of catechin, a common flavonoid naturally occurring in various fruits, wine or chocolate, on the metabolic changes induced by hyperlipidemic diets. Male Wistar rats ( n = 8/group) were fed during 6 weeks normolipidemic (5% w/w) or hyperlipidemic (15 and 25%) diets with or without catechin supplementation (0.2% w/w). Urines were collected at days 17 and 38 and analyzed by reverse-phase liquid chromatography-mass spectrometry (LC-QTOF). Hyperlipidic diets led to a significant increase of oxidative stress in liver and aorta, upon which catechin had no effect. Multivariate analyses (PCA and PLS-DA) of the urine fingerprints allowed discrimination of the different diets. Variables were then classified according to their dependence on lipid and catechin intake (ANOVA). Nine variables were identified as catechin metabolites of tissular or microbial origin. Around 1000 variables were significantly affected by the lipid content of the diet, and 76 were fully reversed by catechin supplementation. Four variables showing an increase in urinary excretion in rats fed the high-fat diets were identified as deoxycytidine, nicotinic acid, dihydroxyquinoline and pipecolinic acid. After catechin supplementation, the excretion of nicotinic acid was fully restored to the level found in the rats fed the low-fat diet. The physiological significance of these metabolic changes is discussed.
Collapse
Affiliation(s)
- Anthony Fardet
- UMR 1019, Unité de Nutrition Humaine, INRA, Centre de Recherche de Clermont-Ferrand/Theix, F-63122 S -Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
23
|
The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats. Chem Biol Interact 2008; 173:68-75. [DOI: 10.1016/j.cbi.2007.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/11/2007] [Accepted: 11/13/2007] [Indexed: 01/09/2023]
|
24
|
Akgün-Dar K, Bolkent S, Yanardag R, Tunali S. Vanadyl sulfate protects against streptozotocin-induced morphological and biochemical changes in rat aorta. Cell Biochem Funct 2008; 25:603-9. [PMID: 16892454 DOI: 10.1002/cbf.1354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate the protective effects of vanadyl sulfate on aorta tissue of normal and streptozotocin (STZ)-induced diabetic rats, morphologically and biochemically. The animals were made diabetic by an intraperitoneal injection of streptozotocin (65 mg/kg) and vanadyl sulfate (100 mg/kg) that was given every day for 60 days by gavage technique to rats. Under the light and transmission electron microscopes, hypertrophy of the vessel wall, focal disruption in the elastic lamellae, an increase in thickness of total aortic wall, tunica intima, subendothelial space and adventitial layer, and a disorganization in smooth muscular cells of the tunica media were observed in diabetic animals. The aorta lipid peroxidation (LPO) levels were significantly increased and the aorta glutathione (GSH) levels were significantly reduced in STZ diabetic rats. In diabetic rats administered vanadyl sulfate for 60 days, aorta LPO levels significantly decreased and the aorta GSH level significantly increased. In conclusion, in vivo treatment with vanadyl sulfate of diabetic rats prevented the morphological and biochemical changes observed in thoracic aorta of diabetic animals.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Glutathione/metabolism
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/pharmacology
- Injections, Intraperitoneal
- Lipid Peroxidation/drug effects
- Male
- Microscopy, Electron
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/ultrastructure
- Rats
- Streptozocin/administration & dosage
- Streptozocin/toxicity
- Tunica Intima/drug effects
- Tunica Intima/pathology
- Tunica Intima/ultrastructure
- Tunica Media/drug effects
- Tunica Media/pathology
- Tunica Media/ultrastructure
- Vanadium Compounds/administration & dosage
- Vanadium Compounds/pharmacology
Collapse
Affiliation(s)
- Kadriye Akgün-Dar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| | | | | | | |
Collapse
|
25
|
Vincent HK, Innes KE, Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 2007; 9:813-39. [PMID: 17924865 DOI: 10.1111/j.1463-1326.2007.00692.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Obesity may be a state of chronic oxidative stress. Oxidative stress may be the mechanism underlying the development of co-morbidities in obesity. This review provides a summary of the available evidence regarding systemic oxidative stress in young, older and clinical obese populations. METHODS Medline was searched for all available articles published between 1975 and 2006 that evaluated oxidative stress biomarkers in resting conditions or following various interventions in overweight and obese humans. RESULTS Obesity elevates oxidative stress in young, old and clinical populations as shown by elevations in lipid peroxidation (malondialdehyde, hydroperoxides, 4-hydroxynonenal, isoprostanes, conjugated dienes) or protein oxidation (8-hydroxy-deoxyguanosine). Lipid peroxidation is associated with several indices of adiposity and a low systemic antioxidant defence (i.e. antioxidant enzymes, tissue dietary antioxidants, glutathione). Oxidative stress may be exacerbated with acute exercise, advancing age or co-existing clinical conditions and may be corrected by improving antioxidant defences through fat volume reduction via surgery, pharmacological agents, exercise and/or dietary modification. CONCLUSION Oxidative stress is related to chronic disease in obesity, but is reversible with one or more interventions described above.
Collapse
Affiliation(s)
- Heather K Vincent
- The Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
26
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 358] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
27
|
Mohamadin AMA, Hammad LNA, El-Bab MF, Gawad HSA. CAN NITRIC OXIDE-GENERATING COMPOUNDS IMPROVE THE OXIDATIVE STRESS RESPONSE IN EXPERIMENTALLY DIABETIC RATS? Clin Exp Pharmacol Physiol 2007; 34:586-93. [PMID: 17581213 DOI: 10.1111/j.1440-1681.2007.04622.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. The present study was designed to evaluate the protective effects of the nitric oxide (NO)-generating compounds L-arginine (L-Arg) and sodium nitroprusside (SNP) on oxidative stress markers in streptozotocin (STZ)-diabetic rats. 2. Diabetes was induced after a single intraperitoneal injection of STZ (60 mg/kg). Rats were divided into non-diabetic (control), diabetic and treated diabetic groups. The treated diabetic groups were supplemented with L-Arg (300 mg/kg), SNP (3 mg/kg per day) or glibenclamide (0.6 mg/kg per day) orally for 4 weeks. 3. At the end of the experiment, fasted rats were killed by cervical decapitation. Blood was collected for estimation of glucose, haemoglobin, glycosylated haemoglobin (HbA(1c)), total cholesterol, high-density lipoprotein-cholesterol and triglycerides. Thiobarbituric acid-reactive substances (TBARS; an index of lipid peroxidation), superoxide dismutase, glutathione peroxidase, catalase, nitrate/nitrite (NO(x)) and reduced glutathione (GSH) were estimated in liver and kidney homogenates. 4. A significant increase was observed in plasma glucose levels and HbA(1c), with a concomitant decrease in haemoglobin levels, in diabetic rats. These alterations reverted back to near normal after treatment with the NO-generating compounds. A loss of bodyweight, polydipsia, polyphagia and elevated levels of serum cholesterol and triglycerides were observed in diabetic rats. Hyperglycaemia was accompanied by a significant increase in tissue TBARS and a decrease in NO(x), GSH and anti-oxidant enzymes, whereas, supplementation with L-Arg and SNP significantly reduced TBARS levels and increased GSH and anti-oxidant enzyme activities. Linear regression analysis indicated that blood glucose and TBARS had a significant positive correlation with HbA(1c), whereas a negative correlation was observed between GSH and NO(x). 5. It is concluded that NO-generating compounds improve most of the biochemical abnormalities and anti-oxidant levels in diabetic rats. The beneficial effects of NO-generating compounds can be attributed to the generation of NO and/or enhanced anti-oxidant enzyme activities.
Collapse
Affiliation(s)
- Ahmed M A Mohamadin
- Biochemistry Department and Tumor Marker Oncology Research Unit, Faculty of Pharmacy Boy, Al-Azhar University, Cairo, Egypt.
| | | | | | | |
Collapse
|
28
|
Cho WCS, Yip TT, Chung WS, Lee SKW, Leung AWN, Cheng CHK, Yue KKM. Altered expression of serum protein in ginsenoside Re-treated diabetic rats detected by SELDI-TOF MS. JOURNAL OF ETHNOPHARMACOLOGY 2006; 108:272-9. [PMID: 16797897 DOI: 10.1016/j.jep.2006.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 05/04/2006] [Accepted: 05/13/2006] [Indexed: 05/10/2023]
Abstract
Diabetes mellitus (DM) is now a global health problem, however, its pathogenesis has not yet been fully deciphered. Even though modern medicine has great contribution to the control and treatment of DM, it is still far from success to completely cure the disease. Panax ginseng C.A. Meyer (ginseng) is a well-recognized traditional Chinese medicine for treating DM in Asia. In this study, high throughput proteomic approach has been adopted to investigate the antidiabetic action of 2 weeks' ginsenoside Re (Re, a major component of ginseng) administration to streptozotocin-induced diabetic rats. Employing surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) and bioinformatics, 432 cluster peaks were detected in the samples, among them 293 potential biomarkers were found to have significant differentiations between the DM and control normal rats. When the Re-treated diabetic rats were compared to the untreated ones, a protein peak was detected to have significant alteration corresponding to Re treatment. This specific protein was found to match with C-reactive protein (CRP) in the protein database, and was subsequently validated by ELISA. This is the first study demonstrated that CRP could be altered by Re treatment, indicating that Re may improve diabetes and its complications by alleviation of inflammation.
Collapse
Affiliation(s)
- William C S Cho
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Cho WCS, Chung WS, Lee SKW, Leung AWN, Cheng CHK, Yue KKM. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 2006; 550:173-9. [PMID: 17027742 DOI: 10.1016/j.ejphar.2006.08.056] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/24/2006] [Accepted: 08/28/2006] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus is characterized by hyperglycemia and complications affecting the eye, kidney, nerve and blood vessel. We have previously demonstrated the occurrence of oxidative stress of streptozotocin-induced diabetic rats, preceded by a depletion in the tissue level of glutathione. In this study, when diabetic rats were treated with ginsenoside Re of Panax ginseng C.A. Meyer, there was a significant reduction in blood glucose, total cholesterol and triglyceride levels. On the other hand, oxidative stress has been implicated in the pathogenesis of diabetes and its complications. It was found that treatment by ginsenoside Re restored the levels of both glutathione and malondialdehyde in the eye and kidney to those found in the control rats. This is the first report demonstrating ginsenoside Re has significant antioxidant efficacy in diabetes, and prevents the onset of oxidative stress in some vascular tissues. Our results demonstrated that ginsenoside Re could lower blood glucose and lipid levels, and exerts protective actions against the occurrence of oxidative stress in the eye and kidney of diabetic rats. Our data also provide evidence that ginsenoside Re could be used as an effective antidiabetic agent particularly in the prevention of diabetic microvasculopathy.
Collapse
Affiliation(s)
- William C S Cho
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
30
|
Yue KKM, Lee KW, Chan KKC, Leung KSY, Leung AWN, Cheng CHK. Danshen prevents the occurrence of oxidative stress in the eye and aorta of diabetic rats without affecting the hyperglycemic state. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:136-41. [PMID: 16431051 DOI: 10.1016/j.jep.2005.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/16/2005] [Accepted: 12/18/2005] [Indexed: 05/06/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of diabetic complications. We have previously demonstrated the occurrence of oxidative stress in the eye and aorta but not in the kidney of diabetic rats. In the present study we have investigated the effects of danshen, a herb used in traditional Chinese medicine to treat ailments related to diabetic complications, on the onset of oxidative stress in the above tissues. Diabetic rats were treated with 3 g/kg of danshen via oral intubation for 7 weeks. Afterwards, the tissue levels of glutathione (GSH), the primary endogenous antioxidant, and malondialdehyde (MDA), a marker of oxidative stress, were measured. Our results showed that danshen treatment did not alter the hyperglycemic status of the diabetic animals. However, the GSH levels were normalized in both the eye and aorta of the diabetic rats when these rats were administered with danshen. Administration with danshen also restored the level of MDA in the eye and aorta of the diabetic rats to that found in the control rats. These changes, however, were not observed in the kidney where oxidative stress did not occur. These results suggested that oral administration of danshen can effectively prevent the occurrence of oxidative stress in the eye and aorta of the diabetic rats. Furthermore, danshen treatment did not affect the blood glucose concentration of the animals irrespective of their diabetic state. These data therefore provide important information on mode of action of danshen, thereby establishing a basis for this herb to be used as a supportive treatment regime to ameliorate the severity of diabetic complications.
Collapse
Affiliation(s)
- Kevin K M Yue
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVE Oxidative stress may be the unifying mechanism underlying the development of comorbidities in obesity. Evidence suggests that a clustering of sources of oxidative stress exists in obesity: hyperglycemia, hyperleptinemia, increased tissue lipid levels, inadequate antioxidant defenses, increased rates of free radical formation, enzymatic sources within the endothelium, and chronic inflammation. METHOD This review provides a summary of the available evidence on systemic oxidative stress in humans and specific metabolic pathways by which obesity may elevate systemic oxidant stress. The authors suggest possible methods of reducing oxidative stress such as antioxidant supplementation, caloric restriction and/or physical activity and surgical intervention to combat free radicals and reduce adipose tissue. RESULTS Obesity is associated with oxidative stress and can be reduced with weight loss (regardless of exercise or surgery induced weight loss), caloric restriction or antioxidant rich diets. CONCLUSION Oxidative stress levels are elevated in human obesity, and these levels are modifiable with various lifestyle modifications and surgical interventions.
Collapse
Affiliation(s)
- H K Vincent
- The Center for the Study of Complementary and Alternative Therapies, CSCAT, University of Virginia, Charlottesville, 22908-0905, USA.
| | | |
Collapse
|
32
|
Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M, De Angelis N, Ghezzi P, Latini R, Masson S. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci 2006; 79:121-9. [PMID: 16445948 DOI: 10.1016/j.lfs.2005.12.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 12/06/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Blockade of the renin-angiotensin system (RAS) reduces cardiovascular morbidity and mortality in diabetic patients. Ang II-mediated generation of reactive oxygen species (ROS) has been suggested to be involved in several diabetic complications. We investigated whether the inhibition of Ang II production with an ACE inhibitor (ACEi) reduces oxidative stress and limits structural cardiovascular remodeling in a rat model of streptozotocin (STZ)-induced diabetes. Diabetic rats were treated for 7 weeks with an ACEi (lisinopril, 5 mg/kg/d), an antioxidant (N-acetyl-l-cysteine (NAC), 0.5 g/kg/d) and their combination. At sacrifice, ROS in the myocardium and thoracic aorta, LV myocyte number and size and aorta morphology were determined by quantitative histological methods. Superoxide and hydroxyl radical content, detected by dihydroethidium (DHE) and 8-hydroxydeoxyguanosine (8-OHdG), were 6.7 and 4.5-fold, respectively, higher in diabetic myocardium than in non-diabetic controls (p<0.001). The amount of superoxide was 5-fold higher in the thoracic aorta of diabetic rats compared to controls (p<0.001). Diabetes caused a modest increase in myocyte volume (+13%, p<0.01), a reduction of LV myocyte number (-43%, p<0.001), an accumulation of collagen around coronary arterioles (1.9-fold increase, p<0.01) and a decrease in arterial elastin/collagen ratio (-63%, p<0.001) compared to controls. Treatment with the ACEi attenuated ROS formation and prevented phenotypic changes in the heart (cardiomyocyte hypertrophy, perivascular fibrosis) and in the aorta of diabetic rats to the same extent as NAC. The absence of an additive effect, suggests a common mechanism of action, through the reduction of oxidative stress.
Collapse
Affiliation(s)
- Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho WC, Yip TT, Chung WS, Leung AW, Cheng CH, Yue KK. Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. J Cell Biochem 2006; 99:256-68. [PMID: 16598775 DOI: 10.1002/jcb.20923] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic progressive disease that often results in microvascular and macrovascular complications, yet its pathogenesis is not clear. Automated proteomic technology, coupled with powerful bioinformatics and statistical tools, can provide new insights into the molecular alterations implicated in DM. Following our previous findings of redox changes in the eye and aorta of diabetic rats, as well as the activities of different antioxidant enzymes during the development of DM, this study is further launched to find potential biomarkers by comparing the serum and tissue samples of 26 diabetic rats (8 weeks after streptozotocin [STZ] administration) with 29 normal controls using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology. Eight potential biomarkers were found in the serum, one potential biomarker was found in the kidney and eye, respectively, whereas three potential biomarkers were discovered in the aorta. One of the serum biomarker candidates was found to match the C-reactive protein (CRP) in the Swiss-Prot knowledgebase. Further validation has been conducted by ELISA kit to confirm the role of CRP during the development of DM. To conclude, the increased level of CRP in diabetic serum demonstrated in this study indicates that the development of DM is associated with inflammation. This is also the first report demonstrating that some potential lysate biomarkers in the kidney, eye, and aorta may be involved in the development of diabetes and its complications. Further identification and evaluation of these potential biomarkers will help unravel the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- William C Cho
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | | | | | | | | | | |
Collapse
|
34
|
Kükner A, Colakoğlu N, Serin D, Alagöz G, Celebi S, Kükner AS. Effects of intraperitoneal vitamin E, melatonin and aprotinin on leptin expression in the guinea pig eye during experimental uveitis. ACTA ACUST UNITED AC 2005; 84:54-61. [PMID: 16445440 DOI: 10.1111/j.1600-0420.2005.00544.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To observe ultrastructural changes and leptin expression in the guinea pig eye during experimental uveitis (EU) and the effects of vitamin E, melatonin and aprotinin on leptin expression. METHODS Thirty male guinea pigs were randomly classified into five groups. Group 1 was the control group. Groups 2, 3, 4 and 5 received intravitreal injections of bovine serum albumin (BSA) to induce EU. At the same time on the third day, groups 3 (EU + vitamin E), 4 (EU + melatonin) and 5 (EU + aprotinin) received intraperitoneal vitamin E (150 mg/kg), melatonin (10 mg/kg) and aprotinin (20,000 IU/kg), respectively. On the sixth day, histopathological and clinical scoring of inflammation were performed, and leptin expression was investigated in the retina, choroid, sclera, episclera and cornea, and compared. RESULTS There was a remarkable increase in leptin expression in the retina, choroid, sclera and episclera in the EU group. Leptin expression in the treatment groups was similar to that in the control group. At light and electron microscopic levels, ganglion cells were oedematous and inner plexiform layer thickness had increased in the EU group retinas. Oedema was decreased in the treatment groups. Comparison of the EU and treatment groups revealed significant differences histopathologically and clinically. CONCLUSION Experimental uveitis causes an increase in leptin expression in the retina, choroid, sclera and episclera of guinea pigs. Vitamin E, melatonin and aprotinin inhibit this increase. Leptin seems to be closely related to ocular inflammation.
Collapse
Affiliation(s)
- Aysel Kükner
- Department of Histology and Embryology, Izzet Baysal Medical Faculty, Abant Izzet Baysal University, Bolu, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Li JM, Che CT, Lau CBS, Leung PS, Cheng CHK. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. Int J Biochem Cell Biol 2005; 38:985-95. [PMID: 16289850 DOI: 10.1016/j.biocel.2005.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 12/20/2022]
Abstract
Reduction in glucose uptake constitutes a possible means of controlling diabetic hyperglycemia. Using purified intestinal brush border membrane vesicles and everted intestinal sleeves, we have demonstrated that naringenin, a flavonoid present in citrus fruits and juices, significantly inhibited glucose uptake in the intestine. In addition, naringenin also elicited inhibitory actions towards glucose uptake in renal brush border membrane vesicles. Naringin, a glycoside of naringenin, was totally inactive in these aspects. Naringenin exhibited moderate inhibitory action on glucose uptake in rabbit intestinal brush border membrane vesicles, and showed strong inhibitory action in rat everted intestinal sleeves. The IC(50) values were 205.9 and 2.4 micromol/l, respectively. Lineweaver-Burk analysis demonstrated that naringenin inhibited glucose uptake in rat everted intestinal sleeves in a competitive manner with a K(i) value of 1.1 micromol/l. Glucose uptake activities in both the intestinal and renal brush border membrane vesicles of diabetic rats were significantly higher than in normal rats. Naringenin (500 microM) reduced glucose uptake by more than 60% in both the intestinal and renal brush border membrane vesicles of diabetic rats to a level similar to that of the normal rats. The IC(50) values of naringenin in the renal brush border membrane vesicles of normal and diabetic rats were 323.9 and 166.1 micromol/l, respectively. These results suggest that inhibition of intestinal glucose uptake and renal glucose reabsorption explains, in part at least, the in vivo antihyperglycemic action of naringenin and its derivatives. The possible application of these natural compounds in controlling hyperglycemia warrants further investigations.
Collapse
Affiliation(s)
- Jian Mei Li
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
36
|
Allen DA, Yaqoob MM, Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem 2005; 16:705-13. [PMID: 16169208 DOI: 10.1016/j.jnutbio.2005.06.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responses to high glucose are numerous and varied but ultimately result in functional changes and, often, cell death. High glucose induces oxidative and nitrosative stress in many cell types causing the generation of species such as superoxide, nitric oxide and peroxynitrite and their derivatives. The role of these species in high glucose-mediated apoptotic cell death is relevant to the complications of diabetes such as neuropathy, nephropathy and cardiovascular disease. High glucose causes activation of several proteins involved in apoptotic cell death, including members of the caspase and Bcl-2 families. These events and the relationship between high glucose-induced oxidative stress and apoptosis are discussed here with reference to additional regulators of apoptosis such as the mitogen-activated protein kinases (MAPKs) and cell-cycle regulators.
Collapse
Affiliation(s)
- David A Allen
- Centre for Experimental Medicine, Nephrology and Critical Care, William Harvey Research Institute, St. Bartholomew's and Royal London School of Medicine and Dentistry, Queen Mary, University of London, EC1M 6BQ London, UK.
| | | | | |
Collapse
|
37
|
Fujita A, Sasaki H, Ogawa K, Okamoto K, Matsuno S, Matsumoto E, Furuta H, Nishi M, Nakao T, Tsuno T, Taniguchi H, Nanjo K. Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice. Diabetes Res Clin Pract 2005; 69:113-9. [PMID: 16005359 DOI: 10.1016/j.diabres.2004.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 09/29/2004] [Accepted: 11/25/2004] [Indexed: 11/26/2022]
Abstract
Oxidative stress and the gene expression at the transcriptional level of antioxidant enzymes were investigated in two models of diabetes in mice. We used KKAy mice as a model of obese insulin-resistant diabetes, and streptozotocin-induced diabetic mice (STZ mice) as a model of insulin-deficient diabetes. C57BL mice and saline-injected ICR mice were used as the respective non-diabetic controls. To assess oxidative damage, plasma malonedialdehyde (MDA), urine 8-isoprostane and 8-hydroxy deoxyguanosine (8-OHdG) were measured. The mRNA expression of antioxidant enzymes, superoxide dismutase 1 (SOD-1) and glutathione peroxidase 1 (GPx-1) in the kidney and heart were quantified using a real-time polymerase chain reaction. The KKAy mice demonstrated moderate hyperglycemia and hyperlipidemia, and the STZ mice showed severe hyperglycemia and hypolipidemia. The KKAy mice, but not the STZ mice, showed elevated plasma MDA relative to the non-diabetic controls. Urine 8-isoprostane and 8-OHdG in both diabetic mouse groups increased significantly. The urine oxidative stress markers in the severely hyperglycemic STZ mice were higher than those in the moderately hyperglycemic KKAy mice. Although GPx-1 and SOD-1 showed elevated mRNA expression in the KKAy mice in the kidney and heart, in the STZ mice they did not increase compared to the controls. The compensatory up-regulation of the mRNA expression of antioxidant enzymes may be impaired in the insulin-deficient severely hyperglycemic state.
Collapse
Affiliation(s)
- Atsuyo Fujita
- The First department of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama, P.O. 641-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yue KKM, Leung SN, Man PM, Yeung WF, Chung WS, Lee KW, Leung AWN, Cheng CHK. Alterations in antioxidant enzyme activities in the eyes, aorta and kidneys of diabetic rats relevant to the onset of oxidative stress. Life Sci 2005; 77:721-34. [PMID: 15936347 DOI: 10.1016/j.lfs.2004.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 10/04/2004] [Indexed: 02/02/2023]
Abstract
Profound changes in antioxidant enzyme activities were observed in a number of vascular tissues during the development of streptozotocin-induced diabetes in rats. In the eyes, there was an increase in superoxide dismutase activity at week 4 of diabetes. However, no difference in superoxide dismutase activity was observed between the control and diabetic animals at week 8. On the other hand, the diabetic state did not seem to affect the catalase activity in the eyes. There was a generalized increase in catalase activity of the eyes from week 4 to week 8 irrespective of the diabetic state. For glutathione peroxidase in the eyes, a decreased activity was observed in the diabetic animals at week 8, but not in week 4. A different pattern of enzyme activity changes was observed in the aorta where an increase in superoxide dismutase activity was observed in the diabetic group at week 4 but not in week 8. On the other hand, an increase in catalase activity was observed only at week 8 but not at week 4. Whereas there was no observed difference between the control and diabetic animals in glutathione peroxidase activity in the aorta, except for a generalized decrease from week 4 to week 8 in both groups of animals. In big contrast to the eyes and aorta where an increase in superoxide dismutase activity was observed at week 4 of diabetes, no change in kidney superoxide dismutase activity was noted at week 4 and a decrease was observed at week 8. A similar pattern of enzyme activity changes was observed for glutathione peroxidase in the kidneys. The catalase activity in the kidneys was not affected at all by the diabetic state at both week 4 and week 8. These results clearly demonstrate the active involvement of these antioxidant enzymes during the development of diabetes, and could be rationalized by the differential response of the tissues towards the different extent of oxidative stress imposed by the diabetic state on the different tissues.
Collapse
Affiliation(s)
- Kevin K M Yue
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gumieniczek A. Effects of repaglinide on oxidative stress in tissues of diabetic rabbits. Diabetes Res Clin Pract 2005; 68:89-95. [PMID: 15860235 DOI: 10.1016/j.diabres.2004.09.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 09/02/2004] [Accepted: 09/06/2004] [Indexed: 01/09/2023]
Abstract
In this study, the antioxidative properties of repaglinide were examined in tissues of alloxan-induced diabetic rabbits. Glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R) and protein carbonyl groups (PCG) were measured after 4 and 8 weeks treatment with repaglinide (0.3 mg/kg daily). In liver, diabetic versus control values (mean +/- S.E.M., p<0.05) for GSH-Px were 181.0 +/- 5.4 mU/mg protein versus 203.1 +/- 1.9 mU/mg protein and 187.4 +/- 6.6 mU/mg protein versus 240.9 +/- 18.8 mU/mg protein. The respective values for GSH were 33.7 +/- 0.4 nmol/mg protein versus 49.0 +/- 1.6 nmol/mg protein and 37.7 +/- 1.0 nmol/mg protein versus 41.2 +/- 0.7 nmol/mg protein. In diabetic kidney, GSSG-R activity (20.6 +/- 1.6 mU/mg protein versus 32.4 +/- 1.5 mU/mg protein and 23.6 +/- 0.6 mU/mg protein versus 36.3 +/- 0.3 mU/mg protein) and GSH level (16.6 +/- 0.5 nmol/mg protein versus 23.2 +/- 0.9 nmol/mg protein and 17.9 +/- 0.5 nmol/mg protein versus 23.2 +/- 0.6 nmol/mg protein) were reduced compared to control. PCG level was elevated in diabetic liver (0.58 +/- 0.02 nmol/mg protein versus 0.16 +/- 0.03 nmol/mg protein at 4 weeks and 0.64 +/- 0.04 nmol/mg protein versus 0.16 +/- 0.03 nmol/mg protein at 8 weeks) and in diabetic kidney (0.32 +/- 0.03 nmol/mg protein versus 0.11 +/- 0.02 nmol/mg protein and 0.35 +/- 0.03 nmol/mg protein versus 0.16 +/- 0.03 nmol/mg protein). Repaglinide did not affect the glucose level but reduced to some extent the oxidative stress enhanced by chronic hyperglycemia. In diabetic kidney, it restored to control values GSSG-R activity (45.4 +/- 2.0 mU/mg protein at 4 weeks and 41.1 +/- 0.07 mU/mg protein at 8 weeks), GSH level (27.0 +/- 0.8 and 26.8 +/- 0.9 nmol/mg protein), and partly PCG level (0.17 +/- 0.02 nmol/mg protein at 8 weeks). The treatment partly affected GSH-Px activity (262.7 +/- 17.6 mU/mg protein) and GSH level (40.4 +/- 1.4 nmol/mg protein) in diabetic liver. This study shows that repaglinide produces measurable antioxidative effects at therapeutic dose.
Collapse
Affiliation(s)
- Anna Gumieniczek
- Department of Medicinal Chemistry, Medical University of Lublin, Chodzki Street 6, 20-093 Lublin, Poland.
| |
Collapse
|