1
|
Kelly AL, Baugh ME, Ahrens ML, Valle AN, Sullivan RM, Oster ME, Fowler ME, Carter BE, Davy BM, Hanlon AL, DiFeliceantonio AG. Neural and metabolic factors in carbohydrate reward: Rationale, design, and methods for a flavor-nutrient learning paradigm in humans. Contemp Clin Trials 2024; 147:107717. [PMID: 39413990 PMCID: PMC11688656 DOI: 10.1016/j.cct.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Overconsumption of ultra-processed foods (UPFs), which are linked with adverse health outcomes, is a growing public health concern. UPFs deliver highly bioavailable calories rapidly, which may contribute to their reinforcing potential and drive overconsumption. Our primary aim is to test the role of speed of nutrient availability on reward learning. We hypothesize that brain activity in reward related areas and behavioral preferences will be greater to a flavored drink predicting rapidly available calories (CS + Fast) compared with a flavored drink predicting more slowly available (CS + Slow) or no (CS-) calories. Participants (n = 64, aged 18-45 years, will consume 3 novel flavored, isosweet beverages containing 110 kcal of sucrose (CS + Fast), 110 kcal of maltodextrin (CS + Slow), or 0-kcal sucralose (CS-) 6 times in randomized, crossover order. Blood metabolites and indirect calorimetry measures, including metabolic rate and carbohydrate oxidation, will be assessed before and for 1 h after beverage consumption. Behavioral preference for beverages will be assessed in a pre- and post-test. Brain response to each flavor without calories will be assessed via functional magnetic resonance imaging in a post-test. Findings from this study will contribute to the understanding of basic mechanisms that may drive overconsumption of UPFs. Trial registration:clinicaltrials.gov registration #NCT06053294.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Monica L Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Abigail N Valle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary E Fowler
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Bridget E Carter
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small calorie loads. PLoS One 2024; 19:e0304030. [PMID: 38900814 PMCID: PMC11189231 DOI: 10.1371/journal.pone.0304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/05/2024] [Indexed: 06/22/2024] Open
Abstract
We overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. To assess WRIC validity seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events. Sixteen participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose in a crossover design. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and carbohydrate oxidation. Postprandial carbohydrate oxidation trajectories for each participant and condition were modeled using Bayesian Hierarchical Modeling. Mean total error in infusions were 1.27 ± 0.67% and 0.42 ± 0.70% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions ([Formula: see text] = 1.05 ± 0.03 kcal/min, p = 0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p = 0.29), postprandial carbohydrate oxidation parameters were significantly lower for dextrose compared with sucrose or fructose. We provide evidence validating our WRIC and a novel application of statistical methods useful for research using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jon Moon
- MEI Research, Ltd, Edina, Minnesota, United States of America
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
3
|
Caprioli B, Eichler RAS, Silva RNO, Martucci LF, Reckziegel P, Ferro ES. Neurolysin Knockout Mice in a Diet-Induced Obesity Model. Int J Mol Sci 2023; 24:15190. [PMID: 37894869 PMCID: PMC10607720 DOI: 10.3390/ijms242015190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.
Collapse
Affiliation(s)
- Bruna Caprioli
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Rosangela A. S. Eichler
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Renée N. O. Silva
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Luiz Felipe Martucci
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Patricia Reckziegel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences (FCF), University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emer S. Ferro
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| |
Collapse
|
4
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small-calorie loads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558672. [PMID: 37790401 PMCID: PMC10542547 DOI: 10.1101/2023.09.21.558672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Objective To provide an overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. Methods Seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events to assess WRIC validity. In a crossover design, 16 participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and CO (CO). Bayesian Hierarchical Modeling was also used to model postprandial CO trajectories for each participant and condition. Results Mean total error in infusions were 1.27 ± 1.16% and 0.42 ± 1.21% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions (x ¯ = 1.05 ± 0.03 kcal / min , p=0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p=0.29), postprandial CO parameters were significantly lower for dextrose compared with sucrose or fructose. Conclusions Our WRIC validation and novel application of statistical methods presented here provide important foundations for new research directions using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Short KR. Unexpected Postprandial Energy Expenditure and Fuel Oxidation Responses to Meals with Different Macronutrient Compositions. J Nutr 2022; 152:2003-2004. [PMID: 35849709 PMCID: PMC9361737 DOI: 10.1093/jn/nxac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kevin R Short
- From the Section of Diabetes & Endocrinology, Department of Pediatrics, and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Camps SG, Koh HR, Wang NX, Henry CJ. A fructose-based meal challenge to assess metabotypes and their metabolic risk profile: A randomized, crossover, controlled trial. Nutrition 2020; 78:110799. [PMID: 32544846 DOI: 10.1016/j.nut.2020.110799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/14/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The first aim of this study was to determine the metabolic type of individuals based on the postprandial metabolic response after the ingestion of a meal challenge that was high protein and either high glucose (high GI) or fructose (low GI). The second aim was to compare the baseline characteristics between the different metabolic types (metabotypes). The third aim was to assess whether the inclusion of fructose or glucose in a high-protein breakfast modulated the glucose, insulin, and TG response over a 4-h period. METHODS The study included 46 Asian women with a body mass index between 17 and 28 kg/m2 in a randomized crossover design. Metabolic typing was based on the assessment of the postprandial glycemic, insulin and triacylglycerol (TG) response after the ingestion of two high-protein meal challenges either high in fructose or glucose. Baseline characteristics were compared between the different metabolic types. Baseline and 4-h postprandial blood samples were collected and glucose, insulin, and TG levels were analyzed. Cluster analysis was used to phenotype the participants in distinct groups. Baseline characteristics including anthropometry, glycemic, and lipid profiles and resting metabolic rate were compared among the metabolic types. RESULTS Cluster analysis revealed that women could be grouped into three metabolic types based on postprandial glucose, insulin, and TG response after the fructose meal challenge: cluster 1 with an average glucose + high TG response (highTG; n = 12), cluster 2 with a high glucose + average TG response (highGLU; n = 8), and cluster 3 with an average glucose + average TG response (Avg; n = 26). Post hoc analysis revealed significantly greater waist-to-hip ratio and a worse lipid profile for the highTG cluster and a higher fasting blood glucose, body mass index, fat percentage, and hip circumference in the highGLU cluster. CONCLUSIONS Three metabolic types with a distinct metabolic response could be distinguished after a high fructose meal. The results suggest a different risk profile and may indicate why some people develop diabetes in an obesogenic environment. Improved metabolic-type assessments will enable us to develop and optimize nutritional and medical interventions for individuals with differing diabetes risk.
Collapse
Affiliation(s)
- Stefan Gerardus Camps
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research and National University Health System, Singapore
| | - Huann Rong Koh
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research and National University Health System, Singapore
| | - Nan Xin Wang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research and National University Health System, Singapore
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research and National University Health System, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Pinheiro-Castro N, Silva LBAR, Novaes GM, Ong TP. Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:149-161. [DOI: 10.1007/978-3-030-12668-1_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Camps SG, Koh HR, Wang NX, Henry CJ. High fructose consumption with a high-protein meal is associated with decreased glycemia and increased thermogenesis but reduced fat oxidation: A randomized controlled trial. Nutrition 2018; 58:77-82. [PMID: 30391694 DOI: 10.1016/j.nut.2018.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Fructose is often recommended due to its ability to lower glycemic response and its increased thermogenic effect. Additionally, proteins can reduce the glycemic response of carbohydrate-rich foods and have a high diet-induced thermogenesis (DIT). The aim of this study was to investigate whether the inclusion of fructose in a high-protein meal would demonstrate metabolic advantages. METHODS Nineteen Asian women (body mass index 17-28 kg/m2) consumed a low-glycemic index (GI; fructose) or high GI (glucose), high-protein breakfast followed by a standardized lunch in a randomized crossover design. Simultaneously, 8-h continuous glucose monitoring provided incremental area under the curve (iAUC) and 4-h indirect calorimetry provided DIT and respiratory quotient (RQ). RESULTS The low GI diet resulted in a lower glucose iAUC (135 ± 25 versus 212 ± 23 mmol/L, P < 0.05) following breakfast, but no second-meal effect after the standardized lunch (217 ± 37 versus 228 ± 27 mmol/L, P < 0.05) compared with the high GI diet. Furthermore, 4-h DIT was greater (40.6 ± 2.3 versus 34.9 ± 1.8 kcal, P < 0.05) and RQ was increased after the fructose high-protein breakfast (0.047 ± 0.009 versus 0.028 ± 0.009, P < 0.05) compared with the glucose meal. CONCLUSIONS Fructose is an effective sweetener in reducing glycemia and increasing DIT in the presence of a high-protein diet. However, the reduced fat oxidation after high fructose consumption might present a risk for increased lipogenesis.
Collapse
Affiliation(s)
- Stefan Gerardus Camps
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research and National University Health System Centre for Translational Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Huann Rong Koh
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research and National University Health System Centre for Translational Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Nan Xin Wang
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research and National University Health System Centre for Translational Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research and National University Health System Centre for Translational Medicine, Yong Loo Lin School of Medicine, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Wilson PB. Effects of pre-exercise sucrose ingestion on thermoregulatory responses to near-maximal 5-km running. J Therm Biol 2018; 77:62-66. [PMID: 30196900 DOI: 10.1016/j.jtherbio.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/01/2022]
Abstract
Research has shown that carbohydrate consumption can increase body temperature at rest and, in some cases, during exercise. Most exercise studies, however, haven't matched exercise intensity between carbohydrate and placebo conditions. The purpose of this randomized, double-blind, placebo-controlled trial was to examine whether pre-exercise carbohydrate consumption independently accelerates the usual temperature rise with intense exercise. Twenty-eight runners self-reported 5-km performance (16-23 min) and were randomized, using a matched-pairs design, to 750 ml water containing 100 g sucrose or 0.8 g aspartame. Beverages were consumed 60 min before running at 93% of maximum 5-km speed in temperate conditions. Gastrointestinal temperature, Thermal Sensation Scale (TSS) and Feeling Scale (FS) were recorded before ingestion, every 10 min during 60 min of rest, and every 1-km during the 5-km run. Rating of Perceived Exertion was recorded every 1-km. Independent samples t-tests and two-way mixed ANOVAs with repeated measures assessed whether there were baseline differences or treatment effects. Gastrointestinal temperature didn't differ between carbohydrate (38.7 ± 0.4 °C) and placebo (38.6 ± 0.4 °C) by the end of the 5-km (p = 0.49). No group x time interactions or main group effects were found, except for a modest interaction for TSS (F = 2.1, p = 0.02, partial η2 = 0.075). Time effects were found for all outcomes, with temperature, TSS, and RPE increasing, and FS decreasing, during the run. Ingesting 100 g of sucrose prior to intense running lasting < 25 min didn't influence gastrointestinal temperature and therefore doesn't likely impact on the risk of heat illness.
Collapse
Affiliation(s)
- Patrick B Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
10
|
French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients 2018; 10:nu10080989. [PMID: 30060614 PMCID: PMC6115815 DOI: 10.3390/nu10080989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023] Open
Abstract
This article presents a systematic review of the scientific evidence linking sugar consumption and health in the adult population performed by a group of experts, mandated by the French Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement, et du travail (ANSES). A literature search was performed by crossing search terms for overweight/obesity, diabetes/insulin resistance, dyslipidemia/cardiovascular diseases, non-alcoholic fatty liver diseases (NAFLD), and uric acid concentrations on one hand and for intake of sugars on the other. Controlled mechanistic studies, prospective cohort studies, and randomized clinical trials were extracted and assessed. A literature analysis supported links between sugar intake and both total energy intake and body weight gain, and between sugar intake and blood triglycerides independently of total energy intake. The effects of sugar on blood triglycerides were shown to be mediated by the fructose component of sucrose and were observed with an intake of fructose >50 g/day. In addition, prospective cohort studies showed associations between sugar intake and the risk of diabetes/insulin resistance, cardiovascular diseases, NAFLD, and hyperuricemia. Based on these observations, ANSES proposed to set a maximum limit to the intake of total sugars containing fructose (sucrose, glucose–fructose syrups, honey or other syrups, and natural concentrates, etc.) of 100 g/day.
Collapse
|
11
|
Monnard CR, Grasser EK. Perspective: Cardiovascular Responses to Sugar-Sweetened Beverages in Humans: A Narrative Review with Potential Hemodynamic Mechanisms. Adv Nutr 2018; 9:70-77. [PMID: 29659691 PMCID: PMC5916433 DOI: 10.1093/advances/nmx023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases are still the primary cause of mortality worldwide, with high blood pressure and type 2 diabetes as major promoters. Over the past 3 decades, almost in parallel with the rise in cardiovascular disease incidence, the consumption of sugar-sweetened beverages (SSBs) has increased. In this context, SSBs are potential contributors to weight gain and increase the risk for elevations in blood pressure, type 2 diabetes, coronary heart disease, and stroke. Nevertheless, the mechanisms underlying the cardiovascular and metabolic responses to SSBs, in particular on blood pressure, are poorly understood. We discuss and propose potential mechanisms underlying differential effects of sugars on postprandial blood pressure regulation; provide evidence for additional molecular contributors, i.e., fibroblast growth factor 21, towards sugar-induced cardiovascular responses; and discuss potential cardiovascular neutral sugars. Furthermore, we explore whether pre-existing glucose intolerance in humans exacerbates the cardiovascular responses to SSBs, thus potentially aggravating the cardiovascular risk in already-susceptible individuals.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Erik Konrad Grasser
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland,Address correspondence to EKG (e-mail: )
| |
Collapse
|
12
|
Schoffelen PFM, Plasqui G. Classical experiments in whole-body metabolism: open-circuit respirometry-diluted flow chamber, hood, or facemask systems. Eur J Appl Physiol 2018; 118:33-49. [PMID: 29080000 PMCID: PMC5754424 DOI: 10.1007/s00421-017-3735-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022]
Abstract
For over two centuries, scientists have measured gas exchange in animals and humans and linked this to energy expenditure of the body. The aim of this review is to provide a comprehensive overview of open-circuit diluted flow indirect calorimetry and to help researchers to make the optimal choice for a certain system and its application. A historical perspective shows that 'open circuit diluted flow' is a technique first used in the 19th century and applicable today for room calorimeters, ventilated hood systems, and facemasks. Room calorimeters are a classic example of an open-circuit diluted flow system. The broadly applied ventilated hood calorimeters follow the same principle and can be classified as a derivative of these room calorimeters. The basic principle is that the subject breathes freely in a passing airflow that is fully captured and analyzed. Oxygen and CO2 concentrations are measured in inlet ambient air and captured outlet air. The airflow, which is adapted depending on the application (e.g., rest versus exercise), is measured. For a room indirect calorimeter, the dilution in the large room volume is also taken into account, and this is the most complex application of this type of calorimeter. Validity of the systems can be tested by alcohol burns, gas infusions and by performing repeated measurements on subjects. Using the latter, the smallest CV (%) was found for repeated VO2max tests (1.2%) with an SD of approximately 1 kJ min-1. The smallest SD was found for sleeping metabolic rate (0.11 kJ min-1) with a CV (%) of 2.4%.
Collapse
Affiliation(s)
- P F M Schoffelen
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - G Plasqui
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Maufrais C, Charriere N, Montani JP. Cardiovascular and Cutaneous Responses to the Combination of Alcohol and Soft Drinks: The Way to Orthostatic Intolerance? Front Physiol 2017; 8:860. [PMID: 29176950 PMCID: PMC5686118 DOI: 10.3389/fphys.2017.00860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Acute ingestion of alcohol is often accompanied by cardiovascular dysregulation, malaise and even syncope. The full hemodynamic and cutaneous responses to the combination of alcohol and sugar (i.e., alcopops), a common combination in young people, and the mechanisms for the propensity to orthostatic intolerance are not well established. Thus, the purpose of this study was to evaluate the cardiovascular and cutaneous responses to alcopops in young subjects. Methods: Cardiovascular and cutaneous responses were assessed in 24 healthy young subjects (12 men, 12 women) sitting comfortably and during prolonged active standing with a 30-min baseline and 130 min following ingestion of 400 mL of either: water, water + 48 g sugar, water + vodka (1.28 mL.kg-1 of body weight, providing 0.4 g alcohol.kg-1), water + sugar + vodka, according to a randomized cross-over design. Results: Compared to alcohol alone, vodka + sugar induced a lower breath alcohol concentration (BrAC), blood pressure and total peripheral resistance (p < 0.05), a higher cardiac output and heart rate (p < 0.05) both in sitting position and during active standing. In sitting position vodka + sugar consumption also led to a greater increase in skin blood flow and hand temperature (p < 0.05) and a decrease in baroreflex sensitivity (p < 0.05). We observed similar results between men and women both in sitting position and during active standing. Conclusion: Despite lower BrAC, ingestion of alcopops induced acute vasodilation and hypotension in sitting position and an encroach of the hemodynamic reserve during active standing. Even if subjects did not feel any signs of syncope these results could be of clinical importance with higher doses of alcohol or if combined to other hypotensive challenges.
Collapse
Affiliation(s)
- Claire Maufrais
- Division of Physiology, Laboratory of Integrative Cardiovascular and Metabolic Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Charriere
- Division of Physiology, Laboratory of Integrative Cardiovascular and Metabolic Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Laboratory of Integrative Cardiovascular and Metabolic Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
de Oliveira Sá G, dos Santos Neves V, de Oliveira Fraga SR, Souza-Mello V, Barbosa-da-Silva S. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets. Life Sci 2017; 189:8-17. [DOI: 10.1016/j.lfs.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
|
15
|
Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:506-518. [PMID: 28592611 DOI: 10.3945/ajcn.116.145151] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations.Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose.Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations.Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase.Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations.
Collapse
Affiliation(s)
| | - Michael Frese
- Health Research Institute.,Faculty of Education, Science, Technology and Mathematics, and
| | - Julio Romero
- Department of Software Engineering and Artificial Intelligence, University of Canberra, Canberra, Australia; and
| | - Judy H Cunningham
- Formerly of Risk Assessment Chemical Safety and Nutrition, Food Standards Australia New Zealand, Canberra, Australia
| | - Kerry E Mills
- Health Research Institute, .,Faculty of Education, Science, Technology and Mathematics, and
| |
Collapse
|
16
|
Casperson SL, Hall C, Roemmich JN. Postprandial energy metabolism and substrate oxidation in response to the inclusion of a sugar- or non-nutritive sweetened beverage with meals differing in protein content. BMC Nutr 2017; 3:49. [PMID: 32153829 PMCID: PMC7050861 DOI: 10.1186/s40795-017-0170-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Background The macronutrient composition of the diet may play a more important role in maintaining a healthy body weight and preventing obesity than previously thought. The primary goal of this research was to determine the extent to which the simple addition of a small serving of a sugar-sweetened beverage (SSB) to meals with different macronutrient compositions impacts appetite, energy metabolism and substrate oxidation. Methods Appetite, energy metabolism and substrate oxidation were measured in 27 healthy weight adults (age = 23 ± 5 y; BMI = 23 ± 2 kg/m2) on two occasions in a room calorimeter after consuming a SSB or a non-nutritive-sweetened beverage (NNSB) with a standard (15%E) or high- (30%E) protein meal. Meal carbohydrate (CHO) content was adjusted to maintain equivalent calories for both study visits. All meals were composed of the same foods and provided 17 g of fat and 500 non-beverage calories. Study visits were separated by at least 1 week and menstruating females were studied during the luteal phase (Days 15-20). The effects of sex, protein level and beverage type and their interactions on satiety, appetite for foods with specific taste profiles, diet-induced thermogenesis (DIT) and rates of substrate oxidation were assessed using a 3-way Repeated Measures Analysis of Variance. Results Increasing dietary protein decreased hunger and increased satiety. Males were hungrier and less satisfied with the meals than females. Increasing dietary protein also decreased the desire to eat something savory, salty and fatty and the males had a greater appetite for food with these taste profiles. Interestingly, there was no effect of sex, dietary protein or beverage type on the desire to eat something sweet. The inclusion of a SSB markedly suppressed DIT (2.42% ± 5.91%) and fat oxidation (9.87 ± 11.09 g). Conclusion Appetite sensations, food preferences, energy expenditure and substrate oxidation are significantly altered in response to changes in meal macronutrient composition produced by modifications in the protein content of a meal and consumption of a SSB. Most notably, consumption of a SSB during a meal markedly reduces energy efficiency and fat oxidation independent of macronutrient composition. Trial registrations ClinicalTrials.gov: NCT02211599, registered August 05, 2014.
Collapse
Affiliation(s)
- Shanon L Casperson
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Ave. North, Grand Forks, ND 58203-9034 USA
| | - Clint Hall
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Ave. North, Grand Forks, ND 58203-9034 USA
| | - James N Roemmich
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Ave. North, Grand Forks, ND 58203-9034 USA
| |
Collapse
|
17
|
Masi LN, Martins AR, Crisma AR, do Amaral CL, Davanso MR, Serdan TDA, da Cunha de Sá RDC, Cruz MM, Alonso-Vale MIC, Torres RP, Mancini-Filho J, Pereira JNB, da Silva Righetti MM, Liberti EA, Hirabara SM, Curi R. Combination of a high-fat diet with sweetened condensed milk exacerbates inflammation and insulin resistance induced by each separately in mice. Sci Rep 2017. [PMID: 28638152 PMCID: PMC5479812 DOI: 10.1038/s41598-017-04308-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Obesogenic diets increase body weight and cause insulin resistance (IR), however, the association of these changes with the main macronutrient in the diet remains to be elucidated. Male C57BL/6 mice were fed with: control (CD), CD and sweetened condensed milk (HS), high-fat (HF), and HF and condensed milk (HSHF). After 2 months, increased body weight, glucose intolerance, adipocyte size and cholesterol levels were observed. As compared with CD, HS ingested the same amount of calories whereas HF and HSHF ingested less. HS had increased plasma AST activity and liver type I collagen. HF caused mild liver steatosis and hepatocellular damage. HF and HSHF increased LDL-cholesterol, hepatocyte and adipocyte hypertrophy, TNF-α by macrophages and decreased lipogenesis and adiponectin in adipose tissue (AT). HSHF exacerbated these effects, increasing IR, lipolysis, mRNA expression of F4/80 and leptin in AT, Tlr-4 in soleus muscle and IL-6, IL-1β, VCAM-1, and ICAM-1 protein in AT. The three obesogenic diets induced obesity and metabolic dysfunction. HS was more proinflammatory than the HF and induced hepatic fibrosis. The HF was more detrimental in terms of insulin sensitivity, and it caused liver steatosis. The combination HSHF exacerbated the effects of each separately on insulin resistance and AT inflammatory state.
Collapse
Affiliation(s)
- Laureane Nunes Masi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Brazil.
| | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cátia Lira do Amaral
- Campus of Exact Sciences and Technology, State University of Goias, Anapolis, Brazil
| | - Mariana Rodrigues Davanso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Maysa Mariana Cruz
- Department of Biological Sciences, Institute of Biomedical Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Rosângela Pavan Torres
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Edson Aparecido Liberti
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Henry CJ, Kaur B, Quek RYC, Camps SG. A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians. Nutrients 2017; 9:nu9050473. [PMID: 28486426 PMCID: PMC5452203 DOI: 10.3390/nu9050473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Low glycaemic index (GI) foods minimize large blood glucose fluctuations and have been advocated to enhance fat oxidation and may contribute to weight management. We determined whether the inclusion of isomaltulose compared to sucrose in a low/high GI meal sequence can modulate the glycaemic response and substrate oxidation in an Asian population. Twenty Chinese men (body mass index (BMI): 17–28 kg/m2) followed a 24 h low GI (isomaltulose, PalatinoseTM) or high GI (sucrose) diet in a randomized double-blind, controlled cross-over design. Treatment meals included dinner (day 1), breakfast, lunch, and snack (day 2). Continuous glucose monitoring provided incremental area under the curve (iAUC) and mean amplitude of glycaemic excursion (MAGE) and 10 h indirect calorimetry (whole body calorimeter) (day 2) provided energy expenditure and substrate oxidation. Our results demonstrated that the low GI diet resulted in lower 24 h glucose iAUC (502.5 ± 231.4 vs. 872.6 ± 493.1 mmol/L; p = 0.002) and lower 24 h glycaemic variability (MAGE: 1.67 ± 0.53 vs. 2.68 ± 1.13 mmol/L; p < 0.001). Simultaneously, 10 h respiratory quotient increased more during high GI (p = 0.014) and fat oxidation was higher after low GI breakfast (p = 0.026), lunch (p < 0.001) and snack (p = 0.013). This indicates that lower GI mixed meals incorporating isomaltulose are able to acutely reduce the glycaemic response and variability and promote fat oxidation.
Collapse
Affiliation(s)
- Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore.
| | - Bhupinder Kaur
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Rina Yu Chin Quek
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Stefan Gerardus Camps
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| |
Collapse
|
19
|
Grasser EK, Miles-Chan JL, Charrière N, Loonam CR, Dulloo AG, Montani JP. Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms. Adv Nutr 2016; 7:950-60. [PMID: 27633110 PMCID: PMC5015039 DOI: 10.3945/an.116.012526] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Globally, the popularity of energy drinks is steadily increasing. Scientific interest in their effects on cardiovascular and cerebrovascular systems in humans is also expanding and with it comes a growing number of case reports of adverse events associated with energy drinks. The vast majority of studies carried out in the general population report effects on blood pressure and heart rate. However, inconsistencies in the current literature render it difficult to draw firm conclusions with regard to the effects of energy drinks on cardiovascular and cerebrovascular variables. These inconsistencies are due, in part, to differences in methodologies, volume of drink ingested, and duration of postconsumption measurements, as well as subject variables during the test. Recent well-controlled, randomized crossover studies that used continuous beat-to-beat measurements provide evidence that cardiovascular responses to the ingestion of energy drinks are best explained by the actions of caffeine and sugar, with little influence from other ingredients. However, a role for other active constituents, such as taurine and glucuronolactone, cannot be ruled out. This article reviews the potentially adverse hemodynamic effects of energy drinks, particularly on blood pressure and heart rate, and discusses the mechanisms by which their active ingredients may interact to adversely affect the cardiovascular system. Research areas and gaps in the literature are discussed with particular reference to the use of energy drinks among high-risk individuals.
Collapse
Affiliation(s)
- Erik Konrad Grasser
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | | | - Nathalie Charrière
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Cathríona R Loonam
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Charrière N, Loonam C, Montani JP, Dulloo AG, Grasser EK. Cardiovascular responses to sugary drinks in humans: galactose presents milder cardiac effects than glucose or fructose. Eur J Nutr 2016; 56:2105-2113. [PMID: 27328681 DOI: 10.1007/s00394-016-1250-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE There is increasing interest into the potentially beneficial effects of galactose for obesity and type 2 diabetes management as it is a low-glycemic sugar reported to increase satiety and fat mobilization. However, fructose is also a low-glycemic sugar but with greater blood pressure elevation effects than after glucose ingestion. Therefore, we investigated here the extent to which the ingestion of galactose, compared to glucose and fructose, impacts upon haemodynamics and blood pressure. METHODS In a randomized cross-over study design, 9 overnight-fasted young men attended 3 separate morning sessions during which continuous cardiovascular monitoring was performed at rest for at least 30 min before and 120 min after ingestion of 500 mL of water containing 60 g of either glucose, fructose or galactose. These measurements included beat-to-beat systolic and diastolic blood pressure, heart rate deduced by electrocardiography, and stroke volume derived by impedance cardiography; these measurements were used to calculate cardiac output and total peripheral resistance. RESULTS Ingestion of galactose, like glucose, led to significantly lesser increases in systolic, diastolic and mean blood pressure than fructose ingestion (p < 0.05). Furthermore, the increase in cardiac output and reduction in total peripheral resistance observed after ingestion of glucose were markedly lower after galactose ingestion (p < 0.01). CONCLUSIONS Galactose thus presents the interesting characteristics of a low-glycemic sugar with mild cardiovascular effects. Further studies are warranted to confirm the clinical relevance of the milder cardiovascular effects of galactose than other sugars for insulin resistant obese and/or diabetic patients with cardiac insufficiency.
Collapse
Affiliation(s)
- Nathalie Charrière
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Cathriona Loonam
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Abdul G Dulloo
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Erik K Grasser
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
21
|
Kaur B, Quek Yu Chin R, Camps S, Henry CJ. The impact of a low glycaemic index (GI) diet on simultaneous measurements of blood glucose and fat oxidation: A whole body calorimetric study. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2016; 4:45-52. [PMID: 29159130 PMCID: PMC5680450 DOI: 10.1016/j.jcte.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/26/2022]
Abstract
Blood glucose and fat oxidation were simultaneously measured in Asian males. The whole body calorimetre measured fat oxidation over 10 hours. Low GI meals increased fat oxidation in subjects who were in a sedentary state. Low GI meals minimized large blood glucose fluctuations throughout the day.
Objective Low glycaemic index (GI) foods are known to minimize large fluctuations in blood glucose levels and have been suggested to increase fat oxidation. The objective of this study was to simultaneously investigate glucose excursion and substrate oxidation in a whole body calorimetre when Chinese male subjects were provided a low or high GI meal. Materials/Methods In a randomized, controlled crossover non blind design, 12 healthy Chinese male adults (BMI 21.8 ± 1.3 kgm−2) attended two sessions consisting of either four low or high glycaemic meals (LGI vs HGI). Breakfast, lunch and snack were consumed in a whole body calorimetre while dinner was consumed at home. Daily changes in glycaemic response (GR) and postprandial GR responses were measured using a continuous glucose monitoring system. The GR was further calculated to obtain the incremental area under the curve (iAUC) for glucose concentrations. Glycaemic variability was calculated as mean amplitude of glycaemic excursion (MAGE). Substrate oxidation was calculated by measuring respiratory quotient and urine nitrogen excretion. Results After LGI meals in the whole body calorimetre, iAUC for glucose (P = 0.008) was lower compared to the HGI session. The HGI treatment produced a significantly greater MAGE than the LGI treatment over the 24 hour period (P < 0.001). Additionally, higher fat oxidation and lower carbohydrate oxidation were observed following breakfast and lunch when comparing LGI to HGI (P < 0.05) Conclusions Consumption of LGI meals was capable of attenuating 24-hour blood glucose profiles and decreasing postprandial glucose excursions in healthy Asian males. Additionally, LGI mixed meals were able to promote fat oxidation over carbohydrate oxidation when compared to HGI mixed meals. The consumption of low GI meals may be a strategic approach in improving overall glycaemia and increasing fat oxidation in Asians consuming a high carbohydrate diet.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), 30 Medical Drive, Singapore 117609
| | - Rina Quek Yu Chin
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), 30 Medical Drive, Singapore 117609
| | - Stefan Camps
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), 30 Medical Drive, Singapore 117609
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), 30 Medical Drive, Singapore 117609.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117543
| |
Collapse
|
22
|
Abstract
A high intake of sugars has been linked to diet-induced health problems. The fructose content in sugars consumed may also affect health, although the extent to which fructose has a particularly significant negative impact on health remains controversial. The aim of this narrative review is to describe the body's fructose management and to discuss the role of fructose as a risk factor for atherosclerosis, type 2 diabetes, and obesity. Despite some positive effects of fructose, such as high relative sweetness, high thermogenic effect, and low glycaemic index, a high intake of fructose, particularly when combined with glucose, can, to a larger extent than a similar glucose intake, lead to metabolic changes in the liver. Increased de novo lipogenesis (DNL), and thus altered blood lipid profile, seems to be the most prominent change. More studies with realistic consumption levels of fructose are needed, but current literature does not indicate that a normal consumption of fructose (approximately 50–60 g/day) increases the risk of atherosclerosis, type 2 diabetes, or obesity more than consumption of other sugars. However, a high intake of fructose, particularly if combined with a high energy intake in the form of glucose/starch, may have negative health effects via DNL.
Collapse
|
23
|
Hayashi N, Yamada T, Takamine S, Iida T, Okuma K, Tokuda M. Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in human. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
24
|
Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men. Eur J Clin Nutr 2014; 68:1060-6. [PMID: 25005676 DOI: 10.1038/ejcn.2014.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Because both, glycemic index (GI) and carbohydrate content of the diet increase insulin levels and could thus impair fat oxidation, we hypothesized that refeeding a low GI, moderate-carbohydrate diet facilitates weight maintenance. SUBJECTS/METHODS Healthy men (n=32, age 26.0±3.9 years; BMI 23.4±2.0 kg/m(2)) followed 1 week of controlled overfeeding, 3 weeks of caloric restriction and 2 weeks of hypercaloric refeeding (+50, -50 and +50% energy requirement) with low vs high GI (41 vs 74) and moderate vs high CHO intake (50% vs 65% energy). We measured adaptation of fasting macronutrient oxidation and the capacity to supress fat oxidation during an oral glucose tolerance test. Changes in fat mass were measured by quantitative magnetic resonance. RESULTS During overfeeding, participants gained 1.9±1.2 kg body weight, followed by a weight loss of -6.3±0.6 kg and weight regain of 2.8±1.0 kg. Subjects with 65% CHO gained more body weight compared with 50% CHO diet (P<0.05) particularly with HGI meals (P<0.01). Refeeding a high-GI diet led to an impaired basal fat oxidation when compared with a low-GI diet (P<0.02), especially at 65% CHO intake. Postprandial metabolic flexibility was unaffected by refeeding at 50% CHO but clearly impaired by 65% CHO diet (P<0.05). Impairment in fasting fat oxidation was associated with regain in fat mass (r=0.43, P<0.05) and body weight (r=0.35; P=0.051). CONCLUSIONS Both higher GI and higher carbohydrate content affect substrate oxidation and thus the regain in body weight in healthy men. These results argue in favor of a lower glycemic load diet for weight maintenance after weight loss.
Collapse
|
25
|
Cardiovascular responses to the ingestion of sugary drinks using a randomised cross-over study design: Does glucose attenuate the blood pressure-elevating effect of fructose? Br J Nutr 2014; 112:183-92. [PMID: 24780643 DOI: 10.1017/s0007114514000622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Overconsumption of sugar-sweetened beverages has been implicated in the pathogenesis of CVD. The objective of the present study was to elucidate acute haemodynamic and microcirculatory responses to the ingestion of sugary drinks made from sucrose, glucose or fructose at concentrations similar to those often found in commercial soft drinks. In a randomised cross-over study design, twelve young healthy human subjects (seven men) ingested 500 ml tap water in which was dissolved 60 g of either sucrose, glucose or fructose, or an amount of fructose equivalent to that present in sucrose (i.e. 30 g fructose). Continuous cardiovascular monitoring was performed for 30 min before and at 60 min after ingestion of sugary drinks, and measurements included beat-to-beat blood pressure (BP) and impedance cardiography. Additionally, microvascular endothelial function testing was performed after iontophoresis of acetylcholine and sodium nitroprusside using laser Doppler flowmetry. Ingestion of fructose (60 or 30 g) increased diastolic and mean BP to a greater extent than the ingestion of 60 g of either glucose or sucrose (P< 0.05). Ingestion of sucrose and glucose increased cardiac output (CO; P< 0.05), index of contractility (P< 0.05) and stroke volume (P< 0.05), but reduced total peripheral resistance (TPR; P< 0.05), which contrasts with the tendency of fructose (60 and 30 g) to increase resistance. Microvascular endothelial function did not differ in response to the ingestion of various sugary drinks. In conclusion, ingestion of fructose, but not sucrose, increases BP in healthy human subjects. Although sucrose comprises glucose and fructose, its changes in TPR and CO are more related to glucose than to fructose.
Collapse
|
26
|
Masterjohn C, Park Y, Lee J, Noh SK, Koo SI, Bruno RS. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2. Nutrients 2013; 5:3311-28. [PMID: 23966111 PMCID: PMC3775256 DOI: 10.3390/nu5083311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/05/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022] Open
Abstract
Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to d-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = −0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2.
Collapse
Affiliation(s)
- Christopher Masterjohn
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61801, USA
| | - Youngki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Jiyoung Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Sang K. Noh
- Department of Food and Nutrition, Changwon National University, Changwon 641-773, Korea; E-Mail:
| | - Sung I. Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Richard S. Bruno
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-5522; Fax: +1-614-292-4339
| |
Collapse
|
27
|
Tappy L, Egli L, Lecoultre V, Schneider P. Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: a review of human trials. Nutr Metab (Lond) 2013; 10:54. [PMID: 23941499 PMCID: PMC3751443 DOI: 10.1186/1743-7075-10-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/11/2013] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies indicate that the consumption of fructose-containing caloric sweeteners (FCCS: mainly sucrose and high-fructose corn syrup) is associated with obesity. The hypothesis that FCCS plays a causal role in the development of obesity however implies that they would impair energy balance to a larger extent than other nutrients, either by increasing food intake, or by decreasing energy expenditure. We therefore reviewed the literature comparing a) diet-induced thermogenesis (DIT) after ingestion of isocaloric FCCS vs glucose meals, and b) basal metabolic rate (BMR) or c) post-prandial energy expenditure after consuming a high FCCS diet for > 3 days vs basal,weight-maintenance low FCCS diet. Nine studies compared the effects of single isocaloric FCCS and glucose meals on DIT; of them, six studies reported that DIT was significantly higher with FCCS than with glucose, 2 reported a non-significant increase with FCCS, and one reported no difference. The higher DIT with fructose than glucose can be explained by the low energy efficiency associated with fructose metabolism. Five studies compared BMR after consumption of a high FCCS vs a low FCCS diet for > 3 days. Four studies reported no change after 4–7 day on a high FCCS diet, and only one study reported a 7% decrease after 12 week on a high FCCS diet. Three studies compared post-prandial EE after consumption of a high FCCS vs a low FCCS diet for > 3 days, and did not report any significant difference. One study compared 24-EE in subjects fed a weight-maintenance diet and hypercaloric diets with 50% excess energy as fructose, sucrose and glucose during 4 days: 24-EE was increased with all 3 hypercaloric diets, but there was no difference between fructose, sucrose and glucose. We conclude that fructose has lower energy efficiency than glucose. Based on available studies, there is presently no hint that dietary FCCS may decrease EE. Larger, well controlled studies are however needed to assess the longer term effects of FCCS on EE.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
28
|
Smeraglio AC, Kennedy EK, Horgan A, Purnell JQ, Gillingham MB. Change in postprandial substrate oxidation after a high-fructose meal is related to body mass index in healthy men. Nutr Res 2013; 33:435-41. [PMID: 23746558 PMCID: PMC3680788 DOI: 10.1016/j.nutres.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 11/23/2022]
Abstract
Oral fructose decreases fat oxidation and increases carbohydrate oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy nonobese men. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed after a fructose-rich mixed meal compared with a glucose-rich mixed meal. Twelve healthy, normal weight to overweight, aged 23 to 31 years participated in a double-blind, crossover study. Each participant completed 2 study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal, but plasma glucose, plasma leptin, and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose- and glucose-rich meals negatively correlated with body mass index (BMI; r = -0.59 [P = .04] and r = -0.59 [P = .04] at the 4- and 7-hour time points, respectively). In healthy nonobese men, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high-fructose meal may be modulated by BMI.
Collapse
Affiliation(s)
- Anne C. Smeraglio
- School of Medicine, Oregon Health & Science University, Portland, OR
| | - Emily K. Kennedy
- Graduate Programs in Human Nutrition, Oregon Health & Science University, Portland, OR
| | - Angela Horgan
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | | | - Melanie B. Gillingham
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| |
Collapse
|
29
|
Iida T, Yamada T, Hayashi N, Okuma K, Izumori K, Ishii R, Matsuo T. Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup. Food Chem 2012; 138:781-5. [PMID: 23411176 DOI: 10.1016/j.foodchem.2012.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 11/30/2022]
Abstract
Many studies have shown that ingestion of high-fructose corn syrup (HFCS) may cause an increase in body weight and abdominal fat. We recently developed a new sweetener containing rare sugars (rare sugar syrup; RSS) by slight isomerization of HFCS. Here, the functional effects of RSS on body weight and abdominal fat, and biochemical parameters in Wistar rats were examined. Rats (n=30) were randomly divided into three groups and maintained for 8-weeks on starch, starch+HFCS (50:50), and starch+RSS (50:50) diets. Rats in the Starch and HFCS groups gained significantly more body weight and abdominal fat than the RSS group. Fasting serum insulin in the RSS group was significantly lower than in the Starch and HFCS groups, although serum glucose in the HFCS and RSS groups was significantly lower than that in the Starch group. Thus, the substitution of HFCS with RSS prevents obesity induced by the consumption of HFCS.
Collapse
Affiliation(s)
- Tetsuo Iida
- Research Institute, Matsutani Chemical Industry Co., Ltd., 5-3, Kita-Itami, Itami, Hyogo 664-8508, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Erejuwa OO, Sulaiman SA, Wahab MSA. Fructose might contribute to the hypoglycemic effect of honey. Molecules 2012; 17:1900-15. [PMID: 22337138 PMCID: PMC6268125 DOI: 10.3390/molecules17021900] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
Honey is a natural substance with many medicinal properties, including antibacterial, hepatoprotective, hypoglycemic, antioxidant and antihypertensive effects. It reduces hyperglycemia in diabetic rats and humans. However, the mechanism(s) of its hypoglycemic effect remain(s) unknown. Honey comprises many constituents, making it difficult to ascertain which component(s) contribute(s) to its hypoglycemic effect. Nevertheless, available evidence indicates that honey consists of predominantly fructose and glucose. The objective of this review is to summarize findings which indicate that fructose exerts a hypoglycemic effect. The data show that glucose and fructose exert a synergistic effect in the gastrointestinal tract and pancreas. This synergistic effect might enhance intestinal fructose absorption and/or stimulate insulin secretion. The results indicate that fructose enhances hepatic glucose uptake and glycogen synthesis and storage via activation of hepatic glucokinase and glycogen synthase, respectively. The data also demonstrate the beneficial effects of fructose on glycemic control, glucose- and appetite-regulating hormones, body weight, food intake, oxidation of carbohydrate and energy expenditure. In view of the similarities of these effects of fructose with those of honey, the evidence may support the role of fructose in honey in mediating the hypoglycemic effect of honey.
Collapse
Affiliation(s)
- Omotayo O Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | |
Collapse
|
31
|
Kumstát M, Hrazdira L. Diet-Induced Thermogenesis: Comparison of Two Isocaloric Meal-Replacement Shakes. A pilot study. JOURNAL OF HUMAN SPORT AND EXERCISE 2012. [DOI: 10.4100/jhse.2012.7.proc1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Wiebe N, Padwal R, Field C, Marks S, Jacobs R, Tonelli M. A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med 2011; 9:123. [PMID: 22093544 PMCID: PMC3286380 DOI: 10.1186/1741-7015-9-123] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective. METHODS We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed. RESULTS Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≤10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m2, and -1.00 vs 1.60 kg/m2, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners. CONCLUSIONS Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences.
Collapse
Affiliation(s)
- Natasha Wiebe
- Department of Medicine, 13-103 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2G3 Canada
| | | | | | | | | | | |
Collapse
|
33
|
Sun FH, Wong SHS, Huang YJ, Chen YJ, Tsang KF. Substrate utilization during brisk walking is affected by glycemic index and fructose content of a pre-exercise meal. Eur J Appl Physiol 2011; 112:2565-74. [DOI: 10.1007/s00421-011-2231-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
34
|
Dulloo AG. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev 2011; 12:866-83. [PMID: 21951333 DOI: 10.1111/j.1467-789x.2011.00909.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept of managing obesity through the stimulation of thermogenesis is currently a focus of considerable attention by the pharmaceutical, nutraceutical and functional food industries. This paper first reviews the landmark discoveries that have fuelled the search for thermogenic anti-obesity products that range from single-target drugs to multi-target functional foods. It subsequently analyses the thermogenic and fat-oxidizing potentials of a wide array of bioactive food ingredients which are categorized under methylxanthines, polyphenols, capsaicinoids/capsinoids, minerals, proteins/amino acids, carbohydrates/sugars and fats/fatty acids. The main outcome of this analysis is that the compounds or combination of compounds with thermogenic and fat-oxidizing potentials are those that possess both sympathomimetic stimulatory activity and acetyl-coA carboxylase inhibitory property, and are capable of targeting both skeletal muscle and brown adipose tissue. The thermogenic potentials of products so far tested in humans range from marginal to modest, i.e. 2-5% above daily energy expenditure. With an increasing number of bioactive food ingredients awaiting screening in humans, there is hope that this thermogenic potential could be safely increased to 10-15% above daily energy expenditure - which would have clinically significant impact on weight management, particularly in the prevention of obesity and in improving the long-term prognosis of post-slimming weight maintenance.
Collapse
Affiliation(s)
- A G Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
35
|
Abstract
The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.
Collapse
|
36
|
Cocate PG, Pereira LG, Marins JCB, Cecon PR, Bressan J, Alfenas RCG. Metabolic responses to high glycemic index and low glycemic index meals: a controlled crossover clinical trial. Nutr J 2011; 10:1. [PMID: 21208446 PMCID: PMC3027095 DOI: 10.1186/1475-2891-10-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 01/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The consumption of low glycemic index (LGI) foods before exercise results in slower and more stable glycemic increases. Besides maintaining an adequate supply of energy during exercise, this response may favor an increase in fat oxidation in the postprandial period before the exercise compared to high glycemic index (HGI) foods. The majority of the studies that evaluated the effect of foods differing in glycemic index on substrate oxidation during the postprandial period before the exercise are acute studies in which a single meal is consumed right before the exercise. The purpose of this study was to investigate the effect of consuming two daily HGI or LGI meals for five consecutive days on substrate oxidation before the exercise and in the concentrations of glucose, insulin and free fatty acids before and during a high intensity exercise. METHODS Fifteen male cyclists, aged 24.4 ± 3.8 years, with body mass index of 21.9 ± 1.4 kg.m⁻² and a V(O2 max) of 70.0 ± 5.3 mL.kg⁻¹.min⁻¹, participated in this crossover study. All test meals were consumed in the laboratory. On days 1 and 5, substrate oxidation (30 minutes before and 90 minutes after breakfast (HGI or LGI)) and diet-induced thermogenesis (90 minutes postprandial) were assessed before the exercise. The levels of glucose, insulin, and free fatty acids were determined during 2 h after breakfast on these same days. Ninety minutes after breakfast, subjects completed a 30 min cycloergometric exercise at 85 to 95% of their maximum heart rate, during which lactate concentrations were assessed. RESULTS The consumption of HGI meals resulted in higher areas under the glycemic and insulinemic curves in the postprandial period. However, glycemia did not differ by study treatment during exercise. There were no differences in free fatty acids in the postprandial period or in lactate levels during exercise. LGI meals resulted in lower fat oxidation and higher carbohydrate oxidation than the HGI meal in the postprandial period. CONCLUSIONS The results do not support a differential glycemia according to glycemic index during exercise. The ingestion of LGI foods did not lead to higher fat oxidation relative to the ingestion of HGI foods.
Collapse
Affiliation(s)
- Paula G Cocate
- Departament of Nutrition and Health, Federal University of Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Letícia G Pereira
- Departament of Nutrition and Health, Federal University of Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais, 36570-000, Brazil
| | - João CB Marins
- Departament of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paulo R Cecon
- Departament of Computer Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Departament of Nutrition and Health, Federal University of Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Rita CG Alfenas
- Departament of Nutrition and Health, Federal University of Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
37
|
Corpeleijn E, Petersen L, Holst C, Saris WH, Astrup A, Langin D, MacDonald I, Martinez JA, Oppert JM, Polak J, Pedersen O, Froguel P, Arner P, Sørensen TIA, Blaak EE. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity (Silver Spring) 2010; 18:1369-77. [PMID: 19876004 DOI: 10.1038/oby.2009.377] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both obesity and insulin resistance have been related to low fat oxidation rates, which may be genetically determined. The association between variation in fat oxidation rates among obese subjects and genotype was studied for 42 common single-nucleotide polymorphisms (SNPs) in 26 candidate genes for fat oxidation, insulin resistance, and obesity, including FTO. Energy expenditure (EE) and fat oxidation were measured with indirect calorimetry during fasting and 3 h after a high fat load containing 95 energy% of fat (60% saturated fat, energy content 50% of estimated resting EE) in 722 obese subjects (541 women, 181 men) from 8 European centers. After adjustment for center and gender, -178 A>C CD36 (rs2232169) (P = 0.02), -22510 C>G SLC6A14 (women, rs2011162) (P = 0.03), and T690S C>G PCSK1 (rs6235) (P = 0.02) were related to a reduced fat oxidation, whereas 17 C>G SREBF1 (17 C>G) (P = 0.01) was related to increased fat oxidation in the fasting state. The ability to increase fat oxidation after a high fat load was increased in subjects with -174 G>C IL6 (rs1800795) (P = 0.01). Effect sizes range from 1.1 to 3.1% differences in fat oxidation (expressed as % of EE). FTO rs9939609 was not related to fat oxidation. At the same time, the results are not adjusted for multiple testing, thus none of the associations can be considered statistically significant. The results should therefore only be considered as leads to new hypotheses about effects of specific genetic polymorphisms on fasting and postprandial fat oxidation.
Collapse
Affiliation(s)
- Eva Corpeleijn
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dolan LC, Potter SM, Burdock GA. Evidence-based review on the effect of normal dietary consumption of fructose on development of hyperlipidemia and obesity in healthy, normal weight individuals. Crit Rev Food Sci Nutr 2010; 50:53-84. [PMID: 20047139 DOI: 10.1080/10408390903461426] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, there has been episodic speculation that an increase in consumption of fructose from foods and beverages is an underlying factor responsible for the relatively recent increase in obesity and obesity-related diseases such as diabetes. Reports in support of this hypothesis have been published, showing that concentrations of triglycerides (TG) are higher and concentrations of insulin and hormones associated with satiety are lower in animals following the ingestion of fairly large quantities of fructose, compared to other carbohydrates. However, results from human studies are inconsistent. A possible reason for the inconsistent results is that they are dependent on the particular study population, the design of the studies, and/or the amount of fructose administered. A systematic assessment of the strength and quality of the studies and their relevance for healthy, normal weight humans ingesting fructose in a normal dietary manner has not been performed. The purpose of this review was to critically evaluate the existing database for a causal relationship between the ingestion of fructose in a normal, dietary manner and the development of hyperlipidemia or increased body weight in healthy, normal weight humans, using an evidence-based approach. The results of the analysis indicate that fructose does not cause biologically relevant changes in TG or body weight when consumed at levels approaching 95th percentile estimates of intake.
Collapse
|
39
|
Abstract
While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic consequences of high fructose corn syrup versus sucrose consumption.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
40
|
Swithers SE, Baker CR, Davidson TL. General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats. Behav Neurosci 2009; 123:772-80. [PMID: 19634935 DOI: 10.1037/a0016139] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In an earlier work (S. E. Swithers & T. L. Davidson, 2008), rats provided with a fixed amount of a yogurt diet mixed with saccharin gained more weight and showed impaired caloric compensation relative to rats given the same amount of yogurt mixed with glucose. The present 4 experiments examined the generality of these findings and demonstrated that increased body weight gain was also demonstrated when animals consumed a yogurt diet sweetened with an alternative high-intensity sweetener (acesulfame potassium; AceK) as well as in animals given a saccharin-sweetened base diet (refried beans) that was calorically similar but nutritionally distinct from low-fat yogurt. These studies also extended earlier findings by showing that body weight differences persist after saccharin-sweetened diets are discontinued and following a shift to a diet sweetened with glucose. In addition, rats first exposed to a diet sweetened with glucose still gain additional weight when subsequently exposed to a saccharin-sweetened diet. The results of these experiments add support to the hypothesis that exposure to weak or nonpredictive relationships between sweet tastes and caloric consequences may lead to positive energy balance.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
41
|
Melanson KJ, Angelopoulos TJ, Nguyen V, Zukley L, Lowndes J, Rippe JM. High-fructose corn syrup, energy intake, and appetite regulation. Am J Clin Nutr 2008; 88:1738S-1744S. [PMID: 19064539 DOI: 10.3945/ajcn.2008.25825e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-fructose corn syrup (HFCS) has been implicated in excess weight gain through mechanisms seen in some acute feeding studies and by virtue of its abundance in the food supply during years of increasing obesity. Compared with pure glucose, fructose is thought to be associated with insufficient secretion of insulin and leptin and suppression of ghrelin. However, when HFCS is compared with sucrose, the more commonly consumed sweetener, such differences are not apparent, and appetite and energy intake do not differ in the short-term. Longer-term studies on connections between HFCS, potential mechanisms, and body weight have not been conducted. The main objective of this review was to examine collective data on associations between consumption of HFCS and energy balance, with particular focus on energy intake and its regulation.
Collapse
|
42
|
Abstract
AbstractThis paper discusses possible consequences of energy excess throughout the life cycle. Firstly we consider the effects of foods on hunger, satiety and satiation. Also, the changes in food availability and consumption in relation to changes in social and economic determinants of energy excess. The relationship between physical activity and energy intake (EI) is also considered. Secondly we explore the definition of energy excess and the metabolic effects of macronutrients (mainly in relation to fuel partitioning oxidation/storage) on energy balance. The cellular and molecular regulation determined by specific genes involved in lipogenesis, fuel partitioning and/or in energy dissipation are explored. Thirdly, we examine the main consequences induced by energy excess and positive energy balance, starting with the alterations in glucose utilisation (insulin resistance) leading to type 2 diabetes and the linkage of energy excess with other non-communicable diseases (NCDs). Biological, social and psychological consequences during perinatal, childhood and adolescence periods are specifically analysed. Fourthly, the transition from energy deficit to excess, under the optic of a developing country is analysed with country examples drawn from Latin America. The possible role of supplementary food programmes in determining positive energy balance is discussed especially in relation to pre-school and school feeding programmes. Fifthly, we deal with the economic costs of energy excess and obesity related diseases. Finally, some areas where further research is needed are described; biological and genetic determinants of individual and population energy requirements, foods and food preparations as actually consumed, consumer education and research needs on social determinants of energy imbalances.
Collapse
Affiliation(s)
- Ricardo Uauy
- Institute of Nutrition and Food Technology (INTA), University of Chile, Macul 5540, Santiago, Chile.
| | | |
Collapse
|
43
|
Abstract
The purpose of this review was to examine the role of glycaemic index in fuel partitioning and body composition with emphasis on fat oxidation/storage in humans. This relationship is based on the hypothesis postulating that a higher serum glucose and insulin response induced by high-glycaemic carbohydrates promotes lower fat oxidation and higher fat storage in comparison with low-glycaemic carbohydrates. Thus, high-glycaemic index meals could contribute to the maintenance of excess weight in obese individuals and/or predispose obesity-prone subjects to weight gain. Several studies comparing the effects of meals with contrasting glycaemic carbohydrates for hours, days or weeks have failed to demonstrate any differential effect on fuel partitioning when either substrate oxidation or body composition measurements were performed. Apparently, the glycaemic index-induced serum insulin differences are not sufficient in magnitude and/or duration to modify fuel oxidation.
Collapse
Affiliation(s)
- E O Díaz
- Laboratory of Energy Metabolism and Stable Isotopes, Institute of Nutrition and Food Technology (INTA), University of Chile, Ave. El Libano 5524, Macul, Santiago, Chile.
| | | | | |
Collapse
|
44
|
Mourão DM, Monteiro JBR, Hermsdorff HHM, Teixeira MCL. Alimentos modificados e suas implicações no metabolismo energético. REV NUTR 2005. [DOI: 10.1590/s1415-52732005000100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Comparar o efeito de duas dietas, modificadas no perfil de seus carboidratos, no metabolismo energético de homens com peso normal e com sobrepeso. MÉTODOS: Três formulações convencionais e suas formulações correspondentes diet, compuseram as dietas isoenergéticas padrão e a dieta modificada, respectivamente. Utilizou-se a calorimetria indireta, para obtenção dos dados referentes ao metabolismo energético. A amostra foi de 13 homens em cada grupo. RESULTADOS: O grupo com sobrepeso apresentou um gasto energético superior e uma termogênese inferior (p<0,01) ao grupo com eutróficos, independentemente da dieta. Verificou-se um quociente respiratório de repouso, gasto energético de repouso, termogênese, e oxidação de carboidratos, superior (p<0,05), após o uso de dieta modificada, independentemente do grupo. CONCLUSÃO: Os resultados sugerem que uma dieta isoenergética, com maior quantidade de carboidratos complexos, tende a elevar o quociente respiratório, promovendo, assim, um aumento da termogênese e do gasto energético.
Collapse
|
45
|
Díaz EO, Galgani JE, Aguirre CA, Atwater IJ, Burrows R. Effect of glycemic index on whole-body substrate oxidation in obese women. Int J Obes (Lond) 2004; 29:108-14. [PMID: 15505637 DOI: 10.1038/sj.ijo.0802592] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glycemic index is hypothesized to determine fuel partitioning through serum plasma insulin modifications induced by dietary carbohydrates, thereby modulating fat accretion or oxidation. OBJECTIVE To assess the glycemic effects on postprandial fuel oxidation and blood response. DESIGN In all, 12 obese women were fed on a randomized crossover design with two test meals (breakfast+lunch). High- or low-glycemic meals were provided on separate days. Energy intake on high-glycemic meal was 7758+/-148 kJ and for low-glycemic meal was 7806+/-179 kJ. Carbohydrates supplied were 273+/-5 and 275+/-6 g, respectively. Macronutrient distribution was 55% carbohydrates, 30% fat and 15% protein. Fuel oxidation was measured continuously in a respiratory chamber for 10 h. Serum glucose, free fatty acids (FFA), insulin and glucagon samples were taken for 5 h after breakfast. RESULTS Glucose AUC changed significantly in response to different glycemic breakfast. Low- vs high-glycemic breakfast was 211+/-84 and 379+/-164 mmol/l (P<0.05). Similarly, insulin changed from 94+/-37 and 170+/-87 nmol/l (P<0.05), respectively. The rate of increment for serum glucose and insulin reached by the high- vs low-glycemic meal was 1.8 times more with the high-glycemic breakfast. Serum FFA were similarly suppressed by both meal types by 3 h after meal intake, but then raised significantly more with the low-glycemic meal by the fourth and fifth hour (P<0.05). Plasma glucagon did not show a significant variation with glycemic index. Carbohydrate and fat oxidation was not modified by glycemic meal characteristics, being virtually the same for low- vs high-glycemic comparisons in the 5 h following breakfast and lunch (P=NS). CONCLUSION This study demonstrates that dietary glycemic characteristics were unable to modify fuel partitioning in sedentary obese women.
Collapse
Affiliation(s)
- E O Díaz
- Laboratorio de Metabolismo Energético e Isótopos Estables, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, AV JP Alessandri 5540, Santiago, Chile.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Obesity represents a major threat to health and quality of life. Although obesity has strong genetic determinants, it is generally accepted that it results from an imbalance between food intake and daily physical activity. Health guidelines have been focused on 3 particular lifestyle factors: increased levels of physical activity and reductions in the intakes of fat and sugars. The dietary guidelines, especially, are under debate. This review covers evidence from carefully controlled laboratory studies, clinical trials, studies in populations at high risk of developing obesity, and epidemiologic studies on the role of sugars, particularly sucrose, in the development of obesity. Although many environmental factors promote a positive energy balance, it is clear that the consumption of a low-carbohydrate, high-fat diet increases the likelihood of weight gain. The evidence related to carbohydrate, particularly sugars, and the type of food (solid or liquid) is less clear because the number of long-term ad libitum dietary intervention trials is very small. Data on sucrose intake in relation to metabolism and weight gain do not associate high consumption of sucrose with the prevalence of obesity. The evidence supports the current dietary guidelines for reducing fat intake. However, the effect of the carbohydrate source and class and of the form in which carbohydrate is consumed (solid or liquid) on body weight control requires further consideration.
Collapse
Affiliation(s)
- Wim H M Saris
- Nutrition and Toxicology Research Institute (NUTRIM), University of Maastricht, Maastricht, Netherlands.
| |
Collapse
|
48
|
Levine AS, Kotz CM, Gosnell BA. Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 2003; 78:834S-842S. [PMID: 14522747 DOI: 10.1093/ajcn/78.4.834s] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prevalence of obesity has increased dramatically in recent years in the United States, with similar patterns seen in several other countries. Although there are several potential explanations for this dramatic increase in obesity, dietary influences are a contributing factor. An inverse correlation between dietary sugar intake and body mass index has been reported, suggesting beneficial effects of carbohydrate intake on body mass index. In this review we discuss how sugars interact with regulatory neurochemicals in the brain to affect both energy intake and energy expenditure. These neurochemicals appear to be involved in dietary selection, and sugars and palatable substances affect neurochemical changes in the brain. For example, rats that drink sucrose solutions for 3 wk have major changes in neuronal activity in the limbic area of the brain, a region involved in pleasure and other emotions. We also investigate the relations between sucrose (and other sweet substances), drugs of abuse, and the mesolimbic dopaminergic system. The presence of sucrose in an animal's cage can affect the animals desire to self-administer drugs of abuse. Also, an animal's level of sucrose preference can predict its desire to self-administer cocaine. Such data suggest a relation between sweet taste and drug reward, although the relevance to humans is unclear. Finally, we address the influence of sugar on body weight control. For example, sucrose feeding for 2 wk decreases the efficiency of energy utilization and increases gene expression of uncoupling protein 3 in muscle, suggesting that sucrose may influence uncoupling protein 3 activity and contribute to changes in metabolic efficiency and thus regulation of body weight.
Collapse
Affiliation(s)
- Allen S Levine
- Minnesota Obesity Center, Minneapolis VA Medical Center, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
49
|
Treuth MS, Sunehag AL, Trautwein LM, Bier DM, Haymond MW, Butte NF. Metabolic adaptation to high-fat and high-carbohydrate diets in children and adolescents. Am J Clin Nutr 2003; 77:479-89. [PMID: 12540411 DOI: 10.1093/ajcn/77.2.479] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Difficulty adapting to high-fat (HF) and high carbohydrate (HC) diets may predispose children to obesity and diabetes. OBJECTIVE We tested the hypothesis that children have metabolic flexibility to adapt to HF and HC diets. DESIGN In protocol 1, 12 children aged 6-9 y and 12 adolescents aged 13-16 y were randomly assigned in a crossover design to consume low-fat (LF), HC (25% and 60% of energy, respectively) or HF, low-carbohydrate (LC) (55% and 30% of energy, respectively) diets. In protocol 2, 12 adolescents aged 13-16 y were randomly assigned in a crossover design to consume an LF-HC diet with 11% or 40% of carbohydrate as fructose. Total energy expenditure, nonprotein respiratory quotients (NPRQs), and substrate utilization were measured by using 24-h calorimetry. Effects of sex, puberty, body fat (dual-energy X-ray absorptiometry), intraabdominal fat (magnetic resonance imaging), and fitness on substrate utilization were tested. RESULTS Substrate utilization was not affected by puberty, body fat, intraabdominal fat, or fitness. Total energy expenditure was not affected by diet. In protocol 1, NPRQs and carbohydrate and fat utilization were significantly affected by diet (P = 0.001) and sex (P = 0.005). NPRQs and carbohydrate utilization increased with the LF-HC diet. NPRQs decreased and fat utilization increased with the HF-LC diet; changes in substrate utilization were less pronounced in females than in males. In protocol 2, 24-h NPRQs and 24-h substrate utilization were not significantly affected by fructose, although net carbohydrate and fat utilization were significantly lower and higher, respectively, with the high-fructose diet during fasting (P = 0.01) and in the subsequent feeding period (P = 0.05). CONCLUSION Healthy, nonobese children and adolescents adapt appropriately to HF and HC diets.
Collapse
Affiliation(s)
- Margarita S Treuth
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
50
|
Choi SB, Park CH, Park S. Effect of cola intake on insulin resistance in moderate fat-fed weaning male rats. J Nutr Biochem 2002; 13:727-733. [PMID: 12550057 DOI: 10.1016/s0955-2863(02)00216-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the prevalence of type 2 diabetes mellitus has dramatically increased in Korea as the diet has rapidly become westernized. We determined the effect of a long-term cola intake for insulin resistance in weaning male Sprague Dawley rats consuming a moderate fat diet. Thirty male pubs born from 6 female rats were randomized into cola or water drinking groups. The rats of the cola group were freely provided with 33 energy percent fat diets and cola for 28 weeks, while the rats of the control group had the same diet with water instead of cola. The daily caloric intake did not differ between groups, while the rats in the cola group consumed more carbohydrates. However, the mean body weight of the cola group was lower than that of the control group from the second week of the study. Whole body glucose disposal rates measured by euglycemic hyperinsulinemic clamp were higher in the cola group. Compared to the control group, glycogen contents and fraction velocity of glycogen synthase of the quadriceps muscle in the cola group were higher by 39.4% and 40.3%, respectively. Uncoupling protein (UCP)-2 and GLUT 4 contents of soleus and quadriceps muscles were higher in the cola group than the control group. In conclusion, insulin action improved with increased peripheral glucose utilization in weaning male rats drinking cola, which was partly due to lower body weight. This latter was possibly as a result of increased thermogenesis in muscles.
Collapse
Affiliation(s)
- Soo Bong Choi
- Internal Medicine, KonKuk University, Kyohyun-Dong, Chungjoo-Si, 380-062, ChungBuk-Do, South Korea
| | | | | |
Collapse
|