1
|
Zhang Q, Xue J, Tang J, Wu S, Liu Z, Wu C, Liu C, Liu Y, Lin J, Han J, Liu L, Chen Y, Yang J, Li Z, Zhao L, Wei Y, Li Y, Zhuo Y. Modulating amacrine cell-derived dopamine signaling promotes optic nerve regeneration and preserves visual function. SCIENCE ADVANCES 2024; 10:eado0866. [PMID: 39093964 PMCID: PMC11296332 DOI: 10.1126/sciadv.ado0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
As part of the central nervous system, the optic nerve, composed of axons from retinal ganglion cells (RGCs), generally fails to regenerate on its own when injured in adult mammals. An innovative approach to promoting optic nerve regeneration involves manipulating the interactions between amacrine cells (ACs) and RGCs. Here, we identified a unique AC subtype, dopaminergic ACs (DACs), that responded early after optic nerve crush by down-regulating neuronal activity and reducing retinal dopamine (DA) release. Activating DACs or augmenting DA release with levodopa demonstrated neuroprotective effects and modestly enhanced axon regeneration. Within this context, we pinpointed the DA receptor D1 (DRD1) as a critical mediator of DAC-derived DA and showed that RGC-specific Drd1 overexpression effectively overcame subtype-specific barriers to regeneration. This strategy markedly boosted RGC survival and axon regeneration after crush and preserved vision in a glaucoma model. This study unveils the crucial role of DAC-derived DA signaling in optic nerve regeneration, holding promise for therapeutic insights into neural repair.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuze Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinpeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiqing Li
- Corresponding author. (Y. Li); (Y.Z.); (Y.W.)
| | - Yehong Zhuo
- Corresponding author. (Y. Li); (Y.Z.); (Y.W.)
| |
Collapse
|
2
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Vranic M, Ahmed F, Kristófi R, Hetty S, Mokhtari D, Svensson MK, Eriksson JW, Pereira MJ. Subcutaneous adipose tissue dopamine D2 receptor is increased in prediabetes and T2D. Endocrine 2024; 83:378-391. [PMID: 37752366 PMCID: PMC10850013 DOI: 10.1007/s12020-023-03525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism. METHODS mRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine). RESULTS DRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis. CONCLUSION The results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.
Collapse
Affiliation(s)
- Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
GPCR in Adipose Tissue Function-Focus on Lipolysis. Biomedicines 2023; 11:biomedicines11020588. [PMID: 36831123 PMCID: PMC9953751 DOI: 10.3390/biomedicines11020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.
Collapse
|
5
|
Naz F, Malik A, Riaz M, Mahmood Q, Mehmood MH, Rasool G, Mahmood Z, Abbas M. Bromocriptine Therapy: Review of mechanism of action, safety and tolerability. Clin Exp Pharmacol Physiol 2022; 49:903-922. [DOI: 10.1111/1440-1681.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy University of the Punjab Lahore Pakistan
| | - Abdul Malik
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Qaisar Mahmood
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Government College University Faisalabad Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Zahed Mahmood
- Department of Biochemistry Government College University Faisalabad Pakistan
| | - Mazhar Abbas
- Department of Biochemistry College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus) Lahore Pakistan
| |
Collapse
|
6
|
Moore MC, Smith MS, Swift LL, Cincotta AH, Ezrokhi M, Cominos N, Zhang Y, Farmer B, Cherrington AD. Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model. Am J Physiol Endocrinol Metab 2020; 319:E133-E145. [PMID: 32459527 PMCID: PMC7468784 DOI: 10.1152/ajpendo.00479.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine mesylate treatment was examined in dogs fed a high fat diet (HFD) for 8 wk. After 4 wk on HFD, daily bromocriptine (Bromo; n = 6) or vehicle (CTR; n = 5) injections were administered. Oral glucose tolerance tests were performed before beginning HFD (OGTT1), 4 wk after HFD began (Bromo only), and after 7.5 wk on HFD (OGTT3). After 8 wk on HFD, clamp studies were performed, with infusion of somatostatin and intraportal replacement of insulin (4× basal) and glucagon (basal). From 0 to 90 min (P1), glucose was infused via peripheral vein to double the hepatic glucose load; and from 90 to 180 min (P2), glucose was infused via the hepatic portal vein at 4 mg·kg-1·min-1, with the HGL maintained at 2× basal. Bromo decreased the OGTT glucose ΔAUC0-30 and ΔAUC0-120 by 62 and 27%, respectively, P < 0.05 for both) without significantly altering the insulin response. Bromo dogs exhibited enhanced net hepatic glucose uptake (NHGU) compared with CTR (~33 and 21% greater, P1 and P2, respectively, P < 0.05). Nonhepatic glucose uptake (non-HGU) was increased ~38% in Bromo in P2 (P < 0.05). Bromo vs. CTR had higher (P < 0.05) rates of glucose infusion (36 and 30%) and non-HGU (~40 and 27%) than CTR during P1 and P2, respectively. In Bromo vs. CTR, hepatic 18:0/16:0 and 16:1/16:0 ratios tended to be elevated in triglycerides and were higher (P < 0.05) in phospholipids, consistent with a beneficial effect of bromocriptine on liver fat accumulation. Thus, bromocriptine treatment improved glucose disposal in a glucose-intolerant model, enhancing both NHGU and non-HGU.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta S Smith
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Larry L Swift
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Ben Farmer
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
7
|
Furigo IC, Suzuki MF, Oliveira JE, Ramos-Lobo AM, Teixeira PDS, Pedroso JA, de Alencar A, Zampieri TT, Buonfiglio DC, Quaresma PGF, Prada PO, Bartolini P, Soares CRJ, Donato J. Suppression of Prolactin Secretion Partially Explains the Antidiabetic Effect of Bromocriptine in ob/ob Mice. Endocrinology 2019; 160:193-204. [PMID: 30462197 DOI: 10.1210/en.2018-00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João A Pedroso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda de Alencar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula G F Quaresma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, SP, Brazil
| | - Patricia O Prada
- School of Applied Sciences, State University of Campinas, Limeira, São Paulo, SP, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Challenger Treats Zika Virus. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Chan JFW, Chik KKH, Yuan S, Yip CCY, Zhu Z, Tee KM, Tsang JOL, Chan CCS, Poon VKM, Lu G, Zhang AJ, Lai KK, Chan KH, Kao RYT, Yuen KY. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141:29-37. [PMID: 28185815 DOI: 10.1016/j.antiviral.2017.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/05/2017] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection is associated with congenital malformations in infected fetuses and severe neurological and other systemic complications in adults. There are currently limited anti-ZIKV treatment options that are readily available and safe for use in pregnancy. In this drug repurposing study, bromocriptine was found to have inhibitory effects on ZIKV replication in cytopathic effect inhibition, virus yield reduction, and plaque reduction assays. Time-of-drug-addition assay showed that bromocriptine exerted anti-ZIKV activity between 0 and 12 h post-ZIKV inoculation, corroborating with post-entry events in the virus replication cycle prior to budding. Our docking model showed that bromocriptine interacted with several active site residues of the proteolytic cavity involving H51 and S135 in the ZIKV-NS2B-NS3 protease protein, and might occupy the active site and inhibit the protease activity of the ZIKV-NS2B-NS3 protein. A fluorescence-based protease inhibition assay confirmed that bromocriptine inhibited ZIKV protease activity. Moreover, bromocriptine exhibited synergistic effect with interferon-α2b against ZIKV replication in cytopathic effect inhibition assay. The availability of per vagina administration of bromocriptine as suppositories or vaginoadhesive discs and the synergistic anti-ZIKV activity between bromocriptine and type I interferon may make bromocriptine a potentially useful and readily available treatment option for ZIKV infection. The anti-ZIKV effects of bromocriptine should be evaluated in a suitable animal model.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.
| | - Kenn Ka-Heng Chik
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Shuofeng Yuan
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Zheng Zhu
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kah-Meng Tee
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jessica Oi-Ling Tsang
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chris Chung-Sing Chan
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, Hong Kong, China
| | - Anna Jinxia Zhang
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin-Kui Lai
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Richard Yi-Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Kato F, Ishida Y, Oishi S, Fujii N, Watanabe S, Vasudevan SG, Tajima S, Takasaki T, Suzuki Y, Ichiyama K, Yamamoto N, Yoshii K, Takashima I, Kobayashi T, Miura T, Igarashi T, Hishiki T. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral Res 2016; 131:141-7. [PMID: 27181378 DOI: 10.1016/j.antiviral.2016.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
Abstract
Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease.
Collapse
Affiliation(s)
- Fumihiro Kato
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan; Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Yuki Ishida
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Koji Ichiyama
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kentaro Yoshii
- Laboratry of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Ikuo Takashima
- Laboratry of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takeshi Kobayashi
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan; Viral Infectious Diseases Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
11
|
Kumar V S H, M B V, A N P, Aithal S, Baleed SR, Patil UN. Bromocriptine, a Dopamine (d2) Receptor Agonist, Used Alone and in Combination with Glipizide in Sub-Therapeutic Doses to Ameliorate Hyperglycaemia. J Clin Diagn Res 2013; 7:1904-7. [PMID: 24179894 DOI: 10.7860/jcdr/2013/5803.3347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/03/2013] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Bromocriptine, an ergot derivative, is an agonist at the dopamine 2 receptor and a sympatholytic. It is a well established drug in Parkinsonism, hyperprolactinaemia and acromegaly and it has various other clinical indications like induction of ovulation in female infertility. Bromocriptine has been evaluated in alloxan induced diabetic rats for its anti-hyperglycaemic effect with and without simultaneous use of glipizide. METHODS Diabetes was induced in albino rats by giving a single subcutaneous injection of alloxan in a dose of 150 mg/kg body weight. After 72 hours of giving alloxan injection, depending upon their blood glucose levels (350mg/dl and above), the rats were included into the study and they were divided into four groups, each comprising of 6 rats (n=24): Group 1 which was taken as control was given distilled water. Group 2 was treated with glipizide, a standard drug. Group 3 was treated with the test drug, bromocriptine and Group 4 was treated with sub therapeutic doses of test and standard drugs. The drugs were given to the diabetic rats once daily by oral route for 30 consecutive days, in order to assess their effects in terms of reduction in blood glucose levels. Blood glucose was estimated on 0(th), 10(th), 20(th), and 30(th) days of the study at fixed time intervals. RESULTS AND CONCLUSION Bromocriptine, which was used alone, lowered the blood glucose levels appreciably; whereas the concomitant administration of bromocriptine and glipizide in sub therapeutic doses produced a much more appreciable reduction. The results which were obtained in the group which received simultaneous administration of test and standard drugs in sub therapeutic doses were comparable to those of the group which received reference drug, glipizide. Hence, it can be concluded that bromocriptine may serve as a valuable adjunct to available anti-diabetic medication.
Collapse
Affiliation(s)
- Harish Kumar V S
- Assistant Professor, Department of Pharmacology, S S Institute of Medical Sciences & Research Centre Davanagere, Karnataka, India
| | | | | | | | | | | |
Collapse
|
12
|
Le JA, Wilson HM, Shehu A, Devi YS, Aguilar T, Gibori G. Prolactin activation of the long form of its cognate receptor causes increased visceral fat and obesity in males as shown in transgenic mice expressing only this receptor subtype. Horm Metab Res 2011; 43:931-7. [PMID: 21989556 PMCID: PMC3799815 DOI: 10.1055/s-0031-1291182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To date the best defined function of prolactin (PRL) is its action on the ovary and mammary gland, although it has also been shown to have an effect on lipid metabolism. Using mice engineered to express only the long form of the prolactin receptor (PRL-RL), we demonstrate that PRL acting through PRL-RL alone causes severe adipose accumulation in visceral fat of males at 6 months of age. The increase in visceral fat accumulation is attributed to loss of adipose-derived leptin, which results in diminished lipolysis. The reduction in leptin also corresponds to decreased activation of AMP-activated protein kinase (AMPK), which further results in diminished fatty acid oxidation and increased fatty acid synthesis. Interestingly, the blunted AMPK response was only observed in adipose tissue and not in liver suggesting that this PRL mediated effect is tissue specific. A glucose tolerance study inferred that PRL-RL mice may suffer from insulin resistance or a reduction in insulin production that is not due to aberrant expression of glucose transporter 4 (Glut4). Collectively, our findings demonstrate that PRL signaling through the long form receptor causes reduced fatty acid oxidation, increased lipid storage, glucose intolerance, and obesity. These findings are of great importance towards understanding the etiology of obesity associated with hyperprolactinemia in humans as well as the role of PRL as a metabolic regulator in adipose tissue.
Collapse
Affiliation(s)
- J A Le
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | |
Collapse
|
13
|
dos Santos Silva CM, Barbosa FRP, Lima GAB, Warszawski L, Fontes R, Domingues RC, Gadelha MR. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 2011; 19:800-5. [PMID: 20559294 DOI: 10.1038/oby.2010.150] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperprolactinemia might be related to weight gain, metabolic syndrome (MS), and insulin resistance (IR). Treatment with dopamine agonist (DA) has been shown to reduce body weight and improve metabolic parameters. The objectives of this study were to determine the prevalence of obesity, overweight, MS, and IR in patients with prolactinoma before and after therapy with DA and to evaluate the relation between prolactin (PRL), body weight, fat distribution, leptin levels, IR, and lipid profile before treatment. In addition, we investigated the correlation of the reduction in PRL levels with weight loss and metabolic profile improvement. Twenty-two patients with prolactinoma completed 6 months of treatment with DA. These patients were submitted to clinical (BMI, waist circumference, blood pressure (BP)), laboratory evaluation (leptin, glucose, low-density lipoprotein (LDL)-cholesterol, and triglyceride (TG) levels) and abdominal computed tomography (CT) before and after treatment. The statistical analyses were done by nonparametric tests. At the beginning of the study, the prevalence of obesity, overweight, MS, and IR was 45, 27, 27, and 18%, respectively. After 6 months of treatment with DA, PRL levels normalized, but no significant difference in BMI was observed. However, there was a significant decrease on homeostasis model assessment of insulin resistance (HOMA(IR)) index, glucose, LDL-cholesterol, and TG levels. This study suggests a possible involvement of prolactinoma on the prevalence of obesity. We should consider that DA may be effective on improving metabolic parameters, and we speculate that a period longer than 6 months of treatment is necessary to conclude whether this drug can interfere in the body weight of patients with prolactinoma.
Collapse
Affiliation(s)
- Cintia M dos Santos Silva
- Division of Endocrinology, Hospital Universitário Clementino Fraga Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Davis LM, Michaelides M, Cheskin LJ, Moran TH, Aja S, Watkins PA, Pei Z, Contoreggi C, McCullough K, Hope B, Wang GJ, Volkow ND, Thanos PK. Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity. Neuroendocrinology 2009; 89:152-62. [PMID: 18984941 PMCID: PMC2681080 DOI: 10.1159/000170586] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/02/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND The dopamine (DA) D(2) receptor (D2R) agonist bromocriptine (BC) decreases body fat in animal and human models and increases lean muscle mass, improves glucose intolerance and insulin resistance, and reduces triglycerides and free fatty acids. We have previously shown a negative correlation between D2R and body weight in obese individuals and in rodents, and that chronic food restriction increases D2R binding in genetically obese rats. The purpose of this study was to assess whether the antiobesity and metabolic effects of BC are related to changes in midbrain DA and D2R activity by measuring D2R and DA transporter (DAT) binding in a genetic (leptin-receptor-deficient) and environmental (diet-induced) rodent obesity model. METHODS Obese (fa/fa) (leptin-receptor-deficient), lean (FA/FA) Zucker rats and rats with diet-induced obesity (DIO) were treated with 10 mg/kg BC for 4 weeks. Body weight, food intake, locomotor activity and blood glucose levels were measured along with D2R- and DAT-binding levels using in vitro receptor autoradiography. RESULTS BC decreased food intake and body fat and increased locomotor activity in both the (fa/fa) and DIO rats. Furthermore, BC increased D2R binding in (fa/fa) but not in DIO rats. Finally, BC increased DAT binding in DIO rats but not in the (fa/fa) rats. CONCLUSION These observations are all consistent with the existence of unique leptin-DA interactions and the hypothesis that there is hyposensitivity of the DA system in obesity.
Collapse
Affiliation(s)
- Lisa M. Davis
- Department of International Health, Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Michael Michaelides
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Medicine, Brookhaven National Laboratory, Baltimore, Md
- Department of Psychology, SUNY Stony Brook, Stony Brook, N.Y
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, Md., USA
| | - Lawrence J. Cheskin
- Department of International Health, Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Md
| | - Susan Aja
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Md
| | - Paul A. Watkins
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Zhengtong Pei
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Carlo Contoreggi
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Md
| | - Karen McCullough
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Md
| | - Bruce Hope
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Md
| | - Gene Jack Wang
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Medicine, Brookhaven National Laboratory, Baltimore, Md
| | - Nora D. Volkow
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Medicine, Brookhaven National Laboratory, Baltimore, Md
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, Md., USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Medicine, Brookhaven National Laboratory, Baltimore, Md
- Department of Psychology, SUNY Stony Brook, Stony Brook, N.Y
- Department of Neuroscience Program, SUNY Stony Brook, Stony Brook, N.Y
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, Md., USA
| |
Collapse
|
15
|
Oh-Nishi A, Saji M, Furudate SI, Suzuki N. Dopamine D(2)-like receptor function is converted from excitatory to inhibitory by thyroxine in the developmental hippocampus. J Neuroendocrinol 2005; 17:836-45. [PMID: 16280031 DOI: 10.1111/j.1365-2826.2005.01381.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism by which a lack of thyroid hormone in the early development of the brain causes permanent mental retardation in cretins is currently unknown. On the other hand, an abnormality in dopamine-related brain function is believed to underlie some forms of mental illness. In this study, we demonstrate that although the activation of a dopaminergic D(2)-like receptor inhibited glutamatergic transmission in the hippocampal slices of normal adult rats, indicating the inhibitory action of the D(2)-like receptor on glutamatergic transmission, it markedly enhanced glutamatergic transmission both in a mutant hypothyroid rat with a missense mutation in thyroglobulin and in hypothyroid rats treated with methylmercaptoimidazole (MMI), indicating the excitatory action of the D(2)-like receptor on glutamatergic transmission. Paired pulse facilitation of field excitatory postsynaptic potentials was reduced by the activation of the D(2)-like receptors from MMI-induced hypothyroid rats, suggesting a presynaptic locus of the excitatory action of the D(2)-like receptors. In normal rats, the excitatory D(2)-like dopamine receptors were observed in the developing stages and were completely replaced by normal inhibitory responses up to adulthood. Furthermore, the continuous supplement of thyroxine from birth exerted a normalising effect on the abnormal excitatory property of D(2)-like dopamine receptors in the hippocampal slices of MMI-treated hypothyroid rats. From these results, it is suggested that thyroxine may play a crucial role in reversing the excitatory property of D(2)-like dopaminergic receptors in the immature brain to an inhibitory one in the mature brain. Moreover, we suggest that the abnormal excitatory property of D(2)-like dopaminergic receptors may develop in response to a lack of thyroxine and may contribute to some central nervous system deficits, including cognitive dysfunctions accompanied by hypothyroidism.
Collapse
Affiliation(s)
- A Oh-Nishi
- Division of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara-shi, Kanagawa, Japan
| | | | | | | |
Collapse
|
16
|
Shimamura M, Matsuda M, Ando Y, Koishi R, Yasumo H, Furukawa H, Shimomura I. Leptin and insulin down-regulate angiopoietin-like protein 3, a plasma triglyceride-increasing factor. Biochem Biophys Res Commun 2004; 322:1080-5. [PMID: 15336575 DOI: 10.1016/j.bbrc.2004.08.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Indexed: 10/26/2022]
Abstract
We reported previously that angiopoietin-like protein3 (ANGPTL3), a liver-specific secretory factor, increased plasma triglyceride (TG) via inhibition of lipoprotein lipase and free fatty acid (FFA) by activating adipose-lipolysis. The current study examined the regulation of Angptl3 by leptin and insulin, both of which are key players in the metabolic syndrome. Angptl3 expression and plasma ANGPTL3 levels were increased in leptin-resistant C57BL/6J(db/db) and -deficient C57BL/6J(ob/ob) mice, relative to the control. Leptin supplements decreased Angptl3 gene expression and plasma ANGPTL3 in C57BL/6J(ob/ob) mice. The changes of Angptl3 were associated with alterations of plasma TG and FFA levels. Leptin treatment directly suppressed Angptl3 gene expression in hepatocytes. Angptl3 gene expression and plasma protein levels were also increased in insulin-deficient streptozotocin-treated mice. Insulin treatment of hepatocytes decreased Angptl3 gene expression and protein secretion. Our results suggest that elevated ANGPTL3 by leptin- or insulin-resistance is attributed to increased plasma TG and FFA concentrations in obesity.
Collapse
Affiliation(s)
- Mitsuru Shimamura
- Biomedical Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Beta-lactotensin, a neurotensin NT2 agonist derived from beta-lactoglobulin, has hypocholesterolemic activity after administration for 2 days at a dose of 30 mg/kg (i.p.) or 100 mg/kg (p.o.) for 2 days in mice fed a high-cholesterol/cholic acid diet. The onset of hypocholesterolemic activity of beta-lactotensin was observed 90 min after a single i.p. or p.o. administration at the same dose as described above. Neurotensin also induced hypocholesterolemic activity 90 min after single i.p. administration at a dose of 2 microg per mouse but was ineffective after oral administration. The rapid onset of hypocholesterolemic activities of beta-lactotensin and neurotensin was blocked by levocabastine (50 microg/kg), an NT2 antagonist, and raclopride (0.5 mg/kg), a dopamine D2 antagonist.
Collapse
Affiliation(s)
- Rena Yamauchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
18
|
Vikramadithyan RK, Hiriyan J, Suresh J, Gershome C, Babu RK, Misra P, Rajagopalan R, Chakrabarti R. DRF 2655: a unique molecule that reduces body weight and ameliorates metabolic abnormalities. OBESITY RESEARCH 2003; 11:292-303. [PMID: 12582227 DOI: 10.1038/oby.2003.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Preclinical evaluation of DRF 2655, a peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma agonist, as a body-weight lowering, hypolipidemic and euglycemic agent. RESEARCH METHODS AND PROCEDURES DRF 2655 was studied in different genetic, normal, and hyperlipidemic animal models. HEK 293 cells were used to conduct the reporter-based transactivation of PPARalpha and PPARgamma. To understand the biochemical mechanism of lipid-, body-weight-, and glucose-lowering effects, activities of key beta-oxidation and lipid catabolism enzymes and gluconeogenic enzymes were studied in db/db mice treated with DRF 2655. 3T3L1 cells were used for adipogenesis study, and HepG2 cells were used to study the effect of DRF 2655 on total cholesterol and triglyceride synthesis using [(14)C]acetate and [(3)H]glycerol. RESULTS DRF 2655 showed concentration-dependent transactivation of PPARalpha and PPARgamma. In the 3T3L1 cell-differentiation study, DRF 2655 and rosiglitazone showed 369% and 471% increases, respectively, in triglyceride accumulation. DRF 2655 showed body-weight lowering and euglycemic and hypolipidemic effects in various animal models. db/db mice treated with DRF 2655 showed 5- and 3.6-fold inhibition in phosphoenolpyruvate carboxykinase and glucose 6-phosphatase activity and 651% and 77% increases in the beta-oxidation enzymes carnitine palmitoyltransferase and carnitine acetyltransferase, respectively. HepG2 cells treated with DRF 2655 showed significant reduction in lipid synthesis. DISCUSSION DRF 2655 showed excellent euglycemic and hypolipidemic activities in different animal models. An exciting finding is its body-weight lowering effect in these models, which might be mediated by the induction of target enzymes involved in hepatic lipid catabolism through PPARalpha activation.
Collapse
Affiliation(s)
- Reeba K Vikramadithyan
- Discovery Biology, Dr. Reddy's Laboratories, Discovery Research, Bollaram Road, Miyapur, Hyderabad, India.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
A plethora of data from experimental animals provide strong support for the concept that reduced dopaminergic neuronal activity and enhanced noradrenergic tone in specific hypothalamic nuclei are involved in the pathogenesis of the metabolic syndrome. The available information on these neurotransmitter systems in insulin-resistant humans with obesity is in keeping with the postulate that analogous mechanisms may underlie their adverse metabolic profile. Treatment with bromocriptine, which has dopaminergic (D2 receptor agonist) and sympatholytic (alpha2-adrenoceptor agonistic and an alpha1-adrenoceptor antagonistic) actions, can reverse the metabolic anomalies in a variety of obese mammalian species. Combined D1/D2 receptor activation appears to exert even more powerful effects on fuel metabolism in various animal models of the metabolic syndrome. The currently available data on the metabolic effects of bromocriptine in humans with obesity and type 2 diabetes mellitus point in the same direction. Bromocriptine favorably affects glucose metabolism and various other components of the metabolic syndrome simultaneously to ameliorate the risk of damage to eyes, neural tissue, kidneys and the cardiovascular system in patients with type 2 diabetes mellitus. Moreover, a substantial number of studies indicate that bromocriptine lowers blood pressure in animals and humans with hypertension via its sympatholytic capacities. However, the effects of bromocriptine alone are relatively modest, the metabolic mechanism of action in humans remains uncertain, and the long-term efficacy and safety profiles of this compound are unknown. It seems important to seek for ways to boost the action of bromocriptine, by combining dopaminergic D2 and D1 receptor activation, for example. Notably, there is no antidiabetic drug that acts through central (dopaminergic) mechanisms. This novel approach may, therefore, result in synergistic actions with other available agents to favorably impact the risk of tissue damage in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hanno Pijl
- Leiden University Medical Center, Department of Internal Medicine, Leiden, The Netherlands.
| | | |
Collapse
|
20
|
Liang Y, Cincotta AH. Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes (Lond) 2001; 25:698-704. [PMID: 11360153 DOI: 10.1038/sj.ijo.0801614] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Revised: 12/11/2000] [Accepted: 12/20/2000] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Several studies have implicated increased sympathetic tone as a contributing factor to the hyperglycemia and hyperglucagonemia of ob/ob mice. However, the responsiveness of plasma glucose, insulin and glucagon to circulating norepinephrine (NE) in ob/ob vs normal lean mice has never been described. Therefore, the present study investigated the effect of a 15 min intravenous NE infusion (1 pmol/min/g) on plasma glucose, insulin and glucagon in anesthetized lean, ob/ob, ob/ob-concurrent yohimbine (alpha(2) antagonist) treated, and ob/ob-chronically sympatholytic dopamine agonist treated (for 14 days prior to infusion) mice. In an effort to gain insight into a possible relation between norepinephrine, hyperglucagonemia and hyperinsulinemia in ob/ob mice, this study also examined the isolated islet responses to NE and glucagon in lean, ob/ob and ob/ob-sympatholytic dopamine agonist treated mice. RESULTS Basal humoral values of glucose, insulin and glucagon were all elevated in ob/ob vs lean mice (by 63, 1900 and 63%, respectively, P<0.01). However, NE infusion further increased levels of glucose, insulin and glucagon in ob/ob (by 80, 90 and 60%, respectively, P<0.05) but not in lean mice (between group difference for all parameters P<0.05). Acute concurrent yohimbine treatment as well as chronic prior sympatholytic dopamine agonist treatment (bromocriptine plus SKF38393) simultaneously strongly aborgated or abolished all these humoral hypersensitivity responses to intravenous NE in ob/ob mice (P<0.05). Clamping the plasma glucose level in untreated ob/ob mice at a high level (30 mM) established by NE infusion did not significantly alter the plasma insulin level, suggesting that some other influence of NE was responsible for this insulin effect. Direct NE administration at 1 microM to islets from lean and ob/ob mice inhibited 15 mM glucose-stimulated insulin secretion in both groups, but at 0.1 microM it was inhibitory only in islets from ob/ob mice. However, glucagon (10 nM) increased 15 mM glucose-stimulated insulin secretion in ob/ob (by 170%, P<0.05) but not lean mice (between group difference P<0.05). CONCLUSION These findings suggest that hypersensitivity to circulating NE may potentiate hyperglycemia and hyperglucagonemia in ob/ob mice, and the subsequent hyperglucagonemia coupled with increased islet beta-cell insulin secretory responsiveness to glucagon in ob/ob mice may support hyperinsulinemia, thus explaining the increased plasma insulin level response to intravenous NE in these animals. These findings further support a role for increased peripheral noradrenergic activities in the development and maintenance of the hyperglycemic, hyperglucagonemic and hyperinsulinemic state, characteristic of type 2 diabetes.
Collapse
Affiliation(s)
- Y Liang
- Ergo Science Corp., N. Andover, Massachusetts, USA
| | | |
Collapse
|